Nothing Special   »   [go: up one dir, main page]

JP2007290900A - Heat exchange-type reformer - Google Patents

Heat exchange-type reformer Download PDF

Info

Publication number
JP2007290900A
JP2007290900A JP2006119717A JP2006119717A JP2007290900A JP 2007290900 A JP2007290900 A JP 2007290900A JP 2006119717 A JP2006119717 A JP 2006119717A JP 2006119717 A JP2006119717 A JP 2006119717A JP 2007290900 A JP2007290900 A JP 2007290900A
Authority
JP
Japan
Prior art keywords
reforming
heat exchange
catalyst
reaction
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006119717A
Other languages
Japanese (ja)
Other versions
JP5076353B2 (en
Inventor
Takashi Shimazu
孝 志満津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006119717A priority Critical patent/JP5076353B2/en
Publication of JP2007290900A publication Critical patent/JP2007290900A/en
Application granted granted Critical
Publication of JP5076353B2 publication Critical patent/JP5076353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchange-type reformer having good heat exchange efficiency of a heating part and a reforming part. <P>SOLUTION: In the heat exchange-type reformer 10, a reforming passage 18 carrying a reforming catalyst 22 for reforming reaction is adjacent to a combustion passage 20 carrying an oxidation catalyst 24 for combustion through a plate part 52. The reforming passage 18 performs reforming reaction including steam reforming reaction for forming hydrogen from a reforming raw material supplied. The combustion passage 20 supplies the heat generated in connection with the catalytic combustion of a fuel supplied to the reforming passage 18. The reforming passage 18 and the combustion passage 20 compose a parallel flow-type heat exchanger, wherein the directions of gases flowing through both the passages are adapted to the direction of the arrow F. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば炭化水素等の改質原料から水素含有の改質ガスを得るための改質反応を、改質部において加熱部からの熱供給を受けつつ行う熱交換型改質器に関する。   The present invention relates to a heat exchange type reformer that performs a reforming reaction for obtaining a reformed gas containing hydrogen from a reforming raw material such as a hydrocarbon while receiving heat supply from a heating unit in the reforming unit.

積層された複数のプレート間に、炭化水素原料を改質して水素含有ガスを生成するための改質流路と、改質流路に改質反応用の熱を供給するために燃料ガスを燃焼させる燃焼流路とを形成した直交流熱交換型の燃料改質器が知られている(例えば、特許文献1参照)。特許文献1記載には、プレート間の各部における燃焼反応の発熱分布と改質反応の吸熱分布とが調整されるように、プレート間に触媒の非担持領域を設定する技術が記載されている。
特開2004−244230明細書
A reforming channel for reforming a hydrocarbon raw material to generate a hydrogen-containing gas between a plurality of stacked plates, and a fuel gas for supplying heat for reforming reaction to the reforming channel A cross flow heat exchange type fuel reformer having a combustion flow path for combustion is known (see, for example, Patent Document 1). Patent Document 1 describes a technique for setting a non-supported region of a catalyst between plates so that an exothermic distribution of a combustion reaction and an endothermic distribution of a reforming reaction at each part between the plates are adjusted.
Japanese Patent Application Laid-Open No. 2004-244230

上記従来の直交流熱交換型の燃料改質器では、燃焼反応による高発熱部位と改質反応による高吸熱部位とを一致させるための工夫を行っているが、吸発熱部位を一致させて熱交換効率を向上させる点について改善の余地があった。   In the conventional cross-flow heat exchange type fuel reformer described above, a device has been devised to make the high heat generation part due to the combustion reaction coincide with the high heat absorption part due to the reforming reaction. There was room for improvement in terms of improving exchange efficiency.

また、並行流熱交換型の燃料改質器においては、改質触媒の担持範囲と酸化触媒の担持範囲とが一致している場合には、燃焼反応の反応速度が改質反応の反応速度に対し著しく速いことから、燃焼反応の発熱ピークに対し改質反応の発熱ピークがガス流方向の下流側にずれる傾向を示す。このため、並行流熱交換型の燃料改質器では、酸化触媒の上流側担持端近傍で、局所的に吸熱量に対し発熱量が過剰になり、局所的な高温部位が発生することが懸念される。特に、触媒担持精度の不足や局所的な触媒剥がれ等によって酸化触媒の担持範囲が改質触媒の担持範囲よりもガス流方向の上流側に広くなっている場合、局所的な高温部位が一層(広範囲で)発生しやすくなる。   In a parallel flow heat exchange type fuel reformer, when the supported range of the reforming catalyst and the supported range of the oxidation catalyst are the same, the reaction rate of the combustion reaction becomes the reaction rate of the reforming reaction. On the other hand, since it is remarkably fast, the exothermic peak of the reforming reaction tends to shift downstream in the gas flow direction with respect to the exothermic peak of the combustion reaction. For this reason, in the parallel flow heat exchange type fuel reformer, there is a concern that the amount of heat generated locally may be excessive with respect to the amount of heat absorbed in the vicinity of the upstream end of the oxidation catalyst, and a local high temperature region may be generated. Is done. In particular, when the supporting range of the oxidation catalyst is widened upstream in the gas flow direction from the supporting range of the reforming catalyst due to lack of catalyst supporting accuracy, local catalyst peeling, etc. (In a wide range).

本発明は、上記事実を考慮して、加熱部と改質部との熱交換効率が良好な熱交換型改質器を得ることが目的である。   In view of the above facts, an object of the present invention is to obtain a heat exchange type reformer having good heat exchange efficiency between the heating section and the reforming section.

上記目的を達成するために請求項1記載の発明に係る熱交換型改質器は、改質反応用の改質触媒が担持され、水蒸気改質反応を含む改質反応によって供給された改質原料から水素を生成するための改質部と、前記改質部のガス流と同じ方向のガス流を生じさせるように隔壁を介して前記改質部に隣接されると共に触媒燃焼用の酸化触媒が担持され、供給された燃料の触媒燃焼に伴って生じた熱を前記改質部に供給するための加熱部と、を備えている。   In order to achieve the above object, a heat exchange type reformer according to the invention described in claim 1 carries a reforming catalyst for reforming reaction and is supplied by a reforming reaction including a steam reforming reaction. An oxidation catalyst for catalytic combustion that is adjacent to the reforming section via a partition so as to generate a reforming section for generating hydrogen from the raw material and a gas flow in the same direction as the gas flow of the reforming section And a heating unit for supplying heat generated by catalytic combustion of the supplied fuel to the reforming unit.

請求項1記載の熱交換型改質器では、改質部において加熱部から燃焼による熱供給を受けつつ、供給された改質ガスを改質触媒に接触させて改質反応を生じさせ(促進し)、水素(を含有するガス)を得る。改質反応は、改質触媒の担持範囲における上流側(改質原料供給側)の端部近傍に高吸熱部位を生じさせ、燃焼反応は、酸化触媒の担持範囲における上流側(燃料供給側)の端部近傍に高発熱部位を生じさせる。   In the heat exchange type reformer according to claim 1, while the reforming unit receives heat supply from the heating unit through combustion, the supplied reformed gas is brought into contact with the reforming catalyst to cause a reforming reaction (acceleration). And hydrogen (containing gas) is obtained. The reforming reaction generates a high endothermic site in the vicinity of the upstream end (reforming raw material supply side) in the reforming catalyst support range, and the combustion reaction is the upstream side (fuel supply side) in the oxidation catalyst support range. A highly exothermic part is generated in the vicinity of the end of the plate.

ここで、改質部における改質原料(改質ガス)の流れ方向と、加熱部における燃料又は燃焼ガスの流れ方向とが一致しているため、換言すれば、加熱部と改質部とで並行流熱交換型の改質器を構成しているため、加熱部における燃焼反応による高発熱部位と改質部における改質反応による高吸熱部位とを、それぞれの触媒担持範囲におけるガス流方向の同じ側(上流側)で生じさせることができる。すなわち、吸熱要求の大きい部分に発熱の大きい部分を近づける(吸発熱の分布傾向を一致させる)ことができる。そのため、改質器内部での熱伝導経路を最小とすることで、請求項1記載の熱交換型改質器では、加熱部と改質部との熱交換効率が良好である。   Here, since the flow direction of the reforming raw material (reformed gas) in the reforming section and the flow direction of the fuel or combustion gas in the heating section are the same, in other words, in the heating section and the reforming section. Since a parallel flow heat exchange type reformer is configured, a high heat generation site due to a combustion reaction in the heating unit and a high heat absorption site due to the reforming reaction in the reforming unit are arranged in the direction of gas flow in each catalyst support range. It can occur on the same side (upstream side). That is, it is possible to bring a portion where heat generation is large close to a portion where the endothermic demand is large (matching the distribution tendency of heat absorption and heat generation). Therefore, by minimizing the heat conduction path inside the reformer, the heat exchange type reformer according to claim 1 has good heat exchange efficiency between the heating section and the reforming section.

請求項2記載の発明に係る熱交換型改質器は、請求項1記載の熱交換型改質器において、前記改質部での改質触媒の担持範囲における改質原料供給側の端部位置を、前記加熱部での酸化触媒の担持範囲における燃料供給側の端部位置よりもガス流れ方向上流側に設定した。   A heat exchange type reformer according to a second aspect of the present invention is the heat exchange type reformer according to the first aspect, wherein the end of the reforming raw material supply side in the supported range of the reforming catalyst in the reforming unit. The position was set on the upstream side in the gas flow direction from the end position on the fuel supply side in the supporting range of the oxidation catalyst in the heating section.

請求項2記載の熱交換型改質器では、改質部において改質原料が改質触媒に最初に接触する位置が、加熱部において燃料が酸化触媒に最初に接触する位置よりもガス流れ方向の上流側に位置しているため、改質部における吸熱のピークを上流側にシフトすることができる。これにより、燃焼反応による高発熱部位と改質反応による高吸熱部位とを一層良好に一致させることができる。   3. The heat exchange type reformer according to claim 2, wherein the position where the reforming material first contacts the reforming catalyst in the reforming section is more gas flow direction than the position where the fuel first contacts the oxidation catalyst in the heating section. Therefore, the endothermic peak in the reforming section can be shifted upstream. Thereby, the high exothermic part by combustion reaction and the high endothermic part by reforming reaction can be matched more favorably.

例えば、改質反応の主反応が吸熱反応である水蒸気改質反応である場合、改質部では改質触媒の上流端側から吸熱反応が生じるものの、この吸熱反応は燃焼反応と比較して反応速度が遅いために吸熱のピークが発熱のピークに対し下流側にわずかに位置ずれするが、改質触媒の上流端を酸化触媒の上流端に対しわずかに上流側に広げることで、遅い吸熱反応速度が補完され、燃焼反応による高発熱部位と改質反応による高吸熱部位とが良好に一致する。これにより、吸熱量と発熱量とのアンバランスによる局所的な高温部位の発生が防止される。   For example, when the main reaction of the reforming reaction is a steam reforming reaction that is an endothermic reaction, an endothermic reaction occurs from the upstream end side of the reforming catalyst in the reforming section. The endothermic peak slightly shifts downstream from the exothermic peak due to the slow speed, but slow endothermic reaction is achieved by extending the upstream end of the reforming catalyst slightly upstream from the upstream end of the oxidation catalyst. The speed is complemented, and the high exothermic part due to the combustion reaction and the high endothermic part due to the reforming reaction agree well. Thereby, generation | occurrence | production of the local high temperature site | part by the imbalance of heat-absorption amount and the emitted-heat amount is prevented.

