Nothing Special   »   [go: up one dir, main page]

JP2007295377A - Signal strength detection circuit - Google Patents

Signal strength detection circuit Download PDF

Info

Publication number
JP2007295377A
JP2007295377A JP2006122228A JP2006122228A JP2007295377A JP 2007295377 A JP2007295377 A JP 2007295377A JP 2006122228 A JP2006122228 A JP 2006122228A JP 2006122228 A JP2006122228 A JP 2006122228A JP 2007295377 A JP2007295377 A JP 2007295377A
Authority
JP
Japan
Prior art keywords
current
circuit
power supply
supply voltage
signal strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006122228A
Other languages
Japanese (ja)
Inventor
Akira Horikawa
晃 堀川
Kazuyuki Tajima
一行 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Oki Networks Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Oki Networks Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Oki Networks Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2006122228A priority Critical patent/JP2007295377A/en
Publication of JP2007295377A publication Critical patent/JP2007295377A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that an output characteristic of a signal strength detection circuit is varied by fluctuation of power supply voltage. <P>SOLUTION: The signal strength detection circuit is driven by the power supply voltage Vdd, and comprises: saturation differential amplification circuits 60-1 to 60-n which sequentially amplify input voltage Vin, and are continuously connected at a plurality of steps; full-wave rectifiers 80-1 to 80-n which rectify signals amplified by the saturation differential amplification circuits 60-1 to 60-n at each step, respectively; a current mirror circuit 100 for finding a signal strength detection current IO of an a sum of output currents of the full-wave rectifiers 80-1 to 80-n at each step; and a power supply voltage fluctuation suppressing circuit 110 which depends on the power supply voltage Vdd to change the amount of the current. Further, the output current of the circuit 110 is added to the signal strength detection current IO, and thus, power supply voltage dependency is reduced in the signal strength detection voltage Vrssi. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、テレビ、ラジオ、CATV、無線等の通信受信機器における受信信号や送信信号等のキャリア信号の強度を検出する信号強度検出回路に関するものである。   The present invention relates to a signal strength detection circuit that detects the strength of a carrier signal such as a reception signal or a transmission signal in a communication reception device such as a television, radio, CATV, or radio.

従来、この種の信号強度検出回路に関する技術としては、例えば、次のような文献に記載されるものがあった。   Conventionally, as a technique related to this type of signal intensity detection circuit, for example, there is one described in the following documents.

特開平7−30353号公報JP 7-30353 A

図6は、特許文献1等に記載された従来の信号強度検出回路の構成図である。
この信号強度検出回路は、入力電圧Vinを入力する入力端子1,2を有し、この入力端子1,2に、複数(n)段の飽和差動増幅回路10−1〜10−nがカスケード(縦続)接続され、最終段の飽和差動増幅回路10−nに、出力電圧Voutを出力する出力端子21,22が接続されている。各段の飽和差動増幅回路10−1〜10−nの入力端子には、半波整流器30−1〜30−(n+1)がそれぞれ接続され、この(n+1)段の半波整流器30−0〜30−nの出力端子に、Pチャネル型MOSトランジスタ(以下「PMOS」という。)41,42からなるカレントミラー回路40が接続されている。カレントミラー回路40の出力端子は、信号強度検出電圧Vrssiを出力する出力端子43、及び電流/電圧変換用の抵抗44を介して接地されている。
FIG. 6 is a configuration diagram of a conventional signal strength detection circuit described in Patent Document 1 and the like.
The signal strength detection circuit has input terminals 1 and 2 for inputting an input voltage Vin, and a plurality (n) stages of saturated differential amplifier circuits 10-1 to 10-n are cascaded to the input terminals 1 and 2. The output terminals 21 and 22 that output the output voltage Vout are connected to the last stage saturated differential amplifier circuit 10-n. Half-wave rectifiers 30-1 to 30- (n + 1) are respectively connected to the input terminals of the saturated differential amplifier circuits 10-1 to 10-n at each stage, and the (n + 1) -stage half-wave rectifier 30-0 is connected thereto. A current mirror circuit 40 including P-channel MOS transistors (hereinafter referred to as “PMOS”) 41 and 42 is connected to output terminals of ˜30-n. The output terminal of the current mirror circuit 40 is grounded via an output terminal 43 that outputs the signal strength detection voltage Vrssi and a current / voltage conversion resistor 44.

各段の半波整流器30−1〜30−(n+1)は、各飽和差動増幅回路10−1〜10−nの一方の入力端子に直流オフセット電圧Vosを印加する定電圧源31と、電源電圧Vddが印加される一対の負荷用のPMOS32,33と、差動出力電流を整流するためのコンデンサ34と、各飽和差動増幅器10−1〜10−nの他方の入力端子の電圧によりゲート制御されるNチャネル型MOSトランジスタ(以下「NMOS」という。)35と定電圧源31側の電圧によりゲート制御されるNMOS36とからなる差動対と、この差動対に対して定電流Iを流す定電流源37とにより構成されている。   The half-wave rectifiers 30-1 to 30- (n + 1) at each stage include a constant voltage source 31 that applies a DC offset voltage Vos to one input terminal of each of the saturated differential amplifier circuits 10-1 to 10-n, and a power source A pair of PMOSs 32 and 33 for load to which the voltage Vdd is applied, a capacitor 34 for rectifying the differential output current, and a gate by the voltage of the other input terminal of each of the saturated differential amplifiers 10-1 to 10-n. A differential pair consisting of an N-channel MOS transistor (hereinafter referred to as “NMOS”) 35 to be controlled and an NMOS 36 gate-controlled by a voltage on the constant voltage source 31 side, and a constant current I to this differential pair. And a constant current source 37 for flowing.

このような構成の信号強度検出回路では、入力端子1,2より例えば中間周波信号等の入力電圧Vinが入力されると、この入力電圧Vinが各段の飽和差動増幅回路10−1〜10−nにより順次差動増幅され、増幅された出力電圧Voutが出力端子21,22から出力される。各段の飽和差動増幅回路10−1〜10−nで増幅された信号は、それぞれ半波整流器30−1〜30−(n+1)に入力される。そして各段の半波整流器30−1〜30−(n+1)の出力電流の和が、カレントミラー回路40を介して抵抗44により電圧変換され、信号強度検出電圧Vrssiが出力端子43から出力される。   In the signal strength detection circuit having such a configuration, when an input voltage Vin such as an intermediate frequency signal is input from the input terminals 1 and 2, the input voltage Vin is supplied to the saturated differential amplifier circuits 10-1 to 10 in each stage. The differential output is sequentially amplified by −n, and the amplified output voltage Vout is output from the output terminals 21 and 22. The signals amplified by the saturated differential amplifier circuits 10-1 to 10-n at each stage are input to the half-wave rectifiers 30-1 to 30- (n + 1), respectively. The sum of the output currents of the half-wave rectifiers 30-1 to 30- (n + 1) at each stage is converted into a voltage by the resistor 44 via the current mirror circuit 40, and the signal strength detection voltage Vrssi is output from the output terminal 43. .

