JP2007205692A - Thermal fatigue crack damage diagnosis method of boiler heat transfer tube - Google Patents
Thermal fatigue crack damage diagnosis method of boiler heat transfer tube Download PDFInfo
- Publication number
- JP2007205692A JP2007205692A JP2006028527A JP2006028527A JP2007205692A JP 2007205692 A JP2007205692 A JP 2007205692A JP 2006028527 A JP2006028527 A JP 2006028527A JP 2006028527 A JP2006028527 A JP 2006028527A JP 2007205692 A JP2007205692 A JP 2007205692A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- crack
- tube
- thermal fatigue
- transfer tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
本発明は、火力発電用ボイラの水壁管、過熱器管、再熱器管などの高温伝熱管で生じるエレファントスキン状の熱疲労亀裂損傷の診断法に関する。 The present invention relates to a method for diagnosing elephant skin-like thermal fatigue crack damage that occurs in high-temperature heat transfer tubes such as water wall tubes, superheater tubes, and reheater tubes of thermal power generation boilers.
石炭焚きボイラや重油焚きボイラでは、水壁管、過熱器管、再熱器管などの伝熱管に燃焼灰が付着堆積すると伝熱効率が低下するため、ウォールブロワ(以下、WBと略称する)やスートブロワ(以下、SBと略称する)によって、定期的に高圧蒸気を吹付けて付着灰を除去している。 In coal-fired boilers and heavy oil fired boilers, heat transfer efficiency decreases when combustion ash adheres to and accumulates on heat transfer tubes such as water wall tubes, superheater tubes, and reheater tubes, so wall blowers (hereinafter abbreviated as WB) A soot blower (hereinafter abbreviated as SB) periodically sprays high-pressure steam to remove adhering ash.
図6は、SBを作用させた場合の伝熱管部の模式図である。図7は、SB作動時のメタル温度変化の模式図である。図6において、1はボイラ用伝熱管、2は付着灰、3はスートブロワ(SB)又はウォールブロワ(WB)による蒸気流、4は熱応力、5は内面スケール、6はエレファントスキン状亀裂、をそれぞれ表す。600〜1200℃の火炉内条件中で300〜500℃の過熱蒸気3を伝熱管1に吹付けるため、WBやSBの作動(稼働)でメタル温度低下→付着灰2の除去でメタル温度上昇→灰の再付着でメタル温度低下を繰返し、メタル温度の変化及び管内外面の温度差により50〜200N/mm2の熱応力4が発生する。WBやSBの作動回数は、灰の付着速度、灰性状、部位によって異なるが50〜500回/年のオーダである。このような熱応力の繰返しによって亀裂6が発生・進展し、損傷に繋がる。
FIG. 6 is a schematic diagram of the heat transfer tube section when SB is applied. FIG. 7 is a schematic diagram of a change in metal temperature during SB operation. In FIG. 6, 1 is a boiler heat transfer tube, 2 is attached ash, 3 is a steam flow by a soot blower (SB) or a wall blower (WB), 4 is a thermal stress, 5 is an internal scale, and 6 is an elephant skin-like crack. Represent each. Since the
図8は、公知の代表的なボイラ用伝熱管の疲労亀裂進展線図である。疲労亀裂進展速度は、鋼種、温度によって変化するが、ボイラ用フェライト系CrMo鋼の進展速度はほぼ同じ挙動である。図8の横軸の応力拡大係数範囲ΔKは、ΔK=D・σ√(πa) (D:形状係数、σ:応力範囲、a:亀裂深さ) で算定される数値であり、形状、応力範囲及び亀裂深さの関数である。亀裂aが1mm以下の場合応力範囲σが大きくてもΔKは50kg/mm3/2以下であり、亀裂進展速度は10−5mm/回のオーダであって、10万回繰返しても1mmの進展であり実機の亀裂状況が説明できない。 FIG. 8 is a fatigue crack growth diagram of a known typical boiler heat transfer tube. The fatigue crack growth rate varies depending on the steel type and temperature, but the growth rate of the ferritic CrMo steel for boilers is almost the same. The stress intensity factor range ΔK on the horizontal axis in FIG. 8 is a numerical value calculated by ΔK = D · σ√ (πa) (D: shape factor, σ: stress range, a: crack depth). It is a function of range and crack depth. When the crack a is 1 mm or less, even if the stress range σ is large, ΔK is 50 kg / mm 3/2 or less, the crack growth rate is on the order of 10 −5 mm / time, and even if it is repeated 100,000 times, 1 mm This is a development and the actual crack situation cannot be explained.
そこで、通常、従来技術では、図9に示すフローの記述内容にしたがって、疲労亀裂進展速度に対する高温燃焼ガスの影響及び表面の高温酸化スケールの生成とその割れ及びスケール割れ下の高温酸化を考慮した亀裂進展計算が行なわれている(例えば、特許文献1を参照)。この亀裂進展の計算フローの詳細は、図9に図示説明する通りである。 Therefore, in general, according to the description of the flow shown in FIG. 9, the conventional technology takes into consideration the influence of the high-temperature combustion gas on the fatigue crack growth rate, the generation of high-temperature oxidized scale on the surface, and the crack and high-temperature oxidation under the scale crack. Crack growth calculation is performed (see, for example, Patent Document 1). Details of the calculation flow of the crack growth are as illustrated and described in FIG.