また例えば、改質反応が水蒸気改質反応の他に部分酸化反応等の発熱反応を含む場合、このような発熱反応は改質触媒担持範囲の上流側で主に生じ、この発熱が水蒸気改質反応に供される。ここで、酸化触媒の上流端の位置を改質触媒の上流端の位置に対し下流側に位置させることで、改質部での発熱反応が収束した後に加熱部からの熱供給を受けて吸熱反応を行う構成とし、システムの熱収支を適正化(最適化)することができる。   In addition, for example, when the reforming reaction includes an exothermic reaction such as a partial oxidation reaction in addition to the steam reforming reaction, such an exothermic reaction mainly occurs on the upstream side of the reforming catalyst support range. Subject to reaction. Here, by positioning the upstream end position of the oxidation catalyst on the downstream side with respect to the upstream end position of the reforming catalyst, after the exothermic reaction in the reforming section is converged, the heat supply from the heating section is received and the endothermic reaction is performed. It is possible to optimize (optimize) the heat balance of the system by adopting a structure for performing the reaction.

請求項3記載の発明に係る熱交換型改質器は、請求項1又は請求項2記載の熱交換型改質器において、前記改質部での改質触媒の担持範囲における改質原料供給側の端部から所定範囲の触媒担持濃度を、該改質触媒の担持範囲における他の部分の触媒担持濃度よりも高く設定した。   A heat exchange type reformer according to a third aspect of the present invention is the heat exchange type reformer according to the first or second aspect, wherein the reforming raw material is supplied in the supporting range of the reforming catalyst in the reforming section. The catalyst loading concentration in a predetermined range from the end on the side was set higher than the catalyst loading concentration in other portions in the reforming catalyst loading range.

請求項3記載の熱交換型改質器では、改質触媒の担持範囲における上流側端部から所定範囲(一部)で他の部分よりも改質触媒の担持濃度が高いため、改質触媒の担持範囲の上流端側一部における吸熱反応が促進される。換言すれば、改質部における吸熱のピークが上流側にシフトされる。このため、改質部における遅い吸熱反応速度を補完して燃焼反応による高発熱部位を改質反応による高吸熱部位に良好に一致させたり、改質部における発熱反応を早期に収束してその後に改質部への供給熱量を増す構成としたりすることが可能になる。   In the heat exchange type reformer according to claim 3, the reforming catalyst loading concentration is higher in the predetermined range (part) from the upstream end in the reforming catalyst loading range than in other portions. The endothermic reaction is promoted at a part of the upstream end side of the supporting range. In other words, the endothermic peak in the reforming section is shifted upstream. For this reason, it complements the slow endothermic reaction rate in the reforming part to make the high exothermic part due to the combustion reaction well coincide with the high endothermic part due to the reforming reaction, It is possible to increase the amount of heat supplied to the reforming section.

請求項4記載の発明に係る熱交換型改質器は、請求項1乃至請求項3の何れか1項記載の熱交換型改質器において、前記加熱部での酸化触媒の担持範囲における燃料供給側の端部から所定範囲の触媒担持濃度を、該酸化触媒の担持範囲における他の部分の触媒担持濃度よりも低く設定した。   A heat exchange type reformer according to a fourth aspect of the present invention is the heat exchange type reformer according to any one of the first to third aspects, wherein the fuel in the range where the oxidation catalyst is supported in the heating section. The catalyst loading concentration in a predetermined range from the supply side end was set to be lower than the catalyst loading concentration in other portions in the oxidation catalyst loading range.

請求項4記載の熱交換型改質器では、酸化触媒の担持範囲における上流端側から所定範囲の(一部)で他の部分よりも酸化触媒の担持濃度が低いため、酸化触媒の担持範囲の上流側一部における発熱反応が緩和(抑制)される。換言すれば、加熱部における発熱のピークが下流側にシフトされる。これにより、加熱部における速い燃焼反応を抑制して燃焼反応による高発熱部位を改質反応による高吸熱部位に良好に一致させたり、改質部における発熱反応の収束後に改質部への供給熱量を増す構成としたりすることが可能になる。   In the heat exchange type reformer according to claim 4, since the supported concentration of the oxidation catalyst is lower than the other portion in a predetermined range (part) from the upstream end side in the supported range of the oxidation catalyst, the supported range of the oxidation catalyst. The exothermic reaction in a part of the upstream side is relaxed (suppressed). In other words, the peak of heat generation in the heating unit is shifted downstream. As a result, the fast combustion reaction in the heating unit is suppressed to make the highly exothermic part due to the combustion reaction well coincide with the high endothermic part due to the reforming reaction, or the amount of heat supplied to the reforming part after convergence of the exothermic reaction in the reforming part It becomes possible to make it the structure which increases.

以上説明したように本発明に係る熱交換型改質器は、加熱部と改質部との熱交換効率が良好である。   As described above, the heat exchange type reformer according to the present invention has good heat exchange efficiency between the heating section and the reforming section.

本発明の第1の実施形態に係る熱交換型改質器10について、図1乃至図4に基づいて説明する。先ず、熱交換型改質器10が適用された燃料電池システム11の全体システム構成を説明し、次いで、熱交換型改質器10の詳細構造を説明することとする。   A heat exchange reformer 10 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. First, the overall system configuration of the fuel cell system 11 to which the heat exchange reformer 10 is applied will be described, and then the detailed structure of the heat exchange reformer 10 will be described.

(燃料電池システムの全体構成)
図4には、燃料電池システム11のシステム構成図(プロセスフローシート)が示されている。この図に示される如く、燃料電池システム11は、水素を消費して発電を行う燃料電池12と、燃料電池12に供給するための水素含有の改質ガスを生成するための熱交換型改質器(改質器)10とを主要構成要素として構成されている。
(Overall configuration of fuel cell system)
FIG. 4 shows a system configuration diagram (process flow sheet) of the fuel cell system 11. As shown in this figure, the fuel cell system 11 includes a fuel cell 12 that generates power by consuming hydrogen, and a heat exchange reforming process for generating hydrogen-containing reformed gas to be supplied to the fuel cell 12. The reactor (reformer) 10 is a main component.

燃料電池12は、アノード電極(燃料極)14とカソード電極(空気極)16との間に、図示しない電解質を挟んで構成されており、主にアノード電極に供給される水素とカソード電極16に供給される酸素とを電気化学反応させて発電を行う構成とされている。燃料電池12としては、種々の形式のものを採用することができるが、この実施形態では、中温域(300℃〜600℃程度)で運転されると共に、発電に伴ってカソード電極16で水が生成されるプロトン伝導型の電解質を有する燃料電池(例えば、固体高分子型や水素分離膜型の燃料電池)が採用されている。   The fuel cell 12 is configured by sandwiching an electrolyte (not shown) between an anode electrode (fuel electrode) 14 and a cathode electrode (air electrode) 16. The fuel cell 12 mainly includes hydrogen supplied to the anode electrode and the cathode electrode 16. It is configured to generate electricity by electrochemical reaction with supplied oxygen. Although various types of fuel cells 12 can be employed, in this embodiment, the fuel cell 12 is operated in an intermediate temperature range (about 300 ° C. to 600 ° C.) and water is generated at the cathode electrode 16 along with power generation. A fuel cell (for example, a solid polymer type or a hydrogen separation membrane type fuel cell) having a produced proton-conducting electrolyte is employed.

熱交換型改質器10は、図4に示される如く、燃料電池12のアノード電極14に供給するための水素含有の改質ガスを生成する改質部としての改質流路18と、改質流路18が改質反応を行うための熱を供給するための加熱部として燃焼流路20とを含んで構成されている。改質流路18には、改質触媒22が担持されており、供給される炭化水素ガス(ガソリン、メタノール、天然ガス等)と改質用ガス(水蒸気)を触媒反応させることで、水素ガスを含む改質ガスを生成する(改質反応を行う)ようになっている。   As shown in FIG. 4, the heat exchange type reformer 10 includes a reforming flow path 18 as a reforming section that generates a hydrogen-containing reformed gas to be supplied to the anode electrode 14 of the fuel cell 12, and a reformer. The mass flow path 18 includes a combustion flow path 20 as a heating unit for supplying heat for performing the reforming reaction. A reforming catalyst 22 is supported in the reforming channel 18, and hydrogen gas is produced by catalytic reaction of the supplied hydrocarbon gas (gasoline, methanol, natural gas, etc.) and reforming gas (steam). Is generated (reforming reaction is performed).

改質流路18における改質反応には、以下の式(1)乃至(4)で表されるように、式(1)で示す水蒸気改質反応を含む各反応が含まれる。したがって、改質工程で得た改質ガスには、水素(H)、一酸化炭素(CO)、メタン(CH)、分解炭化水素や未反応の原料炭化水素(C)等の可燃性ガス、及び二酸化炭素(CO)、水(HO)等の不燃性ガスを含むようになっている。 The reforming reaction in the reforming channel 18 includes each reaction including the steam reforming reaction represented by the formula (1) as represented by the following formulas (1) to (4). Therefore, the reformed gas obtained in the reforming process includes hydrogen (H 2 ), carbon monoxide (CO), methane (CH 4 ), cracked hydrocarbons, unreacted raw material hydrocarbons (C x H y ), etc. Combustible gas and carbon dioxide (CO 2 ), water (H 2 O), and other non-flammable gases.

+nHO → nCO +(n+m/2)H … (1)
+n/2O → nCO + m/2H … (2)
CO+HO ⇔ CO+H … (3)
CO+3H ⇔ CH+HO … (4)
この改質反応の中で主となる式(1)の水蒸気改質反応は吸熱反応であり、かつ改質流路18は、反応に十分な温度環境の設定と、上記の通り中温又は高温で運転される燃料電池12への改質ガスの供給とのために、所定温度以上の温度で運転されるようになっている。燃焼流路20は、この改質流路18における改質反応、運転温度を維持するための熱の供給する構成とされている。燃焼流路20は、酸化触媒24を担持して改質流路18に隣接して設けられており、供給された燃料を酸素と共に酸化触媒24接触させて触媒燃焼を生じさせる構成とされている。また、式(2)の部分酸化反応は発熱反応であり、この部分酸化反応による発熱は、燃焼流路20からの熱と併せて水蒸気改質反応に供されるようになっている。
C n H m + nH 2 O → nCO + (n + m / 2) H 2 ... (1)
C n H m + n / 2O 2 → nCO + m / 2H 2 ... (2)
CO + H 2 O⇔CO 2 + H 2 (3)
CO + 3H 2 CHCH 4 + H 2 O (4)
The main steam reforming reaction of the formula (1) in this reforming reaction is an endothermic reaction, and the reforming flow path 18 is set at a temperature environment sufficient for the reaction and at a medium temperature or a high temperature as described above. In order to supply the reformed gas to the fuel cell 12 to be operated, the fuel cell 12 is operated at a temperature higher than a predetermined temperature. The combustion channel 20 is configured to supply heat for maintaining the reforming reaction and operating temperature in the reforming channel 18. The combustion flow path 20 is provided adjacent to the reforming flow path 18 carrying the oxidation catalyst 24, and is configured to cause catalytic combustion by bringing the supplied fuel into contact with the oxidation catalyst 24 together with oxygen. . Further, the partial oxidation reaction of the formula (2) is an exothermic reaction, and the heat generated by this partial oxidation reaction is used for the steam reforming reaction together with the heat from the combustion channel 20.