ここで、各段の飽和差動増幅回路10−1〜10−nの利得が全て同じであれば、2段目の利得は1段目の利得の2乗、(n−1)段目は(n−1)乗、n段目はn乗と指数的に出力電圧が大きくなり、利得のn乗の重みが加わっているので、その和である信号強度検出電圧Vrssiは入力信号電力のdBm単位の増加に対して直線的に増加することになる。   Here, if the gains of the saturated differential amplifier circuits 10-1 to 10-n at each stage are all the same, the gain of the second stage is the square of the gain of the first stage, and the (n-1) stage is Since the output voltage increases exponentially to the nth power of the (n-1) th power and the nth power, and the weight of the nth power is added, the signal strength detection voltage Vrssi that is the sum is the dBm of the input signal power. It will increase linearly with increasing unit.

図7は、図6中の飽和差動増幅回路の一例を示す構成図である。
この飽和差動増幅回路10は、従来、一般的に用いられる回路であり、2つの入力電圧を入力する入力端子11,12と、電源電圧Vddが印加される負荷用の抵抗13,14と、これらの一端に接続された出力端子15,16と、入力端子11,12から入力される入力電圧によりゲート制御される差動入力用のNMOS17,18と、このNMOS17,18に対して一定電流を流す定電流源用のNMOS19とにより構成されている。このような構成の飽和差動増幅回路10では、入力端子11,12に入力された2つの入力電圧が、NMOS17,18により差動増幅され、この増幅された電圧が出力端子15,16から出力される。
FIG. 7 is a block diagram showing an example of the saturated differential amplifier circuit in FIG.
The saturation differential amplifier circuit 10 is a circuit that is generally used in the prior art, and includes input terminals 11 and 12 for inputting two input voltages, load resistors 13 and 14 to which a power supply voltage Vdd is applied, Output terminals 15 and 16 connected to one end thereof, differential input NMOSs 17 and 18 gate-controlled by input voltages input from the input terminals 11 and 12, and a constant current to the NMOSs 17 and 18. It is comprised by NMOS19 for the constant current source to flow. In the saturated differential amplifier circuit 10 having such a configuration, two input voltages input to the input terminals 11 and 12 are differentially amplified by the NMOSs 17 and 18, and the amplified voltages are output from the output terminals 15 and 16. Is done.

図6のような従来の信号強度検出回路では、各飽和差動増幅回路10−1〜10−nに、一般的に用いられる図7に示すような飽和差動増幅回路10を用いた場合、電源電圧Vddの変動により飽和差動増幅回路10−1,10−2,・・・,10−nの出力電圧V1,V2,・・・,Voutの直流(DC)レベルが変動するため、NMOS19のチャネル長変調効果による非定電流性から飽和振幅や利得が変動してしまう。つまり飽和差動増幅回路10の利得、又は飽和振幅が電源電圧依存性を持つ増幅回路の場合には、信号強度検出回路の出力特性が電源電圧Vddによって大きくばらつくという課題があった。   In the conventional signal strength detection circuit as shown in FIG. 6, when the saturation differential amplifier circuit 10 as shown in FIG. 7 that is generally used is used for each of the saturation differential amplifier circuits 10-1 to 10-n, The output voltage V1, V2,..., Vout of the saturation differential amplifier circuits 10-1, 10-2,. The saturation amplitude and gain fluctuate due to non-constant current characteristics due to the channel length modulation effect. In other words, in the case of an amplifier circuit in which the gain or saturation amplitude of the saturated differential amplifier circuit 10 is dependent on the power supply voltage, there has been a problem that the output characteristics of the signal strength detection circuit vary greatly depending on the power supply voltage Vdd.

本発明の信号強度検出回路は、電源電圧により駆動され、入力信号を順次増幅する複数段の縦続接続された飽和増幅回路と、前記各段の飽和増幅回路で増幅された信号をそれぞれ整流する複数段の整流器と、前記各段の整流器の出力電流の和である信号強度検出電流を求める回路と、前記電源電圧に依存して電流量が変化する電流を前記信号強度検出電流に加算する電源電圧変動抑制回路とを有している。   The signal strength detection circuit of the present invention is driven by a power supply voltage, and a plurality of cascaded saturation amplification circuits that sequentially amplify an input signal, and a plurality of signals that rectify signals amplified by the saturation amplification circuits of the respective stages. A stage rectifier, a circuit for obtaining a signal strength detection current that is a sum of output currents of the rectifiers of the respective stages, and a power supply voltage that adds a current whose amount of current changes depending on the power supply voltage to the signal strength detection current And a fluctuation suppression circuit.

本発明によれば、電源電圧に依存して電流量が変化する電圧変動抑制回路を設け、この出力電流を信号強度検出電流と加算するようにしたので、信号強度検出出力の電源電圧変動に対するばらつきを抑制でき、これによって信号強度検出出力の電源電圧依存性を低減できる。   According to the present invention, the voltage fluctuation suppression circuit in which the amount of current changes depending on the power supply voltage is provided, and this output current is added to the signal strength detection current. As a result, the dependence of the signal strength detection output on the power supply voltage can be reduced.

信号強度検出回路は、電源電圧により駆動され、入力信号を順次増幅する複数段の縦続接続された飽和差動増幅回路と、前記各段の飽和差動増幅回路で増幅された信号をそれぞれ整流する複数段の全波整流器と、前記各段の全波整流器の出力電流の和である信号強度検出電流を求めるカレントミラー回路と、前記電源電圧に依存して電流量が変化する電流を前記信号強度検出電流に加算する電源電圧変動抑制回路とを有している。   The signal strength detection circuit is driven by a power supply voltage, and rectifies signals amplified by a plurality of cascaded saturated differential amplifier circuits that sequentially amplify an input signal and signals amplified by the saturated differential amplifier circuits of the respective stages. A multi-stage full-wave rectifier, a current mirror circuit for obtaining a signal intensity detection current that is a sum of output currents of the full-wave rectifiers of each stage, and a current whose current amount varies depending on the power supply voltage. A power supply voltage fluctuation suppressing circuit for adding to the detected current.