さらに、上記従来技術の外に、エレファントスキン状亀裂のようなボイラでの熱疲労亀裂損傷診断の従来技術が、例えば、特許文献2や特許文献3に提案されている。この特許文献2は、疲労寿命線図に対し高温ガス中のH2Sの影響を考慮しようとするものであり、また、特許文献3は、ボイラ停止中の腐食作用を考慮しようとするものである。
ところで、図10は、本発明者らが調査した実機ボイラ伝熱管のエレファントスキン状亀裂の測定結果とその時点でのデータと運転履歴や応力条件をもとに診断した亀裂進展予測線図である。この線図に示すように、約17万hの運転で限界亀裂に達すると予測したが、実際には約15万hで伝熱管は噴破しており、非安全側の評価予測になっている。 By the way, FIG. 10 is a crack growth prediction diagram diagnosed based on the measurement result of the elephant skin-like crack of the actual boiler heat transfer tube investigated by the present inventors, the data at that time, the operation history and the stress condition. . As shown in this diagram, it was predicted that a critical crack would be reached in about 170,000 hours of operation, but in fact, the heat transfer tube was blown out at about 150,000 hours, and this was an evaluation prediction on the unsafe side. Yes.
そして、上記特許文献1における計算は、通常ある期間毎の高温ガスで加速された疲労亀裂進展量と高温酸化成長量の和を進展量とし、累積計算している。しかし、このような累積計算方法においても、実機での亀裂進展が評価できない事象が発生しており、特に、経年使用したボイラでその傾向が顕著である。
And the calculation in the said
このように、上記特許文献1は、ボイラ伝熱管外面疲労亀裂の進展解析法に関するものであり、上記特許文献2は、疲労寿命線図に対し高温ガス中のH2Sの影響を考慮しようとするものであり、上記特許文献3は、ボイラ停止中の腐食作用を考慮するものであって、本発明が課題とする、エレファントスキン状の熱応力の繰返しと高温腐食(酸化)の組合せで生じる亀裂損傷については、考慮が払われていない。
As described above,
本発明の目的は、ボイラ伝熱管外面で生じるエレファントスキン状の熱応力の繰返しと高温腐食(又は高温酸化)の組合せで生じる亀裂損傷に対して、その進展挙動の高精度化を図り、実機での挙動を説明、評価し得る診断法を提供することにある。 The purpose of the present invention is to improve the accuracy of the progress of crack damage caused by the combination of elephant skin-like thermal stress and high temperature corrosion (or high temperature oxidation) generated on the outer surface of the boiler heat transfer tube. It is an object of the present invention to provide a diagnostic method that can explain and evaluate the behavior of the above.
前記課題を解決するために、本発明は主として次のような構成を採用する。
ボイラ伝熱管の外面から発生するエレファントスキン状の熱疲労亀裂による損傷度を診断する診断法であって、
前記伝熱管の寸法、熱膨張率、温度変化をもとに計算された熱応力範囲と亀裂深さとに基づいて、応力範囲係数範囲を算定するステップと、
前記応力範囲係数範囲及び亀裂進展速度の関係を表す熱疲労亀裂進展線図と熱応力繰り返し回数とに基づいて、熱疲労亀裂進展量を解析するステップと、
前記伝熱管の管外面の高温酸化スケール又は高温腐食スケールの生成量を求め、当該生成されたスケールに因る割れを評価するステップと、
前記伝熱管の管内面側における酸化スケールの生成量を求めるステップと、を備え、
前記求めた管内面側スケール生成量に起因する伝熱管メタル温度の上昇が、前記熱応力範囲、前記熱疲労亀裂進展量および前記管外面のスケール生成量を加速させることを組み込んで、前記熱疲労亀裂進展量を解析するとともに前記割れを評価することによって、前記熱疲労亀裂の損傷度を診断するものである。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A diagnostic method for diagnosing the degree of damage due to an elephant skin-like thermal fatigue crack generated from the outer surface of a boiler heat transfer tube,
Calculating a stress range coefficient range based on the thermal stress range and crack depth calculated based on the dimensions, thermal expansion coefficient, and temperature change of the heat transfer tube;
Analyzing the amount of thermal fatigue crack propagation based on the thermal fatigue crack growth diagram representing the relationship between the stress range coefficient range and crack growth rate and the number of thermal stress repetitions;
Determining the amount of high temperature oxidation scale or high temperature corrosion scale formed on the outer surface of the heat transfer tube, and evaluating cracks due to the generated scale;
Obtaining a production amount of oxide scale on the inner surface side of the heat transfer tube,
Incorporating the increase in heat transfer tube metal temperature due to the obtained tube inner surface side scale generation amount accelerates the thermal stress range, the thermal fatigue crack growth amount and the scale generation amount of the tube outer surface, and the thermal fatigue The degree of damage of the thermal fatigue crack is diagnosed by analyzing the crack progress and evaluating the crack.
本発明によると、SB又はWBの運用に伴う熱応力の繰返し又は起動停止に伴なう熱応力の繰返しと高温ガスの影響が組み合わさって生じるボイラ伝熱管のエレファントスキン状亀裂進展挙動を高精度に予測、解析することができ、ボイラ設備の安全かつ安定運転に寄与することができる。 According to the present invention, the elephant skin-like crack propagation behavior of a boiler heat transfer tube, which is caused by the combination of repeated thermal stress associated with the operation of SB or WB or repeated thermal stress associated with start / stop and the effect of high-temperature gas, is highly accurate. Therefore, it can contribute to the safe and stable operation of boiler equipment.
従来技術の診断法では、非安全側の診断となり、事前に伝熱管の噴破漏洩トラブルに遭遇して火力発電プラントを停止する事態を招くが、本発明の診断法によると、伝熱管噴破による火力発電プラントの停止を回避することができる。 In the diagnostic method of the prior art, it becomes a diagnosis on the non-safe side, and it causes a situation where the thermal power plant is shut down in advance when it encounters a heat transfer tube blowout trouble, but according to the diagnosis method of the present invention, the heat transfer tube blowout It is possible to avoid the thermal power plant from being stopped by.
本発明の実施形態に係るボイラ伝熱管の熱疲労亀裂損傷診断法について、主として図1〜図5を参照しながら以下詳細に説明する。図1は本発明の実施形態に係るボイラ伝熱管の熱疲労亀裂損傷診断法のフローを示す図である。図2は本実施形態に関する熱疲労亀裂損傷診断法を用いて亀裂進展解析及び寿命診断を実施した結果を示す図である。図3は本実施形態に関する熱疲労亀裂損傷診断法の入力項目及び診断画面例を示す図である。図4は図3に示す条件で解析し診断した具体的結果を示す図である。図5は本実施形態に係るボイラ伝熱管の管内面にスケールが存在する場合と存在しない場合とにおけるメタル温度変化を示す図である。 A thermal fatigue crack damage diagnosis method for a boiler heat transfer tube according to an embodiment of the present invention will be described in detail below mainly with reference to FIGS. FIG. 1 is a diagram showing a flow of a thermal fatigue crack damage diagnosis method for a boiler heat transfer tube according to an embodiment of the present invention. FIG. 2 is a diagram showing the results of crack growth analysis and life diagnosis using the thermal fatigue crack damage diagnosis method according to this embodiment. FIG. 3 is a diagram showing input items and a diagnostic screen example of the thermal fatigue crack damage diagnostic method according to the present embodiment. FIG. 4 is a diagram showing specific results analyzed and diagnosed under the conditions shown in FIG. FIG. 5 is a diagram showing changes in metal temperature when a scale is present on the inner surface of the boiler heat transfer tube according to the present embodiment and when it is not present.
まず、本発明の実施形態に係るボイラ伝熱管の熱疲労亀裂損傷診断法の概要について説明する。そもそも、ボイラ伝熱管は高温水又は高温過熱蒸気を加熱するものであり、管内面側では高温水からの析出付着スケール又は過熱蒸気による水蒸気酸化スケールが生成する。管内面に析出又は生成するスケールは、ほとんどが鉄酸化物(Fe2O3又はFe3O4)であり、その熱伝導率は伝熱管鋼材の1/20〜1/40であるため、伝熱管外面からの熱負荷によりメタル温度(管表面温度)が上昇する。 First, the outline | summary of the thermal fatigue crack damage diagnostic method of the boiler heat exchanger tube which concerns on embodiment of this invention is demonstrated. In the first place, the boiler heat transfer tube heats high-temperature water or high-temperature superheated steam, and a deposition adhesion scale from high-temperature water or a steam oxidation scale due to superheated steam is generated on the inner surface side of the tube. Most of the scale that precipitates or forms on the inner surface of the pipe is iron oxide (Fe 2 O 3 or Fe 3 O 4 ), and its thermal conductivity is 1/20 to 1/40 of that of the heat transfer pipe steel. The metal temperature (tube surface temperature) rises due to heat load from the outer surface of the heat tube.
図5に管内面スケールがある場合とない場合のメタル温度変化の模式図を示しており、メタル温度が上昇すると図8に示したように疲労亀裂進展速度が高くなり、高温酸化や高温腐食も増加する。さらに、SB又はWBの稼働によるメタル温度差ΔTは内面スケールにより増加し(図5を参照)、熱応力もより高くなる。このような伝熱管内面スケールの影響を診断法に組み入れて、伝熱管外面のエレファントスキン状亀裂進展を評価しようとすることが本発明の主たる要旨である。すなわち、ボイラ伝熱管外面で生じるエレファントスキン状亀裂の進展解析において、従来技術(例えば上記特許文献1)では管外面からの高温酸化又は高温腐食とそのスケールの割れによる割れ下のスケール再生を考慮したものであったが、前述したように実機伝熱管での亀裂進展を診断でき得ない状況があり、本実施形態では、内面スケールによるメタル温度の影響が重要であることを見出し、管内面スケールを亀裂損傷診断法に組み入れることを主旨とするものである。 Fig. 5 shows a schematic diagram of changes in the metal temperature with and without the pipe inner scale. When the metal temperature rises, the fatigue crack growth rate increases as shown in Fig. 8, and high temperature oxidation and high temperature corrosion also occur. To increase. Furthermore, the metal temperature difference ΔT due to the operation of SB or WB increases due to the internal scale (see FIG. 5), and the thermal stress becomes higher. The main gist of the present invention is to evaluate the elephant skin-like crack growth on the outer surface of the heat transfer tube by incorporating the influence of the heat transfer tube inner surface scale into the diagnostic method. That is, in the evolution analysis of the elephant skin-like crack generated on the outer surface of the boiler heat transfer tube, the conventional technology (for example, the above-mentioned Patent Document 1) considers high temperature oxidation or high temperature corrosion from the outer surface of the tube and scale regeneration under the crack due to cracking of the scale. However, as described above, there is a situation where it is impossible to diagnose crack propagation in the actual heat transfer tube.In this embodiment, the influence of the metal temperature due to the inner surface scale is found to be important, and the inner surface scale of the tube is determined. It is intended to be incorporated into a crack damage diagnostic method.
図1において、管外面疲労亀裂進展解析+管外面高温酸化又は高温腐食量の算定法は、従来技術と同様であって、温度差、温度変化および材料の線膨張率から式(1)によって熱応力範囲(σR)を算定する。 In FIG. 1, the method for calculating the fatigue crack growth analysis on the outer surface of the pipe and the high temperature oxidation or the high temperature corrosion amount on the outer surface of the pipe is the same as in the prior art, and the temperature difference, temperature change and linear expansion coefficient of the material Calculate the stress range (σR).