熱交換型改質器10は、燃焼流路20で燃料を触媒燃焼させて得た燃焼熱を後述するプレート部52を介して改質流路18に供給するようになっている。このため、燃焼ガス等の熱媒(流体)を介して改質流路18を加熱する構成のように熱量を温度に変換することなく、改質流路18に熱量を直接的に付与することができる構成とされている。   The heat exchange reformer 10 supplies combustion heat obtained by catalytic combustion of fuel in the combustion channel 20 to the reforming channel 18 via a plate portion 52 described later. For this reason, the amount of heat is directly applied to the reforming channel 18 without converting the amount of heat into temperature as in the configuration in which the reforming channel 18 is heated via a heat medium (fluid) such as combustion gas. It can be configured.

そして、燃料電池システム11は、改質流路18に炭化水素原料を供給するための原料ポンプ26を備えており、原料ポンプ26の吐出部は原料供給ライン28を介して改質流路18の原料入口18Aに接続されている。炭化水素原料は、上記した改質反応には寄与しない硫黄成分(硫黄化合物)をわずかに含んでいる。この炭化水素原料は、例えば蒸発器やインジェクション等図示しない気化手段等によって、気相又は微粒化状態で改質流路18に供給されるようになっている。   The fuel cell system 11 includes a raw material pump 26 for supplying a hydrocarbon raw material to the reforming flow path 18, and a discharge portion of the raw material pump 26 is connected to the reforming flow path 18 via a raw material supply line 28. It is connected to the raw material inlet 18A. The hydrocarbon raw material slightly contains a sulfur component (sulfur compound) that does not contribute to the above reforming reaction. This hydrocarbon raw material is supplied to the reforming flow path 18 in a gas phase or atomized state, for example, by a vaporizing means (not shown) such as an evaporator or an injection.

また、改質流路18の改質ガス出口18Bは、下流端がアノード電極14の燃料入口14Aに接続された改質ガス供給ライン30の上流端に接続されている。これにより、改質流路18で生成された改質ガスが燃料電池12のアノード電極14に供給されるようになっている。一方、アノード電極14のオフガス出口14Bには、アノードオフガスライン32の上流端が接続されており、アノードオフガスライン32の下流端は燃焼流路20の燃料入口20Aに接続されている。   The reformed gas outlet 18 </ b> B of the reforming channel 18 is connected to the upstream end of the reformed gas supply line 30 whose downstream end is connected to the fuel inlet 14 </ b> A of the anode electrode 14. Thereby, the reformed gas generated in the reforming channel 18 is supplied to the anode electrode 14 of the fuel cell 12. On the other hand, the upstream end of the anode offgas line 32 is connected to the offgas outlet 14 </ b> B of the anode electrode 14, and the downstream end of the anode offgas line 32 is connected to the fuel inlet 20 </ b> A of the combustion channel 20.

以上により、燃料電池システム11では、改質流路18で生成された改質ガス中の水素が燃料電池12で消費され、この消費された水素を除く残余成分がアノードオフガスとして燃焼流路20に導入され、そのうちの可燃成分(水素(H)、一酸化炭素(CO)、炭化水素(HC)、メタン(CH)、二酸化炭素(CO))が燃焼流路20で燃料として消費されるようになっている。この燃焼流路20の排ガス出口20Bには、燃焼排ガスを系外に排出するための排気ガスライン34が接続されている。 As described above, in the fuel cell system 11, the hydrogen in the reformed gas generated in the reforming channel 18 is consumed in the fuel cell 12, and the remaining components other than the consumed hydrogen are supplied to the combustion channel 20 as anode offgas. Combustible components (hydrogen (H 2 ), carbon monoxide (CO), hydrocarbon (HC), methane (CH 4 ), carbon dioxide (CO 2 )) are consumed as fuel in the combustion channel 20. It has become so. An exhaust gas line 34 for discharging combustion exhaust gas to the outside of the system is connected to the exhaust gas outlet 20B of the combustion flow path 20.

また、燃料電池システム11は、カソード電極16にカソード用空気を供給するためのカソード用空気ポンプ36を備えており、カソード用空気ポンプ36の吐出部は、下流端がカソード電極16の空気入口16Aに接続されたカソード用空気供給ライン38の上流端が接続されている。さらに、カソード電極16のオフガス出口16Bには、水蒸気供給ライン40の上流端が接続されており、水蒸気供給ライン40の下流端は、改質流路18の水蒸気入口18C接続されている。これにより、カソード電極16で生成された水蒸気、該カソード電極16で消費されなかった酸素を含むカソードオフガスが改質流路18に供給される構成である。そして、カソードオフガス中の水蒸気が式(1)の水蒸気改質反応に利用され、酸素が式(2)の部分酸化反応に利用されるようになっている。すなわち本実施形態に係る熱交換型改質器10は、酸素を含有するカソードオフガスを改質流路18に供給することで、炭化水素減量中の炭素量に対する供給酸素量の割合であるO/C比が高い条件で運転される攻勢とされている。   The fuel cell system 11 also includes a cathode air pump 36 for supplying cathode air to the cathode electrode 16, and the discharge portion of the cathode air pump 36 has an air inlet 16 </ b> A at the downstream end of the cathode electrode 16. The upstream end of the cathode air supply line 38 connected to is connected. Further, the upstream end of the steam supply line 40 is connected to the off-gas outlet 16B of the cathode electrode 16, and the downstream end of the steam supply line 40 is connected to the steam inlet 18C of the reforming flow path 18. As a result, the cathode off gas containing water vapor generated at the cathode electrode 16 and oxygen not consumed at the cathode electrode 16 is supplied to the reforming channel 18. Then, water vapor in the cathode off-gas is used for the steam reforming reaction of the formula (1), and oxygen is used for the partial oxidation reaction of the formula (2). That is, the heat exchange type reformer 10 according to the present embodiment supplies the cathode offgas containing oxygen to the reforming flow path 18, so that the ratio of the supplied oxygen amount to the carbon amount in the hydrocarbon weight loss is O /. It is said that it is an offensive that is operated under conditions where the C ratio is high.

さらに、燃料電池システム11は、燃料電池12に冷却空気を供給するための冷却用空気ポンプ42を備えており、冷却用空気ポンプ42の吐出部は、下流端が燃料電池12の冷媒流路(図示省略)の入口12Aに接続された冷却用空気ライン44の上流端に接続されている。この冷媒流路の出口12Bは、支燃ガス供給ライン46の上流端に接続されている。支燃ガス供給ライン46は、燃焼流路20における支燃ガス入口20Cに接続されており、燃焼流路20に燃焼支燃ガスとしての酸素を含む冷却オフガスを供給するようになっている。これにより、燃焼流路20では、アノードオフガスライン32からのアノードオフガスと支燃ガス供給ライン46からの冷却オフガスとを内蔵した酸化触媒24に接触させて、触媒燃焼を生じさせる構成とされている。   Further, the fuel cell system 11 includes a cooling air pump 42 for supplying cooling air to the fuel cell 12, and the discharge part of the cooling air pump 42 has a refrigerant flow path ( It is connected to the upstream end of the cooling air line 44 connected to the inlet 12A (not shown). The refrigerant flow path outlet 12 </ b> B is connected to the upstream end of the combustion support gas supply line 46. The combustion support gas supply line 46 is connected to the combustion support gas inlet 20 </ b> C in the combustion flow path 20, and supplies a cooling off gas containing oxygen as the combustion support gas to the combustion flow path 20. Thereby, in the combustion flow path 20, the anode off gas from the anode off gas line 32 and the cooling off gas from the combustion support gas supply line 46 are brought into contact with the built-in oxidation catalyst 24 to cause catalytic combustion. .

なお、燃料電池システム11は、例えば、水蒸気供給ライン40にカソードオフガス中の水蒸気のみを選択的に透過させる分離膜(ポリイミドやセラミック等の多孔体分離膜)を設けたり、改質用の水蒸気を系外から導入したりすることで、改質流路18に酸素が供給されない構成又は炭化水素原料中の炭素に対する供給酸素量(O/C比)が小さくなる構成とすることができる。これらの構成では、熱交換型改質器10における改質反応の主反応が水蒸気改質反応となり、部分酸化反応が行われないか又は部分酸化反応による発熱量が極めて小さくなる。   In the fuel cell system 11, for example, a separation membrane (a porous material separation membrane such as polyimide or ceramic) that selectively transmits only water vapor in the cathode offgas is provided in the water vapor supply line 40, or reforming water vapor is supplied. By introducing it from outside the system, a configuration in which oxygen is not supplied to the reforming flow path 18 or a configuration in which the amount of oxygen supplied (O / C ratio) to carbon in the hydrocarbon raw material is reduced can be achieved. In these configurations, the main reaction of the reforming reaction in the heat exchange reformer 10 is a steam reforming reaction, and the partial oxidation reaction is not performed or the heat generation amount due to the partial oxidation reaction becomes extremely small.

(熱交換型改質器の構成)
図2には、熱交換型改質器10が分解斜視図にて示されている。この図に示される如く、熱交換型改質器10は、積層された複数の単位プレート部材50、51間に改質部としての改質流路18、加熱部としての燃焼流路20が、単位プレート部材50、51のプレート部52を隔壁として隔てられた独立したガス流路として形成されている。この実施形態では、改質流路18と燃焼流路20とは積層方向(プレート部52の厚み方向)に交互に配置されており、プレート部52を介して隣接している。以下、具体的に説明する。
(Configuration of heat exchange type reformer)
FIG. 2 shows the heat exchange type reformer 10 in an exploded perspective view. As shown in this figure, the heat exchange type reformer 10 has a reforming channel 18 as a reforming unit and a combustion channel 20 as a heating unit between a plurality of unit plate members 50 and 51 stacked. The unit plate members 50 and 51 are formed as independent gas flow paths separated by the plate portions 52 as partition walls. In this embodiment, the reforming flow path 18 and the combustion flow path 20 are alternately arranged in the stacking direction (thickness direction of the plate portion 52), and are adjacent to each other via the plate portion 52. This will be specifically described below.

単位プレート部材50は、平板状に形成されたプレート部52を備えている。プレート部52は、平面視で、長方形状とされた並行流部52Aの長手方向両側に、それぞれ流れ方向変換部52B、52Cが連設されて構成されている。この実施形態では、流れ方向変換部52B、52Cは、それぞれ並行流部52A(長方形)の短辺に底辺を一致させた如き三角形状に形成されており、このためプレート部52は全体として略六角形状に形成されている。各単位プレート部材50は、プレート部52の周縁から改質流路18の形成側に立設された外壁54を備えている。   The unit plate member 50 includes a plate portion 52 formed in a flat plate shape. The plate part 52 is configured such that flow direction conversion parts 52B and 52C are connected to both sides in the longitudinal direction of a parallel flow part 52A that is rectangular in a plan view. In this embodiment, the flow direction conversion parts 52B and 52C are each formed in a triangular shape such that the bottom side coincides with the short side of the parallel flow part 52A (rectangular shape). It is formed into a shape. Each unit plate member 50 includes an outer wall 54 erected from the periphery of the plate portion 52 on the side where the reforming flow path 18 is formed.

外壁54は、方向変換部52B、52Cの各一辺部分を除きプレート部52の全周から立設されることで、積層された単位プレート部材50、51間に改質流路18を形成するスペーサ機能、改質流路18からのガス流出を防止する外壁機能を果たすと共に、流れ方向変換部52B側のガス入口50A、流れ方向変換部52C側のガス出口50Bを形成している。ガス入口50A、ガス出口50Bは、プレート部52の図心に対し対称に形成されている。   The outer wall 54 is a spacer that forms the reforming flow path 18 between the stacked unit plate members 50 and 51 by being erected from the entire circumference of the plate portion 52 except for each side portion of the direction changing portions 52B and 52C. In addition to fulfilling the function and the outer wall function of preventing gas outflow from the reforming flow path 18, the gas inlet 50A on the flow direction changing portion 52B side and the gas outlet 50B on the flow direction changing portion 52C side are formed. The gas inlet 50 </ b> A and the gas outlet 50 </ b> B are formed symmetrically with respect to the centroid of the plate portion 52.

