Nothing Special   »   [go: up one dir, main page]

JP2007217262A - Apparatus for manufacturing silicon - Google Patents

Apparatus for manufacturing silicon Download PDF

Info

Publication number
JP2007217262A
JP2007217262A JP2006066684A JP2006066684A JP2007217262A JP 2007217262 A JP2007217262 A JP 2007217262A JP 2006066684 A JP2006066684 A JP 2006066684A JP 2006066684 A JP2006066684 A JP 2006066684A JP 2007217262 A JP2007217262 A JP 2007217262A
Authority
JP
Japan
Prior art keywords
silicon
gas
zinc
reaction
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006066684A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Nobuo Ishizawa
伸夫 石澤
Yukihiro Kino
幸浩 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINOTECH CORP
Original Assignee
KINOTECH CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINOTECH CORP filed Critical KINOTECH CORP
Priority to JP2006066684A priority Critical patent/JP2007217262A/en
Publication of JP2007217262A publication Critical patent/JP2007217262A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing high purity silicon by a zinc reduction of silicon tetrachloride, obtaining high purity silicon by a gas phase reaction in a higher yield, melting in its system, substantially dispensing with the operation for separating other reactant components, and separating and taking out only silicon. <P>SOLUTION: The apparatus is for manufacturing high purity silicon by reducing silicon tetrachloride by zinc in a gas phase, which has a process where zinc gas preheated to a specified temperature is sent to a reaction tower to make a zinc gas atmosphere inside the reaction tower, a process where silicon tetrachloride gas preheated to a specified temperature is supplied into the reaction tower having the zinc gas atmosphere, a process where silicon formed by the reaction in the reaction tower is grown as a solid phase in the reaction gas containing silicon formed by the reaction in the reaction tower, and a process where the solid silicon is separated from the reaction gas. The silicon is taken out as a solid or a melt. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は主としてソーラーセルや電子部品に使用するシリコンを低消費エネルギーで得ることが出来る四塩化珪素を金属亜鉛により還元して、高純度シリコンを得るためのシリコンの製造装置並びに製造方法に関する。The present invention mainly relates to a silicon manufacturing apparatus and a manufacturing method for obtaining high-purity silicon by reducing silicon tetrachloride, which can obtain silicon used for solar cells and electronic components with low energy consumption, with metallic zinc.

高純度シリコンの製造は、粗製シリコンを塩化水素並びに水素で処理してトリクロロシランを製造し、あるいは時としてジクロロシランやモノクロシランを製造し、これらシラン化合物を原料として化学的気相成長法により製造されている。この方法では極めて高純度のシリコンが得られるが、中間物質である各シラン化合物を生成する段階で、最も安定な四塩化珪素になりやすく目的とするシラン類の歩留まりが50%あるいはそれ以下となってしまうと共に、シリコン生成にかかる反応が極めて遅いので、設備が大型となりその設備投資が極めて大きいこと、また製造に必要とされる電力が多結晶シリコンでも350kWh/kg−シリコンと極めて大きいとされる。このようなシリコンは高集積化し付加価値の高い電子デバイス用としては良いが、今後多量に必要とされるソーラーセル用やいわゆるIC−タグなどに用いる為には過剰品質であるともに、製造に必要とするエネルギーが過大で、製造コストが大きすぎるという問題点を有している。更にこのプロセスによると多量の四塩化珪素が副生してくる。この四塩化珪素は従来から水で分解することにより、石英ガラス原料などに使用されてきたが、シリコンの生産の増加と共に、過剰となって来ており、粗製シリコン原料の歩留まり問題と共に、素材バランスが取りにくい状態になってきている。  High-purity silicon is produced by treating crude silicon with hydrogen chloride and hydrogen to produce trichlorosilane, or sometimes dichlorosilane or monochlorosilane, and using these silane compounds as raw materials by chemical vapor deposition. Has been. With this method, extremely high-purity silicon can be obtained, but at the stage of producing each silane compound as an intermediate substance, the yield of the target silanes tends to be the most stable silicon tetrachloride and is 50% or less. In addition, since the reaction for silicon generation is extremely slow, the equipment is large and the equipment investment is extremely large, and the power required for production is considered to be as large as 350 kWh / kg-silicon even for polycrystalline silicon. . Such silicon is good for highly integrated and high-value added electronic devices, but it is too high quality for use in solar cells and so-called IC-tags that will be required in large quantities in the future, and is necessary for manufacturing. There is a problem in that the energy is too large and the manufacturing cost is too high. Furthermore, this process produces a large amount of silicon tetrachloride as a by-product. This silicon tetrachloride has been used for quartz glass raw materials by decomposing with water from the past, but it has become excessive with the increase of silicon production, and the material balance with the problem of yield of crude silicon raw materials Is becoming difficult to remove.

これに代わるシリコンの製造方法として古くから四塩化珪素を原料とする方法が提案されている。つまり四塩化珪素を高温で金属亜鉛によって還元して高純度シリコンを製造する方法である。1950年代に米国デュポン社が実用化したとされ、そこでは950℃の温度で四塩化珪素と亜鉛をガス相で反応させて固体高純度シリコンを得たとされる。この方法では極めて高純度のシリコンが得られたとされているが、反応生成物の一つとして得られる塩化亜鉛との分離に問題を有していたとされ、上記に示したいわゆるシーメンス法とされるトリクロロシラン(SiHCl)を原料とするCVDによるシリコン製造法の完成と共に生産を止められたとされる。一方特許文献1及2には溶融亜鉛と四塩化珪素ガスを反応させることによって高純度シリコンを得る方法が示されているが、いずれもバッチ式で生成したシリコンを亜鉛及び塩化亜鉛と分離しなければならず、煩雑になると共に分離操作による不純物の混入という問題を残していた。As an alternative method for producing silicon, a method using silicon tetrachloride as a raw material has been proposed for a long time. That is, this is a method for producing high-purity silicon by reducing silicon tetrachloride with zinc metal at a high temperature. In the 1950s, it was assumed that DuPont USA was put into practical use, where silicon tetrachloride and zinc were reacted in the gas phase at a temperature of 950 ° C. to obtain solid high-purity silicon. In this method, extremely high-purity silicon is said to have been obtained, but it was considered that there was a problem with the separation from zinc chloride obtained as one of the reaction products, and the so-called Siemens method described above was used. It is said that the production was stopped with the completion of the silicon manufacturing method by CVD using trichlorosilane (SiHCl 3 ) as a raw material. On the other hand, Patent Documents 1 and 2 show a method of obtaining high-purity silicon by reacting molten zinc with silicon tetrachloride gas, but in any case, silicon produced in a batch system must be separated from zinc and zinc chloride. In addition, the problem is complicated and impurities are mixed by the separation operation.

本発明者らは特許文献3で四塩化珪素ガスを亜鉛ガスで還元する高温気相反応に依って原料、副生物はガス状のままシリコンのみを固体あるいは液体で取り出すことによって高純度シリコンを得ている。その場合の消費エネルギーはいわゆるシーメンス法による高純度シリコン製造に要するエネルギーの1/9程度まで減らすことことに成功した。これらに関連して更に特許文献4、特許文献5、特許文献6、特許文献7、特許文献8等の発明を行っており、 シリコンの純度は従来の超高純度品と比較して若干劣るものの、多結晶、単結晶ともにソーラーセル用として十分であり、また単結晶の場合は電子デバイスとしても特殊な用途以外には十分に使用できる。これらはいずれクローズド化した粗製シリコンから高純度シリコンを得るための連続装置が主体であり、すでに四塩化珪素がある場合にはより簡単でしかも取り扱いの容易な製造装置が必要とされている。The present inventors obtained high-purity silicon by taking out only silicon as a raw material or a by-product in a solid or liquid state by a high-temperature gas phase reaction in which silicon tetrachloride gas is reduced with zinc gas in Patent Document 3. ing. In that case, the energy consumption was successfully reduced to about 1/9 of the energy required for high-purity silicon production by the so-called Siemens method. In connection with these, the inventions of Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, Patent Document 8 and the like have been invented, and the purity of silicon is slightly inferior to that of conventional ultra-high purity products. Both polycrystalline and single crystals are sufficient for solar cells, and in the case of single crystals, they can be used sufficiently for electronic devices other than special applications. These are mainly continuous devices for obtaining high-purity silicon from closed crude silicon. When silicon tetrachloride is already present, a simpler and easier-to-handle manufacturing device is required.

特開平11−060228公報Japanese Patent Laid-Open No. 11-060228 特開平11−092130公報Japanese Patent Laid-Open No. 11-092130 特開2004−210594公報Japanese Patent Laid-Open No. 2004-210594 特開2003−342016公報JP 2003-342016 A 特開2004−010472公報JP 2004-010472 A 特開2004−035382公報JP 2004-035382 A 特開2004−099421公報JP 2004-099421 A 特開2004−284935公報JP 2004-284935 A

本発明では四塩化珪素の亜鉛還元によって高純度シリコンを得るシリコン製造装置及びシリコンの製造方法であり、気相反応により生成した高純度シリコンをより高い収率で得、しかも系内で溶解し、他の反応成分との分離操作を実質的に廃し、シリコンのみの分離取り出しが可能な装置を提供することを課題とした。The present invention is a silicon production apparatus and a silicon production method for obtaining high purity silicon by zinc reduction of silicon tetrachloride, obtaining high purity silicon produced by a gas phase reaction in a higher yield, and further dissolving in the system, An object of the present invention is to provide an apparatus that can substantially separate only silicon and eliminate the separation operation from other reaction components.

本発明は気相で四塩化珪素を亜鉛により還元して、高純度シリコンを得るシリコン製造装置であって、予め所定温度に調整した亜鉛ガスを反応塔に送り反応塔内を亜鉛ガス雰囲気とする工程と、予め所定温度に調整した四塩化珪素ガスを該亜鉛ガス雰囲気である反応塔内に供給する工程と反応塔内で反応により生成したシリコンを含む反応ガス中で、該シリコンを固相として成長させる工程と固相シリコンを反応ガスから分離する工程、とからなる高純度シリコン製造装置であり、また、気相で四塩化珪素を亜鉛により還元して、高純度シリコンを得るシリコン製造装置であって、予め所定温度に調整した亜鉛ガスを反応塔に送り反応塔内を亜鉛ガス雰囲気とする工程と、予め所定温度に調整した四塩化珪素ガスを該亜鉛ガス雰囲気である反応塔内に供給する工程と反応塔内で反応により生成したシリコンを含む反応ガス中で、該シリコンを固相として成長させる工程と固相シリコンを反応ガスから分離する工程と、分離したシリコンを加熱融解し、シリコン保持槽に保持する工程とを有する高純度シリコン製造装置であって、これによりシリコンの製造において容易に製造し、あるいは入手出来る四塩化珪素並びに亜鉛を原料として、高純度シリコンの製造をエネルギー消費をきわめて少なく、しかも高収率で行い、固体あるいは融体として得ることが可能となった。The present invention is a silicon production apparatus that obtains high-purity silicon by reducing silicon tetrachloride with zinc in a gas phase, and sends zinc gas that has been adjusted to a predetermined temperature in advance to the reaction tower to create a zinc gas atmosphere in the reaction tower. A step of supplying silicon tetrachloride gas previously adjusted to a predetermined temperature into the reaction tower which is the zinc gas atmosphere, and a reaction gas containing silicon generated by the reaction in the reaction tower; A high-purity silicon production apparatus comprising a step of growing and a step of separating solid phase silicon from a reaction gas, and a silicon production apparatus for obtaining high-purity silicon by reducing silicon tetrachloride with zinc in a gas phase. A process in which zinc gas adjusted to a predetermined temperature in advance is sent to the reaction tower to make the inside of the reaction tower a zinc gas atmosphere, and silicon tetrachloride gas adjusted in advance to a predetermined temperature is reacted in the zinc gas atmosphere. In the reaction gas containing silicon produced by the reaction in the reaction tower, the step of growing the silicon as a solid phase, the step of separating the solid phase silicon from the reaction gas, and heating the separated silicon A high-purity silicon production apparatus having a process of melting and holding in a silicon holding tank, whereby production of high-purity silicon can be performed easily using silicon tetrachloride and zinc as raw materials. Can be obtained as a solid or a melt with very low energy consumption and high yield.

つまり1000℃以上の高温度では亜鉛ガス中に四塩化珪素ガスを吹き込むことで殆ど瞬時にシリコンと塩化亜鉛が生成する。この反応を利用してシリコンを製造することが出来る。但しこのときの反応条件の適正化は極めて重要である。すなわち、この反応は極めて早くほぼ瞬時で完了することはわかっているが、1000℃以上では亜鉛や塩化亜鉛の蒸気圧に比較して四塩化珪素の蒸気圧が200から500倍と極めて高いために四塩化珪素を亜鉛ガス中に加えると亜鉛ガスが四塩化珪素の高い圧力に押されて未反応のまま押し出されたり、あるいは圧力を一定とすると急激な体積変化が起こる故に系の安定性を失ったりする。一方気相反応によく見られるように、反応生成物であるシリコンは最初極めて小さな粒子あるいは液滴を形成し、それから成長が起こるが、この間にも気相反応に起因する極めて大きな体積の変化を生じ、また圧力の変化を生じる。That is, at a high temperature of 1000 ° C. or higher, silicon and zinc chloride are generated almost instantaneously by blowing silicon tetrachloride gas into zinc gas. Silicon can be produced by utilizing this reaction. However, optimization of reaction conditions at this time is extremely important. That is, it is known that this reaction is completed very quickly and almost instantaneously, but the vapor pressure of silicon tetrachloride is extremely high, 200 to 500 times higher than the vapor pressure of zinc or zinc chloride at 1000 ° C. or higher. When silicon tetrachloride is added to the zinc gas, the zinc gas is pushed into the high pressure of the silicon tetrachloride and pushed out unreacted, or if the pressure is kept constant, the volume will change suddenly and the system will lose stability. Or On the other hand, as is often seen in gas phase reactions, the reaction product silicon initially forms very small particles or droplets and then grows, but during this time it also undergoes a very large volume change due to the gas phase reaction. Resulting in a change in pressure.

本発明者らはすでに一度繊維状のシリコン結晶を生成させ、それを取り出したり、融解して融体で取り出したりする方法を提案している。しかし、これらを更に詳細に検討していくと、反応時の極めて大きな圧力あるいは体積の変動の故に一部のシリコンをうまく集められず、収率がわずかに低くなることを見いだして本発明に至ったものである。つまり、ここでは圧力変化が起こりやすい反応部分については反応塔内であらかじめ温度を所定値として、過剰亜鉛ガスの流れの中に四塩化珪素ガスを吹き込むようにする。これにより亜鉛ガスの揮散を防ぐと共に瞬時に反応して塩化亜鉛ガスとシリコンになり、四塩化珪素の大きな体積の影響を最小にすることが出来る。この瞬時反応により、亜鉛ガスと四塩化珪素ガスは、亜鉛ガスと塩化亜鉛ガスの流れになる。また生成したシリコンは該反応塔内で結晶として成長し安定化していく。このシリコンを含むガスは旋回方式の分離装置に送られガスとシリコンとに分離される。シリコンは一度結晶化することにより、実質的な精錬が行われ、高純度化が行われる。つまり反応温度を1000℃から1350℃特に望ましくは1100から1250℃で反応すると共に反応温度より僅かに低い温度に保持された反応塔内でシリコンはその成長によって繊維状結晶ないし針状の単結晶を主とする結晶体になる。ただこれでも一部の結晶は微少であるために、気相から分離できにくい部分が残ることがあり、それが従来技術では収率の低下につながっていた。このためにここでは反応塔で成長させた結晶を亜鉛の沸点より高く結晶の成長に適した温度に保った旋回方式の分離器でガス相とシリコン結晶とに分離する様にし、下方に集中するシリコン結晶をそのまま取り出す、あるいは加熱融体化して保持槽内に保持するようにしたものである。ガスとシリコンの分離装置の温度は亜鉛の沸点より高いことが条件であるが、反応塔温度と同等あるいはより低いことが望ましく、950℃から1200℃、より望ましくは1000℃から1150℃が望ましく、これによってシリコンの成長が更に促され、より収率が良くなると共に、亜鉛や塩化亜鉛など可能な不純物をより少なくすることが出来る。The present inventors have already proposed a method in which a fibrous silicon crystal is once produced and taken out or melted and taken out as a melt. However, by examining these in more detail, it was found that some silicon could not be collected well due to extremely large pressure or volume fluctuations during the reaction, and the yield was slightly reduced, leading to the present invention. It is a thing. That is, here, for the reaction portion where the pressure change is likely to occur, the temperature is set to a predetermined value in the reaction tower in advance, and silicon tetrachloride gas is blown into the flow of excess zinc gas. This prevents volatilization of zinc gas and reacts instantaneously to zinc chloride gas and silicon, thereby minimizing the influence of the large volume of silicon tetrachloride. By this instantaneous reaction, zinc gas and silicon tetrachloride gas become a flow of zinc gas and zinc chloride gas. The produced silicon grows and stabilizes as crystals in the reaction tower. The gas containing silicon is sent to a swirl type separation device and separated into gas and silicon. By crystallizing silicon once, substantial refining is performed and high purity is achieved. That is, the reaction temperature is 1000 ° C. to 1350 ° C., particularly preferably 1100 to 1250 ° C., and silicon grows in the form of fibrous crystals or needle-like single crystals in the reaction tower maintained at a temperature slightly lower than the reaction temperature. Becomes the main crystal. However, even in this case, since some of the crystals are very small, a portion that cannot be separated from the gas phase may remain, which has led to a decrease in yield in the prior art. For this purpose, the crystal grown in the reaction tower is separated into the gas phase and the silicon crystal by a swirling separator maintained at a temperature higher than the boiling point of zinc and suitable for crystal growth, and concentrated downward. The silicon crystal is taken out as it is, or heat-melted and held in a holding tank. The temperature of the gas / silicon separator is higher than the boiling point of zinc, but it is preferably equal to or lower than the reaction tower temperature, preferably 950 ° C. to 1200 ° C., more preferably 1000 ° C. to 1150 ° C. This further promotes the growth of silicon, improving the yield and reducing possible impurities such as zinc and zinc chloride.

なお旋回分離器内の初期風速は特に指定されないものの、3m/秒から5m/秒程度がよい。旋回分離器の運転動力は、ガス相から温度を低下して最終的に液相まで変化する反応ガスそれ自身の体積変化による。これによって特にブロアー等を設ける必要が無くなる。旋回分離器の下方に集められたシリコンはそのまま取り出しても良いが、安定な連続運転を維持するためには加熱して融体化し、シリコン融体として保持槽に保持する、あるいは生成したシリコン融体を保持槽を通して、連続的に外部に取り出すようにすることも出来る。これらは用途と目的によって適宜選択すればよい。シリコンの融体化の為の加熱は独自に加熱部分を作り、それで行うようにしても良いが、生成した結晶をシリコン保持槽に落とし込んで融体化しても良い。なお融体シリコンはそのまま鋳型で多結晶ブロックとしてもよく、またこの保持槽を第一坩堝とした連続引き上げを行って更に高純度化しても良い。これらは使用条件によって適宜選択すればよい。なおシリコンの保持槽は融体シリコンの汚染を防ぐために外部を冷却し壁温度をシリコンの融点以下に保持し、誘導加熱でシリコン自身を加熱融体化するようにした保持槽であることが望ましい。これによってシリコンをより高純度に保持することが出来る。またこの保持槽にガスによる脱気機構を設けることも出来る。
融体シリコンの温度はシリコンの融点以上であることはもちろんであるが、1500℃以下であることが望ましく、それ以上ではわずかではあるがシリコンが気化することによるロスを生じる可能性がある。
Although the initial wind speed in the swirl separator is not particularly specified, it is preferably about 3 m / second to 5 m / second. The operating power of the slewing separator depends on the volume change of the reaction gas itself, which drops from the gas phase to the liquid phase and finally changes to the liquid phase. This eliminates the need for a blower or the like. The silicon collected under the swirl separator may be taken out as it is, but in order to maintain a stable continuous operation, it is heated and melted and held in a holding tank as a silicon melt, or the silicon melt produced is The body can be continuously taken out through the holding tank. These may be appropriately selected depending on the use and purpose. The heating for melting silicon may be performed by making a heating part independently, but the produced crystal may be dropped into a silicon holding tank to be melted. The melted silicon may be used as a mold as a polycrystalline block, or may be further purified by continuous pulling using this holding tank as a first crucible. These may be appropriately selected depending on the use conditions. The silicon holding tank is preferably a holding tank in which the outside is cooled to keep the wall temperature below the melting point of silicon and the silicon itself is heated and melted by induction heating in order to prevent contamination of the molten silicon. . As a result, silicon can be kept at a higher purity. In addition, a gas deaeration mechanism can be provided in the holding tank.
The temperature of the melted silicon is of course not lower than the melting point of silicon, but is desirably 1500 ° C. or lower, and if it is higher, there is a possibility that a loss due to vaporization of silicon may occur.

これにより四塩化珪素はほぼ100%反応し、回収されるので分離ガスは未反応の亜鉛ガスを含む塩化亜鉛になる。このガスはシリコンの分離器を出た後冷却しながら亜鉛分離槽に運ばれる。亜鉛の沸点が907℃、塩化亜鉛の沸点が732℃であるので冷却は塩化亜鉛の沸点前後まで行い、必要に応じては旋回式の気液分離器により亜鉛を液状で分離回収して、該亜鉛を再び亜鉛気化槽に送り亜鉛原料として使用する。亜鉛の分離は塩化亜鉛の沸点以下で行っても良く、その場合は亜鉛の融解槽から塩化亜鉛をガスとして回収すればよいし、一部は亜鉛ガスに混入したまま反応塔に送って雰囲気ガスとして使っても良い。As a result, silicon tetrachloride reacts almost 100% and is recovered, so that the separation gas becomes zinc chloride containing unreacted zinc gas. This gas exits the silicon separator and is carried to the zinc separation tank while cooling. Since the boiling point of zinc is 907 ° C. and the boiling point of zinc chloride is 732 ° C., cooling is performed to around the boiling point of zinc chloride, and if necessary, the zinc is separated and recovered in a liquid form by a swirling gas-liquid separator, Zinc is sent again to the zinc vaporization tank and used as a zinc raw material. Zinc may be separated below the boiling point of zinc chloride. In that case, zinc chloride may be recovered from the zinc melting tank as a gas, or a part of the zinc gas is sent to the reaction tower while being mixed with the zinc gas. It may be used as

残部塩化亜鉛ガスは更に温度を下げて液化し、回収する。また通常は温度を下げながら塩化亜鉛電解槽に直接送ることも出来る。この場合ももちろん液体であることが望ましいが塩化亜鉛ガスが含まれていても電解での影響は軽微であるため差し攴えない。またこの塩化亜鉛中にわずかに含まれる亜鉛も電解槽内で分離し、電解生成物である亜鉛と一緒になり回収される。The remaining zinc chloride gas is further liquefied at a lower temperature and recovered. Ordinarily, it can be sent directly to the zinc chloride electrolytic cell while lowering the temperature. In this case as well, it is of course desirable to be a liquid, but even if zinc chloride gas is included, the influence on electrolysis is negligible. Further, zinc contained slightly in the zinc chloride is also separated in the electrolytic cell and collected together with zinc which is an electrolytic product.

なおシリコンを分離した後の亜鉛と塩化亜鉛の混合ガスについて温度を下げながら直接電解槽に送って、そこで温度を下げ、塩化亜鉛と亜鉛の融体として回収し、塩化亜鉛は直接電解することも出来る。この場合ガス中の亜鉛は塩化亜鉛電解液中を落下し、電解で生成した亜鉛と共に亜鉛原料として反応工程に戻るようになる。
また予め亜鉛を回収しておき、残部亜鉛を僅かに含む塩化亜鉛を直接電解槽に送り亜鉛ガス原料として回収することも出来る。
The mixed gas of zinc and zinc chloride after separating the silicon is sent directly to the electrolytic cell while lowering the temperature, where it is lowered and recovered as a zinc chloride-zinc melt, and the zinc chloride can be directly electrolyzed. I can do it. In this case, zinc in the gas falls in the zinc chloride electrolyte, and returns to the reaction step as a zinc raw material together with zinc generated by electrolysis.
It is also possible to collect zinc in advance and send zinc chloride containing a small amount of the remaining zinc directly to the electrolytic cell and recover it as a zinc gas raw material.

本発明により原料として極めて容易に得られる、あるいは従来副生物として取り扱い上問題であった四塩化珪素を原料とし、高純度シリコンを高収率で得ることが出来る。また反応それ自身は単純であり、反応速度が極めて早いので小型の設備ですむという特徴を持つと同時に、工程内で一度結晶化を経ることにより実質的な精錬効果があるので高純度化出来ること、また製品シリコンを融体とすることにより、連続運転が可能であるという効果を有する。According to the present invention, high purity silicon can be obtained in a high yield by using silicon tetrachloride as a raw material, which can be obtained very easily as a raw material, or has conventionally been a problem in handling as a by-product. In addition, the reaction itself is simple, and the reaction rate is extremely fast, so that it is possible to use a small facility. At the same time, it has a substantial refining effect by crystallization once in the process, so it can be highly purified. Moreover, by using the product silicon as a melt, there is an effect that continuous operation is possible.

本発明の実施形態を図面により説明する。つまり、図1は本発明請求項1に相当し、図2は請求項2に相当するものである。An embodiment of the present invention will be described with reference to the drawings. That is, FIG. 1 corresponds to claim 1 of the present invention, and FIG. 2 corresponds to claim 2.

図1においては1から原料亜鉛を亜鉛溶解槽3に投入して融体亜鉛を生成させ、亜鉛気化槽4にて亜鉛蒸気とし、加熱装置6で反応温度である1200℃付近まで昇温した後反応塔8内に送り込む。なお反応塔内では亜鉛ガスは旋回流となっていることが望ましく、それによって反応面積が増大し、早い反応が可能となる。一方液状の四塩化珪素2は蒸発槽5で気化してガスとなり、加熱装置7で反応温度である1200℃付近まで昇温され、過剰の亜鉛ガスが旋回流を作っている反応塔に亜鉛ガスの旋回流と同方向に旋回するように吹き込まれる。In FIG. 1, the raw material zinc is charged into the zinc dissolution tank 3 from 1 to generate molten zinc, converted into zinc vapor in the zinc vaporization tank 4, and heated to about 1200 ° C. as the reaction temperature by the heating device 6. It feeds into the reaction tower 8. In addition, it is desirable that the zinc gas is swirling in the reaction tower, thereby increasing the reaction area and enabling a fast reaction. On the other hand, the liquid silicon tetrachloride 2 is vaporized in the evaporation tank 5 to become a gas, and is heated to about 1200 ° C., which is the reaction temperature, by the heating device 7. It is blown so as to turn in the same direction as the swirling flow.

四塩化珪素ガス量同じ圧力の場合極めて大きいのでそれが瞬時に亜鉛ガスと混合反応出来るように吹き込み口を複数とし、しかも旋回流を作るように吹き込むことで、亜鉛ガスとの接触を増大させる。これにより四塩化珪素ガスは瞬時に亜鉛ガスと反応してシリコンと塩化亜鉛ガスになり、反応塔内では四塩化珪素の存在が実質的には起こらず、従って多量の四塩化珪素ガスによるガス系の乱れがなくなり、蒸気圧の関係でほぼ2倍の体積に成る塩化亜鉛ガスへと移行していく。 ただし極めて大きな体積になる四塩化珪素は連続的に定常的に反応塔に供給されることが必要である。反応塔の反応部分以降がシリコン結晶の成長部分であり、反応温度より僅かに低い温度に保持されている。反応塔内のガス流も旋回流を描くようにして有ると生成シリコンがガス流の中心部に集まるのでよりスムースなガス流れになると共に、生成シリコンに対する反応塔壁の影響を最小とできる。このようにして反応塔内の旋回流により生成したシリコンは流れの中心部に集まるようになり固体として成長しながら次の旋回型のシリコン分離槽9に送られる。なお反応塔温度は反応温度より僅かに低い950から1200℃に保持されている。When the pressure of silicon tetrachloride gas is the same, it is extremely large. Therefore, a plurality of blowing ports are provided so that the reaction can be instantaneously mixed with the zinc gas, and the swirling flow is created to increase the contact with the zinc gas. As a result, the silicon tetrachloride gas instantaneously reacts with the zinc gas to form silicon and zinc chloride gas, and the presence of silicon tetrachloride does not substantially occur in the reaction tower. The turbulence disappears and the gas moves to zinc chloride gas, which has almost twice the volume due to the vapor pressure. However, silicon tetrachloride having an extremely large volume must be continuously and constantly supplied to the reaction tower. The portion after the reaction portion of the reaction tower is the growth portion of the silicon crystal, and is maintained at a temperature slightly lower than the reaction temperature. If the gas flow in the reaction tower also draws a swirl flow, the generated silicon gathers at the center of the gas flow, resulting in a smoother gas flow and the influence of the reaction tower wall on the generated silicon can be minimized. Thus, the silicon produced by the swirling flow in the reaction tower is collected at the center of the flow and is sent to the next swirling silicon separation tank 9 while growing as a solid. The reaction tower temperature is maintained at 950 to 1200 ° C., which is slightly lower than the reaction temperature.

更にシリコンと雰囲気ガスになる亜鉛と反応副生ガスである塩化亜鉛からなる混合ガスは旋回型のシリコン分離部9に移動する。この時のガス流入速度は1から10m/sec程度であり通常は3−5m/sec程度である。ここでは旋回流を描きながらガスは上部から亜鉛分離部10に移動していく。またシリコンは旋回原理により炉壁との接触を最小としながら中心部に集まり下方に移動、シリコン13として回収される。Further, a mixed gas composed of silicon, zinc which is an atmospheric gas, and zinc chloride which is a reaction by-product gas moves to the swivel-type silicon separator 9. The gas inflow speed at this time is about 1 to 10 m / sec, and usually about 3-5 m / sec. Here, the gas moves from the top to the zinc separator 10 while drawing a swirling flow. Also, the silicon collects in the central portion and moves downward and is recovered as silicon 13 while minimizing contact with the furnace wall by the swirling principle.

亜鉛分離部10の温度は650℃から700℃であり分離された亜鉛は亜鉛溶解槽3に送られる。亜鉛を除いた塩化亜鉛は更に冷却して、塩化亜鉛融体化部11に集められ、電解槽12で電解されて、亜鉛1と塩素ガス14とに分けられ、亜鉛は亜鉛溶解槽3に送られることによって亜鉛を系内でリサイクルしながら連続的に高純度シリコンを製造する。尚亜鉛分離部10及び/又は塩化亜鉛融体化部11は電解槽と兼ねることが出来る。電解温度は特には指定されないが500から550℃である。The temperature of the zinc separator 10 is 650 ° C. to 700 ° C., and the separated zinc is sent to the zinc dissolution tank 3. The zinc chloride excluding zinc is further cooled and collected in the zinc chloride fusion section 11, electrolyzed in the electrolytic bath 12, divided into zinc 1 and chlorine gas 14, and zinc is sent to the zinc dissolution bath 3. In this way, high purity silicon is continuously produced while zinc is recycled in the system. In addition, the zinc separation part 10 and / or the zinc chloride fusion | melting part 11 can serve as an electrolytic cell. The electrolysis temperature is not particularly specified but is 500 to 550 ° C.

図2ではこれらに加えてシリコン分離部9のシリコン取り出し部にシリコン融体化槽15を設け、集積したシリコンを加熱し融体化して融体シリコン保持槽16に保持し、連続的に融体として取り出すようにしたものである。これに結晶成長装置や、鋳造装置を直接取り付けることも可能となる。ここでもシリコン融体化槽15は融体シリコン保持槽16に兼ねさせることが出来る。In addition to these, in FIG. 2, a silicon melt tank 15 is provided in the silicon take-out part of the silicon separator 9, and the accumulated silicon is heated and melted to be held in the melt silicon holding tank 16, and continuously melted. It is something to be taken out as. It is also possible to directly attach a crystal growth device or a casting device to this. Here, the silicon melt tank 15 can also serve as the melt silicon holding tank 16.

産業上の利用の可能性Industrial applicability

今後多量に必要とされるソーラーセルを主とするシリコンの画期的な省エネルギー性と生産性を向上する高純度シリコンの製造装置であり、主として、単結晶、多結晶としてソーラーセル用、またICタグなどの電子デバイス用等に使用するシリコンの生産に大きな貢献をするものであり、それらへの大きな活用が見込まれる。It is a high-purity silicon manufacturing device that improves the ground-breaking energy saving and productivity of silicon, mainly solar cells that will be required in large quantities in the future, mainly for solar cells as single crystals and polycrystals, and ICs. It greatly contributes to the production of silicon used for electronic devices such as tags, and is expected to be used for such applications.

本発明にかかるシリコンの製造装置の構成を示した図である。It is the figure which showed the structure of the manufacturing apparatus of the silicon concerning this invention. 本発明にかかるシリコン製造装置の別の構成を示した図であり、生成したシリコンを融体として取り出すようにしたものである。It is the figure which showed another structure of the silicon manufacturing apparatus concerning this invention, and produced | generated silicon | silicone is taken out as a melt.

符号の説明Explanation of symbols

1 亜鉛
2 四塩化珪素
3 亜鉛融解槽
4 亜鉛気化槽
5 四塩化珪素気化槽
6 亜鉛ガス加熱温度調整装置
7 四塩化珪素ガス加熱温度調整装置
8 反応塔
9 シリコン分離槽
10 亜鉛分離部
11 塩化亜鉛融体化部
12 塩化亜鉛電解槽
13 生成シリコン
14 塩素
15 シリコン融体化槽
16 融体シリコン保持槽
DESCRIPTION OF SYMBOLS 1 Zinc 2 Silicon tetrachloride 3 Zinc melting tank 4 Zinc vaporization tank 5 Silicon tetrachloride vaporization tank 6 Zinc gas heating temperature adjustment apparatus 7 Silicon tetrachloride gas heating temperature adjustment apparatus 8 Reaction tower 9 Silicon separation tank 10 Zinc separation part 11 Zinc chloride Molten part 12 Zinc chloride electrolytic cell 13 Generated silicon 14 Chlorine 15 Silicon melted cell 16 Molten silicon holding tank

Claims (13)

気相で四塩化珪素を亜鉛により還元して、高純度シリコンを得るシリコン製造装置であって、予め所定温度に調整した亜鉛ガスを反応塔に送り反応塔内を亜鉛ガス雰囲気とする工程と、予め所定温度に調整した四塩化珪素ガスを該亜鉛ガス雰囲気である反応塔内に供給する工程と反応塔内で反応により生成したシリコンを含む反応ガス中で、該シリコンを固相として成長させる工程と固相シリコンを反応ガスから分離する工程、とからなる高純度シリコン製造装置。A silicon production apparatus that obtains high-purity silicon by reducing silicon tetrachloride with zinc in a gas phase, and sending zinc gas adjusted to a predetermined temperature in advance to the reaction tower to form a zinc gas atmosphere in the reaction tower; A step of supplying silicon tetrachloride gas, which has been adjusted to a predetermined temperature in advance, into the reaction tower which is the zinc gas atmosphere, and a step of growing the silicon as a solid phase in a reaction gas containing silicon generated by the reaction in the reaction tower. And a process for separating solid phase silicon from a reaction gas. 気相で四塩化珪素を亜鉛により還元して、高純度シリコンを得るシリコン製造装置であって、予め所定温度に調整した亜鉛ガスを反応塔に送り反応塔内を亜鉛ガス雰囲気とする工程と、予め所定温度に調整した四塩化珪素ガスを該亜鉛ガス雰囲気である反応塔内に供給する工程と反応塔内で反応により生成したシリコンを含む反応ガス中で、該シリコンを固相として成長させる工程と固相シリコンを反応ガスから分離する工程と、分離したシリコンを加熱融解し、シリコン保持槽に保持する工程とを有する高純度シリコン製造装置。A silicon production apparatus that obtains high-purity silicon by reducing silicon tetrachloride with zinc in a gas phase, and sending zinc gas adjusted to a predetermined temperature in advance to the reaction tower to form a zinc gas atmosphere in the reaction tower; A step of supplying silicon tetrachloride gas, which has been adjusted to a predetermined temperature in advance, into the reaction tower which is the zinc gas atmosphere, and a step of growing the silicon as a solid phase in a reaction gas containing silicon generated by the reaction in the reaction tower. And a process for separating solid phase silicon from a reaction gas, and a process for heating and melting the separated silicon and holding it in a silicon holding tank. 亜鉛ガスが亜鉛ガスと塩化亜鉛ガスとの混合ガスであることを特徴とする請求項1及び2の高純度シリコン製造装置。The high purity silicon production apparatus according to claim 1 or 2, wherein the zinc gas is a mixed gas of zinc gas and zinc chloride gas. 亜鉛ガスの所定温度が1000から1350℃であることを特徴とする請求項1及び2の高純度シリコン製造装置。The high-purity silicon production apparatus according to claim 1 or 2, wherein the predetermined temperature of the zinc gas is 1000 to 1350 ° C. 四塩化珪素ガスの所定温度が1350℃以下であり、亜鉛ガスと同じまたは低い温度であることを特徴とする請求項1及び2の高純度シリコン製造装置。The high-purity silicon production apparatus according to claim 1 or 2, wherein the predetermined temperature of the silicon tetrachloride gas is 1350 ° C or lower and is the same as or lower than that of the zinc gas. 反応塔の温度が950℃から1200℃であり、シリコンを固相シリコンとして成長させる工程を兼ねてなることを特徴とする請求項1及び2の高純度シリコン製造装置3. The high-purity silicon production apparatus according to claim 1, wherein the temperature of the reaction tower is 950 ° C. to 1200 ° C., and also serves as a step of growing silicon as solid phase silicon. ガス相と固相シリコン相との分離を旋回型分離装置によって行うことを特徴とする請求項1及び2の高純度シリコン製造装置。The high-purity silicon production apparatus according to claim 1 or 2, wherein the gas phase and the solid phase silicon phase are separated by a swivel type separation device. 旋回型分離装置の温度が950℃以上で、且つ反応温度と同じまたは低いことを特徴とする請求項1及び2の高純度シリコンの製造装置。The high-purity silicon production apparatus according to claim 1 or 2, wherein the temperature of the rotary separator is 950 ° C or higher and is equal to or lower than the reaction temperature. シリコン保持槽の加熱を高周波誘導で行い、保持槽自身を冷却することによって、保持槽の壁と融体シリコンとが直接には接触しないようにしたことを特徴とする請求項2の高純度シリコン製造装置。3. The high purity silicon according to claim 2, wherein the silicon holding tank is heated by high frequency induction and the holding tank itself is cooled so that the wall of the holding tank and the melted silicon are not in direct contact with each other. Manufacturing equipment. シリコンの加熱融解をシリコン保持槽内で行うようにしたことを特徴とする請求項2の高純度シリコンの製造装置。3. The apparatus for producing high-purity silicon according to claim 2, wherein the silicon is heated and melted in a silicon holding tank. 反応ガスから未反応亜鉛を液状で分離し、亜鉛ガス原料としてリサイクルすることを特徴とする請求項1及び2の高純度シリコン製造装置。3. The high purity silicon production apparatus according to claim 1, wherein unreacted zinc is separated from the reaction gas in a liquid state and recycled as a zinc gas raw material. 反応ガスからの未反応亜鉛の分離を旋回型分離装置で行うことを特徴とする請求項1、2及び11の高純度シリコン製造装置。The high-purity silicon production apparatus according to claim 1, 2 and 11, wherein unreacted zinc is separated from the reaction gas by a swirl type separation apparatus. 反応ガスを電解装置に送り、未反応亜鉛及び電解により生成した亜鉛を液状で取り出して、亜鉛ガス原料としてリサイクルすることを特徴とする請求項1,2,及び11,の高純度シリコン製造装置。12. The high-purity silicon production apparatus according to claim 1, wherein the reaction gas is sent to an electrolysis device, unreacted zinc and zinc produced by electrolysis are taken out in a liquid state and recycled as a zinc gas raw material.
JP2006066684A 2006-02-14 2006-02-14 Apparatus for manufacturing silicon Pending JP2007217262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066684A JP2007217262A (en) 2006-02-14 2006-02-14 Apparatus for manufacturing silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066684A JP2007217262A (en) 2006-02-14 2006-02-14 Apparatus for manufacturing silicon

Publications (1)

Publication Number Publication Date
JP2007217262A true JP2007217262A (en) 2007-08-30

Family

ID=38494944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066684A Pending JP2007217262A (en) 2006-02-14 2006-02-14 Apparatus for manufacturing silicon

Country Status (1)

Country Link
JP (1) JP2007217262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073712A1 (en) * 2010-11-30 2012-06-07 Jnc株式会社 Method and device for supplying zinc gas
TWI482736B (en) * 2011-10-12 2015-05-01 C S Lab In Technology Ltd Manufacture of high purity silicon micropowder

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095633A (en) * 2001-09-18 2003-04-03 Yutaka Kamaike Producing method for silicon
JP2004010472A (en) * 2002-06-06 2004-01-15 Takayuki Shimamune Method for producing silicon
JP2004018370A (en) * 2002-06-19 2004-01-22 Yutaka Kamaike Apparatus and method of manufacturing silicon
JP2004035382A (en) * 2002-06-28 2004-02-05 Takayuki Shimamune Method of manufacturing polycrystalline silicon
JP2004099421A (en) * 2002-09-12 2004-04-02 Takayuki Shimamune Method for manufacturing silicon
JP2004196642A (en) * 2002-12-19 2004-07-15 Yutaka Kamaike Apparatus and method for preparing silicon
JP2004210594A (en) * 2002-12-27 2004-07-29 Takayuki Shimamune Method of manufacturing high purity silicon
JP2004284935A (en) * 2003-03-19 2004-10-14 Takayuki Shimamune Apparatus and method for manufacturing silicon
JP2006298740A (en) * 2005-04-19 2006-11-02 Kinotech Corp Method for manufacturing silicon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095633A (en) * 2001-09-18 2003-04-03 Yutaka Kamaike Producing method for silicon
JP2004010472A (en) * 2002-06-06 2004-01-15 Takayuki Shimamune Method for producing silicon
JP2004018370A (en) * 2002-06-19 2004-01-22 Yutaka Kamaike Apparatus and method of manufacturing silicon
JP2004035382A (en) * 2002-06-28 2004-02-05 Takayuki Shimamune Method of manufacturing polycrystalline silicon
JP2004099421A (en) * 2002-09-12 2004-04-02 Takayuki Shimamune Method for manufacturing silicon
JP2004196642A (en) * 2002-12-19 2004-07-15 Yutaka Kamaike Apparatus and method for preparing silicon
JP2004210594A (en) * 2002-12-27 2004-07-29 Takayuki Shimamune Method of manufacturing high purity silicon
JP2004284935A (en) * 2003-03-19 2004-10-14 Takayuki Shimamune Apparatus and method for manufacturing silicon
JP2006298740A (en) * 2005-04-19 2006-11-02 Kinotech Corp Method for manufacturing silicon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073712A1 (en) * 2010-11-30 2012-06-07 Jnc株式会社 Method and device for supplying zinc gas
TWI482736B (en) * 2011-10-12 2015-05-01 C S Lab In Technology Ltd Manufacture of high purity silicon micropowder

Similar Documents

Publication Publication Date Title
CN100436315C (en) Silicon production process
JP4038110B2 (en) Method for producing silicon
JPH1192130A (en) Production of high purity silicon
KR20070112407A (en) Process for the production of si by reduction of sicl4 with liquid zn
JP2010053011A (en) Method for preparing high-purity silicon
US7538044B2 (en) Process for producing high-purity silicon and apparatus
JP3844849B2 (en) Method for producing polycrystalline silicon and zinc chloride
JP5040716B2 (en) High purity polycrystalline silicon manufacturing apparatus and manufacturing method
JP2012111986A (en) Titanium metal production apparatus and production method for titanium metal
JP2008037735A (en) Apparatus for manufacturing silicon
JP4428484B2 (en) High purity silicon production equipment
KR20100015694A (en) A method and a reactor for production of high-purity silicon
JP4392675B1 (en) High purity silicon production equipment
JP4692247B2 (en) Method for producing high-purity polycrystalline silicon
JP2007217262A (en) Apparatus for manufacturing silicon
JP2004210594A (en) Method of manufacturing high purity silicon
JP4392670B2 (en) Manufacturing method of high purity silicon
JP4713941B2 (en) Method for producing silicon
JP2004035382A (en) Method of manufacturing polycrystalline silicon
JP2011121848A (en) Method for producing high purity silicon
JP2004010472A (en) Method for producing silicon
JP2004099421A (en) Method for manufacturing silicon
JP2007126342A (en) Method of manufacturing silicon
JP4392671B2 (en) Silicon production equipment
JP5574295B2 (en) High purity silicon fine powder production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090120

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20090120

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091221

A521 Written amendment

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Effective date: 20120404

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120801