(実施例1の構成)
図1は、本発明の実施例1を示す信号強度検出回路の構成図である。
(Configuration of Example 1)
FIG. 1 is a configuration diagram of a signal strength detection circuit showing Embodiment 1 of the present invention.

この信号強度検出回路は、入力信号(例えば、入力電圧)Vinを入力する一対の入力端子51,52を有し、この入力端子51,52に、複数(n)段の飽和増幅回路(例えば、飽和差動増幅回路)60−1〜60−nがカスケード接続されている。各段の飽和差動増幅回路60−1〜60−nの出力端子には、整流器(例えば、全波整流器)80−1〜80−nがそれぞれ接続されている。   This signal strength detection circuit has a pair of input terminals 51 and 52 for inputting an input signal (for example, input voltage) Vin, and a plurality of (n) stage saturation amplifier circuits (for example, for example) Saturation differential amplifier circuit) 60-1 to 60-n are cascade-connected. Rectifiers (for example, full-wave rectifiers) 80-1 to 80-n are connected to the output terminals of the saturated differential amplifier circuits 60-1 to 60-n at the respective stages.

即ち、一方の入力端子51は、初段(1段目)の飽和差動増幅回路60−1の(+)入力端子に接続され、他方の入力端子52は、その飽和差動増幅回路60−1の(−)入力端子に接続されている。飽和差動増幅回路60−1の(+)出力端子は、2段目の飽和差動増幅回路60−2の(+)入力端子に接続されると共に、全波整流器80−1の一方の入力端子に接続され、飽和差動増幅回路60−1の(−)出力端子は、2段目の飽和差動増幅回路60−2の(−)入力端子に接続されると共に、全波整流器80−1の他方の入力端子に接続されている。飽和差動増幅回路60−2の(+)出力端子は、3段目の飽和差動増幅回路60−3の(+)入力端子に接続されると共に、全波整流器80−2の一方の入力端子に接続されている。飽和差動増幅回路60−2の(−)出力端子は、3段目の飽和差動増幅回路60−3の(−)入力端子に接続されると共に、全波整流器80−2の他方の入力端子に接続されている。   That is, one input terminal 51 is connected to the (+) input terminal of the first stage (first stage) saturated differential amplifier circuit 60-1, and the other input terminal 52 is connected to the saturated differential amplifier circuit 60-1. Connected to the (-) input terminal. The (+) output terminal of the saturated differential amplifier circuit 60-1 is connected to the (+) input terminal of the second stage saturated differential amplifier circuit 60-2 and one input of the full-wave rectifier 80-1. The (−) output terminal of the saturated differential amplifier circuit 60-1 is connected to the (−) input terminal of the second stage saturated differential amplifier circuit 60-2, and the full-wave rectifier 80- 1 is connected to the other input terminal. The (+) output terminal of the saturated differential amplifier circuit 60-2 is connected to the (+) input terminal of the third stage saturated differential amplifier circuit 60-3 and one input of the full-wave rectifier 80-2. Connected to the terminal. The (−) output terminal of the saturated differential amplifier circuit 60-2 is connected to the (−) input terminal of the third stage saturated differential amplifier circuit 60-3 and the other input of the full-wave rectifier 80-2. Connected to the terminal.

同様の接続を繰り返し、最終段の飽和差動増幅回路60−nの(+)出力端子は、出力信号(例えば、出力電圧)Voutを出力する出力端子71に接続されると共に、全波整流器80−nの一方の入力端子に接続され、飽和差動増幅回路60−nの(−)出力端子は、出力信号(例えば、出力電圧)Voutを出力する出力端子72に接続されると共に、全波整流器80−nの他方の入力端子に接続されている。   The same connection is repeated, and the (+) output terminal of the saturation differential amplifier circuit 60-n at the final stage is connected to an output terminal 71 that outputs an output signal (for example, output voltage) Vout, and a full-wave rectifier 80. The (−) output terminal of the saturated differential amplifier circuit 60-n is connected to an output terminal 72 that outputs an output signal (for example, output voltage) Vout, and is connected to one input terminal of −n. It is connected to the other input terminal of the rectifier 80-n.

各段の飽和差動増幅回路60−1〜60−nは、例えば、図7の飽和差動増幅回路10により構成されている。   The saturated differential amplifier circuits 60-1 to 60-n in each stage are configured by, for example, the saturated differential amplifier circuit 10 in FIG.

全波整流器80−1〜80−nの出力端子は全て、PMOS101,102からなるカレントミラー回路100におけるPMOS101のドレイン端子及びゲート端子と、PMOS102のゲート端子とに接続されている。本実施例1の特徴は、カレントミラー回路100に対して、電源電圧変動抑制回路110を接続したことである。この電源電圧変動抑制回路110は、PMOS111,112からなるカレントミラー回路と、PMOS111のドレイン端子側のノードNに対して直列に接続された抵抗113とにより構成されている。   All the output terminals of the full-wave rectifiers 80-1 to 80-n are connected to the drain terminal and gate terminal of the PMOS 101 and the gate terminal of the PMOS 102 in the current mirror circuit 100 including the PMOSs 101 and 102. A feature of the first embodiment is that a power supply voltage fluctuation suppressing circuit 110 is connected to the current mirror circuit 100. The power supply voltage fluctuation suppressing circuit 110 includes a current mirror circuit composed of PMOSs 111 and 112 and a resistor 113 connected in series with a node N on the drain terminal side of the PMOS 111.

全波整流器80−1〜80−nの出力端子は全て、PMOS112のドレイン端子にも接続されている。PMOS112は、ソース端子が、電源電圧Vddが印加される電源電圧端子(以下「Vdd端子」という。)に接続され、ゲート端子が、PMOS111のゲート端子及びドレイン端子と抵抗113の一方の端子とに接続されている。PMOS111のソース端子はVdd端子に接続され、抵抗113の他方の端子は接地されている。   All the output terminals of the full-wave rectifiers 80-1 to 80-n are also connected to the drain terminal of the PMOS 112. The PMOS 112 has a source terminal connected to a power supply voltage terminal to which a power supply voltage Vdd is applied (hereinafter referred to as “Vdd terminal”), and a gate terminal connected to the gate terminal and drain terminal of the PMOS 111 and one terminal of the resistor 113. It is connected. The source terminal of the PMOS 111 is connected to the Vdd terminal, and the other terminal of the resistor 113 is grounded.

カレントミラー回路100を構成するPMOS101のソース端子は、Vdd端子に接続されている。PMOS102は、ソース端子がVdd端子に接続され、ドレイン端子が、信号強度検出電圧Vrssiを出力するための出力端子103に接続される共に、電流/電圧変換用の抵抗104の一方の端子に接続されている。抵抗104の他方の端子は、接地されている。   The source terminal of the PMOS 101 constituting the current mirror circuit 100 is connected to the Vdd terminal. The PMOS 102 has a source terminal connected to the Vdd terminal, a drain terminal connected to the output terminal 103 for outputting the signal strength detection voltage Vrssi, and also connected to one terminal of the resistor 104 for current / voltage conversion. ing. The other terminal of the resistor 104 is grounded.

全波整流器80−1〜80−nの出力電流をそれぞれIB1,IB2,・・・,IBnとし、これらを合算した出力電流をIOとする。PMOS101のドレイン−ソース間に流れる電流をI1、PMOS102のドレイン−ソース間に流れる電流をI2、PMOS111のドレイン−ソース間に流れる電流をI3、及び、PMOS112のドレイン−ソース間に流れる電流をI4とする。   The output currents of the full-wave rectifiers 80-1 to 80-n are IB1, IB2,..., IBn, respectively, and the sum of these output currents is IO. The current flowing between the drain and source of the PMOS 101 is I1, the current flowing between the drain and source of the PMOS 102 is I2, the current flowing between the drain and source of the PMOS 111 is I3, and the current flowing between the drain and source of the PMOS 112 is I4. To do.

図2は、図1中の各全波整流器80−1〜80−nの一例を示す構成図である。
この全波整流器80は、一対の入力端子81,82、負荷抵抗用のPMOS83、出力端子84、差動入力用のNMOS85,86、一定電流I11を流す定電流源87、差動入力用のNMOS88,89、及び、一定電流I12を流す定電流源90より構成されている。
FIG. 2 is a configuration diagram illustrating an example of each of the full-wave rectifiers 80-1 to 80-n in FIG.
The full-wave rectifier 80 includes a pair of input terminals 81 and 82, a load resistor PMOS 83, an output terminal 84, differential input NMOSs 85 and 86, a constant current source 87 for supplying a constant current I11, and a differential input NMOS 88. , 89 and a constant current source 90 for supplying a constant current I12.

そして、NMOS85のゲート端子は、入力端子81に接続される共に、NMOS89のゲート端子に接続されている。NMOS86のゲート端子は、入力端子82に接続される共に、NMOS88のゲート端子に接続されている。NMOSトランジスタ85のソース端子は、NMOS86のソース端子に接続されると共に、定電流源87の入力端子に接続されている。定電流源87の出力端子は、接地されている。NMOS88のソース端子は、NMOS89のソース端子に接続されると共に、定電流源90の入力端子に接続されている。定電流源90の出力端子は、接地されている。   The gate terminal of the NMOS 85 is connected to the input terminal 81 and is also connected to the gate terminal of the NMOS 89. The gate terminal of the NMOS 86 is connected to the input terminal 82 and is also connected to the gate terminal of the NMOS 88. The source terminal of the NMOS transistor 85 is connected to the source terminal of the NMOS 86 and to the input terminal of the constant current source 87. The output terminal of the constant current source 87 is grounded. The source terminal of the NMOS 88 is connected to the source terminal of the NMOS 89 and to the input terminal of the constant current source 90. The output terminal of the constant current source 90 is grounded.

NMOS85のドレイン端子は、NMOS88のドレイン端子に接続されると共に、PMOS83のドレイン端子及びゲート端子に接続されている。PMOS83のソース端子は、Vdd端子に接続されている。NMOS86のドレイン端子は、出力端子84に接続される共に、NMOS89のドレイン端子に接続されている。   The drain terminal of the NMOS 85 is connected to the drain terminal of the NMOS 88 and to the drain terminal and the gate terminal of the PMOS 83. The source terminal of the PMOS 83 is connected to the Vdd terminal. The drain terminal of the NMOS 86 is connected to the output terminal 84 and is also connected to the drain terminal of the NMOS 89.

なお、NMOS85と86、NMOS88と89は、トランジスタサイズが異なるものとする。   Note that NMOS 85 and 86 and NMOS 88 and 89 have different transistor sizes.

(実施例1の動作)
本実施例1における信号強度検出回路の基本動作(A)と、電源電圧Vddが変動した場合の動作(B)について説明する。
(Operation of Example 1)
The basic operation (A) of the signal intensity detection circuit in the first embodiment and the operation (B) when the power supply voltage Vdd varies will be described.

(A) 信号強度検出回路の基本動作
図3は、図1中のPMOS111と抵抗113の電圧−電流特性を示す図である。
信号強度検出回路としての基本動作として、電源電圧変動抑制回路以外の動作は従来の回路とほぼ同じである。図1において、例えば中間周波信号等の入力電圧Vinが入力端子51,52に入力されると、この入力電圧Vinが複数段の飽和差動増幅回路60−1〜60−nにより順次増幅され、この増幅された出力電圧Voutが出力端子71,72から出力される。
(A) Basic Operation of Signal Strength Detection Circuit FIG. 3 is a diagram showing voltage-current characteristics of the PMOS 111 and the resistor 113 in FIG.
As a basic operation as a signal strength detection circuit, operations other than the power supply voltage fluctuation suppression circuit are almost the same as those of the conventional circuit. In FIG. 1, when an input voltage Vin such as an intermediate frequency signal is input to the input terminals 51 and 52, the input voltage Vin is sequentially amplified by a plurality of stages of saturated differential amplifier circuits 60-1 to 60-n, The amplified output voltage Vout is output from the output terminals 71 and 72.

各段の飽和差動増幅回路60−1〜60−nで増幅された信号は、それぞれ全波整流器80−1〜80−nに入力されて整流される。各段の全波整流器80−1〜80−nの出力電流は、合算されて合算出力電流IOとなる。電源電圧変動抑制回路110内のPMOS111及び抵抗113には、電流I3が流れる。   The signals amplified by the saturated differential amplifier circuits 60-1 to 60-n at each stage are respectively input to the full-wave rectifiers 80-1 to 80-n and rectified. The output currents of the full-wave rectifiers 80-1 to 80-n at the respective stages are added together to become a total calculated force current IO. A current I3 flows through the PMOS 111 and the resistor 113 in the power supply voltage fluctuation suppressing circuit 110.

PMOS111に流れる電流I3は、PMOS111のゲート及びソースの電圧をVgとすると、PMOS特性による式(1)の電圧−電流特性と、抵抗113の式(2)の電圧−電流特性の関係とが両立する電流値となる。
I=k(Vdd−Vg−Vt) ・・・(1)
但し、k;PMOS111の定数、Vt;PMOSの閾値電圧
I=Vg/R2・・・(2)
但し、R2;抵抗113の抵抗値
即ち、図3に示すように、電流Iの曲線と電流Iの直線の交点が2つの式(1)、(2)の両立する点であり、そのX軸の値が電圧Vg、そのY軸の値が流れる電流I3となる。又、PMOS111とPMOS112は、カレントミラー構成であるため、PMOS112にも同様の電流が流れる。PMOS101に流れる電流I1は、電流IOからPMOS112の電流I4が減算され、
I1=IO−I4
となる。更に、この電流I1は、PMOS101及びPMOS102からなるカレントミラー回路100を介して、抵抗104により電圧に変換され、信号強度検出電圧Vrssiが出力端子103から出力される。
The current I3 flowing through the PMOS 111 has both the voltage-current characteristic of the equation (1) based on the PMOS characteristic and the voltage-current characteristic relationship of the expression (2) of the resistor 113 when the gate and source voltage of the PMOS 111 is Vg. Current value.
I = k (Vdd−Vg−Vt) 2 (1)
Where k: constant of PMOS 111, Vt: threshold voltage of PMOS
I = Vg / R2 (2)
However, R2; the resistance value of the resistor 113, that is, as shown in FIG. 3, the intersection of the curve of the current I and the straight line of the current I is the point where the two formulas (1) and (2) are compatible. Is the voltage Vg, and the Y-axis value is the current I3 that flows. Further, since the PMOS 111 and the PMOS 112 have a current mirror configuration, a similar current flows through the PMOS 112. The current I1 flowing through the PMOS 101 is obtained by subtracting the current I4 of the PMOS 112 from the current IO.
I1 = IO−I4
It becomes. Further, the current I1 is converted into a voltage by the resistor 104 via the current mirror circuit 100 including the PMOS 101 and the PMOS 102, and the signal strength detection voltage Vrssi is output from the output terminal 103.

ここで、全飽和差動増幅回路60−1〜60−nの出力振幅が飽和すると、全波整流器80−1〜80−nの出力電流IB1〜IBnのピーク値も飽和する。単純に1つの飽和差動増幅回路の出力飽和を検知すると信号強度検出(以下「RSSI」という。)の出力が1になるものと考えると、入力信号電力とRSSI出力の関係が次のようになることが分かる。   Here, when the output amplitudes of the fully saturated differential amplifier circuits 60-1 to 60-n are saturated, the peak values of the output currents IB1 to IBn of the full wave rectifiers 80-1 to 80-n are also saturated. Assuming that the output of signal strength detection (hereinafter referred to as “RSSI”) becomes 1 when the output saturation of one saturation differential amplifier circuit is simply detected, the relationship between input signal power and RSSI output is as follows: I understand that

図1の飽和差動増幅回路60−1〜60−nの利得がすべて同じであれば、2段目の利得は1段目の利得の2乗、3段目は3乗、4段目は4乗と指数的に出力が大きくなる。図1での最終段であるn段目が丁度飽和する入力信号電力の場合には、1段の利得のn乗の利得で増幅して初めてRSSI出力として1が出力されることになる。最終段から2つ目が丁度飽和する大きさの入力信号電力は、(n−1)段の飽和差動増幅回路60−1〜60−(n−1)を通って飽和するので、最終段のRSSI出力に加え、更にもう1つの(n−1)段目からもRSSI出力の1が出力され、最終段のRSSI出力1と合わせてRSSI総合出力(信号強度検出電圧Vrssi)は2と出力される。同様に考え、初段の飽和差動増幅回路60−1が丁度飽和する大きな入力信号電力レベルでは、飽和差動増幅回路全段が飽和するので、RSSIの合計出力はnになることが分かる。   If the gains of the saturation differential amplifier circuits 60-1 to 60-n in FIG. 1 are all the same, the second stage gain is the square of the first stage gain, the third stage is the third power, and the fourth stage is The power increases exponentially to the fourth power. In the case of input signal power at which the nth stage, which is the final stage in FIG. 1, is just saturated, 1 is output as the RSSI output only after amplification with the nth power of the gain of the first stage. The input signal power whose magnitude is just saturated at the second stage from the last stage is saturated through the (n-1) stage saturation differential amplifier circuits 60-1 to 60- (n-1). In addition to the RSSI output, the RSSI output 1 is also output from the (n-1) stage, and the RSSI total output (signal strength detection voltage Vrssi) is output 2 together with the RSSI output 1 of the final stage. Is done. Similarly, it can be seen that at the large input signal power level at which the first stage saturated differential amplifier circuit 60-1 is just saturated, all the saturated differential amplifier circuits are saturated, and the total RSSI output is n.

以上のように、各段のRSSI出力は利得のn乗の重みが加わっているので、その和であるRSSI総合出力(信号強度検出電圧Vrssi)は、入力信号電力のdBm単位の増加に対して直線で増加することになる。   As described above, since the RSSI output of each stage is added with the weight of the nth power, the RSSI total output (signal strength detection voltage Vrssi), which is the sum of the RSSI outputs, is increased with respect to the increase in dBm unit of the input signal power. It will increase in a straight line.

(B) 電源電圧Vddが変動した場合の動作
図4(a)、(b)は、図1の飽和差動増幅回路の飽和振幅に電源電圧依存を持つ場合の信号強度検出回路のRSSI出力特性図であり、同図(a)は、電源電圧変動抑制回路を付加しない場合の特性図、及び同図(b)は、電源電圧変動抑制回路を付加した場合の特性図である。更に、図5(a)、(b)は、図1の飽和差動増幅回路の利得に電源電圧依存を持つ場合の信号強度検出回路のRSSI出力特性図であり、同図(a)は、電源電圧変動抑制回路を付加しない場合の特性図、及び同図(b)は、電源電圧変動抑制回路を付加した場合の特性図である。
(B) Operation when the power supply voltage Vdd fluctuates FIGS. 4A and 4B show the RSSI output characteristics of the signal strength detection circuit when the saturation amplitude of the saturation differential amplifier circuit of FIG. 1 depends on the power supply voltage. FIG. 6A is a characteristic diagram when no power supply voltage fluctuation suppression circuit is added, and FIG. 5B is a characteristic chart when a power supply voltage fluctuation suppression circuit is added. Further, FIGS. 5A and 5B are RSSI output characteristic diagrams of the signal strength detection circuit when the gain of the saturated differential amplifier circuit of FIG. 1 has a power supply voltage dependency, and FIG. The characteristic diagram when the power supply voltage fluctuation suppressing circuit is not added and FIG. 5B are characteristic charts when the power supply voltage fluctuation suppressing circuit is added.

飽和差動増幅回路60−1〜60−nに印加する電源電圧Vddの増加と共に飽和振幅が増加すると、それに伴い全波整流器80−1〜80−nの合算出力電流IOが増加する。初段を含む前段部の全波整流器の出力電流は微小であるため、入力信号電力が小さい場合には、最終段及びその近くの全波整流器出力電流IBn,IB(n-1)辺りの電流増加分しか影響しないが、入力信号電力が大きくなるにつれて前段、前々段の全波整流器出力電流IB(n-2), IB(n-3),・・・,IB1にまで電流増加の影響を及ぼす。   When the saturation amplitude increases as the power supply voltage Vdd applied to the saturation differential amplifier circuits 60-1 to 60-n increases, the combined calculation current IO of the full-wave rectifiers 80-1 to 80-n increases accordingly. Since the output current of the full-wave rectifier in the front stage including the first stage is very small, if the input signal power is small, the current increases around the final stage and nearby full-wave rectifier output currents IBn and IB (n-1) However, as the input signal power increases, the current increase affects the full-wave rectifier output currents IB (n-2), IB (n-3),. Effect.

従来のように電源電圧変動抑制回路110がない場合、出力電流I1はI1=IOとなり、更にPMOS101,102のカレントミラー構成により、抵抗104にも同様の電流が流れ、グラフにすると図4(a)のようになり、RSSI出力の傾きが大きくなる。電源電圧Vddの減少と共に飽和振幅が減少した場合には、逆のことが言え、同様に図4(a)のように傾きが小さくなる。   When the power supply voltage fluctuation suppressing circuit 110 is not provided as in the prior art, the output current I1 is I1 = IO, and further, a similar current flows through the resistor 104 due to the current mirror configuration of the PMOSs 101 and 102. FIG. ), And the slope of RSSI output increases. If the saturation amplitude decreases with a decrease in the power supply voltage Vdd, the opposite is true, and similarly, the slope becomes smaller as shown in FIG.

ここで、本実施例1の特徴である電源電圧変動抑制回路110を付加した場合を考える。   Here, consider the case where the power supply voltage fluctuation suppressing circuit 110, which is a feature of the first embodiment, is added.

PMOS111を流れる電流I3は、前述したが、図3に示すように、PMOS特性による式(1)の電圧−電流特性I=k(Vdd−Vg−Vt)と、抵抗113の式(2)の電圧−電流特性I=Vg/R2の関係が両立する電流が流れる。 As described above, the current I3 flowing through the PMOS 111 is, as shown in FIG. 3, the voltage-current characteristic I = k (Vdd−Vg−Vt) 2 of the expression (1) based on the PMOS characteristic and the expression (2) of the resistor 113. Current-current characteristic I = Vg / R2 is satisfied.

電源電圧Vddが大きくなると、図3に示すPMOS111の電圧―電流特性はX軸のプラス方向にシフト(移動)することになり、抵抗113の特性との交点は図3の右上に移動し、流れる電流I3も増加することが分かる。逆に電源電圧Vddが減少すると、図3のPMOS111の電圧―電流特性はX軸のマイナス方向にシフトすることになり、抵抗113との特性との交点は左下に下がるため、流れる電流I3も減少することがわかる。更に、PMOS111とPMOS112はカレントミラー構成であるため、電流I4には、電流I3と同様の電流が流れ、PMOS101に流れる電流I1は、合算出力電流IOから電流I4を引いた量(=IO−I4)となる。   When the power supply voltage Vdd increases, the voltage-current characteristic of the PMOS 111 shown in FIG. 3 shifts (moves) in the positive direction of the X axis, and the intersection with the characteristic of the resistor 113 moves to the upper right in FIG. It can be seen that the current I3 also increases. Conversely, when the power supply voltage Vdd decreases, the voltage-current characteristic of the PMOS 111 in FIG. 3 shifts in the negative direction of the X axis, and the intersection with the characteristic of the resistor 113 decreases to the lower left, so the flowing current I3 also decreases. I understand that Further, since the PMOS 111 and the PMOS 112 have a current mirror configuration, a current similar to the current I3 flows in the current I4, and the current I1 flowing in the PMOS 101 is an amount obtained by subtracting the current I4 from the total calculated force current IO (= IO−I4). )

よって、電源電圧変動抑制回路110を付加すると、図4(b)のように信号強度検出電圧Vrssiは、電源電圧Vddの変動に対してY軸方向に補正する方向に移動するため、信号強度検出電圧Vrssiのばらつきを抑える方向となる。   Therefore, when the power supply voltage fluctuation suppressing circuit 110 is added, the signal strength detection voltage Vrssi moves in the direction of correcting in the Y-axis direction with respect to the fluctuation of the power supply voltage Vdd as shown in FIG. It becomes the direction which suppresses the dispersion | variation in the voltage Vrssi.

又、飽和差動増幅回路60−1〜60−nの利得が電源電圧Vddと共に増加すると、各段出力において、より小さい入力信号電力で飽和するようになる。電源電圧Vddが変動したときの1段当たりの利得の変化量をΔg[dB] とすると、1段目の飽和出力レベルはΔg分、2段目の飽和出力レベルは2Δg分、6段目は6Δg分小さい入力信号電力で飽和するようになる。そのため、電源電圧変動抑制回路110が無い場合、グラフにすると、図5(a)のようになり、RSSI出力の特性が上方向へ移動する。   Further, when the gain of the saturation differential amplifier circuits 60-1 to 60-n increases with the power supply voltage Vdd, each stage output is saturated with a smaller input signal power. If the amount of gain change per stage when the power supply voltage Vdd fluctuates is Δg [dB], the first stage saturated output level is Δg, the second stage saturated output level is 2Δg, and the sixth stage is It becomes saturated with an input signal power which is smaller by 6Δg. Therefore, when the power supply voltage fluctuation suppressing circuit 110 is not provided, a graph is obtained as shown in FIG. 5A, and the RSSI output characteristic moves upward.

同様に、飽和差動増幅回路60−1〜60−nの利得が電源電圧Vddと共に減少した場合には、図5(a)に示すように、所望特性よりもRSSI出力の特性は下方向へ移動してしまう。しかし、電源電圧変動抑制回路110を付加した場合、前述したように、この回路に流れる電流I3は、電源電圧Vddが増加すると電流I3も増加し、逆に電源電圧Vddが減少すると電流I3も減少する。   Similarly, when the gains of the saturation differential amplifier circuits 60-1 to 60-n decrease with the power supply voltage Vdd, the RSSI output characteristics are lower than the desired characteristics as shown in FIG. It will move. However, when the power supply voltage fluctuation suppressing circuit 110 is added, as described above, the current I3 flowing through this circuit increases when the power supply voltage Vdd increases, and conversely when the power supply voltage Vdd decreases, the current I3 also decreases. To do.

よって、電源電圧変動抑制回路110を付加すると、電流I1=IO−I4となる特性を持つことから、図5(b)のように、信号強度検出電圧VrssiはY軸方向に補正する方向に移動するため、信号強度検出電圧Vrssiのばらつきを抑える方向となる。   Therefore, when the power supply voltage fluctuation suppression circuit 110 is added, the current I1 = IO−I4 has a characteristic. Therefore, as shown in FIG. 5B, the signal intensity detection voltage Vrssi moves in the direction of correction in the Y-axis direction. Therefore, the variation in the signal strength detection voltage Vrssi is suppressed.

なお、電源電圧変動抑制回路110において、電源電圧変動に対する電流I4の変化幅は、PMOS111,112のサイズ比を変更することや、抵抗113の抵抗値を変更する等して、調整が可能である。   In the power supply voltage fluctuation suppressing circuit 110, the change width of the current I4 with respect to the power supply voltage fluctuation can be adjusted by changing the size ratio of the PMOSs 111 and 112 or changing the resistance value of the resistor 113. .

例えば、PMOS111,112のサイズ比を変更する場合、PMOS111,112のサイズ比を2:1に設定すると、流れる電流比もI3:I4=2:1となる。そのため、電源電圧VddがΔVdd増加した場合にPMOS111に流れる電流I3の変化幅をΔIとすると、PM0S112に流れる電流I4の変化幅はΔI/2 とすることができる。同様に、PMOS111,112のサイズ比を3:1に設定すると、電源電圧VddがΔVdd増加した場合のPMOS112に流れる電流I4の変化幅はΔI/3とすることができる。このようにPMOS111,112のサイズ比を変更することで、電源電圧Vddに対する電流I4の変化幅の調整が可能になる。   For example, when the size ratio of the PMOSs 111 and 112 is changed, if the size ratio of the PMOSs 111 and 112 is set to 2: 1, the flowing current ratio is also I3: I4 = 2: 1. Therefore, if the change width of the current I3 flowing through the PMOS 111 when the power supply voltage Vdd increases by ΔVdd is ΔI, the change width of the current I4 flowing through the PM0S 112 can be ΔI / 2. Similarly, when the size ratio of the PMOSs 111 and 112 is set to 3: 1, the change width of the current I4 flowing through the PMOS 112 when the power supply voltage Vdd increases by ΔVdd can be set to ΔI / 3. By changing the size ratio of the PMOSs 111 and 112 in this way, the change width of the current I4 with respect to the power supply voltage Vdd can be adjusted.

(実施例1の効果)
本実施例1によれば、電源電圧値に伴い流れる電流量が増減する電源電圧変動抑制回路110の電流I4を合算出力電流IOに加算したことにより、信号強度検出回路の出力電圧レベルの電源電圧Vddに対するばらつきを低減できる。
(Effect of Example 1)
According to the first embodiment, by adding the current I4 of the power supply voltage fluctuation suppression circuit 110 in which the amount of current flowing according to the power supply voltage value increases or decreases to the total calculated force current IO, the power supply voltage at the output voltage level of the signal strength detection circuit. Variability with respect to Vdd can be reduced.

(変形例)
本発明は、上記実施例1に限定されず、種々の利用形態や変形が可能である。この利用形態や変形例としては、例えば、次の(i)、(ii)のようなものがある。
(Modification)
The present invention is not limited to the first embodiment, and various usage forms and modifications are possible. For example, there are the following forms (i) and (ii) as usage forms and modifications.

(i) 図1では、PMOS101,102によりカレントミラー回路100を構成し、更に、PMOS111,112によりカレントミラー回路を構成する例について示したが、NMOS等の他のトランジスタを用いてカレントミラー回路を構成しても良い。又、飽和差動増幅回路60−1〜60−nは、図7のような一般的な回路構成の他に、図7中の抵抗13,14を負荷MOSトランジスタに置き換える等、種々の回路構成のものが適用可能である。   (I) Although FIG. 1 shows an example in which the current mirror circuit 100 is configured by the PMOSs 101 and 102 and the current mirror circuit is further configured by the PMOSs 111 and 112, the current mirror circuit is configured using other transistors such as NMOS. It may be configured. In addition to the general circuit configuration shown in FIG. 7, the saturation differential amplifier circuits 60-1 to 60-n have various circuit configurations such as replacing the resistors 13 and 14 in FIG. 7 with load MOS transistors. Are applicable.

(ii) 図2では、差動対構成にNMOS85,86,88,89を用いた全波整流器80の回路例を示したが、PMOS等の他のトランジスタ構成でも適用可能である。   (Ii) Although FIG. 2 shows a circuit example of the full-wave rectifier 80 using the NMOSs 85, 86, 88, and 89 in the differential pair configuration, other transistor configurations such as a PMOS can also be applied.

本発明の実施例1を示す信号強度検出回路の構成図である。It is a block diagram of the signal strength detection circuit which shows Example 1 of this invention. 図1中の各全波整流器80−1〜80−nの一例を示す構成図である。It is a block diagram which shows an example of each full wave rectifier 80-1 to 80-n in FIG. 図1中のPMOS111と抵抗113の電圧−電流特性を示す図である。It is a figure which shows the voltage-current characteristic of PMOS111 and the resistance 113 in FIG. 図1の飽和差動増幅回路の飽和振幅に電源電圧依存を持つ場合の信号強度検出回路のRSSI出力特性図である。FIG. 2 is an RSSI output characteristic diagram of a signal strength detection circuit when the saturation amplitude of the saturation differential amplifier circuit of FIG. 図1の飽和差動増幅回路の利得に電源電圧依存を持つ場合の信号強度検出回路のRSSI出力特性図である。FIG. 2 is an RSSI output characteristic diagram of a signal strength detection circuit when the gain of the saturated differential amplifier circuit of FIG. 1 has power supply voltage dependence. 従来の信号強度検出回路の構成図である。It is a block diagram of the conventional signal strength detection circuit. 図6中の飽和差動増幅回路の一例を示す構成図である。It is a block diagram which shows an example of the saturation differential amplifier circuit in FIG.

符号の説明Explanation of symbols

60−1〜60−n 飽和差動増幅回路
80−1〜80−n 全波整流器
100 カレントミラー回路
110 電源電圧変動抑制回路
60-1 to 60-n saturation differential amplifier circuit 80-1 to 80-n full wave rectifier 100 current mirror circuit 110 power supply voltage fluctuation suppression circuit

Claims (3)

電源電圧により駆動され、入力信号を順次増幅する複数段の縦続接続された飽和増幅回路と、
前記各段の飽和増幅回路で増幅された信号をそれぞれ整流する複数段の整流器と、
前記各段の整流器の出力電流の和である信号強度検出電流を求める回路と、
前記電源電圧に依存して電流量が変化する電流を前記信号強度検出電流に加算する電源電圧変動抑制回路と、
を有することを特徴とする信号強度検出回路。
A plurality of cascaded saturation amplifier circuits that are driven by a power supply voltage and sequentially amplify an input signal;
A plurality of stages of rectifiers for rectifying the signals amplified by the saturation amplification circuits of the respective stages;
A circuit for obtaining a signal strength detection current that is a sum of output currents of the rectifiers of the respective stages;
A power supply voltage fluctuation suppressing circuit for adding a current whose amount of current changes depending on the power supply voltage to the signal intensity detection current;
A signal strength detection circuit comprising:
前記飽和増幅回路は飽和差動増幅回路であり、更に、前記整流器は全波整流器であることを特徴とする請求項1記載の信号強度検出回路。   2. The signal strength detection circuit according to claim 1, wherein the saturation amplifier circuit is a saturation differential amplifier circuit, and the rectifier is a full-wave rectifier. 前記信号強度検出電流を求める回路は、
第1のカレントミラー回路により構成され、
前記電源電圧変動抑制回路は、
前記電源電圧が印加される電源電圧端子と所定のノードとの間に接続され、且つ前記第1のカレントミラー回路に並列に接続された第2のカレントミラー回路と、
前記所定のノードと接地電圧が印加される接地端子との間に接続された抵抗と、
により構成されていることを特徴とする請求項1又は2記載の信号強度検出回路。
The circuit for obtaining the signal strength detection current is:
A first current mirror circuit;
The power supply voltage fluctuation suppressing circuit is
A second current mirror circuit connected between a power supply voltage terminal to which the power supply voltage is applied and a predetermined node, and connected in parallel to the first current mirror circuit;
A resistor connected between the predetermined node and a ground terminal to which a ground voltage is applied;
The signal strength detection circuit according to claim 1, wherein the signal strength detection circuit is configured as follows.
JP2006122228A 2006-04-26 2006-04-26 Signal strength detection circuit Withdrawn JP2007295377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122228A JP2007295377A (en) 2006-04-26 2006-04-26 Signal strength detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122228A JP2007295377A (en) 2006-04-26 2006-04-26 Signal strength detection circuit

Publications (1)

Publication Number Publication Date
JP2007295377A true JP2007295377A (en) 2007-11-08

Family

ID=38765536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122228A Withdrawn JP2007295377A (en) 2006-04-26 2006-04-26 Signal strength detection circuit

Country Status (1)

Country Link
JP (1) JP2007295377A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795971B2 (en) 2008-05-08 2010-09-14 Seiko Epson Corporation Electronic circuit and electronic device
JP2011055055A (en) * 2009-08-31 2011-03-17 Texas Instr Japan Ltd Amplifier circuit, signal strength detection circuit, and offset voltage adjustment method
CN107991524A (en) * 2017-12-14 2018-05-04 上海玮舟微电子科技有限公司 A kind of power down signal energy indicating circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795971B2 (en) 2008-05-08 2010-09-14 Seiko Epson Corporation Electronic circuit and electronic device
JP2011055055A (en) * 2009-08-31 2011-03-17 Texas Instr Japan Ltd Amplifier circuit, signal strength detection circuit, and offset voltage adjustment method
CN107991524A (en) * 2017-12-14 2018-05-04 上海玮舟微电子科技有限公司 A kind of power down signal energy indicating circuit
CN107991524B (en) * 2017-12-14 2023-12-22 张家港康得新光电材料有限公司 Low-power consumption signal energy indicating circuit

Similar Documents

Publication Publication Date Title
US8676148B2 (en) Differential amplifier circuit and wireless receiving apparatus
JPWO2011111140A1 (en) Variable gain amplifier
WO2016152267A1 (en) Amplifier and electronic circuit
TWI639299B (en) Current compensation circuit
US10474173B2 (en) Voltage regulator having a phase compensation circuit
US20090108938A1 (en) Circuit and method for dynamic current compensation
US9503022B2 (en) Balanced up-conversion mixer
CN109660917A (en) A kind of high-voltage digital audio power amplification system
US7663440B2 (en) Amplifier circuit, semiconductor device, and controlling method
US20110133837A1 (en) Variable gain amplifier
JP2011229073A (en) Gain variation compensator
US9136806B2 (en) Amplifier circuit
US9369098B2 (en) Inverting amplifier
JP2007295377A (en) Signal strength detection circuit
US7425868B2 (en) Apparatus and method for canceling DC output offset
JP2009296236A (en) Bias circuit and amplifier using this
JP2005020591A (en) Variable gain amplifier, and lsi for optical pickup signal processing and portable wireless terminal transmission/reception signal processing using the amplifier
US7633343B2 (en) Fully differential amplifier
US7688145B2 (en) Variable gain amplifying device
US8461900B2 (en) Frequency converting circuit, signal processing circuit and receiver
US11223337B2 (en) Logarithmic power detector
CN113767572B (en) Level conversion circuit and electronic device
JP5872959B2 (en) Differential amplifier and semiconductor device
US20210075378A1 (en) Power supply circuitry and radio communication apparatus
JP2019095840A (en) Current source circuit and amplification device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707