また、単位プレート部材50のプレート部52における改質流路18の形成側からは、改質流路18を複数の平行流路に区画する複数の立壁(隔壁)56が立設されている。各立壁56は、ガス入口50Aからガス出口50Bまで、外壁54と略平行とされており、改質流路18を複数の分割流路(マイクロチャンネル)58に区画する構成とされている。各分割流路58は、上記したガス入口50A、ガス出口50Bの対称配置によって、ガス入口50Aからガス出口50Bまでの流路長が略一定となるクランク状に形成されている。また、各分割流路58における並行流部52Aにおいて該並行流部52Aの長手方向に沿った部分は、それぞれ熱交換流路58Aとされている。   A plurality of standing walls (partition walls) 56 that divide the reforming channel 18 into a plurality of parallel channels are provided upright from the side of the plate portion 52 of the unit plate member 50 where the reforming channel 18 is formed. Each standing wall 56 is substantially parallel to the outer wall 54 from the gas inlet 50 </ b> A to the gas outlet 50 </ b> B, and is configured to partition the reforming channel 18 into a plurality of divided channels (microchannels) 58. Each divided flow path 58 is formed in a crank shape in which the flow path length from the gas inlet 50A to the gas outlet 50B is substantially constant by the symmetrical arrangement of the gas inlet 50A and the gas outlet 50B. Moreover, in the parallel flow part 52A in each divided flow path 58, a portion along the longitudinal direction of the parallel flow part 52A is a heat exchange flow path 58A.

単位プレート部材51は、単位プレート部材50を構成するプレート部52と同じ形状のプレート部52を備えており、またプレート部52の周縁から燃焼流路20の形成側に立設された外壁60を備えている。外壁60は、方向変換部52B、52Cにおける各一辺部分を除きプレート部52の全周から立設されることで、積層された単位プレート部材51、50間に燃焼流路20を形成するスペーサ機能、燃焼流路20からのガス流出を防止する外壁機能を果たすと共に、流れ方向変換部52B側のガス入口51A、流れ方向変換部52C側のガス出口51Bを形成している。   The unit plate member 51 includes a plate portion 52 having the same shape as the plate portion 52 constituting the unit plate member 50, and an outer wall 60 standing on the formation side of the combustion flow path 20 from the periphery of the plate portion 52. I have. The outer wall 60 is erected from the entire circumference of the plate portion 52 except for each one side portion in the direction changing portions 52B and 52C, thereby forming a combustion channel 20 between the stacked unit plate members 51 and 50. In addition to fulfilling the outer wall function of preventing gas outflow from the combustion flow path 20, a gas inlet 51A on the flow direction changing portion 52B side and a gas outlet 51B on the flow direction changing portion 52C side are formed.

ガス入口51Aは、並行流部52Aに対し単位プレート部材50のガス入口50Aと長手方向の同じ側(図2の矢印A側)において、異なる向きを向いて開口するように形成されている。また、ガス出口51Bは、並行流部52Aに対し単位プレート部材50のガス出口50Bと長手方向の同じ側(図2の矢印B側)において、異なる向きを向いて開口するように形成されている。   The gas inlet 51A is formed so as to open in a different direction with respect to the parallel flow portion 52A on the same side in the longitudinal direction as the gas inlet 50A of the unit plate member 50 (arrow A side in FIG. 2). Further, the gas outlet 51B is formed to open in a different direction with respect to the parallel flow portion 52A on the same side in the longitudinal direction as the gas outlet 50B of the unit plate member 50 (arrow B side in FIG. 2). .

また、単位プレート部材51のプレート部52における改質流路18の形成側からは、燃焼流路20を複数の平行流路に区画する複数の立壁(隔壁)62が立設されている。各立壁62は、ガス入口51Aからガス出口51Bまで、外壁60と略平行とされており、燃焼流路20を複数の分割流路(マイクロチャンネル)64に区画する構成とされている。各分割流路64は、上記したガス入口51A、ガス出口51Bの対称配置によって、ガス入口51Aからガス出口51Bまでの流路長が略一定となるクランク状に形成されている。また、各分割流路64における並行流部52Aにおいて該並行流部52Aの長手方向に沿った部分は、それぞれ熱交換流路64Aとされている。   A plurality of standing walls (partition walls) 62 that divide the combustion channel 20 into a plurality of parallel channels are provided upright from the side of the plate portion 52 of the unit plate member 51 where the reforming channel 18 is formed. Each standing wall 62 is substantially parallel to the outer wall 60 from the gas inlet 51 </ b> A to the gas outlet 51 </ b> B, and is configured to partition the combustion channel 20 into a plurality of divided channels (microchannels) 64. Each divided flow path 64 is formed in a crank shape in which the flow path length from the gas inlet 51A to the gas outlet 51B is substantially constant due to the symmetrical arrangement of the gas inlet 51A and the gas outlet 51B. Moreover, in the parallel flow part 52A in each divided flow path 64, a portion along the longitudinal direction of the parallel flow part 52A is a heat exchange flow path 64A.

以上説明した熱交換型改質器10は、上記の通りガス入口50A、51Aが並行流部52A(熱交換流路58A、64A)に対する同じ側(矢印A側)に位置すると共に、ガス出口50B、51Bが並行流部52Aに対する同じ側(矢印B側)に位置することで、各層の熱交換流路58A、熱交換流路64Aでのガス流れ方向がそれぞれ同じ方向(矢印F方向)とされている。   In the heat exchange type reformer 10 described above, the gas inlets 50A and 51A are located on the same side (arrow A side) with respect to the parallel flow part 52A (heat exchange flow paths 58A and 64A) as described above, and the gas outlet 50B. , 51B are located on the same side (arrow B side) with respect to the parallel flow portion 52A, the gas flow directions in the heat exchange flow path 58A and the heat exchange flow path 64A of each layer are the same direction (arrow F direction). ing.

また、以上説明した単位プレート部材50、単位プレート部材51は、例えばステンレス鋼などの金属材や中実の(多孔体ではない)セラミック材にて、各部(プレート部52・外壁54・立壁56、又はプレート部52・外壁60・立壁62)が一体的に形成されている。また、単位プレート部材50と単位プレート部材51とは、プレート部52と外壁54又は外壁60(各立壁56、62)とが、例えばろう材を用いたろう付け、拡散接合、又はセラミックボンドによる接着等によって気密に接合されている。   The unit plate member 50 and the unit plate member 51 described above are made of, for example, a metal material such as stainless steel or a solid (not porous) ceramic material, and each part (plate portion 52, outer wall 54, standing wall 56, Alternatively, the plate portion 52, the outer wall 60, and the standing wall 62) are integrally formed. In addition, the unit plate member 50 and the unit plate member 51 are configured such that the plate portion 52 and the outer wall 54 or the outer wall 60 (respective standing walls 56 and 62) are, for example, brazed using a brazing material, diffusion bonding, or adhesion using a ceramic bond. Are airtightly joined.

熱交換型改質器10における各層のガス入口50Aの開口部分には、改質原料(炭化水素)及び水蒸気(カソードオフガス)が導入される原料入口18A及び水蒸気入口18Cが形成された図示しない改質入口マニホルドが接続されている。熱交換型改質器10における各層のガス出口50Bの開口部分には、水素含有ガスを放出する改質ガス出口18Bが形成された図示しない改質出口マニホルドが接続されている。一方、熱交換型改質器10における各層のガス入口51Aの開口部分には、燃料(アノードオフガス)及び支燃ガス(冷却オフガス)が燃料入口20A及び支燃ガス入口20Cが形成された図示しない燃焼入口マニホルドが接続されている。熱交換型改質器10におけるガス各層の出口51Bの開口部分には、燃焼排ガス排出する燃焼流路20の排ガス出口20Bが形成された図示しない排ガス出口マニホルドが接続されている。   In the heat exchange type reformer 10, the raw material inlet 18A and the steam inlet 18C into which the reforming raw material (hydrocarbon) and water vapor (cathode off-gas) are introduced are formed in the opening portions of the gas inlets 50A of the respective layers. A quality inlet manifold is connected. A reforming outlet manifold (not shown) in which a reforming gas outlet 18B for releasing a hydrogen-containing gas is formed is connected to the opening portion of the gas outlet 50B of each layer in the heat exchange type reformer 10. On the other hand, in the opening portion of the gas inlet 51A of each layer in the heat exchange reformer 10, the fuel (anode off gas) and the combustion support gas (cooling off gas) are formed with the fuel inlet 20A and the combustion support gas inlet 20C (not shown). A combustion inlet manifold is connected. An exhaust gas outlet manifold (not shown) in which an exhaust gas outlet 20B of the combustion flow path 20 for discharging the combustion exhaust gas is formed is connected to an opening portion of the outlet 51B of each gas layer in the heat exchange reformer 10.

そして、以上説明した熱交換型改質器10は、単位プレート部材50における分割流路58の内面に改質触媒22が担持されており、単位プレート部材51における分割流路64の内面に酸化触媒24が担持されている。各立壁56、62の図示を省略した分解平面図である図1に示される如く、改質触媒22は、分割流路58(改質流路18)におけるガス入口50A側の一部を除く所定範囲に亘って担持されており、酸化触媒24は、分割流路64(燃焼流路20)におけるガス入口51A側の一部を除く所定範囲に亘って担持されている。   In the heat exchange type reformer 10 described above, the reforming catalyst 22 is carried on the inner surface of the divided flow path 58 in the unit plate member 50, and the oxidation catalyst is formed on the inner surface of the divided flow path 64 in the unit plate member 51. 24 is carried. As shown in FIG. 1 which is an exploded plan view in which the standing walls 56 and 62 are not shown, the reforming catalyst 22 is a predetermined excluding a part on the gas inlet 50A side in the divided flow path 58 (reforming flow path 18). The oxidation catalyst 24 is supported over a predetermined range excluding a part of the divided flow path 64 (combustion flow path 20) on the gas inlet 51A side.

より具体的には、改質触媒22は、改質原料が供給されるガス流れ方向の上流側(矢印A側)の端部である上流側担持端22Aが、各分割流路58における熱交換流路58Aの上流端に対し上流側にオフセットしている。一方、酸化触媒24は、燃料が供給されるガス流れ方向の上流側(矢印A側)の端部である上流側担持端24Aが、各分割流路64における熱交換流路64Aの上流端に略一致している。したがって、並交流型の熱交換型改質器10では、改質流路18における改質触媒22の担持範囲が、燃焼流路20における酸化触媒24の担持範囲に対し、ガス流れ方向の上流側に広い構成とされている。   More specifically, in the reforming catalyst 22, the upstream carrying end 22 </ b> A that is the end on the upstream side (arrow A side) in the gas flow direction to which the reforming raw material is supplied is heat exchanged in each divided flow path 58. It is offset upstream from the upstream end of the flow path 58A. On the other hand, in the oxidation catalyst 24, the upstream carrying end 24A, which is the upstream end (arrow A side) in the gas flow direction to which fuel is supplied, is located at the upstream end of the heat exchange flow path 64A in each divided flow path 64. It is almost coincident. Therefore, in the parallel AC heat exchange type reformer 10, the supporting range of the reforming catalyst 22 in the reforming channel 18 is upstream of the supporting range of the oxidation catalyst 24 in the combustion channel 20 in the gas flow direction. It has a wide configuration.