σR=ΔT×Lec×E …(1)
ここで、σR:熱応力範囲(N/mm2)、ΔT:温度差(K)、Lec:線膨張率(1/K)、E:ヤング率(N/mm2)である。
σR = ΔT × Lec × E (1)
Here, σR: thermal stress range (N / mm 2 ), ΔT: temperature difference (K), Lec: linear expansion coefficient (1 / K), E: Young's modulus (N / mm 2 ).
また、σR、亀裂形状、構造材形状から式(2)によって応力拡大係数範囲ΔKを算定し、その材料の疲労亀裂進展線図(ΔK−da/dN)(図8に示す亀裂進展速度da/dNを参照)と繰返し数から亀裂進展量を計算する。 Further, the stress intensity factor range ΔK is calculated from σR, crack shape, and structural material shape by the equation (2), and the fatigue crack growth diagram (ΔK−da / dN) of the material (crack growth rate da / shown in FIG. 8). dN)) and the amount of crack growth is calculated from the number of repetitions.
ΔK=D×σR√(πa)=112×(σR/(t0.5×W)×(tan(π×a/t)))0.5 …(2)
ここで、D:形状係数、t:管板厚(mm)、W:管半周幅(mm)、a:亀裂深さ(mm)である。
ΔK = D × σR√ (πa) = 112 × (σR / (t 0.5 × W) × (tan (π × a / t))) 0.5 (2)
Here, D: shape factor, t: tube plate thickness (mm), W: tube half circumference width (mm), a: crack depth (mm).
次に、管外面の高温酸化スケール又は高温腐食スケールの生成量は、材質、温度、ガス性状及び付着灰性状からデータベースを元にした回帰式から次のように算定する。高温酸化又は高温スケール厚さは、次のようになる。 Next, the amount of high-temperature oxidation scale or high-temperature corrosion scale generated on the outer surface of the pipe is calculated from the regression equation based on the database from the material, temperature, gas properties, and attached ash properties as follows. The high temperature oxidation or high temperature scale thickness is as follows:
Y=EI×(Kp×t)0.5 …(3)
Kp=A×exp(−Q/RT) …(4)
Log(Kp)=as×1/T+bs …(5)
ここで、Y:酸化スケール厚さ(mm)、Kp:放物線則速度定数、t:時間(h)、T:温度(K)、Q:活性化エネルギー、R:ガス定数、A:材料定数、as,bs:スケール厚さの実験値(又は実測値)と温度および時間の回帰式より求められる回帰係数、EI:環境加速係数である。
Y = EI × (Kp × t) 0.5 (3)
Kp = A × exp (−Q / RT) (4)
Log (Kp) = as × 1 / T + bs (5)
Where Y: oxide scale thickness (mm), Kp: parabolic law rate constant, t: time (h), T: temperature (K), Q: activation energy, R: gas constant, A: material constant, as, bs: Regression coefficient obtained from an experimental value (or actual measurement value) of scale thickness and a regression equation of temperature and time, EI: environmental acceleration coefficient.
ここで、各材料についてのas,bs値と温度(K)を式(5)に代入するとKp値が計算でき、Kp値と時間t及び環境加速係数EIを式(3)に代入すると酸化スケール厚さYが計算できる。各環境に応じたa,bが得られていればEI=1とすればよいが、一般的にa,bは大気環境で得られた数値が多く、その条件でのas,bs値を用いる場合は、ガス性状(腐食性のSO2,HCl濃度)や付着灰の性状に応じたEIを設定することになる。 Here, the Kp value can be calculated by substituting the as, bs value and temperature (K) of each material into Equation (5), and the oxidation scale can be obtained by substituting the Kp value, time t, and environmental acceleration coefficient EI into Equation (3). Thickness Y can be calculated. If a and b corresponding to each environment are obtained, EI = 1 may be used. However, in general, a and b have many numerical values obtained in the atmospheric environment, and as and bs values under the conditions are used. In this case, the EI is set in accordance with the gas properties (corrosive SO 2 and HCl concentration) and the properties of the attached ash.
次に、管内面側のスケール生成量は、管内が過熱蒸気の場合、温度、材質より回帰式(高温腐食のas,bsの代わりに蒸気酸化のc,dを用いる)によって算定し、管内が高温水の場合は、水中Fe濃度、pH及び過去の実績より求める。管内面スケールによる表面温度やメタル温度の上昇は、内面スケールの厚さ、スケール熱伝導率、熱負荷、管寸法がパラメータになるものであり、式(6)で代表される伝熱の式を用いる。 Next, when the inside of the tube is superheated steam, the amount of scale generated on the tube inner surface side is calculated from the temperature and material using a regression equation (using steam oxidation c and d instead of high temperature corrosion as and bs). In the case of high-temperature water, it is determined from the Fe concentration in water, pH, and past results. The rise in the surface temperature and metal temperature due to the inner scale of the pipe is a function of the thickness of the inner scale, the scale thermal conductivity, the thermal load, and the pipe dimensions, and the heat transfer formula represented by formula (6) Use.
ΔT=DI×Q×ts/λs …(6)
ここで、ΔT:スケールによる温度上昇(K)、DI:形状係数、Q:熱負荷(W/m2)、ts:スケール厚さ(mm)、λs:スケール熱伝導率(W/mK)である。
ΔT = DI × Q × ts / λs (6)
Where ΔT: temperature rise due to scale (K), DI: shape factor, Q: thermal load (W / m 2 ), ts: scale thickness (mm), λs: scale thermal conductivity (W / mK) is there.
管内スケールにより表面温度、メタル温度及びSBやWB作動時の温度差が大きくなると熱応力範囲、疲労亀裂進展及び高温酸化や高温腐食が加速され、管外面からのエレファントスキン状熱疲労亀裂の進展が加速されることになる。 If the surface temperature, metal temperature, and temperature difference during SB or WB operation increase due to the scale inside the tube, the thermal stress range, fatigue crack growth and high-temperature oxidation and high-temperature corrosion are accelerated, and the development of elephant skin-like thermal fatigue cracks from the outer surface of the tube It will be accelerated.
敷衍して説明すると、図1に示すように、管外面の疲労亀裂進展の解析は、伝熱管の温度差、温度変化、熱膨張率をもとに熱応力範囲σRを算定し、このσR、亀裂形状及び構造材形状をもとに応力拡大係数範囲ΔKを算定し、このΔKと亀裂進展速度との関係を示す疲労亀裂進展線図と、SB又はWBや起動停止に伴う応力繰り返し数とに基づいて亀裂進展量を解析する。次いで、管外面の高温酸化又は高温腐食スケールの評価は、温度、材質、ガス性状、灰性状をもとに高温酸化又は高温腐食スケールの生成量を算定し、生成したスケールの割れを評価する。 Explaining in detail, as shown in FIG. 1, the analysis of the fatigue crack growth on the outer surface of the pipe calculates the thermal stress range σR based on the temperature difference, temperature change, and coefficient of thermal expansion of the heat transfer pipe. The stress intensity factor range ΔK is calculated based on the crack shape and structural material shape, and the fatigue crack growth diagram showing the relationship between this ΔK and the crack growth rate and the number of stress repetitions associated with SB or WB and start / stop Based on this, crack growth is analyzed. Next, in the evaluation of the high temperature oxidation or high temperature corrosion scale on the outer surface of the pipe, the amount of high temperature oxidation or high temperature corrosion scale generated is calculated based on the temperature, material, gas properties, and ash properties, and the generated scale cracks are evaluated.
以上のような疲労亀裂進展解析や管外面スケールの割れ評価によって基本的な熱疲労亀裂損傷を診断する。これに加えて、本発明の実施形態では、管内面のスケール生成による昇温効果を前述の基本的熱疲労亀裂損傷の診断に反映させようとするものである。ここで、管内面スケールは、管内が蒸気の場合に温度、材質、時間、熱負荷をもとに水蒸気酸化スケールの生成量を算出し、管内が高温水の場合に水中Fe濃度、温度、pH、流速をもとに析出付着スケール量を算出する。 The basic thermal fatigue crack damage is diagnosed by the above fatigue crack growth analysis and pipe outer surface scale crack evaluation. In addition to this, in the embodiment of the present invention, the temperature rise effect due to the scale generation on the inner surface of the pipe is intended to be reflected in the diagnosis of the basic thermal fatigue crack damage. Here, the pipe inner scale calculates the amount of steam oxidation scale generated based on temperature, material, time, and heat load when the pipe is steam, and the Fe concentration in water, temperature, and pH when the pipe is hot water. The amount of deposition adhesion scale is calculated based on the flow rate.
管内面スケールの生成によって、その内面スケール厚さ、そのスケールの熱伝導率、熱負荷、管寸法を要因としてメタル及び表面温度が上昇し、この温度上昇によって前述の亀裂進展量及び管外面高温酸化又は高温腐食が加速する。したがって、本実施形態ではこの温度上昇を前記基本的熱疲労亀裂損傷の診断に反映させようとするものである。 The generation of the pipe inner scale increases the metal and surface temperature due to the inner scale thickness, the thermal conductivity of the scale, the thermal load, and the pipe dimensions, and this temperature rise causes the crack growth and high temperature oxidation of the pipe outer surface. Or hot corrosion accelerates. Therefore, in this embodiment, this temperature rise is intended to be reflected in the diagnosis of the basic thermal fatigue crack damage.
図2は、本発明の実施形態に係る亀裂損傷診断法を用いて、亀裂進展解析及び寿命診断を実施した結果である。条件は、図10に示す条件と同じであり、STBA24鋼について、SB回数250回/10kh、初期平均温度520℃、内面:過熱蒸気、の条件で解析したもので、5万hから15万hで約0.2〜0.3mm厚の管内水蒸気酸化スケールによる昇温効果(平均メタル温度で12℃昇温)、応力範囲は、亀裂進展効果を含め倍増し、15万hで寿命に達する線図が得られ、実機測定値とよく一致した線図になっている。
FIG. 2 shows the results of crack growth analysis and life diagnosis using the crack damage diagnosis method according to the embodiment of the present invention. The conditions are the same as the conditions shown in FIG. 10, and the STBA24 steel was analyzed under the conditions of SB frequency 250 times / 10 kh, initial
図3は、本発明の実施形態に係るボイラ伝熱管の高精度熱疲労亀裂損傷診断法の入力項目及び診断画面例である。また、図4は、図3の条件で解析診断した本実施形態の具体的結果を示している。材質:STBA24(2.25Cr1Mo)鋼、温度520℃、初期熱応力範囲σR:180N/mm2、繰返し数:200回/年、運転時間:7000h/年などの条件と約9万hの運転で、1.2mm深さのエレファントスキン状亀裂をもとに解析した結果である。
FIG. 3 is an example of input items and an example of a diagnosis screen for a high-accuracy thermal fatigue crack damage diagnosis method for a boiler heat transfer tube according to an embodiment of the present invention. FIG. 4 shows specific results of the present embodiment analyzed and diagnosed under the conditions shown in FIG. Material: STBA24 (2.25Cr1Mo) steel,
図4に示すように(図4の上辺に記述された0,2,4,6,8年後を参照)、今後3.9年で噴破限界亀裂に成長することから、定期検査時期を考慮し、2年後には取替が必要であると診断できるものである。従来技術の診断法では、8〜10年後の寿命と診断することになり、本実施形態に係る診断法ではより高精度かつ設備信頼性の高い診断が可能となる。 As shown in Fig. 4 (see 0, 2, 4, 6, and 8 years described in the upper side of Fig. 4), it will grow into a blowout limit crack in the next 3.9 years. Considering this, it can be diagnosed that replacement is necessary in two years. With the diagnostic method of the prior art, the life is diagnosed after 8 to 10 years, and with the diagnostic method according to the present embodiment, diagnosis with higher accuracy and higher equipment reliability is possible.
本発明の実施形態に係る診断法の主旨は、管外面側熱疲労亀裂進展評価に用いる項目に管内面側のスケール成長及び内面スケールによるメタル温度などの上昇が評価できる項目を追加したものである。さらに、図3に示す入力項目を一例とした入力画面によって亀裂進展解析を行って診断することも本実施形態の含まれる。 The main point of the diagnostic method according to the embodiment of the present invention is that items that can be used to evaluate scale growth on the inner surface side of the tube and an increase in metal temperature due to the inner surface scale are added to items used for evaluation of thermal fatigue crack propagation on the outer surface side of the tube. . Furthermore, the present embodiment includes a diagnosis by performing crack growth analysis on an input screen taking the input items shown in FIG. 3 as an example.
以上説明したように、本発明の実施形態に係るボイラ伝熱管の熱疲労亀裂損傷診断法は、次のような課題を解決するためのものであって、下記の構成を備えることを特徴とするものである。すなわち、石炭焚き等のボイラの経年化に伴い水壁管、過熱器管、再熱器管等のボイラ伝熱管のスートブロワ(SB)又はウォールブロワ(WB)作動部でのエレファントスキン状亀裂損傷が発生しており、この亀裂は、SB又はWB作動時のメタル温度の変化に伴なう熱応力の繰返し作用と燃焼ガスの高温腐食又は高温酸化の組合せによって生じるものであり、応力、環境、材質など種々の因子の影響を受けて、一概に損傷度を評価できないという課題を抱えていた。 As described above, the thermal fatigue crack damage diagnosis method for a boiler heat transfer tube according to an embodiment of the present invention is for solving the following problems and is characterized by having the following configuration. Is. In other words, with the aging of boilers such as coal fired, the elephant skin-like crack damage in the soot blower (SB) or wall blower (WB) working part of boiler heat transfer tubes such as water wall tubes, superheater tubes, reheater tubes, etc. This crack is caused by the combination of the repeated action of thermal stress accompanying the change in metal temperature during SB or WB operation and the high temperature corrosion or high temperature oxidation of the combustion gas. Under the influence of various factors, there was a problem that the degree of damage could not be generally evaluated.
本実施形態は、このエレファントスキン状亀裂の進展に管外面の高温酸化(高温腐食)と管内面の酸化スケールの影響が大きいことを見出し、これらの影響を考慮した熱疲労亀裂損傷診断法を提案するものであり、具体的に云えば、ボイラ伝熱管の外面から発生するエレファントスキン状の熱疲労亀裂による損傷度や余寿命を診断する手法において、管外面側の高温酸化又は高温腐食による酸化スケール生成に加えて、管内面側の酸化スケールによるメタル温度上昇度及び熱応力の上昇度を亀裂進展損傷診断に組み入れることである。また、ボイラ伝熱管の外面から発生するエレファントスキン状の熱疲労亀裂による損傷度や余寿命を診断する手法において、当該伝熱管材料の高温疲労亀裂進展線図、温度及びガス性状をパラメータにした高温酸化速度、高温酸化スケールの割れひずみ、熱応力範囲、亀裂寸法、管外面の熱負荷、管内面スケール成長速度、管内面スケール熱伝導率を入力項目として、熱疲労亀裂損傷診断を行なうものである。 This embodiment finds that the effect of high temperature oxidation (high temperature corrosion) on the outer surface of the pipe and oxidation scale on the inner surface of the pipe is significant in the development of this elephant skin-like crack, and proposes a thermal fatigue crack damage diagnostic method that takes these effects into account. Specifically, in the method of diagnosing the degree of damage and remaining life due to elephant skin-like thermal fatigue cracks generated from the outer surface of the boiler heat transfer tube, the oxide scale due to high temperature oxidation or high temperature corrosion on the tube outer surface side In addition to generation, the degree of increase in metal temperature and the degree of increase in thermal stress due to the oxide scale on the inner surface of the tube is incorporated into the crack growth damage diagnosis. Also, in the method of diagnosing the degree of damage and remaining life due to elephant skin-like thermal fatigue cracks generated from the outer surface of the boiler heat transfer tube, the high temperature fatigue crack growth diagram, temperature and gas properties of the heat transfer tube material are used as parameters. Thermal fatigue crack damage diagnosis is performed using the oxidation rate, crack strain of high-temperature oxide scale, thermal stress range, crack size, thermal load on the pipe outer surface, pipe inner scale growth rate, pipe inner scale thermal conductivity as input items. .
1 ボイラ用伝熱管
2 付着灰
3 スートブロワ(SB)又はウォールブロワ(WB)による蒸気流
4 熱応力
5 内面スケール
6 エレファントスキン状亀裂
1 Boiler
Claims (3)
前記伝熱管の寸法、熱膨張率、温度変化をもとに計算された熱応力範囲と亀裂深さとに基づいて、応力範囲係数範囲を算定するステップと、
前記応力範囲係数範囲及び亀裂進展速度の関係を表す熱疲労亀裂進展線図と熱応力繰り返し回数とに基づいて、熱疲労亀裂進展量を解析するステップと、
前記伝熱管の管外面の高温酸化スケール又は高温腐食スケールの生成量を求め、当該生成されたスケールに因る割れを評価するステップと、
前記伝熱管の管内面側における酸化スケールの生成量を求めるステップと、を備え、
前記求めた管内面側スケール生成量に起因する伝熱管メタル温度の上昇が、前記熱応力範囲、前記熱疲労亀裂進展量および前記管外面のスケール生成量を加速させることを組み込んで、前記熱疲労亀裂進展量を解析するとともに前記割れを評価することによって、前記熱疲労亀裂の損傷度を診断する
ことを特徴とするボイラ伝熱管の熱疲労亀裂損傷診断法。 A diagnostic method for diagnosing the degree of damage due to an elephant skin-like thermal fatigue crack generated from the outer surface of a boiler heat transfer tube,
Calculating a stress range coefficient range based on the thermal stress range and crack depth calculated based on the dimensions, thermal expansion coefficient, and temperature change of the heat transfer tube;
Analyzing the amount of thermal fatigue crack propagation based on the thermal fatigue crack growth diagram representing the relationship between the stress range coefficient range and crack growth rate and the number of thermal stress repetitions;
Determining the amount of high temperature oxidation scale or high temperature corrosion scale formed on the outer surface of the heat transfer tube, and evaluating cracks due to the generated scale;
Obtaining a production amount of oxide scale on the inner surface side of the heat transfer tube,
Incorporating the increase in heat transfer tube metal temperature due to the obtained tube inner surface side scale generation amount accelerates the thermal stress range, the thermal fatigue crack growth amount and the scale generation amount of the tube outer surface, and the thermal fatigue A thermal fatigue crack damage diagnostic method for a boiler heat transfer tube, wherein the damage degree of the thermal fatigue crack is diagnosed by analyzing the crack propagation amount and evaluating the crack.
前記伝熱管の管外面のスケール生成量は、管材質、温度、ガス性状及び灰性状をパラメータとして算出し、
前記伝熱管の管内面側における酸化スケールの生成量は、管材質、温度、蒸気又は高温水の特性値をパラメータとして算出し、
前記管内面側酸化スケール生成量に起因する前記伝熱管メタル温度の上昇は、前記管内面側酸化スケールの熱伝導率、前記酸化スケールの厚さ、管寸法、熱負荷をパラメータとして算出し、
上述した各々のパラメータに加えて、前記伝熱管材料の熱疲労亀裂進展線図、亀裂深さ寸法、前記熱応力範囲を入力項目として前記熱疲労亀裂の損傷度を診断する
ことを特徴とするボイラ伝熱管の熱疲労亀裂損傷診断法。 In claim 1,
The amount of scale generated on the outer surface of the heat transfer tube is calculated using the tube material, temperature, gas properties and ash properties as parameters,
The amount of oxide scale generated on the inner surface of the heat transfer tube is calculated using the tube material, temperature, steam or high temperature water characteristic values as parameters,
The rise in the heat transfer tube metal temperature caused by the tube inner surface side oxide scale generation amount is calculated using the heat conductivity of the tube inner surface side oxide scale, the thickness of the oxide scale, the tube dimensions, and the heat load as parameters,
In addition to each of the parameters described above, the thermal fatigue crack propagation diagram, crack depth dimension, and thermal stress range of the heat transfer tube material are used as input items to diagnose the degree of damage of the thermal fatigue crack. Thermal fatigue crack damage diagnosis method for heat transfer tubes.
前記熱疲労亀裂進展量と前記管外面のスケール生成に因るスケール割れとをもとに算定した亀裂損傷度と、前記ボイラ伝熱管の材料強度をもとに求めた限界亀裂深さと、によって、ボイラ伝熱管の余寿命を診断することを特徴とするボイラ伝熱管の熱疲労亀裂損傷診断法。 In claim 1 or 2,
By the crack damage degree calculated based on the amount of thermal fatigue crack growth and scale cracks due to scale generation on the outer surface of the tube, and the limit crack depth determined based on the material strength of the boiler heat transfer tube, A thermal fatigue crack damage diagnostic method for boiler heat transfer tubes, characterized by diagnosing the remaining life of boiler heat transfer tubes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006028527A JP4865344B2 (en) | 2006-02-06 | 2006-02-06 | Thermal fatigue crack damage diagnosis method for boiler heat transfer tubes. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006028527A JP4865344B2 (en) | 2006-02-06 | 2006-02-06 | Thermal fatigue crack damage diagnosis method for boiler heat transfer tubes. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007205692A true JP2007205692A (en) | 2007-08-16 |
JP4865344B2 JP4865344B2 (en) | 2012-02-01 |
Family
ID=38485310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006028527A Expired - Fee Related JP4865344B2 (en) | 2006-02-06 | 2006-02-06 | Thermal fatigue crack damage diagnosis method for boiler heat transfer tubes. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4865344B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009175110A (en) * | 2008-01-25 | 2009-08-06 | Mitsubishi Heavy Ind Ltd | Method for evaluating lifetime |
JP2011214764A (en) * | 2010-03-31 | 2011-10-27 | Babcock Hitachi Kk | Method of diagnosing adhesion of hematite scale |
CN102444885A (en) * | 2011-12-19 | 2012-05-09 | 上海望特能源科技有限公司 | Method for preventing overtemperature tube explosion in power station boiler piping system furnace |
US8874415B2 (en) | 2012-01-04 | 2014-10-28 | General Electric Company | System and method for forming failure estimates for a heat recovery steam generator |
JP2019158454A (en) * | 2018-03-09 | 2019-09-19 | 三菱重工業株式会社 | Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program |
JP2021014993A (en) * | 2019-07-10 | 2021-02-12 | 日立Geニュークリア・エナジー株式会社 | Local thermal stress calculation method of pipeline |
WO2024048048A1 (en) * | 2022-08-31 | 2024-03-07 | 三菱重工業株式会社 | Heat exchanger analysis device and heat exchanger analysis method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06331622A (en) * | 1993-05-18 | 1994-12-02 | Ishikawajima Harima Heavy Ind Co Ltd | Method for evaluating creep damage to heat-transfer tube |
JP2002156325A (en) * | 2000-11-17 | 2002-05-31 | Babcock Hitachi Kk | Surface crack depth analytical method of metal member |
-
2006
- 2006-02-06 JP JP2006028527A patent/JP4865344B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06331622A (en) * | 1993-05-18 | 1994-12-02 | Ishikawajima Harima Heavy Ind Co Ltd | Method for evaluating creep damage to heat-transfer tube |
JP2002156325A (en) * | 2000-11-17 | 2002-05-31 | Babcock Hitachi Kk | Surface crack depth analytical method of metal member |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009175110A (en) * | 2008-01-25 | 2009-08-06 | Mitsubishi Heavy Ind Ltd | Method for evaluating lifetime |
JP2011214764A (en) * | 2010-03-31 | 2011-10-27 | Babcock Hitachi Kk | Method of diagnosing adhesion of hematite scale |
CN102444885A (en) * | 2011-12-19 | 2012-05-09 | 上海望特能源科技有限公司 | Method for preventing overtemperature tube explosion in power station boiler piping system furnace |
CN102444885B (en) * | 2011-12-19 | 2014-03-19 | 上海望特能源科技有限公司 | Method for avoiding overheat tube burst in tubular boiler of power station boiler |
US8874415B2 (en) | 2012-01-04 | 2014-10-28 | General Electric Company | System and method for forming failure estimates for a heat recovery steam generator |
JP2019158454A (en) * | 2018-03-09 | 2019-09-19 | 三菱重工業株式会社 | Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program |
JP7011496B2 (en) | 2018-03-09 | 2022-01-26 | 三菱重工業株式会社 | Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program |
JP2021014993A (en) * | 2019-07-10 | 2021-02-12 | 日立Geニュークリア・エナジー株式会社 | Local thermal stress calculation method of pipeline |
WO2024048048A1 (en) * | 2022-08-31 | 2024-03-07 | 三菱重工業株式会社 | Heat exchanger analysis device and heat exchanger analysis method |
Also Published As
Publication number | Publication date |
---|---|
JP4865344B2 (en) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4865344B2 (en) | Thermal fatigue crack damage diagnosis method for boiler heat transfer tubes. | |
WO2013038995A1 (en) | Damage evaluation method and maintenance evaluation index policy | |
Vakhguelt et al. | Combination non-destructive test (NDT) method for early damage detection and condition assessment of boiler tubes | |
JP5380219B2 (en) | Method for estimating metal temperature and life of boiler heat transfer tubes | |
Chaudhuri | Some aspects of metallurgical assessment of boiler tubes—Basic principles and case studies | |
JP6680900B2 (en) | Method for estimating operating temperature of austenitic heat-resistant steel containing Cu (copper), method for estimating creep damage life of austenitic heat-resistant steel containing Cu, method for estimating operating temperature of austenitic heat-resistant steel tube containing Cu, and Cu Method for Estimating Creep Damage Life of Heat Transfer Tube Made of Austenitic Heat Resisting Steel Containing Carbon | |
JP3652418B2 (en) | Corrosion fatigue damage diagnosis prediction method for boiler water wall pipe | |
JP4464548B2 (en) | Method for analyzing surface crack depth of metal members | |
JP4968734B2 (en) | Operating temperature estimation method for austenitic steel | |
JP2005091028A (en) | Method for diagnosing corrosion fatigue damage of boiler water wall tube | |
JP6254033B2 (en) | Life evaluation method and life evaluation apparatus | |
JP6469386B2 (en) | Method for estimating operating temperature of member and apparatus for estimating operating temperature of member | |
JP2013228119A (en) | Method and device for diagnosis of crack and damage of boiler heat transfer tube | |
JP2009162647A (en) | Method for designing lifetime of weld zone of high-temperature apparatus | |
JPH11294708A (en) | Life judging method of heat transfer tube | |
JP2008032480A (en) | Damage evaluation method of heat-resistant steel, and damage evaluation device thereof | |
JP4831624B2 (en) | Graphitization damage diagnosis method for carbon steel and Mo steel for boilers | |
JP2014142304A (en) | Life evaluation method for austenite stainless steel | |
JP2012137242A (en) | Temperature estimation method and life determination method of high-temperature member | |
JP7011496B2 (en) | Corrosion depth estimation method, corrosion depth estimation program, replacement time calculation method and replacement time calculation program | |
JP2012108051A (en) | Method of predicting damage in heat-resistant steel weld zone | |
JP4522828B2 (en) | Remaining life diagnosis method for Cr-Mo heat resistant steel | |
JP6090539B1 (en) | Evaluation method for remaining life of cast steel | |
JP2015125113A (en) | Inspection method and inspection device of heat exchange unit | |
JP6990623B2 (en) | Creep life evaluation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110422 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110913 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111110 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4865344 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |