Nothing Special   »   [go: up one dir, main page]

JP2007212098A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2007212098A
JP2007212098A JP2006034659A JP2006034659A JP2007212098A JP 2007212098 A JP2007212098 A JP 2007212098A JP 2006034659 A JP2006034659 A JP 2006034659A JP 2006034659 A JP2006034659 A JP 2006034659A JP 2007212098 A JP2007212098 A JP 2007212098A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat pump
water heater
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006034659A
Other languages
Japanese (ja)
Inventor
Kenji Matsumura
賢治 松村
Koji Ito
浩二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006034659A priority Critical patent/JP2007212098A/en
Publication of JP2007212098A publication Critical patent/JP2007212098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater for preventing compressor operating pressure from being too high even when a supply water temperature rises. <P>SOLUTION: The heat pump water heater comprises a compressor 10, a water-refrigerant heat exchanger 20, a pressure reducer 30, and an evaporator 40 connected together in sequence via refrigerant pipes. Herein, part of refrigerant discharged from the compressor is sucked through an on-off valve 70 and the pressure reducer 80 into the compressor. The on-off valve is opened when the discharge pressure of the compressor is a predetermined value or greater. The on-off valve is also opened during defrosting operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水を冷媒で加熱するヒートポンプ式給湯機に関するものである。   The present invention relates to a heat pump water heater that heats water with a refrigerant.

近年の省エネの観点から、ガス燃焼式や電気加熱式の給湯機にくらべ省エネであるヒートポンプ式給湯機が注目されている。効率向上のためにはヒートポンプ式給湯機の構成が重要であり、その例として特許文献1に示すようなものが知られている。   From the viewpoint of energy saving in recent years, heat pump type water heaters that are more energy efficient than gas combustion type or electric heating type water heaters have attracted attention. In order to improve efficiency, the configuration of a heat pump type hot water heater is important, and an example as shown in Patent Document 1 is known.

特開平10−111014号公報(特に段落「0014」)JP 10-1111014 A (particularly paragraph “0014”)

上記従来技術では、給水温度を上げる場合に、圧縮機の吐出圧力が高くなることで対応する方法がある。しかし、圧縮機の吐出圧力を高くなりすぎると圧縮機の信頼性が低下するという課題があった。   In the above prior art, there is a method for increasing the feed water temperature by increasing the discharge pressure of the compressor. However, if the discharge pressure of the compressor becomes too high, there is a problem that the reliability of the compressor is lowered.

本発明の目的は、信頼性が高いヒートポンプ式給湯機を得ることにある。   An object of the present invention is to obtain a heat pump type water heater having high reliability.

上記課題を解決するために、本発明の一態様では、ヒートポンプ式給湯機を、圧縮機の吐出冷媒の圧力を検出する圧力検出手段を備え、圧縮機から吐出される冷媒の一部を開閉弁及び減圧器を通して圧縮機に吸入させる構造とし、圧力検出手段が検出した圧力が所定の圧力値以上となった場合に開閉弁を開いた状態としている。   In order to solve the above-described problem, according to one aspect of the present invention, a heat pump type water heater is provided with pressure detection means for detecting the pressure of refrigerant discharged from the compressor, and a part of the refrigerant discharged from the compressor is opened and closed. In addition, the compressor is sucked into the compressor through the decompressor, and the on-off valve is opened when the pressure detected by the pressure detecting means becomes a predetermined pressure value or more.

また、本発明の他の態様では、ヒートポンプ式給湯機を、圧縮機から吐出される冷媒の一部を開閉弁及び減圧器を通して圧縮機に吸入させ、除霜運転時に開閉弁を開いた状態としている。   In another aspect of the present invention, the heat pump water heater is configured such that a part of the refrigerant discharged from the compressor is sucked into the compressor through the open / close valve and the decompressor, and the open / close valve is opened during the defrosting operation. Yes.

また、本発明の他の態様では、ヒートポンプ式給湯機を、水・冷媒熱交換器と蒸発器の間に、第1の減圧器、受液器、第2の減圧器を順次設けている。   In another aspect of the present invention, a heat pump type hot water heater is provided with a first pressure reducer, a liquid receiver, and a second pressure reducer sequentially between a water / refrigerant heat exchanger and an evaporator.

さらに、上記の構成において、冷媒を臨界点以下で動作する冷媒、R410A又はR407C、二酸化炭素又はHC冷媒とすることが望ましい。   Furthermore, in the above configuration, it is desirable that the refrigerant be a refrigerant that operates below the critical point, R410A or R407C, carbon dioxide, or HC refrigerant.

本発明によれば、信頼性が高いヒートポンプ式給湯機を得ることができる。   According to the present invention, a highly reliable heat pump type hot water heater can be obtained.

上記従来技術においては、冷媒を必要量ぎりぎりに入れておくか、アキュームレータを設けて余剰冷媒を貯めておく構成である。図2は、アキュームレータ60に余剰冷媒を貯めるヒートポンプ式給湯機のブロック図を示し、圧縮機10からの高温高圧の冷媒は水・冷媒熱交換器20で水を昇温し、自身は冷却され、減圧器30で低圧となり、送風機50で送られる空気から蒸発器40で熱をくみ上げ、アキュームレータ60を通り、再び圧縮機10で昇圧される。水は、水入口100aから水ポンプ110を介して、水・冷媒熱交換器20へ入り、水出口100bへ至る。このサイクルのp−h線図を図3に示す。今サイクルAの状態で安定していたとする。水温を上げる要求があり圧縮機10の吐出温度を上げることで対応させる場合、減圧器30を絞って吐出温度を増加させることとなる(サイクルB)。この場合、減圧することで圧縮機吸入圧力の低下が起こり、またアキュームレータ内に余剰冷媒がある場合はアキュームレータ60内の冷媒が水・冷媒熱交換器20に移動することになり過冷却度の増加とともに吐出圧力の増加が起こる。圧縮機は通常信頼性の観点から運転できる最高の吐出圧力や最低の吸入圧力が設計上規定されており、外気が低い場合の吸入圧力の低下や、水の給水温度や沸き上げ温度が高い場合の吐出圧力の増大は、この圧縮機の運転範囲をこえる場合があり、信頼性上問題となることがある。逆に吐出圧力を下げようとして減圧器30を開くと水・冷媒熱交換器20の冷媒がアキュームレータ60に移ることになり吐出圧力が下がるが、同時に吐出温度も下がってしまい、沸き上げ温度を上げられない。またアキュームレータは圧力損失のためサイクルの性能を落とす問題もある。アキュームレータがないサイクルでは、余剰冷媒が水・冷媒熱交換器から移動しないため圧力を下げる手段がない。   In the above-described conventional technology, the refrigerant is put in a necessary amount or an accumulator is provided to store surplus refrigerant. FIG. 2 is a block diagram of a heat pump type hot water heater that stores excess refrigerant in the accumulator 60. The high-temperature and high-pressure refrigerant from the compressor 10 raises the temperature of the water in the water / refrigerant heat exchanger 20, and is itself cooled. The pressure is reduced by the decompressor 30, heat is drawn up by the evaporator 40 from the air sent by the blower 50, passes through the accumulator 60, and is again pressurized by the compressor 10. Water enters the water / refrigerant heat exchanger 20 through the water pump 110 from the water inlet 100a and reaches the water outlet 100b. A ph diagram of this cycle is shown in FIG. Assume that the cycle A is stable. When there is a request to increase the water temperature and the discharge temperature of the compressor 10 is increased, the discharge temperature is increased by reducing the decompressor 30 (cycle B). In this case, the suction pressure of the compressor is reduced by reducing the pressure, and if there is surplus refrigerant in the accumulator, the refrigerant in the accumulator 60 moves to the water / refrigerant heat exchanger 20 and the degree of supercooling increases. At the same time, the discharge pressure increases. The compressor is normally designed with the highest discharge pressure and the lowest suction pressure that can be operated from the viewpoint of reliability. When the outside air is low, the suction pressure decreases, the water supply temperature or the boiling temperature is high. The increase in the discharge pressure may exceed the operating range of the compressor, which may cause a problem in reliability. Conversely, if the decompressor 30 is opened to lower the discharge pressure, the refrigerant in the water / refrigerant heat exchanger 20 moves to the accumulator 60 and the discharge pressure decreases. At the same time, however, the discharge temperature also decreases, raising the boiling temperature. I can't. In addition, the accumulator has a problem that the cycle performance is degraded due to pressure loss. In a cycle without an accumulator, there is no means for reducing the pressure because excess refrigerant does not move from the water / refrigerant heat exchanger.

また、インバータ駆動の圧縮機を用いる空調機では圧縮機の回転数を落とすことで冷媒循環量の低下により凝縮熱交換量と蒸発熱交換量が低減するため吐出圧力を下げる、または吸入圧力を上げる運転が可能である。同じくインバータ駆動できる圧縮機を搭載したヒートポンプ給湯機の場合、圧縮機周波数の低下により冷媒循環量を減らして蒸発熱交換量の低下より吸入圧力の増加は可能である。しかし、ヒートポンプとしての能力が低下しても、沸き上げ温度は下げられないため沸き上げ温度確保のために水量の低下が起こり、結果、熱伝達率の低下を引き起こし、吐出圧力は下がらない。つまり、沸き上げ温度を確保しつつ吐出圧力を下げるためには水・冷媒熱交換器内の冷媒をどこかに移す必要がある。   In an air conditioner using an inverter-driven compressor, the discharge pressure is lowered or the suction pressure is raised because the condensation heat exchange amount and the evaporation heat exchange amount are reduced by lowering the refrigerant circulation amount by lowering the rotation speed of the compressor. Driving is possible. Similarly, in the case of a heat pump water heater equipped with a compressor that can be driven by an inverter, the amount of refrigerant circulation can be reduced by lowering the compressor frequency, and the suction pressure can be increased by lowering the evaporation heat exchange amount. However, even if the capacity as a heat pump is reduced, the boiling temperature cannot be lowered, so that the amount of water is lowered to ensure the boiling temperature, resulting in a reduction in heat transfer rate and the discharge pressure does not drop. That is, in order to lower the discharge pressure while ensuring the boiling temperature, it is necessary to move the refrigerant in the water / refrigerant heat exchanger somewhere.

図1は、第1の実施形態のヒートポンプ式給湯機ブロック図を示し、圧縮機10からの高温高圧の冷媒は水・冷媒熱交換器20で水を昇温し、自身は冷却され、可変減圧器30で低圧となり、送風機50で送られる空気から蒸発器40で熱をくみ上げ、再び圧縮機10で昇圧される。開閉弁70と固定減圧器80を有している。水は、水入口100aから水ポンプ110を介して、水・冷媒熱交換器20へ入り、水出口100bへ至る。冷媒としてはR410AやR407C等のフロン冷媒やHC冷媒のように臨界圧力以下で動作する冷媒や高圧が臨界圧力を超えるCO2冷媒である。   FIG. 1 is a block diagram of a heat pump type hot water heater according to the first embodiment. The high-temperature and high-pressure refrigerant from the compressor 10 raises the temperature of the water in the water / refrigerant heat exchanger 20 and is cooled by itself. The pressure is reduced by the compressor 30, the heat is drawn from the air sent by the blower 50 by the evaporator 40, and the pressure is increased again by the compressor 10. An on-off valve 70 and a fixed decompressor 80 are provided. Water enters the water / refrigerant heat exchanger 20 through the water pump 110 from the water inlet 100a and reaches the water outlet 100b. The refrigerant is a refrigerant that operates at a critical pressure or less, such as a CFC refrigerant such as R410A or R407C, or a HC refrigerant, or a CO2 refrigerant whose high pressure exceeds the critical pressure.

図4はこのサイクルのp−h線図である。図は臨界圧力以下で動作するR410Aの場合であるが、高圧部が臨界圧力を超える二酸化炭素冷媒の場合も考え方は同じである。サイクルAは開閉弁70を閉じている場合のサイクルである。このサイクルが圧縮機の設計上の運転圧力範囲に対して、吐出圧力が高い場合に開閉弁70を開く。このサイクルをサイクルCとする。図中のa〜fは図1に対応している。開閉弁70を開くことで圧縮機10の吸入には蒸発器40からの冷媒eと減圧器80からの冷媒fの混合したものが供給される。減圧器80からの冷媒は圧縮機吐出冷媒を減圧しただけであるため高温であり、そのため蒸発器40からの冷媒eはかわき度の低い状態で供給される。このため蒸発器40からの熱のくみ上げ熱量は少なくてすみ、吸入圧力の増大が起こる。また、蒸発器40内全体にわたるかわき度が小さくなることから蒸発器内の冷媒保有量が増加し、水・冷媒熱交換器20から冷媒を奪うことになる。つまり、水・冷媒熱交換器20内の冷媒の一部を蒸発器40に移したことになる。そのため、過冷却度の低下から吐出圧力の減少が起こる。このとき減圧器30で圧縮機吐出冷媒温度は高く維持するため、沸き上げ温度の低下は起こらない。つまり外気が低く吸入圧力が低すぎる場合や、給水温度や沸き上げ温度が高く吐出圧力が高すぎる場合に開閉弁70を開くことで、沸き上げ温度を下げずに吐出圧力を低下させることができるので、吸入圧力の増大により圧縮機の信頼性の高い運転範囲が実現される。図5はこのサイクルで除霜運転を行う場合のp−h線図である。まず水ポンプ110を止め水流をなくす、そうすると冷媒は冷却されず減圧器30に流入される。ここで冷媒は除霜可能な圧力まで減圧され高温のまま蒸発器40(この場合凝縮器となる)で霜に熱を与え溶かしながら、自身は冷却されかわき度の低い冷媒eとなって出て行く。この冷媒を圧縮機に直接吸入させると圧縮機の液圧縮や圧縮機内の油の粘度低下を起こすため信頼性が下がる。そこで開閉弁70を開き高温の冷媒と混ぜることで冷媒を過熱し、圧縮機に吸入させることで圧縮機の信頼性は確保される。また、停止状態から運転状態に移るときに蒸発器40内液冷媒が急に圧縮機10に供給されることを防止するため開閉弁70を開きかわき度を上げることで信頼性向上につながる。この実施形態の構成では除霜を四方弁を用いた逆サイクルで行わないため、通常運転時に起こる四方弁内部での高温部と低温部での熱移動がないため、効率が向上する。また前記開閉弁と固定減圧器の組み合わせを可変減圧器としてもよい。   FIG. 4 is a ph diagram of this cycle. The figure shows the case of R410A operating at a critical pressure or lower, but the concept is the same when the high pressure part is a carbon dioxide refrigerant exceeding the critical pressure. Cycle A is a cycle when the on-off valve 70 is closed. When this cycle is higher than the operating pressure range in the design of the compressor, the on-off valve 70 is opened. This cycle is designated as cycle C. In the figure, a to f correspond to FIG. By opening the on-off valve 70, a mixture of the refrigerant e from the evaporator 40 and the refrigerant f from the decompressor 80 is supplied to the suction of the compressor 10. The refrigerant from the decompressor 80 is at a high temperature because it only decompresses the refrigerant discharged from the compressor. Therefore, the refrigerant e from the evaporator 40 is supplied in a state of low airiness. For this reason, the amount of heat generated from the evaporator 40 is small, and the suction pressure increases. Further, since the degree of preserving throughout the evaporator 40 is reduced, the amount of refrigerant held in the evaporator is increased, and the refrigerant is taken away from the water / refrigerant heat exchanger 20. That is, a part of the refrigerant in the water / refrigerant heat exchanger 20 is transferred to the evaporator 40. Therefore, the discharge pressure decreases due to the decrease in the degree of supercooling. At this time, since the compressor discharge refrigerant temperature is kept high by the decompressor 30, the boiling temperature does not decrease. That is, when the outside air is low and the suction pressure is too low, or when the supply water temperature or the boiling temperature is high and the discharge pressure is too high, the discharge pressure can be reduced without lowering the boiling temperature by opening the on-off valve 70. Therefore, a reliable operation range of the compressor is realized by increasing the suction pressure. FIG. 5 is a ph diagram when the defrosting operation is performed in this cycle. First, the water pump 110 is stopped and the water flow is eliminated. Then, the refrigerant is not cooled and flows into the decompressor 30. Here, the refrigerant is depressurized to a pressure capable of defrosting, and while being heated, the evaporator 40 (which becomes a condenser in this case) heats and melts the frost while cooling itself and becomes a refrigerant e having a low degree of freshness. go. If this refrigerant is directly sucked into the compressor, liquid compression of the compressor and a decrease in the viscosity of oil in the compressor cause a decrease in reliability. Therefore, the reliability of the compressor is ensured by opening the on-off valve 70 and mixing it with a high-temperature refrigerant so that the refrigerant is superheated and sucked into the compressor. Moreover, in order to prevent the liquid refrigerant in the evaporator 40 from being suddenly supplied to the compressor 10 when shifting from the stopped state to the operating state, the open / close valve 70 is opened to increase reliability, leading to improved reliability. In the configuration of this embodiment, since defrosting is not performed in a reverse cycle using a four-way valve, there is no heat transfer in the high-temperature part and the low-temperature part inside the four-way valve that occurs during normal operation, thereby improving efficiency. The combination of the on-off valve and the fixed pressure reducer may be a variable pressure reducer.

図7は第2の実施形態を示し、図中記号は第1の実施の形態と同じである。追加部品として開閉弁72と固定減圧器82がある。これは圧縮機10の吐出から蒸発器40の入口までをバイパスする形で設ける。前記第1の実施形態では除霜時に圧縮機10からの高温冷媒を可変減圧器30で減圧する形であったが、水ポンプ110が停止できない場合には冷媒が冷却されるため、除霜能力が低下する。また、可変減圧器の中には高温に耐えられないものもある。この第2の実施形態では、除霜時に可変減圧器30を閉止し冷媒を流れないようにし、かわりに開閉弁72を開くことで高温冷媒を蒸発器40に導き除霜するものである。こうすることで、水が循環していても冷媒は冷却されず、可変減圧器30は高温にさらされない。   FIG. 7 shows a second embodiment, and symbols in the figure are the same as those in the first embodiment. There are an on-off valve 72 and a fixed pressure reducer 82 as additional parts. This is provided so as to bypass the discharge from the compressor 10 to the inlet of the evaporator 40. In the first embodiment, the high-temperature refrigerant from the compressor 10 is depressurized by the variable pressure reducer 30 at the time of defrosting. However, when the water pump 110 cannot be stopped, the refrigerant is cooled. Decreases. Some variable pressure reducers cannot withstand high temperatures. In the second embodiment, the variable pressure reducer 30 is closed during defrosting so that the refrigerant does not flow, and instead, by opening the on-off valve 72, the high-temperature refrigerant is guided to the evaporator 40 and defrosted. By doing so, even if water is circulating, the refrigerant is not cooled, and the variable decompressor 30 is not exposed to high temperatures.

図6は、第3の実施形態を示し、減圧器30と蒸発器40の間に受液器65と減圧器35を追加し、冷媒の流れを切り替える四方弁15を設けている。通常ヒートポンプ給湯機では給水温が低い場合は過冷却度を大きくとり、比エンタルピ差を稼ぐことで効率向上につながる。この発明では過冷却度の確保に減圧器30を用いて受液器65内の冷媒を水・冷媒熱交換器20に移すことで過冷却度の確保を行える。また、吐出温度の確保には減圧装置35を用いるため高温沸き上げに対応できる。給水温や沸き上げ温度が高い要求時に、吐出圧力が上がり、信頼性が確保される圧力範囲を超える場合、減圧器30を開いて、水・冷媒熱交換器20内の冷媒を受液器65に移す。そうすることで過冷却度の低下から吐出圧力の減少につながり信頼性が向上される。除霜は四方弁15の切り替えによる逆サイクルによる。   FIG. 6 shows a third embodiment, in which a receiver 65 and a decompressor 35 are added between the decompressor 30 and the evaporator 40, and a four-way valve 15 for switching the refrigerant flow is provided. In general heat pump water heaters, when the feed water temperature is low, the degree of supercooling is increased and the specific enthalpy difference is increased, leading to improved efficiency. In the present invention, the degree of supercooling can be ensured by transferring the refrigerant in the liquid receiver 65 to the water / refrigerant heat exchanger 20 using the pressure reducer 30 for securing the degree of supercooling. Moreover, since the decompression device 35 is used to secure the discharge temperature, it is possible to cope with high temperature boiling. When the discharge pressure rises and the reliability exceeds the pressure range where reliability is ensured when the feed water temperature or the boiling temperature is high, the decompressor 30 is opened and the refrigerant in the water / refrigerant heat exchanger 20 is received by the receiver 65. Move to. By doing so, the discharge pressure is reduced due to the decrease in the degree of supercooling, and the reliability is improved. Defrosting is based on a reverse cycle by switching the four-way valve 15.

本発明の第1の実施形態を示すヒートポンプ式給湯機のブロック図である。It is a block diagram of the heat pump type hot water heater which shows the 1st Embodiment of this invention. 従来の形態であるヒートポンプ式給湯機のブロック図である。It is a block diagram of the heat pump type water heater which is a conventional form. 従来の形態であるヒートポンプ式給湯機のp−h線図である。It is the ph diagram of the heat pump type hot water heater which is the conventional form. 本発明の第1の実施形態を示すヒートポンプ式給湯機のp−h図である。It is a ph figure of the heat pump type water heater which shows the 1st Embodiment of this invention. 本発明の第1の実施形態を示すヒートポンプ式給湯機除霜時のp−h図である。It is a ph figure at the time of defrosting of the heat pump type water heater which shows the 1st Embodiment of this invention. 本発明の第3の実施形態を示すヒートポンプ式給湯機のブロック図である。It is a block diagram of the heat pump type water heater which shows the 3rd Embodiment of this invention. 本発明の第2の実施形態を示すヒートポンプ式給湯機のブロック図である。It is a block diagram of the heat pump type water heater which shows the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10…圧縮機、20…水・冷媒熱交換器、30…可変減圧器、40…蒸発器、50…送風機、60…アキュームレータ、70・72…開閉弁、80・82…固定減圧器、100a…水入口、100b…水出口、110…水ポンプ、65…受液器、35…可変減圧器。
DESCRIPTION OF SYMBOLS 10 ... Compressor, 20 ... Water / refrigerant heat exchanger, 30 ... Variable decompressor, 40 ... Evaporator, 50 ... Blower, 60 ... Accumulator, 70/72 ... Open / close valve, 80/82 ... Fixed decompressor, 100a ... Water inlet, 100b ... Water outlet, 110 ... Water pump, 65 ... Liquid receiver, 35 ... Variable decompressor.

Claims (7)

圧縮機、水・冷媒熱交換器、減圧器及び蒸発器を冷媒配管で順次接続したヒートポンプ式給湯機において、
前記圧縮機の吐出冷媒の圧力を検出する圧力検出手段を備え、前記圧縮機から吐出される冷媒の一部を開閉弁及び減圧器を通して前記圧縮機に吸入させる構造とし、前記圧力検出手段が検出した圧力が所定の圧力値以上となった場合に前記開閉弁を開いた状態とすることを特徴とするヒートポンプ式給湯機。
In a heat pump water heater in which a compressor, a water / refrigerant heat exchanger, a decompressor, and an evaporator are sequentially connected by refrigerant piping,
Pressure detecting means for detecting the pressure of refrigerant discharged from the compressor is provided, and a part of the refrigerant discharged from the compressor is sucked into the compressor through an on-off valve and a pressure reducer, and the pressure detecting means detects The heat pump type hot water heater is characterized in that the open / close valve is opened when the applied pressure exceeds a predetermined pressure value.
圧縮機、水・冷媒熱交換器、減圧器及び蒸発器を冷媒配管で順次接続したヒートポンプ式給湯機において、
前記圧縮機から吐出される冷媒の一部を開閉弁及び減圧器を通して前記圧縮機に吸入させ、除霜運転時に前記開閉弁を開いた状態とすることを特徴とするヒートポンプ式給湯機。
In a heat pump water heater in which a compressor, a water / refrigerant heat exchanger, a decompressor, and an evaporator are sequentially connected by refrigerant piping,
A heat pump type water heater, wherein a part of the refrigerant discharged from the compressor is sucked into the compressor through an on-off valve and a decompressor, and the on-off valve is opened during a defrosting operation.
圧縮機、四方弁、水・冷媒熱交換器及び蒸発器を冷媒配管で順次接続したヒートポンプ式給湯機において、
前記水・冷媒熱交換器と蒸発器の間に、第1の減圧器、受液器、第2の減圧器を順次設けることを特徴とするヒートポンプ式給湯機。
In a heat pump type hot water heater in which a compressor, a four-way valve, a water / refrigerant heat exchanger and an evaporator are sequentially connected by a refrigerant pipe,
A heat pump type hot water heater, wherein a first pressure reducer, a liquid receiver, and a second pressure reducer are sequentially provided between the water / refrigerant heat exchanger and the evaporator.
請求項1〜3において、前記冷媒を臨界点以下で動作する冷媒を用いることを特徴とするヒートポンプ式給湯機。   The heat pump type hot water heater according to claim 1, wherein a refrigerant that operates below the critical point is used as the refrigerant. 請求項4において、前記冷媒はR410A又はR407Cであることを特徴とするヒートポンプ式給湯機。   5. The heat pump type hot water heater according to claim 4, wherein the refrigerant is R410A or R407C. 請求項1〜3において、前記冷媒が二酸化炭素であることを特徴とするヒートポンプ式給湯機。   The heat pump type hot water heater according to claim 1, wherein the refrigerant is carbon dioxide. 請求項1〜3において、前記冷媒がHC冷媒であることを特徴とするヒートポンプ式給湯機。
The heat pump type hot water heater according to claim 1, wherein the refrigerant is an HC refrigerant.
JP2006034659A 2006-02-13 2006-02-13 Heat pump water heater Pending JP2007212098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034659A JP2007212098A (en) 2006-02-13 2006-02-13 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034659A JP2007212098A (en) 2006-02-13 2006-02-13 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2007212098A true JP2007212098A (en) 2007-08-23

Family

ID=38490707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034659A Pending JP2007212098A (en) 2006-02-13 2006-02-13 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2007212098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460797C (en) * 2007-10-30 2009-02-11 吴荣华 Polluted water or ground surface water source heat pump flow passage type heat transfer system
JP2009216265A (en) * 2008-03-07 2009-09-24 Tokyo Electric Power Co Inc:The Heat insulating device for open type hot water storage tank
WO2011155386A1 (en) * 2010-06-11 2011-12-15 ヤンマー株式会社 Engine-driven hot water supply circuit, and engine-driven hot water supply system using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460797C (en) * 2007-10-30 2009-02-11 吴荣华 Polluted water or ground surface water source heat pump flow passage type heat transfer system
JP2009216265A (en) * 2008-03-07 2009-09-24 Tokyo Electric Power Co Inc:The Heat insulating device for open type hot water storage tank
WO2011155386A1 (en) * 2010-06-11 2011-12-15 ヤンマー株式会社 Engine-driven hot water supply circuit, and engine-driven hot water supply system using same
JP2011257100A (en) * 2010-06-11 2011-12-22 Yanmar Co Ltd Engine-driven hot water supply circuit and engine-driven hot water supply system using the same

Similar Documents

Publication Publication Date Title
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
CN103375939B (en) Freezing cycle device
EP2905559B1 (en) Cascade refrigeration equipment
JP2010144938A (en) Heat pump water heater and method for operating the same
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JPWO2011092802A1 (en) Heat pump device and refrigerant bypass method
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
JP2013119954A (en) Heat pump hot water heater
JP4317793B2 (en) Cooling system
JP4691138B2 (en) Heat pump water heater
JP5573370B2 (en) Refrigeration cycle apparatus and control method thereof
JP2011257098A (en) Heat pump cycle device
JP2007212098A (en) Heat pump water heater
JP2008082601A (en) Heat pump hot water supply device
JP5640815B2 (en) Steam system
JP2005308344A (en) Heat pump water heater
JP5516332B2 (en) Heat pump type hot water heater
JP2005214442A (en) Refrigerator
JP2009281631A (en) Heat pump unit
JP2008175402A (en) Operating method of refrigerating cycle device
JP2009085476A (en) Heat pump water heater
JP2008116184A (en) Refrigerating cycle device
JP2010210164A (en) Method of controlling operation of multi-chamber type air conditioner
JP4449779B2 (en) Heat pump water heater