熱交換型改質器10では、ガス出口50B、ガス出口51Bから導入したスラリ状の触媒担体をガス入口50A、ガス入口51Aから独立して吸引することで、改質流路18の分割流路58と燃焼流路20の分割流路64とで触媒担体の設置範囲を異ならせ、その後各分割流路58、64に設置された触媒担体に改質触媒22、酸化触媒24を担持させることで、上記の通り改質触媒22と酸化触媒24とで触媒担持範囲を異ならせている。上流側担持端22A、上流側担持端24A(制御ライン)で触媒担体の吸引を停止するために、例えば各分割流路58、64の代表的な一部又は全部に配置され触媒担体を検出する触媒センサの検出信号を用いることができる。   In the heat exchange type reformer 10, the slurry-like catalyst carrier introduced from the gas outlet 50B and the gas outlet 51B is sucked independently from the gas inlet 50A and the gas inlet 51A, so that the divided flow path of the reforming flow path 18 is obtained. 58 and the divided flow path 64 of the combustion flow path 20 are made different in the installation range of the catalyst carrier, and then the reforming catalyst 22 and the oxidation catalyst 24 are supported on the catalyst carrier installed in the respective divided flow paths 58 and 64. As described above, the reforming catalyst 22 and the oxidation catalyst 24 have different catalyst carrying ranges. In order to stop the suction of the catalyst carrier at the upstream carrier end 22A and the upstream carrier end 24A (control line), for example, the catalyst carrier is detected in a representative part or all of each of the divided flow paths 58 and 64. The detection signal of the catalyst sensor can be used.

次に、第1の実施形態の作用を説明する。   Next, the operation of the first embodiment will be described.

上記構成の燃料電池システム11では、原料ポンプ26、カソード用空気ポンプ36の作動によって、原料供給ライン28から熱交換型改質器10の改質流路18に炭化水素原料、水蒸気(カソードオフガス)が導入される。熱交換型改質器10の改質流路18内では、燃焼流路20からの熱供給を受けつつ導入された炭化水素原料を水蒸気と共に改質触媒22に接触させることで式(1)の水蒸気改質反応、式(2)の部分酸化反応を含む改質反応(上式(1)〜(4)参照)が行われ、水素を高濃度で含有する改質ガスが生成される。   In the fuel cell system 11 having the above-described configuration, the hydrocarbon raw material, water vapor (cathode offgas) is supplied from the raw material supply line 28 to the reforming passage 18 of the heat exchange reformer 10 by the operation of the raw material pump 26 and the cathode air pump 36. Is introduced. In the reforming flow path 18 of the heat exchange type reformer 10, the hydrocarbon raw material introduced while receiving heat supply from the combustion flow path 20 is brought into contact with the reforming catalyst 22 together with water vapor to satisfy the equation (1). A reforming reaction (see the above formulas (1) to (4)) including a steam reforming reaction and a partial oxidation reaction of the formula (2) is performed, and a reformed gas containing hydrogen at a high concentration is generated.

改質流路18で生成された改質ガスは、アノード電極14の燃料入口14Aからアノード電極14に供給される。燃料電池12では、アノード電極14に供給された改質ガス中の水素がプロトン化され、このプロトンが電解質を経由してカソード電極16に移動して該カソード電極16に導入された空気中の酸素と反応する。このプロトンの移動に伴って電子がアノード電極14から外部導体を通じてカソード電極に向けて流れ、発電が行われる。   The reformed gas generated in the reforming channel 18 is supplied to the anode electrode 14 from the fuel inlet 14 </ b> A of the anode electrode 14. In the fuel cell 12, hydrogen in the reformed gas supplied to the anode electrode 14 is protonated, and this proton moves to the cathode electrode 16 through the electrolyte and is introduced into the cathode electrode 16. React with. As the protons move, electrons flow from the anode electrode 14 toward the cathode electrode through the external conductor, and power generation is performed.

この発電によって燃料電池12では、アノード電極14に供給された改質ガス中の水素、カソード電極16に供給されたカソード用空気中の酸素が発電量(負荷の電力消費量)に応じて消費され、カソード電極16では水(運転温度において水蒸気)が生成される。この水蒸気を含むガスは、上記の通りカソードオフガスとしてカソード電極16から水蒸気供給ライン40に押し出され、水蒸気入口18Cから改質流路18に導入される。   With this power generation, in the fuel cell 12, hydrogen in the reformed gas supplied to the anode electrode 14 and oxygen in the cathode air supplied to the cathode electrode 16 are consumed according to the power generation amount (load power consumption). The cathode electrode 16 generates water (water vapor at the operating temperature). The gas containing water vapor is pushed out from the cathode electrode 16 to the water vapor supply line 40 as the cathode off gas as described above, and is introduced into the reforming flow path 18 from the water vapor inlet 18C.

一方、発電に伴って改質ガス中の水素が発電量に応じて消費された後のガスは、アノードオフとしてアノード電極14から排出され、このアノードオフガスは、アノードオフガスライン32を経由して、熱交換型改質器10の燃焼流路20に供給される。また、燃焼流路20には、支燃ガス供給ライン46から燃料電池12を冷却した後の冷却オフガスが供給される。この燃焼流路20では、燃料であるアノードオフガス中の可燃成分を、冷却オフガス中の酸素を支燃ガスと共に酸化触媒24に接触させることで触媒燃焼が生じる。この触媒燃焼によって生じた熱は、プレート部52を介して改質流路18に供給される。この熱によって改質流路18では、吸熱反応である改質反応を維持すると共に運転温度(改質ガス温)を改質反応に必要な温度に保つ。   On the other hand, the gas after the hydrogen in the reformed gas is consumed according to the amount of power generated along with the power generation is discharged from the anode electrode 14 as the anode off, and this anode off gas passes through the anode off gas line 32, It is supplied to the combustion flow path 20 of the heat exchange type reformer 10. The combustion flow path 20 is supplied with the cooling off gas after cooling the fuel cell 12 from the combustion support gas supply line 46. In the combustion flow path 20, catalytic combustion occurs when the combustible component in the anode off-gas, which is fuel, is brought into contact with the oxidation catalyst 24 together with the oxygen in the cooling off-gas together with the combustion support gas. The heat generated by this catalytic combustion is supplied to the reforming flow path 18 via the plate portion 52. With this heat, the reforming flow path 18 maintains the reforming reaction, which is an endothermic reaction, and maintains the operating temperature (reformed gas temperature) at a temperature necessary for the reforming reaction.

以上により、燃料電池システム11では、熱交換型改質器10に炭化水素原料を供給すると共に、燃料電池12の各排出ガス(水蒸気を含むカソードオフガス、可燃成分を含むアノードオフガス、酸素を含む冷却オフガス)を有効利用して、該燃料電池12に供給する水素を生成する熱交換型改質器10の運転を維持する。   As described above, in the fuel cell system 11, the hydrocarbon raw material is supplied to the heat exchange type reformer 10, and each exhaust gas of the fuel cell 12 (cathode off-gas containing water vapor, anode off-gas containing combustible components, cooling containing oxygen). The operation of the heat exchange reformer 10 that generates hydrogen to be supplied to the fuel cell 12 is maintained by effectively using off gas).

ところで、改質流路18における改質反応は、改質原料の入口側すなわち改質触媒22担持範囲の上流側担持端22A側で吸熱のピークを生じる。また、燃焼流路20燃焼反応は、燃料の入口側すなわち酸化触媒24担持範囲の上流側担持端24A側で発熱のピークを生じる。このため、例えば、直交流型の熱交換型改質器では、改質部と加熱部とでガス流れ方向が交差するので、構造上、局所的な高温部が発生してしまう問題がある。また例えば、対向流型の熱交換型改質器は、改質部と加熱部との吸発熱のピークが熱交換部におけるガス流方向反対側の端部で生じるので、改質器における熱交換器としては不向きである。   By the way, the reforming reaction in the reforming channel 18 generates an endothermic peak on the reforming raw material inlet side, that is, on the upstream supporting end 22A side of the reforming catalyst 22 supporting range. In addition, the combustion reaction of the combustion channel 20 causes a peak of heat generation on the fuel inlet side, that is, on the upstream carrying end 24A side of the oxidation catalyst 24 carrying range. For this reason, for example, in the cross-flow type heat exchange type reformer, the gas flow direction intersects between the reforming section and the heating section, so that there is a problem that a local high temperature section is generated due to the structure. Further, for example, in the counter flow type heat exchange type reformer, since the peak of the endothermic heat generation between the reforming part and the heating part occurs at the end of the heat exchange part opposite to the gas flow direction, the heat exchange in the reformer It is unsuitable as a vessel.

ここで、熱交換型改質器10では、改質流路18の熱交換流路58Aと燃焼流路20の熱交換流路64Aとでガス流れ方向が同じである並行流型熱交換器を構成しているため、換言すれば、改質反応において改質原料が供給されるガス入口50A側で生じる吸熱のピークと、燃焼反応において燃料が供給されるガス入口51A側で生じる発熱のピークとをガス流れ方向の同じ側に制御することができるため、改質流路18と燃焼流路20との間の熱交換効率が向上する。これにより、熱交換型改質器10では、燃焼流路20での発熱を有効に利用して効率的に改質による水素生成を行うことができる。   Here, in the heat exchange type reformer 10, a parallel flow type heat exchanger having the same gas flow direction in the heat exchange channel 58A of the reforming channel 18 and the heat exchange channel 64A of the combustion channel 20 is used. In other words, in other words, the endothermic peak generated on the gas inlet 50A side where the reforming raw material is supplied in the reforming reaction, and the exothermic peak generated on the gas inlet 51A side where the fuel is supplied in the combustion reaction. Therefore, the heat exchange efficiency between the reforming flow path 18 and the combustion flow path 20 is improved. Thereby, in the heat exchange type reformer 10, it is possible to efficiently generate hydrogen by reforming by effectively using the heat generated in the combustion flow path 20.

このように、第1の実施形態に係る熱交換型改質器10では、燃焼流路20と改質流路18との熱交換効率が良好である。   Thus, in the heat exchange type reformer 10 according to the first embodiment, the heat exchange efficiency between the combustion channel 20 and the reforming channel 18 is good.

また、熱交換型改質器10では、改質触媒22の担持範囲が酸化触媒24の担持範囲に対して上流側に広いため、改質反応と燃焼反応との反応速度差に起因する局所的な高温部の発生が防止される。以下、図8に示す比較例と比較しつつ説明する。図8(A)に示す第1比較例に係る熱交換型改質器200では、改質触媒22の担持範囲と酸化触媒24の担持範囲とが一致している。このような熱交換型改質器200では、燃焼反応の反応速度が改質反応の反応速度に対し著しく速いことから、図3(B)に示される如く燃焼反応の発熱ピークPcに対し改質反応の発熱ピークPrが下流側にずれる傾向を示す。このため、熱交換型改質器200では、改質触媒22の上流側担持端22A、酸化触媒24の上流側担持端24A近傍の局所的な領域で吸熱量に対し発熱量が過剰になり、図8(B)に示す如き局所的な高温部位H(局所的な高温状態)が発生することが懸念される。特に、図9(A)に示される第2比較例に係る熱交換型改質器210の如く、触媒担持精度の不足や局所的な触媒剥がれ等によってガス入口51A側で酸化触媒24の担持範囲が改質触媒22の担持範囲よりも広くなっている場合、図9(B)に示す如き局所的な高温部位Hが一層(広範囲で)発生しやすくなる。   Further, in the heat exchange type reformer 10, since the supported range of the reforming catalyst 22 is wide on the upstream side with respect to the supported range of the oxidation catalyst 24, local reformation due to the reaction rate difference between the reforming reaction and the combustion reaction is caused. Generation of a high temperature part is prevented. Hereinafter, a description will be given in comparison with the comparative example shown in FIG. In the heat exchange type reformer 200 according to the first comparative example shown in FIG. 8A, the supporting range of the reforming catalyst 22 and the supporting range of the oxidation catalyst 24 are the same. In such a heat exchange type reformer 200, since the reaction rate of the combustion reaction is remarkably faster than the reaction rate of the reforming reaction, reforming is performed on the exothermic peak Pc of the combustion reaction as shown in FIG. The exothermic peak Pr of the reaction tends to shift downstream. For this reason, in the heat exchange type reformer 200, the heat generation amount becomes excessive with respect to the heat absorption amount in a local region in the vicinity of the upstream support end 22A of the reforming catalyst 22 and the upstream support end 24A of the oxidation catalyst 24, There is concern that a local high-temperature site H (local high-temperature state) as shown in FIG. In particular, like the heat exchange type reformer 210 according to the second comparative example shown in FIG. 9A, the supporting range of the oxidation catalyst 24 on the gas inlet 51A side due to insufficient catalyst supporting accuracy, local catalyst peeling, or the like. Is wider than the supporting range of the reforming catalyst 22, local high-temperature sites H as shown in FIG. 9B are more likely to be generated (over a wide range).

これに対して熱交換型改質器10では、上記の如く改質触媒22の担持範囲が酸化触媒24の担持範囲に対して上流側に広いため、図3(A)に示される如く、熱交換型改質器200(想像線参照)と比較して改質反応の発熱ピークPrが燃焼反応の発熱ピークPcに近づき(上流側にシフトし)、換言すれば、改質反応の反応速度の遅さが補完され、局所的な高温状態の発生を回避することができる。また、改質触媒22の上流側担持端22Aを酸化触媒24の上流側担持端24Aよりも上流側に設定することで、触媒担持精度の不足(誤差)が吸収され、また局所的な剥がれの許容代が形成されるので、酸化触媒24の担持範囲に改質触媒22の非担持領域が形成される確率を著しく低減することができる。すなわち、局所的な高温部の発生リスクを大幅に軽減することができる。   On the other hand, in the heat exchange type reformer 10, since the support range of the reforming catalyst 22 is wide on the upstream side with respect to the support range of the oxidation catalyst 24 as described above, as shown in FIG. Compared to exchangeable reformer 200 (see imaginary line), exothermic peak Pr of the reforming reaction approaches the exothermic peak Pc of the combustion reaction (shifts upstream), in other words, the reaction rate of the reforming reaction is increased. Slowness is complemented and the occurrence of local high temperature conditions can be avoided. Further, by setting the upstream carrying end 22A of the reforming catalyst 22 on the upstream side of the upstream carrying end 24A of the oxidation catalyst 24, the lack of catalyst carrying accuracy (error) is absorbed and local peeling is prevented. Since the allowance is formed, the probability that the unsupported region of the reforming catalyst 22 is formed in the supporting range of the oxidation catalyst 24 can be significantly reduced. That is, it is possible to greatly reduce the risk of occurrence of local high temperature parts.

さらに、熱交換型改質器10では、上記した通り改質反応に式(2)で示す部分酸化反応を含む(O/C比が高い条件で運転される)ため、改質反応の初期には、改質流路18(熱交換流路58Aの上流側の一部)において部分酸化反応に伴う発熱が生じる。このため、図3(A)に破線にして示す如く、改質反応の初期には部分酸化反応を伴わない反応と比較して吸熱量の小さい領域が存在する。ここで、熱交換型改質器10では、上記の通り改質触媒22の上流側担持端22Aが酸化触媒24の上流側担持端24Aよりも上流側に位置するため、改質流路18の初期には部分酸化反応に伴う発熱を水蒸気改質反応に利用し、部分酸化反応の収束後に燃焼流路20からの熱供給によって水蒸気改質反応を維持する。これにより、ガス流れ方向の各部での吸発熱がバランスされる(吸発熱の分布(の傾向)が一致する)と共に、熱交換型改質器10全体(システム)としての熱収支が最適化される。   Further, in the heat exchange type reformer 10, since the reforming reaction includes the partial oxidation reaction represented by the formula (2) as described above (operated under a condition where the O / C ratio is high), Generates heat associated with the partial oxidation reaction in the reforming channel 18 (part of the upstream side of the heat exchange channel 58A). For this reason, as shown by a broken line in FIG. 3A, there is a region where the endothermic amount is small in the initial stage of the reforming reaction as compared with the reaction not involving the partial oxidation reaction. Here, in the heat exchange type reformer 10, since the upstream carrying end 22A of the reforming catalyst 22 is located upstream from the upstream carrying end 24A of the oxidation catalyst 24 as described above, Initially, the heat generated by the partial oxidation reaction is used for the steam reforming reaction, and the steam reforming reaction is maintained by supplying heat from the combustion channel 20 after the partial oxidation reaction is converged. As a result, the heat absorption and heat generation at each part in the gas flow direction are balanced (the distribution of the heat absorption and heat generation (the tendency) coincides), and the heat balance of the heat exchange reformer 10 as a whole (system) is optimized. The

なお、改質流路18に酸素が供給されない条件、又は炭化水素原料に対する酸素供給量が少ない低O/C比の条件では、改質流路18では部分酸化反応が生ぜず又は部分酸化反応による発熱が著しく小さい。この場合でも上記した並行流熱交換型の熱交換型改質器10としての効果、局所的な高温状態発生の抑制効果を得ることができることは言うまでもない。この場合、改質触媒22の上流側担持端22Aと酸化触媒24の上流側担持端24Aとのガス流れ方向のオフセット量は、部分酸化反応を伴う条件又は高O/C比の条件で運転される構成と比較して小さく設定することができる。   In the condition where oxygen is not supplied to the reforming channel 18 or the condition of the low O / C ratio where the amount of oxygen supplied to the hydrocarbon raw material is small, partial reforming reaction does not occur in the reforming channel 18 or due to partial oxidation reaction. Fever is extremely small. Even in this case, it goes without saying that the effect as the above-described parallel flow heat exchange type heat exchange reformer 10 and the effect of suppressing the occurrence of a local high temperature state can be obtained. In this case, the amount of offset in the gas flow direction between the upstream carrying end 22A of the reforming catalyst 22 and the upstream carrying end 24A of the oxidation catalyst 24 is operated under conditions involving partial oxidation reaction or high O / C ratio. It can be set smaller than the configuration.

次に、本発明の他の実施形態を説明する。なお、上記第1の実施形態又は前出の構成と基本的に同一の部品・部分については上記第1の実施形態又は前出の構成と同一の符号を付して説明を省略し、図示を省略する場合もある。   Next, another embodiment of the present invention will be described. Parts and portions that are basically the same as those in the first embodiment or the previous configuration are denoted by the same reference numerals as those in the first embodiment or the previous configuration, and the description thereof is omitted. Sometimes omitted.

(第2の実施形態)
図5には、本発明の第2の実施形態に係る熱交換型改質器70が図1に対応する分解平面図にて示されている。この図に示される如く、熱交換型改質器70は、改質触媒22の担持範囲が酸化触媒24の担持範囲に対して上流側に広い点で第1の実施形態に係る熱交換型改質器10と共通し、改質触媒22の上流側担持端22Aが熱交換流路58Aの上流端に略一致する点で熱交換型改質器10とは異なる。したがって、熱交換型改質器70では、熱交換流路64Aの上流端側の一部が酸化触媒24の非担持領域とされている。熱交換型改質器70の他の構成は、熱交換型改質器10の対応する構成と同じである。
(Second Embodiment)
FIG. 5 shows an exploded plan view of a heat exchange type reformer 70 according to the second embodiment of the present invention corresponding to FIG. As shown in this figure, the heat exchange type reformer 70 is different from the heat exchange type reformer 70 according to the first embodiment in that the supporting range of the reforming catalyst 22 is wider upstream than the supporting range of the oxidation catalyst 24. In common with the mass device 10, it differs from the heat exchange type reformer 10 in that the upstream carrying end 22 </ b> A of the reforming catalyst 22 substantially coincides with the upstream end of the heat exchange flow path 58 </ b> A. Therefore, in the heat exchange type reformer 70, a part of the upstream end side of the heat exchange flow path 64A is set as a non-supporting region of the oxidation catalyst 24. Other configurations of the heat exchange reformer 70 are the same as the corresponding configurations of the heat exchange reformer 10.

このように、第2の実施形態に係る熱交換型改質器70では、上記の通り改質触媒22の担持範囲が酸化触媒24の担持範囲に対して上流側に広いで第1の実施形態に係る熱交換型改質器10と共通するため、熱交換型改質器70によっても熱交換型改質器10と同様の作用によって同様の効果を得ることができる。すなわち、熱交換型改質器70では、燃焼反応による高発熱部位と改質反応による高吸熱部位とを良好に一致させることができる。   As described above, in the heat exchange type reformer 70 according to the second embodiment, the supporting range of the reforming catalyst 22 is wide on the upstream side with respect to the supporting range of the oxidation catalyst 24 as described above. Therefore, the heat exchange reformer 70 can obtain the same effect by the same operation as the heat exchange reformer 10. That is, in the heat exchange type reformer 70, the high heat generation site due to the combustion reaction and the high heat absorption site due to the reforming reaction can be matched well.

なお、本発明は、改質触媒22、酸化触媒24の担持範囲の上流側担持端22A、24Aが並行流部52A(熱交換流路58A、64A)の上流端を基準にするとことに限定されることはない。但し、良好な熱交換性能を得る(小型化を図る)ために、熱交換流路58A、64Aの体積を有効利用することが望ましい。   The present invention is limited to the fact that the upstream carrying ends 22A and 24A in the carrying range of the reforming catalyst 22 and the oxidation catalyst 24 are based on the upstream end of the parallel flow portion 52A (heat exchange flow paths 58A and 64A). Never happen. However, it is desirable to effectively use the volumes of the heat exchange channels 58A and 64A in order to obtain good heat exchange performance (to achieve downsizing).

(第3の実施形態)
図6には、本発明の第3の実施形態に係る熱交換型改質器80が図1に対応する分解平面図にて示されている。この図に示される如く、熱交換型改質器80は、各改質流路18(分割流路58)、燃焼流路20(分割流路64)における改質触媒22、酸化触媒24の担持範囲は、熱交換型改質器70における改質触媒22、酸化触媒24の担持範囲と同等であるが、改質触媒22の一部が他の部分よりも高担持濃度とされている点で、第2の実施形態に係る熱交換型改質器70とは異なる。
(Third embodiment)
FIG. 6 shows an exploded plan view corresponding to FIG. 1 of a heat exchange type reformer 80 according to a third embodiment of the present invention. As shown in this figure, the heat exchange type reformer 80 carries the reforming catalyst 22 and the oxidation catalyst 24 in each reforming channel 18 (divided channel 58) and combustion channel 20 (divided channel 64). The range is equivalent to the supported range of the reforming catalyst 22 and the oxidation catalyst 24 in the heat exchange type reformer 70, except that a part of the reforming catalyst 22 has a higher supporting concentration than the other parts. This is different from the heat exchange type reformer 70 according to the second embodiment.

具体的には、改質触媒22の上流側担持端22Aからガス流れ方向に沿った所定距離L1までの範囲が、改質触媒22の担持範囲における他の部分よりも改質触媒22の担持濃度が高い(濃い)高濃度担持領域22Bとされている。この実施形態では、高濃度担持領域22Bの下流端は、酸化触媒24の上流側担持端24Aよりもわずかに下流側に位置している。換言すれば、酸化触媒24の上流側担持端24A(燃焼開始位置)は、改質触媒22の高濃度担持領域22Bのガス流れ方向の中間(途中)部に位置している。熱交換型改質器80の他の構成は、熱交換型改質器70、10の対応する構成と同じである。   Specifically, the supported concentration of the reforming catalyst 22 in the range from the upstream supporting end 22 </ b> A of the reforming catalyst 22 to the predetermined distance L <b> 1 along the gas flow direction is higher than the other portions in the supporting range of the reforming catalyst 22. Is a high (dense) high-concentration carrying region 22B. In this embodiment, the downstream end of the high concentration carrying region 22B is located slightly downstream from the upstream carrying end 24A of the oxidation catalyst 24. In other words, the upstream carrying end 24 </ b> A (combustion start position) of the oxidation catalyst 24 is located in the middle (intermediate) portion of the high concentration carrying region 22 </ b> B of the reforming catalyst 22 in the gas flow direction. Other configurations of the heat exchange reformer 80 are the same as the corresponding configurations of the heat exchange reformers 70 and 10.

したがって、第3の実施形態に係る80によっても、第1又は第2の実施形態に係る熱交換型改質器10、70と同様の作用によって、同様の効果を得ることができる。また、熱交換型改質器80は、改質原料の入口側端部側の所定範囲が高濃度担持領域22Bとされているため、改質触媒22の高濃度担持領域22Bでの改質反応が促進されて吸熱量が増し、改質流路18での改質反応に伴う吸熱のピークPcが上流側にシフトして燃焼流路20での燃焼発熱のピークに一層近接する。このため、熱交換型改質器80では、燃焼流路20での発熱を一層有効に利用して効率的に改質による水素生成を行うことができ、局所的な高温状態の発生が一層効果的に回避される。さらに、改質反応に部分酸化反応を伴う場合であっても、改質原料の入口側端部側すなわち高濃度担持領域22Bでの吸熱量が大きくなる熱交換型改質器80では、部分酸化反応(による発熱)が早期に収束し、ガス流れ方向の各部での吸発熱が良好にバランスされると共に、熱交換型改質器80全体(システム)としての熱収支が最適化される。   Therefore, the effect similar to that of the heat exchange reformer 10 or 70 according to the first or second embodiment can be obtained by the 80 according to the third embodiment. Further, in the heat exchange type reformer 80, since the predetermined range on the inlet side end portion side of the reforming raw material is the high concentration supporting region 22B, the reforming reaction in the high concentration supporting region 22B of the reforming catalyst 22 is performed. As a result, the endothermic amount increases, and the endothermic peak Pc accompanying the reforming reaction in the reforming channel 18 shifts to the upstream side so as to be closer to the peak of combustion exotherm in the combustion channel 20. For this reason, in the heat exchange type reformer 80, the heat generation in the combustion flow path 20 can be more effectively used to efficiently generate hydrogen by reforming, and the generation of a local high temperature state is more effective. Is avoided. Further, even when the reforming reaction involves a partial oxidation reaction, the heat exchange type reformer 80 in which the endothermic amount on the inlet side end side of the reforming raw material, that is, the high concentration supporting region 22B becomes large, is partially oxidized. The reaction (heat generation) converges early, and the heat absorption and heat generation at each part in the gas flow direction is well balanced, and the heat balance of the heat exchange reformer 80 as a whole (system) is optimized.

なお、第3の実施形態では、改質触媒22(高濃度担持領域22B)の上流側担持端22Aが酸化触媒24の上流側担持端24Aよりも上流側に位置する例を示したが、本発明はこれに限定されず、例えば、高濃度担持領域22Bの上流側担持端22Aが酸化触媒24の上流側担持端24Aに略一致する構成としても良い。この場合でも、高濃度担持領域22Bによって吸熱ピークが上流側にシフトするため、第1の実施形態に係る熱交換型改質器10と同様の効果を得ることができる。   In the third embodiment, an example is shown in which the upstream support end 22A of the reforming catalyst 22 (high concentration support region 22B) is positioned upstream of the upstream support end 24A of the oxidation catalyst 24. The invention is not limited to this. For example, the upstream carrying end 22A of the high concentration carrying region 22B may be substantially coincident with the upstream carrying end 24A of the oxidation catalyst 24. Even in this case, since the endothermic peak shifts to the upstream side by the high concentration carrying region 22B, the same effect as the heat exchange type reformer 10 according to the first embodiment can be obtained.

(第4の実施形態)
図7には、本発明の第4の実施形態に係る熱交換型改質器90が図1に対応する分解平面図にて示されている。この図に示される如く、熱交換型改質器90は、酸化触媒24の一部が他の部分よりも低担持濃度とされている点で、上記各実施形態に係る熱交換型改質器、10、70、80とは異なる。
(Fourth embodiment)
FIG. 7 shows an exploded plan view of a heat exchange type reformer 90 according to the fourth embodiment of the present invention corresponding to FIG. As shown in this figure, the heat exchange type reformer 90 is a heat exchange type reformer according to each of the above embodiments in that a part of the oxidation catalyst 24 has a lower supported concentration than the other parts. Is different from 10, 70, 80.

具体的には、酸化触媒24の上流側担持端24Aからガス流れ方向に沿った所定距離L2までの範囲が、酸化触媒24の担持範囲における他の部分よりも酸化触媒24の担持濃度が低い(薄い)低濃度担持領域24Bとされている。この実施形態では、低濃度担持領域24Bの上流端である上流側担持端24Aは、改質触媒22の上流側担持端22Aと略一致している。換言すれば、改質触媒22と低濃度担持領域24Bを含む酸化触媒24とで、少なくとも上流側の触媒担持範囲が略一致している。熱交換型改質器90の他の構成は、熱交換型改質器70、10の対応する構成と同じである。   Specifically, the supported concentration of the oxidation catalyst 24 in the range from the upstream support end 24A of the oxidation catalyst 24 to the predetermined distance L2 along the gas flow direction is lower than the other portions in the support range of the oxidation catalyst 24 ( It is a thin) low-concentration carrying region 24B. In this embodiment, the upstream carrying end 24 </ b> A that is the upstream end of the low concentration carrying region 24 </ b> B substantially coincides with the upstream carrying end 22 </ b> A of the reforming catalyst 22. In other words, the reforming catalyst 22 and the oxidation catalyst 24 including the low concentration supporting region 24B have at least approximately the same catalyst supporting range on the upstream side. Other configurations of the heat exchange reformer 90 are the same as the corresponding configurations of the heat exchange reformers 70 and 10.

したがって、第4の実施形態に係る90によっても、第1又は第2の実施形態に係る熱交換型改質器10、70と同様の作用によって、同様の効果を得ることができる。また、熱交換型改質器90は、燃焼燃料の入口側端部側の所定範囲が低濃度担持領域24Bとされているため、酸化触媒24の低濃度担持領域24Bでの燃焼反応が抑制されてピーク発熱量が低減し、発熱を生じる領域(発熱分布が)が下流側に広がって燃焼流路20での燃焼発熱のピークが改質流路18での改質反応に伴う吸熱のピークに近接する。また、上流側担持端24Aを含む低濃度担持領域24Bではピーク発熱量が低く抑えられるため、改質触媒22、24の上流側担持端22A、24Aを略一致させた構成において、局所的な高温状態の発生が一層効果的に回避される。さらに、改質反応に部分酸化反応を伴う場合であっても、燃焼流路20におけるから改質流路18への電熱量が低濃度担持領域24Bにおいて低く抑えられるため、ガス流れ方向の各部での吸発熱が良好にバランスされると共に、熱交換型改質器90全体(システム)としての熱収支が最適化される。   Therefore, also by 90 according to the fourth embodiment, the same effect can be obtained by the same operation as the heat exchange type reformers 10 and 70 according to the first or second embodiment. Further, in the heat exchange type reformer 90, since the predetermined range on the inlet side end portion side of the combustion fuel is the low concentration supporting region 24B, the combustion reaction in the low concentration supporting region 24B of the oxidation catalyst 24 is suppressed. As a result, the peak heat generation amount is reduced, the region where heat generation occurs (heat generation distribution) spreads downstream, and the peak of combustion heat generation in the combustion channel 20 becomes the endothermic peak accompanying the reforming reaction in the reforming channel 18. Proximity. Further, since the peak heat generation amount is kept low in the low-concentration support region 24B including the upstream support end 24A, a local high temperature is obtained in the configuration in which the upstream support ends 22A and 24A of the reforming catalysts 22 and 24 are substantially matched. The occurrence of the situation is more effectively avoided. Furthermore, even when the reforming reaction involves a partial oxidation reaction, the amount of electric heat from the combustion channel 20 to the reforming channel 18 can be kept low in the low concentration support region 24B. And the heat balance of the heat exchange reformer 90 as a whole (system) is optimized.

なお、第4の実施形態では、改質触媒22の上流側担持端22Aと酸化触媒24の上流側担持端24Aとが略一致する例を示したが、本発明はこれに限定されず、例えば、上記各実施形態と同様に改質触媒22の上流側担持端22Aを酸化触媒24の上流側担持端24Aよりも上流側に設定しても良い。また、第4の実施形態では、改質触媒22に高濃度担持領域22Bが設定されない例を示したが、本発明はこれに限定されず、例えば、低濃度担持領域24Bが設定された本実施形態において、改質触媒22に高濃度担持領域22Bを設定しても良い。以上のように吸発熱のピークを互いに反対側にシフトする構成を組み合わせることで、改質流路18での吸熱分布と燃焼流路20での発熱の分布とを一層良好に一致させて、吸発熱を良好にバランスさせることも可能になる。   In the fourth embodiment, an example is shown in which the upstream carrying end 22A of the reforming catalyst 22 and the upstream carrying end 24A of the oxidation catalyst 24 substantially coincide with each other. However, the present invention is not limited to this, for example, Similarly to the above embodiments, the upstream carrying end 22A of the reforming catalyst 22 may be set upstream of the upstream carrying end 24A of the oxidation catalyst 24. In the fourth embodiment, an example in which the high-concentration carrying region 22B is not set in the reforming catalyst 22 is shown. However, the present invention is not limited to this, and for example, the present embodiment in which the low-concentration carrying region 24B is set. In the embodiment, the high concentration support region 22B may be set in the reforming catalyst 22. As described above, by combining the configurations in which the peak of the endothermic heat is shifted to the opposite side, the endothermic distribution in the reforming flow path 18 and the distribution of the exothermic heat in the combustion flow path 20 are made to better match each other. It is also possible to balance heat generation well.

また、上記各実施形態では、熱交換型改質器10が燃料電池システム11に適用された例を示したが、本発明はこれに限定されず、改質原料から水素含有ガスを得るための各種熱交換型改質器であれば足り、用途によって限定されることはない。   Moreover, in each said embodiment, although the example which applied the heat exchange type | mold reformer 10 to the fuel cell system 11 was shown, this invention is not limited to this, For obtaining hydrogen-containing gas from a reforming raw material Various heat exchange type reformers are sufficient, and are not limited by the application.

さらに、上記各実施形態では、改質流路18を形成するための単位プレート部材50と燃焼流路20を形成するための単位プレート部材51とを交互に積層して熱交換型改質器10、70、80、90を構成する例を示したが、本発明はこれに限定されず、例えば、2層の改質流路18に対し1層の燃焼流路20が配置されるように単位プレート部材50、単位プレート部材51を積層しても良い。   Further, in each of the above embodiments, the unit plate member 50 for forming the reforming flow path 18 and the unit plate member 51 for forming the combustion flow path 20 are alternately stacked to heat-reform the reformer 10. , 70, 80, and 90 are shown, but the present invention is not limited to this. For example, the unit in which the one-layer combustion flow path 20 is arranged with respect to the two-layer reforming flow path 18 is shown. The plate member 50 and the unit plate member 51 may be laminated.

本発明の第1の実施形態に係る熱交換型改質器の要部を示す分解平面図である。It is a disassembled plan view which shows the principal part of the heat exchange type | mold reformer which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱交換型改質器の要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of the heat exchange type | mold reformer which concerns on the 1st Embodiment of this invention. (A)は、本発明の第1の実施形態に係る熱交換型改質器の吸発熱を示す線図、(B)は比較例に係る熱交換型改質器の吸発熱を示す線図である。(A) is a diagram showing the endothermic heat generation of the heat exchange reformer according to the first embodiment of the present invention, (B) is a diagram showing the endothermic heat generation of the heat exchange type reformer according to the comparative example. It is. 本発明の第1の実施形態に係る熱交換型改質器が適用された燃料電池システムの概略システムフロー図である。1 is a schematic system flow diagram of a fuel cell system to which a heat exchange type reformer according to a first embodiment of the present invention is applied. 本発明の第2の実施形態に係る熱交換型改質器の要部を示す分解平面図である。It is an exploded top view which shows the principal part of the heat exchange type | mold reformer which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る熱交換型改質器の要部を示す分解平面図である。It is an exploded top view which shows the principal part of the heat exchange type | mold reformer which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る熱交換型改質器の要部を示す分解平面図である。It is an exploded top view which shows the principal part of the heat exchange type | mold reformer which concerns on the 4th Embodiment of this invention. 本発明の実施形態との第1比較例に係る熱交換型改質器を示す図であって、(A)分解平面図、(B)は局所的な高温部位を示す平面図である。It is a figure which shows the heat exchange type | mold reformer which concerns on a 1st comparative example with embodiment of this invention, Comprising: (A) An exploded plan view, (B) is a top view which shows a local high temperature site | part. 本発明の実施形態との第2比較例に係る熱交換型改質器を示す図であって、(A)分解平面図、(B)は局所的な高温部位を示す平面図である。It is a figure which shows the heat exchange type | mold reformer which concerns on the 2nd comparative example with embodiment of this invention, Comprising: (A) An exploded plan view, (B) is a top view which shows a local high temperature site | part.

符号の説明Explanation of symbols

10 熱交換型改質器
18 改質流路(改質部)
20 燃焼流路(加熱部)
22 改質触媒
22A 上流側担持端(改質原料供給側の端部位置)
22B 高濃度担持領域
24 酸化触媒
24A 上流側担持端(燃料供給側の端部位置)
24B 低濃度担持領域
52 プレート部(隔壁)
70・80・90 熱交換型改質器
10 Heat Exchange Type Reformer 18 Reforming Channel (Reforming Section)
20 Combustion flow path (heating part)
22 reforming catalyst 22A upstream carrying end (end position on reforming raw material supply side)
22B High concentration carrying region 24 Oxidation catalyst 24A Upstream carrying end (end position on fuel supply side)
24B Low concentration support area 52 Plate part (partition wall)
70/80/90 heat exchange reformer

Claims (4)

改質反応用の改質触媒が担持され、水蒸気改質反応を含む改質反応によって供給された改質原料から水素を生成するための改質部と、
前記改質部のガス流と同じ方向のガス流を生じさせるように隔壁を介して前記改質部に隣接されると共に触媒燃焼用の酸化触媒が担持され、供給された燃料の触媒燃焼に伴って生じた熱を前記改質部に供給するための加熱部と、
を備えた熱交換型改質器。
A reforming section for supporting a reforming catalyst for reforming reaction and generating hydrogen from a reforming raw material supplied by a reforming reaction including a steam reforming reaction;
An oxidation catalyst for catalytic combustion is supported while adjoining the reforming section through a partition so as to generate a gas flow in the same direction as the gas flow of the reforming section, and accompanying the catalytic combustion of the supplied fuel A heating unit for supplying the generated heat to the reforming unit,
A heat exchange type reformer equipped with
前記改質部での改質触媒の担持範囲における改質原料供給側の端部位置を、前記加熱部での酸化触媒の担持範囲における燃料供給側の端部位置よりもガス流れ方向上流側に設定した請求項1記載の熱交換型改質器。   The end position of the reforming raw material supply side in the reforming catalyst support range in the reforming section is upstream of the fuel supply side end position in the heating catalyst support range of the oxidation catalyst in the gas flow direction. The heat exchange type | mold reformer of Claim 1 set. 前記改質部での改質触媒の担持範囲における改質原料供給側の端部から所定範囲の触媒担持濃度を、該改質触媒の担持範囲における他の部分の触媒担持濃度よりも高く設定した請求項1又は請求項2記載の熱交換型改質器。   The catalyst support concentration in a predetermined range from the end of the reforming raw material supply side in the reforming catalyst support range in the reforming section is set higher than the catalyst support concentration in other portions in the reforming catalyst support range. The heat exchange type reformer according to claim 1 or 2. 前記加熱部での酸化触媒の担持範囲における燃料供給側の端部から所定範囲の触媒担持濃度を、該酸化触媒の担持範囲における他の部分の触媒担持濃度よりも低く設定した請求項1乃至請求項3の何れか1項記載の熱交換型改質器。   The catalyst carrying concentration in a predetermined range from the end portion on the fuel supply side in the carrying range of the oxidation catalyst in the heating unit is set lower than the catalyst carrying concentration in other portions in the carrying range of the oxidation catalyst. Item 4. The heat exchange type reformer according to any one of Items 3 to 3.
JP2006119717A 2006-04-24 2006-04-24 Heat exchange type reformer Expired - Fee Related JP5076353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119717A JP5076353B2 (en) 2006-04-24 2006-04-24 Heat exchange type reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119717A JP5076353B2 (en) 2006-04-24 2006-04-24 Heat exchange type reformer

Publications (2)

Publication Number Publication Date
JP2007290900A true JP2007290900A (en) 2007-11-08
JP5076353B2 JP5076353B2 (en) 2012-11-21

Family

ID=38761910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119717A Expired - Fee Related JP5076353B2 (en) 2006-04-24 2006-04-24 Heat exchange type reformer

Country Status (1)

Country Link
JP (1) JP5076353B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10258961B2 (en) * 2014-08-29 2019-04-16 Ihi Corporation Reactor
CN112645282A (en) * 2020-12-10 2021-04-13 广东醇氢新能源研究院有限公司 Hydrogen production device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286204A (en) * 1985-06-10 1986-12-16 Kawasaki Heavy Ind Ltd Reformer for producing hydrogen
JPH06111838A (en) * 1992-09-30 1994-04-22 Toshiba Corp Reformer, reforming system, and fuel cell system
JPH07187601A (en) * 1993-12-24 1995-07-25 Mitsubishi Gas Chem Co Inc Methanol reforming reactor
JPH0930801A (en) * 1995-07-19 1997-02-04 Mitsubishi Electric Corp Reformation reactor
JP2000319004A (en) * 1999-04-30 2000-11-21 Nissan Motor Co Ltd Reforming method and reformer
JP2002143675A (en) * 2000-09-04 2002-05-21 Kawasaki Heavy Ind Ltd Reactor as well as catalyst used for this reactor, and method for manufacturing the catalyst
JP2003109639A (en) * 2001-09-27 2003-04-11 Toto Ltd Fuel cell system
JP2004244230A (en) * 2003-02-10 2004-09-02 Toyota Central Res & Dev Lab Inc Crossflow-type fuel reformer
JP2005041728A (en) * 2003-07-25 2005-02-17 Toshiba Corp Hydrogen production apparatus
JP2005103399A (en) * 2003-09-29 2005-04-21 Casio Comput Co Ltd Reaction apparatus and reaction method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286204A (en) * 1985-06-10 1986-12-16 Kawasaki Heavy Ind Ltd Reformer for producing hydrogen
JPH06111838A (en) * 1992-09-30 1994-04-22 Toshiba Corp Reformer, reforming system, and fuel cell system
JPH07187601A (en) * 1993-12-24 1995-07-25 Mitsubishi Gas Chem Co Inc Methanol reforming reactor
JPH0930801A (en) * 1995-07-19 1997-02-04 Mitsubishi Electric Corp Reformation reactor
JP2000319004A (en) * 1999-04-30 2000-11-21 Nissan Motor Co Ltd Reforming method and reformer
JP2002143675A (en) * 2000-09-04 2002-05-21 Kawasaki Heavy Ind Ltd Reactor as well as catalyst used for this reactor, and method for manufacturing the catalyst
JP2003109639A (en) * 2001-09-27 2003-04-11 Toto Ltd Fuel cell system
JP2004244230A (en) * 2003-02-10 2004-09-02 Toyota Central Res & Dev Lab Inc Crossflow-type fuel reformer
JP2005041728A (en) * 2003-07-25 2005-02-17 Toshiba Corp Hydrogen production apparatus
JP2005103399A (en) * 2003-09-29 2005-04-21 Casio Comput Co Ltd Reaction apparatus and reaction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10258961B2 (en) * 2014-08-29 2019-04-16 Ihi Corporation Reactor
CN112645282A (en) * 2020-12-10 2021-04-13 广东醇氢新能源研究院有限公司 Hydrogen production device
CN112645282B (en) * 2020-12-10 2023-11-10 沃洛达科技有限公司 Hydrogen production device

Also Published As

Publication number Publication date
JP5076353B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US8778556B2 (en) Fuel Cells
US8968432B2 (en) Rapid start fuel reforming systems and techniques
JP5227706B2 (en) Reformer
JP4444173B2 (en) Reforming apparatus and fuel cell system including the same
JP2003089502A (en) Methanol reformer
JP4809113B2 (en) Heat exchange type reformer
US20090064579A1 (en) Heat exchange reformer unit and reformer system
JP2005251750A (en) Reformer for fuel cell and fuel cell system including reformer
JP4667298B2 (en) Heat exchanger and heat exchange type reformer
US8071045B2 (en) Reformer
US7691509B2 (en) Reformer and fuel cell system having the same
US7763220B2 (en) Reformer, fuel cell system having the same, and method of manufacturing the same
KR100627334B1 (en) Reformer for fuel cell system and fuel cell system comprising the same
JP2007141772A (en) Fuel cell system
JP4963372B2 (en) REACTOR, REACTOR MANUFACTURING METHOD, AND REACTOR UNIT MEMBER
JP5076353B2 (en) Heat exchange type reformer
JP4952011B2 (en) Gas mixer and hydrogen generator
JP2008166233A (en) Fuel cell
JP4809117B2 (en) Heat exchange type reformer and reformer
US20100143755A1 (en) Multi-Channel Fuel Reformer with Augmented Heat Transfer
JP2007128786A (en) Fuel cell system
KR100768574B1 (en) Separator for molten carbonate fuel cell
KR100639012B1 (en) Prox reactor for fuel cell and fuel cell system having the same
KR100814889B1 (en) Plate type reactor for fuel cell
KR100599687B1 (en) Fuel cell system and reformer used thereto

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5076353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees