Nothing Special   »   [go: up one dir, main page]

JP2007286944A - Decompression device - Google Patents

Decompression device Download PDF

Info

Publication number
JP2007286944A
JP2007286944A JP2006114207A JP2006114207A JP2007286944A JP 2007286944 A JP2007286944 A JP 2007286944A JP 2006114207 A JP2006114207 A JP 2006114207A JP 2006114207 A JP2006114207 A JP 2006114207A JP 2007286944 A JP2007286944 A JP 2007286944A
Authority
JP
Japan
Prior art keywords
pressure
gas
valve
flow path
fire extinguishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006114207A
Other languages
Japanese (ja)
Other versions
JP4588662B2 (en
Inventor
Akito Okamoto
明人 岡本
Noriyori Taiencho
教順 泰円澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koatsu Co Ltd
Original Assignee
Koatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koatsu Co Ltd filed Critical Koatsu Co Ltd
Priority to JP2006114207A priority Critical patent/JP4588662B2/en
Publication of JP2007286944A publication Critical patent/JP2007286944A/en
Application granted granted Critical
Publication of JP4588662B2 publication Critical patent/JP4588662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decompression device which decreases a difference between an emission-starting pressure and a control pressure (maximum outlet pressure). <P>SOLUTION: The decompression device comprises a flow channel valve 22 arranged in a gas flow channel 21 on whose both pressure-reception faces an inlet-side gas pressure P0 and an outlet-side gas pressure P2 are applied in prescribed area ratio, respectively; and a piston 26 which enables a standard gas pressure P1 to be applied to one pressure-reception face, also enables the outlet-side gas pressure P2 to be applied to the other pressure-reception face, and has a projected operation bar 27, which operates the flow channel valve 22, on the other pressure-reception face. In this case, the flow channel valve 22 is composed of a main valve body 22a and an auxiliary valve body 22b. The auxiliary valve body 22b and the main valve body 22a are operated in this order with the operation bar 27 of the piston 26 to open the flow channel valve 22. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、消火剤貯蔵容器内にガス状態で貯蔵されている消火剤ガスを消火対象区画内に放出し、消火対象区画内の消火剤の濃度を消炎濃度以上に維持することによって消火するようにしたガス系消火設備等において、高圧の供給側ガス圧を所定の出口側ガス圧に減圧するために用いられる減圧装置に関するものである。   According to the present invention, the extinguishing agent gas stored in a gas state in the extinguishing agent storage container is discharged into the extinguishing target section, and extinguishing the fire by maintaining the extinguishing agent concentration in the extinguishing target section at or above the extinguishing concentration. The present invention relates to a pressure reducing device used for reducing a high-pressure supply-side gas pressure to a predetermined outlet-side gas pressure in a gas fire extinguishing facility or the like.

従来、消火対象区画内に消火剤を放出し、消火対象区画内の消火剤の濃度を消炎濃度以上に維持することによって消火するようにしたガス系消火設備として、消火剤に二酸化炭素やハロンガス等の不活性ガスを使用するようにしたものが実用化されている。   Conventionally, as a gas fire extinguishing equipment that extinguishes fire by releasing a fire extinguisher into the fire extinguishing target area and maintaining the fire extinguishing agent concentration in the fire extinguishing target level above the flame extinguishing concentration, carbon dioxide, halon gas, etc. Those using an inert gas have been put into practical use.

ところで、消火剤として二酸化炭素やハロンガス等の不活性ガスを使用する場合、これらの消火剤を加圧液化して高圧ガス容器からなる消火剤貯蔵容器に充填された状態で消火設備内に保管しておき、火災の際に、適宜の電気的手段又は空圧的手段を用いて、消火剤貯蔵容器の容器弁を開放することにより、二酸化炭素やハロンガスを消火剤貯蔵容器から配管を介して噴射ヘッドまで送り、噴射ヘッドから消火対象区画内に放出するようにしている。このとき、二酸化炭素やハロンガス等の不活性ガスは、噴射ヘッドまでは液体の状態で送られ、噴射ヘッドから消火対象区画内に放出された瞬間に気化して気体の状態となり、消火対象区画内に充満して火災を鎮圧する。   By the way, when using an inert gas such as carbon dioxide or halon gas as a fire extinguisher, these fire extinguishing agents are liquefied and stored in a fire extinguishing facility in a state of being filled in a fire extinguisher storage container consisting of a high pressure gas container. In the event of a fire, use appropriate electrical or pneumatic means to open the container valve of the fire extinguisher storage container to inject carbon dioxide or halon gas from the fire extinguisher storage container through a pipe. It is sent to the head and discharged from the ejection head into the fire extinguishing target section. At this time, the inert gas such as carbon dioxide and halon gas is sent in a liquid state up to the ejection head and is vaporized into a gas state at the moment when it is discharged from the ejection head into the fire extinguishing target section. To fill the fire and suppress the fire.

そして、これらの二酸化炭素やハロンガス等の不活性ガスを使用するガス系消火設備は、急速に火災を鎮圧できること、消火剤による消火対象区画内の汚染がほとんどないこと、電気の絶縁性を損なわないこと、消火剤が隙間から浸透して構造が複雑な消火対象に対しても強力な消火効果を発揮できること、消火剤の経年変化がなく長期に亘って一定の消火能力を有すること等の利点を有することから、石油関連施設、電気関連施設のみならず、一般の施設にも広く使用されている。   And these gas fire extinguishing equipment using inert gas such as carbon dioxide and halon gas can quickly suppress fire, there is almost no contamination in the fire extinguishing target area by fire extinguishing agents, and electrical insulation is not impaired. In addition, the fire extinguishing agent penetrates through the gap and can exert a strong fire extinguishing effect even for a fire extinguisher whose structure is complex, and there is no secular change of the extinguishing agent and has a constant extinguishing capability over a long period of time. Therefore, it is widely used not only for oil-related facilities and electricity-related facilities but also for general facilities.

ところが、近年になって、オゾン層の破壊に関する問題が世界的な規模で提起され、ハロンガス等のハロゲン化炭化水素成分を含有する消火剤については、1994年1月に生産中止となり、事実上使用することができなくなった。これにより、アルゴンや新たに開発された高価なフッ素系のガスを使用する特殊な消火設備が開発されてきてはいるが、現在のところ、いまだにガス系消火設備においては二酸化炭素が消火剤として多く使用されている。   However, in recent years, problems related to the destruction of the ozone layer have been raised on a global scale, and production of fire extinguishing agents containing halogenated hydrocarbon components such as halon gas was discontinued in January 1994, and it was actually used. I can no longer do it. As a result, special fire extinguishing equipment that uses argon and newly developed expensive fluorine-based gas has been developed, but at present, carbon dioxide is still a large extinguisher in gas-based fire extinguishing equipment. in use.

一方、この二酸化炭素を消火剤として使用する消火設備についても、以下の問題点があることが知られている。
(1) 消火時の消火対象区画内の二酸化炭素の設計濃度は、約35%であり、この濃度では、万一消火対象区画内に人が存在していた場合、二酸化炭素の毒性(麻酔性)により人命に係わる事態が発生するおそれがある。
(2) 二酸化炭素は、火災の際、噴射ヘッドまでは液体の状態で送られ、噴射ヘッドから消火対象区画内に放出された瞬間に気化して気体の状態となるが、このとき、周囲から気化熱を奪うため室内の空気の飽和蒸気圧が低下し、空気中の水分が結露するとともに、静電気が発生する。これにより、室内は霧がかかった状態となり、人の避難及び救出並びに消火作業の障害になるとともに、結露及び静電気により電子機器の絶縁不良や故障が起こり、重大な二次災害が発生するおそれがある。
(3) 二酸化炭素は、密度が空気よりもはるかに大きいため、消火対象区画内に放出された二酸化炭素は、消火対象区画内の下部に滞留し消火効果が低下するほか、消火対象区画内の下部の開口部から外部へ散逸しやすい。
(4) 地球温暖化に関する問題が世界的な規模で提起されていることから、二酸化炭素もハロンガスと同様に、将来的には使用が制限される可能性がある。
On the other hand, fire extinguishing equipment using carbon dioxide as a fire extinguishing agent is known to have the following problems.
(1) The design concentration of carbon dioxide in the fire extinguishing target compartment at the time of fire extinguishing is about 35%. If there is a person in the fire extinguishing target compartment, the toxicity of carbon dioxide (anesthetic property) ) May cause a situation involving human life.
(2) In the event of a fire, carbon dioxide is sent in a liquid state up to the jet head and is vaporized into a gaseous state at the moment when it is released from the jet head into the fire extinguishing target section. In order to take away the heat of vaporization, the saturated vapor pressure of the indoor air is reduced, moisture in the air is condensed, and static electricity is generated. As a result, the interior of the room is fogged, which may hinder human evacuation and rescue and fire fighting, and may cause serious secondary disasters due to poor insulation or malfunction of electronic equipment due to condensation or static electricity. is there.
(3) Since the density of carbon dioxide is much higher than that of air, the carbon dioxide released in the fire extinguishing target area stays in the lower part of the fire extinguishing target area and reduces the fire extinguishing effect. Easy to dissipate from the lower opening.
(4) Since global warming issues have been raised on a global scale, carbon dioxide may also be restricted in the future, just like halon gas.

ところで、本件出願人は、先に、ガス系消火設備の消火剤として窒素ガスや各種混合ガスを使用するようにしたガス系消火設備を提案した(特許文献1参照)が、これらの窒素ガスや各種混合ガスを使用する消火設備についても、以下の問題点があることがわかった。
(1) ガス系消火設備の消火剤としての窒素ガスや混合ガスは、加圧してガス状態で貯蔵されたものを使用するため、加圧液化した状態で貯蔵されたものを使用する二酸化炭素やハロンガスに比べて、同容積の消火対象区画の消火に要する消火剤貯蔵容器の数が数倍必要となり、消火剤貯蔵容器の大きな設置スペースが必要となる。
(2) 設置する消火剤貯蔵容器の数を低減するためには、消火剤貯蔵容器に充填する消火剤ガスの充填圧力を高める必要があるが、消火剤ガスの充填圧力を高めた場合、選択弁、主配管、枝管、噴射ヘッド等の消火設備の二次側機器にも消火剤ガスの高いガス圧がかかることとなり、このため、これら二次側機器の耐圧グレードを上げる必要があり、設備費が著しく高くなり、また、既存の設備には、適用できない。
By the way, the present applicant has previously proposed a gas fire extinguishing facility in which nitrogen gas or various mixed gases are used as a fire extinguishing agent for the gas fire extinguishing facility (see Patent Document 1). It was found that the fire fighting equipment using various gas mixtures has the following problems.
(1) Nitrogen gas or mixed gas used as a fire extinguisher for gas fire extinguishing equipment is pressurized and stored in a gaseous state. Compared to halon gas, the number of extinguishing agent storage containers required for extinguishing the fire extinguishing target section of the same volume is required several times, and a large installation space for the extinguishing agent storage container is required.
(2) To reduce the number of fire extinguisher storage containers to be installed, it is necessary to increase the filling pressure of the extinguishing agent gas filled in the extinguishing agent storage container. High pressure of fire extinguishing agent gas is also applied to secondary equipment of fire extinguishing equipment such as valves, main pipes, branch pipes, jet heads, etc. Therefore, it is necessary to raise the pressure grade of these secondary equipment, Equipment costs are significantly higher and are not applicable to existing equipment.

そこで、本件出願人は、消火剤として窒素ガスや混合ガス等の消火剤貯蔵容器内にガス状態で貯蔵され消火剤ガスを使用するガス系消火設備の有する問題点に鑑み、高圧の供給側ガス圧を所定の出口側ガス圧に減圧することができ、これにより、例えば、ガス系消火設備に適用した場合に、ガス系消火設備の二次側機器の耐圧グレードを上げずに消火剤ガスの充填圧力を高めることができる減圧装置を提案した(特許文献2参照)。   In view of the problems of the gas fire extinguishing equipment that uses fire extinguisher gas that is stored in a gas state in a fire extinguisher storage container such as nitrogen gas or mixed gas as a fire extinguisher. The pressure can be reduced to a predetermined outlet side gas pressure, so that, for example, when applied to a gas fire extinguishing equipment, the extinguishing agent gas can be reduced without increasing the pressure grade of the secondary equipment of the gas fire extinguishing equipment. The decompression device which can raise filling pressure was proposed (refer to patent documents 2).

この減圧装置は、図6に示すように、両側の受圧面に供給側ガス圧P0及び出口側ガス圧P2がそれぞれ所定の面積割合でかかるように構成したガス流路21に配設した流路弁22と、一方の受圧面に基準ガス圧P1が、他方の受圧面に出口側ガス圧P2がかかるように構成するとともに、前記他方の受圧面に流路弁22を操作する操作棒27を突設したピストン26とからなるもので、上記の所期の目的を達成するものであった。
そして、この減圧装置は、ガス流路21が開放されると、消火剤貯蔵容器からガス流路21のガス出口側21bに消火剤ガスが流入するが、減圧装置2は、流路弁22の両側の受圧面に、消火剤貯蔵容器1内の消火剤ガスの供給側ガス圧P0(例えば、35℃において、30MPa)及び出口側ガス圧P2が、また、ピストン26の一方の受圧面に定圧ガス源からの基準ガス圧P1(例えば、35℃において、10MPa)が、他方の受圧面に出口側ガス圧P2が、それぞれ所定の面積割合でかかるように構成されているため、以下の式(1)に従って流路弁22及びピストン26は、瞬時に平衡し、出口側ガス圧P2は、基準ガス圧P1(例えば、35℃において、10.8MPa)と略等しい値に保持される。
(A−C)P0+(C+B)P2=B・P1+A・P2 ・・・(1)
P2=(B・P1−(A−C)P0)/(C+B−A) ・・・(2)
ここで、Aは弁座29の直径、Bはピストン26の直径、Cは流路弁22の出口側ガス圧P2がかかる下方の受圧面の直径である。
As shown in FIG. 6, this pressure reducing device has a flow path disposed in a gas flow path 21 configured such that a supply-side gas pressure P0 and an outlet-side gas pressure P2 are applied to the pressure receiving surfaces on both sides at a predetermined area ratio. The valve 22 is configured such that the reference gas pressure P1 is applied to one pressure receiving surface and the outlet side gas pressure P2 is applied to the other pressure receiving surface, and an operation rod 27 for operating the flow path valve 22 to the other pressure receiving surface. It consists of a projecting piston 26 and achieves the intended purpose described above.
In the decompression device, when the gas flow path 21 is opened, the fire extinguishing agent gas flows from the fire extinguisher storage container to the gas outlet side 21b of the gas flow path 21. The supply-side gas pressure P0 (for example, 30 MPa at 35 ° C.) and the outlet-side gas pressure P2 of the extinguishing agent gas in the extinguishing agent storage container 1 and the outlet-side gas pressure P2 are constant on the pressure-receiving surfaces of the piston 26. Since the reference gas pressure P1 (for example, 10 MPa at 35 ° C.) from the gas source is configured such that the outlet side gas pressure P2 is applied to the other pressure receiving surface at a predetermined area ratio, the following formula ( According to 1), the flow path valve 22 and the piston 26 are instantaneously balanced, and the outlet side gas pressure P2 is maintained at a value substantially equal to the reference gas pressure P1 (for example, 10.8 MPa at 35 ° C.).
(A 2 −C 2 ) P 0 + (C 2 + B 2 ) P 2 = B 2 · P 1 + A 2 · P 2 (1)
P2 = (B 2 · P 1 − (A 2 −C 2 ) P 0) / (C 2 + B 2 −A 2 ) (2)
Here, A is the diameter of the valve seat 29, B is the diameter of the piston 26, and C is the diameter of the lower pressure receiving surface to which the outlet side gas pressure P2 of the flow path valve 22 is applied.

ところで、この減圧装置において、弁座29の直径Aと流路弁22の出口側ガス圧P2がかかる下方の受圧面の直径Cの大きさに大きな差がない場合には、基準ガス圧P1と出口側ガス圧P2とは近似した値となる。ただし、減圧装置の構造上、直径Aと直径Cの差が小さすぎると、消火剤ガスの充填時に流路弁に充分な面圧がかからず消火剤ガスが漏洩するおそれがあるため、直径Aは直径Cより大きく設定する必要があるだけでなく、直径Aと直径Cの差を小さくするには設計上の限界があった。
一方、直径Aと直径Cの差を大きくすれば消火剤ガスの漏洩につながる面圧の問題は解消するが、放出開始圧と制御圧(最大出口圧力)の差が大きくなり、最大放出流量が大きくなるため、消火剤ガスの放出時の避圧開口を大きくする必要が生じ、避圧開口に接続するダクト等の設備のコストが増大するという問題があった。
また、大きな減圧比、例えば、供給側ガス圧P0:35℃において、30MPa、出口側ガス圧P2:35℃において、1MPa、を必要とする場合には、出口側ガス圧を正確に制御することが難しいという問題があった。
特開平8−141102号公報 特開平9−319439号公報
By the way, in this decompression device, when there is no significant difference between the diameter A of the valve seat 29 and the diameter C of the lower pressure receiving surface to which the outlet side gas pressure P2 of the flow path valve 22 is applied, the reference gas pressure P1 and The outlet side gas pressure P2 is an approximate value. However, if the difference between the diameter A and the diameter C is too small due to the structure of the pressure reducing device, there is a risk that the extinguishing agent gas may leak because the surface pressure is not sufficiently applied to the flow path valve when the extinguishing agent gas is filled. Not only does A need to be set larger than diameter C, but there is a design limit in reducing the difference between diameter A and diameter C.
On the other hand, if the difference between diameter A and diameter C is increased, the problem of surface pressure that leads to the leakage of the extinguishing agent gas is solved, but the difference between the discharge start pressure and the control pressure (maximum outlet pressure) is increased, and the maximum discharge flow rate is increased. Since it becomes large, it is necessary to increase the pressure-reducing opening when the extinguishing agent gas is released, and there is a problem that the cost of equipment such as a duct connected to the pressure-reducing opening increases.
Further, when a large pressure reduction ratio, for example, 30 MPa at the supply side gas pressure P0: 35 ° C. and 1 MPa at the outlet side gas pressure P2: 35 ° C. is required, the outlet side gas pressure should be accurately controlled. There was a problem that was difficult.
JP-A-8-141102 JP-A-9-319439

本発明は、上記従来の減圧装置の有する問題点に鑑み、放出開始圧と制御圧(最大出口圧力)の差を小さくすることができる減圧装置を提供することを目的とする。   An object of the present invention is to provide a decompression device that can reduce the difference between the discharge start pressure and the control pressure (maximum outlet pressure) in view of the problems of the conventional decompression device.

上記目的を達成するため、本発明の減圧装置は、両側の受圧面に供給側ガス圧及び出口側ガス圧がそれぞれ所定の面積割合でかかるように構成したガス流路に配設した流路弁と、一方の受圧面に基準ガス圧が、他方の受圧面に出口側ガス圧がかかるように構成するとともに、前記他方の受圧面に流路弁を操作する操作棒を突設したピストンとからなる減圧装置において、前記流路弁を、主弁体と、副弁体とで構成し、ピストンの操作棒により副弁体、主弁体の順に操作することにより流路弁を開放するようにしたことを特徴とする。   In order to achieve the above object, the pressure reducing device of the present invention is a flow path valve arranged in a gas flow path configured such that supply side gas pressure and outlet side gas pressure are applied to the pressure receiving surfaces on both sides at a predetermined area ratio, respectively. And a piston having a reference gas pressure applied to one pressure receiving surface and an outlet side gas pressure applied to the other pressure receiving surface, and an operating rod for operating a flow valve on the other pressure receiving surface. In the pressure reducing device, the flow path valve is constituted by a main valve body and a sub valve body, and the flow path valve is opened by operating the sub valve body and the main valve body in this order by a piston operating rod. It is characterized by that.

この場合において、副弁体に対して供給側ガス圧をかけるガス流路に絞り部を形成することができる。   In this case, the throttle portion can be formed in the gas flow path that applies the supply-side gas pressure to the sub-valve element.

本発明の減圧装置によれば、両側の受圧面に供給側ガス圧及び出口側ガス圧がそれぞれ所定の面積割合でかかるように構成したガス流路に配設した流路弁と、一方の受圧面に基準ガス圧が、他方の受圧面に出口側ガス圧がかかるように構成するとともに、前記他方の受圧面に流路弁を操作する操作棒を突設したピストンとからなる減圧装置において、前記流路弁を、主弁体と、副弁体とで構成し、ピストンの操作棒により副弁体、主弁体の順に操作することにより流路弁を開放するようすることにより、高圧の供給側ガス圧を所定の出口側ガス圧に減圧する減圧装置を、コンパクトな構造により実現することができ、また、出口側ガス圧の値を基準ガス圧を変えることによって広い範囲で、かつ、高精度に調整することができ、さらに、放出開始圧と制御圧(最大出口圧力)の差を小さくすることができる。
このため、この減圧装置をガス系消火設備に適用した場合には、消火設備の二次側機器の耐圧グレードを上げることなく消火剤ガスの充填圧力を高めることができるとともに、供給側ガス圧が低下した場合でも、消火剤ガスの放出量を一定に保つことができ、さらに、放出開始圧と制御圧(最大出口圧力)の差が小さいことから最大放出流量が小さくなり、消火剤ガスの放出時の避圧開口を大きくする必要がなく、避圧開口に接続するダクト等の設備のコストを低廉化することができる。
According to the decompression device of the present invention, the flow path valve arranged in the gas flow path configured such that the supply side gas pressure and the outlet side gas pressure are applied to the pressure receiving surfaces on both sides at a predetermined area ratio, respectively, and one pressure receiving pressure In the pressure reducing device comprising a reference gas pressure on the surface and an outlet side gas pressure on the other pressure receiving surface, and a piston provided with a projecting operation rod for operating a flow path valve on the other pressure receiving surface, The flow path valve is composed of a main valve body and a sub valve body, and the flow path valve is opened by operating the sub valve body and the main valve body in this order by the operation rod of the piston. A decompression device that reduces the supply side gas pressure to a predetermined outlet side gas pressure can be realized with a compact structure, and the outlet side gas pressure value can be changed over a wide range by changing the reference gas pressure, and Can be adjusted with high precision, and also release It is possible to reduce the difference Hajime圧 and the control pressure (maximum outlet pressure).
For this reason, when this decompression device is applied to a gas fire extinguishing equipment, it is possible to increase the filling pressure of the extinguishing agent gas without increasing the pressure resistance grade of the secondary equipment of the fire extinguishing equipment, and the supply side gas pressure is reduced. Even if it falls, the amount of fire extinguisher gas released can be kept constant, and since the difference between the discharge start pressure and the control pressure (maximum outlet pressure) is small, the maximum discharge flow rate is reduced and the fire extinguisher gas is released. There is no need to increase the pressure relief opening at the time, and the cost of equipment such as a duct connected to the pressure relief opening can be reduced.

また、副弁体に対して供給側ガス圧をかけるガス流路に絞り部を形成することにより、ピストンの操作棒により流路弁を操作した際の主弁体と副弁体とからなる流路弁の動作の安定性を向上することができる。   Further, by forming a constricted portion in the gas flow path that applies the supply-side gas pressure to the sub-valve element, the flow composed of the main valve element and the sub-valve element when the flow path valve is operated by the piston operating rod. The stability of the operation of the road valve can be improved.

以下、本発明の減圧装置の実施の形態を、図面に基づいて説明する。   Hereinafter, embodiments of the decompression device of the present invention will be described with reference to the drawings.

図1に、本発明の減圧装置を用いたガス系消火設備の一例を示す。
本例は、3つの消火対象区画6−1、6−2、6−3を有する場合のガス系消火設備を示したものである。
このガス系消火設備は、消火剤ガスとして、例えば、窒素ガスを使用し、これを加圧して高圧ガス容器に充填した状態(特に限定されるものではないが、例えば、35℃において、30MPa)で消火設備内に保管することにより、消火剤貯蔵容器1として利用する。
本例のガス系消火設備には、5本の消火剤貯蔵容器1−1、1−2、・・・1−5を備え、各容器1には、容器弁2を介して連結管3を接続し、さらに連結管3を1本の集合管4に接続し、この集合管4を各消火対象区画6−1、6−2、6−3まで延設した主配管5−1、5−2、5−3に接続する。
主配管5−1、5−2、5−3には、選択弁9−1、9−2、9−3を配設し、消火対象区画6−1、6−2、6−3に選択的に消火剤ガスを送るようにする。
消火対象区画6−1、6−2、6−3まで延設した主配管5−1、5−2、5−3を、消火対象区画6−1、6−2、6−3内にそれぞれ配設した枝管8−1、8−2、8−3に接続し、この枝管8−1、8−2、8−3を消火対象区画6−1、6−2、6−3内の適所に複数個配設した噴射ヘッド7−1、7−2、7−3に接続する。
FIG. 1 shows an example of a gas fire extinguishing facility using the decompression device of the present invention.
This example shows the gas fire extinguishing equipment in the case of having three fire extinguishing target sections 6-1, 6-2, 6-3.
This gas fire extinguishing equipment uses, for example, nitrogen gas as a fire extinguisher gas, and pressurizes and fills it into a high pressure gas container (not particularly limited, for example, at 35 ° C., 30 MPa) It is used as a fire extinguisher storage container 1 by storing in the fire extinguishing equipment.
The gas fire extinguishing equipment of this example includes five fire extinguishing agent storage containers 1-1, 1-2,... 1-5, and each container 1 has a connecting pipe 3 via a container valve 2. In addition, the connecting pipe 3 is connected to one collecting pipe 4, and the collecting pipe 4 is extended to the fire extinguishing target sections 6-1, 6-2, 6-3, main pipes 5-1, 5- 2 and 5-3.
Selection valves 9-1, 9-2, and 9-3 are arranged on the main pipes 5-1, 5-2, and 5-3, and are selected as fire extinguishing target sections 6-1, 6-2, and 6-3 To send fire extinguishing gas.
The main pipes 5-1, 5-2, and 5-3 extended to the fire extinguishing target sections 6-1, 6-2, and 6-3 are respectively placed in the fire extinguishing target sections 6-1, 6-2, and 6-3. Connected to the arranged branch pipes 8-1, 8-2, 8-3, and the branch pipes 8-1, 8-2, 8-3 are placed in the fire extinguishing target sections 6-1, 6-2, 6-3. Are connected to a plurality of jetting heads 7-1, 7-2, and 7-3 disposed at appropriate positions.

ところで、通常、各消火対象区画6−1、6−2、6−3は、その容積が異なるため、当然、消火するのに必要となる消火剤ガスの量も異なる。
このため、主配管5−1、5−2、5−3の口径を各消火対象区画6−1、6−2、6−3の容積に応じて異ならせるほか、火災の際、消火対象となる消火対象区画6−1、6−2、6−3に対応した本数の消火剤貯蔵容器1が開放されるようにガス系消火設備を構成する。
By the way, normally, since the volume of each fire extinguishing object section 6-1, 6-2, 6-3 differs, naturally the quantity of fire extinguishing agent gas required for extinguishing fires also differs.
For this reason, the diameters of the main pipes 5-1, 5-2, and 5-3 are changed according to the volumes of the respective fire extinguishing target sections 6-1, 6-2, and 6-3. The gas fire extinguishing equipment is configured so that the number of fire extinguishing agent storage containers 1 corresponding to the fire extinguishing target sections 6-1, 6-2 and 6-3 are opened.

ここで、開放すべき消火剤貯蔵容器1の本数を、消火対象区画6−1が5本、消火対象区画6−2が3本、消火対象区画6−3が1本に設定することとする。
なお、図中、9−1、9−2、9−3は選択弁、10−1、10−2、10−3は選択弁開放装置、11−1、11−2、11−3は起動用ガス容器、12−1、12−2、12−3は起動用ガス容器開放用のソレノイドである。
また、図中、13−1、13−2、13−3は、選択弁9−1、9−2、9−3及び起動用ガス容器11−1、11−2、11−3の開放をコントロールする起動用ガス管路で、選択弁開放装置10−1、10−2、10−3に接続され、その途中の適所に不還弁14−1、14−2、14−3、14−A、14−Bを配設する。なお、不還弁14−1、14−2、14−3、14−A、14−Bの通過可能方向は、図の矢印の向きで表している。
なお、これらの部材の末尾の数字1、2、3は、消火対象区画の末尾の数字1、2、3にそれぞれ対応している。
Here, the number of fire extinguishing agent storage containers 1 to be opened is set to 5 for the fire extinguishing target section 6-1, 3 for the fire extinguishing target section 6-2, and 1 for the fire extinguishing target section 6-3. .
In the figure, 9-1, 9-2 and 9-3 are selection valves, 10-1, 10-2 and 10-3 are selection valve opening devices, and 11-1, 11-2 and 11-3 are activated. Gas containers 12-1, 12-2, and 12-3 are solenoids for opening the starting gas container.
In the figure, reference numerals 13-1, 13-2, and 13-3 indicate that the selection valves 9-1, 9-2, and 9-3 and the starting gas containers 11-1, 11-2, and 11-3 are opened. It is connected to the selective valve opening devices 10-1, 10-2, 10-3 by a starting gas pipeline to be controlled, and non-return valves 14-1, 14-2, 14-3, 14- A and 14-B are disposed. In addition, the passable direction of the non-return valves 14-1, 14-2, 14-3, 14-A, 14-B is represented by the direction of the arrow in the figure.
The numbers 1, 2, and 3 at the end of these members correspond to the numbers 1, 2, and 3 at the end of the fire extinguishing target section, respectively.

この場合において、容器弁2には、図2に示すような、高圧の供給側ガス圧P0を定圧ガス源からの基準ガス圧P1(特に限定されるものではないが、例えば、35℃において、10MPa)によって規定される所定の出口側ガス圧P2に減圧することができる減圧装置(本発明の減圧装置の第1実施例)を用いる。   In this case, the container valve 2 has a high supply gas pressure P0 as shown in FIG. 2 as a reference gas pressure P1 from a constant pressure gas source (not particularly limited, for example, at 35 ° C., 10 MPa), a decompression device (a first embodiment of the decompression device of the present invention) capable of decompressing to a predetermined outlet side gas pressure P2 is used.

この減圧装置2は、両側の受圧面にガス流路21のガス供給側21aから供給側ガス圧P0が、また、ガス流路21のガス出口側21bから出口側ガス圧P2がそれぞれ所定の面積割合でかかるように構成したガス流路21に配設した流路弁22と、ガス流路21を閉鎖する方向に流路弁22を付勢するばね23(このばね23は、流路弁22の動作位置を安定させることを主目的とするものであるため、付勢力は小さいものでよい。)と、一方の受圧面に定圧ガス源(本例の場合は、定圧ガス源として、窒素ガスを充填(特に限定されるものではないが、例えば、35℃において、10MPa)した起動用ガス容器11−1、11−2、11−3を利用するようにしている。)から定圧ガス供給流路24を介して基準ガス圧P1が、他方の受圧面にガス出口側21bから出口側ガス供給流路21dを介して出口側ガス圧P2がかかるように構成するとともに、他方の受圧面に流路弁22を操作する操作棒27を突設したピストン26と、流路弁22の方向とは逆方向にピストン26を付勢するばね28とからなる。   The decompression device 2 has a predetermined area on each pressure receiving surface from the gas supply side 21a of the gas flow path 21 to the supply side gas pressure P0 and from the gas outlet side 21b of the gas flow path 21 to the outlet side gas pressure P2. A flow path valve 22 arranged in the gas flow path 21 configured to be applied at a rate, and a spring 23 that urges the flow path valve 22 in a direction to close the gas flow path 21 (this spring 23 is a flow path valve 22 Since the main purpose is to stabilize the operation position of the gas, a small biasing force may be used.) And a constant pressure gas source (in this example, nitrogen gas as a constant pressure gas source) on one pressure receiving surface. From a gas container 11-1, 11-2, 11-3 for starting (which is not particularly limited, but is 10 MPa at 35 ° C.), for example. The reference gas pressure P1 is connected to the other side via the path 24. A piston in which the outlet side gas pressure P2 is applied to the pressure surface from the gas outlet side 21b via the outlet side gas supply channel 21d, and an operating rod 27 for operating the channel valve 22 is provided on the other pressure receiving surface. 26 and a spring 28 that urges the piston 26 in a direction opposite to the direction of the flow path valve 22.

そして、この減圧装置2は、流路弁22を、主弁体22aと、主弁体22aの内部空間22cに配設した、主弁体22aより小径の副弁体22bとで構成し、ピストン26の操作棒27により副弁体22b、主弁体22aの順に操作することにより流路弁22を開放するようにしている。   In the decompression device 2, the flow path valve 22 includes a main valve body 22a and a sub-valve body 22b having a smaller diameter than the main valve body 22a disposed in the internal space 22c of the main valve body 22a. The flow valve 22 is opened by operating the auxiliary valve body 22b and the main valve body 22a in this order by the operation rod 27 of 26.

この場合、副弁体22bの両側の受圧面には、ガス流路21のガス供給側21aからガス流路21cを介して供給側ガス圧P0が、また、ガス流路21のガス出口側21bからガス流路21d、21eを介して出口側ガス圧P2がそれぞれ所定の面積割合でかかるように構成されるとともに、ばね23によりガス流路21eを閉鎖する方向に副弁体22bを付勢するようにしている。   In this case, the supply-side gas pressure P0 from the gas supply side 21a of the gas flow path 21 through the gas flow path 21c, and the gas outlet side 21b of the gas flow path 21 to the pressure receiving surfaces on both sides of the sub-valve element 22b. The outlet side gas pressure P2 is applied at a predetermined area ratio through the gas flow paths 21d and 21e, and the sub valve body 22b is biased by the spring 23 in the direction of closing the gas flow path 21e. I am doing so.

副弁体22bの受圧面に供給側ガス圧P0をかけるためのガス流路21cは、主弁体22aの内周面とばね支持体25の外周面との微小な隙間によって規定される絞り部21fを形成するようにする。
この微小な隙間によって規定される絞り部21fのガス流路の面積(断面積)は、減圧装置2の大きさに応じて適宜設定するようにするが、例えば、主弁体22aの内径が10mm程度の場合で、0.5〜3.0mm程度、好ましくは、1〜2mm程度に設定するようにする。
また、絞り部21fには、必要に応じて、パッキン21g(このパッキン21gは、Oリングのようなセルフシール能力をもった完全な気密の機能を有するものでなく、スパイラル状のバックアップリングや管状のゴム部品のような微小な通路を有するものを好適に用いることができる。)を配設することができ、これにより、絞り部21fのガス流路の面積(断面積)の寸法精度を向上することができる。
このように、副弁体22bの受圧面に供給側ガス圧P0をかけるためのガス流路21cに絞り部21fを形成することにより、ピストン26の操作棒27により流路弁22を操作した際の主弁体22aと副弁体22bとからなる流路弁22の動作の安定性を向上することができる。
なお、副弁体22bには、本実施例に示すような、弁座29bに当接する面が平面状の弁体のほか、後述の第2実施例に示すように弁座29bに当接する面が球面状の弁体や、逆止弁構造の弁体を用いることができる。
The gas flow path 21c for applying the supply-side gas pressure P0 to the pressure receiving surface of the sub-valve body 22b is a throttle portion defined by a minute gap between the inner peripheral surface of the main valve body 22a and the outer peripheral surface of the spring support 25. 21f is formed.
The area (cross-sectional area) of the gas flow path of the throttle portion 21f defined by the minute gap is appropriately set according to the size of the decompression device 2, but for example, the inner diameter of the main valve element 22a is 10 mm. in the case of a degree, 0.5 to 3.0 mm 2, preferably about, so as to set to about 1 to 2 mm 2.
Further, if necessary, the narrowed portion 21f is provided with a packing 21g (this packing 21g does not have a completely airtight function such as an O-ring but has a self-sealing function, and has a spiral backup ring or tubular shape. It is possible to suitably use a rubber part having a small passage, such as a rubber part.), Thereby improving the dimensional accuracy of the area (cross-sectional area) of the gas flow path of the throttle portion 21f. can do.
As described above, when the flow passage valve 22 is operated by the operation rod 27 of the piston 26 by forming the throttle portion 21f in the gas flow passage 21c for applying the supply side gas pressure P0 to the pressure receiving surface of the sub valve body 22b. The stability of the operation of the flow path valve 22 composed of the main valve body 22a and the sub-valve body 22b can be improved.
The sub-valve body 22b has a flat surface that contacts the valve seat 29b as shown in the present embodiment, as well as a surface that contacts the valve seat 29b as shown in a second embodiment described later. A spherical valve body or a valve body having a check valve structure can be used.

また、流路弁22の開放時、ピストン26の操作棒27により副弁体22b、主弁体22aの順に操作することにより流路弁22を開放するようにするため、操作棒27の先端に主弁体22aを操作する大径部27aを、さらにその先端に副弁体22bを操作する小径部27bを形成するようにしている。
なお、この場合、ピストン26の操作棒27により操作された副弁体22bによって間接的に主弁体22aを操作するように構成することもでき、本発明はこの構成を排除するものでない。
Further, when the flow path valve 22 is opened, the flow valve 22 is opened by operating the sub valve body 22b and the main valve body 22a in this order by the operation rod 27 of the piston 26. A large-diameter portion 27a for operating the main valve body 22a and a small-diameter portion 27b for operating the sub-valve body 22b are formed at the tip thereof.
In this case, the main valve element 22a can be indirectly operated by the sub-valve element 22b operated by the operation rod 27 of the piston 26, and the present invention does not exclude this structure.

次に、この減圧装置2の動作について説明する。
定圧ガス源としての起動用ガス容器11−1、11−2、11−3から定圧ガス供給流路24に基準ガス圧P1(特に限定されるものではないが、例えば、35℃において、10MPa)の窒素ガスを供給することにより、ピストン26をばね28の付勢力に抗して移動させ、ピストン26の受圧面に突設した操作棒27により流路弁22をばね23の付勢力に抗して操作し、ガス流路21を開放させる。
Next, the operation of the decompression device 2 will be described.
The reference gas pressure P1 from the starting gas containers 11-1, 11-2, 11-3 as the constant pressure gas source to the constant pressure gas supply flow path 24 (not particularly limited, for example, 10 MPa at 35 ° C.) The nitrogen gas is supplied to move the piston 26 against the biasing force of the spring 28, and the operation valve 27 protruding from the pressure receiving surface of the piston 26 causes the passage valve 22 to resist the biasing force of the spring 23. To open the gas flow path 21.

このとき、主弁体22aと副弁体22bとからなる流路弁22は、まず、ピストン26の操作棒27の小径部27bにより副弁体22bが操作され、以下の式(3)に従って副弁体22bが開放される。
・P0<B・P1 ・・・(3)
ここで、Bはピストン26の直径、Dは副弁体22bの弁座29bの直径である。
At this time, in the flow path valve 22 composed of the main valve body 22a and the sub valve body 22b, the sub valve body 22b is first operated by the small diameter portion 27b of the operating rod 27 of the piston 26, and the sub valve body 22b is operated according to the following equation (3). The valve body 22b is opened.
D 2 · P0 <B 2 · P1 (3)
Here, B is the diameter of the piston 26, and D is the diameter of the valve seat 29b of the auxiliary valve body 22b.

副弁体22bが開放されると、主弁体22aの内部空間22cがガス流路21d、21eを介してガス流路21のガス出口側21bと導通することによって、主弁体22aにかかっていた内圧の影響が圧力のバランスからほぼなくなりことから、ピストン26の操作棒27の大径部27aにより主弁体22aが操作されることによって、主弁体22aは極めて小さい力で開放するようになる。   When the sub-valve element 22b is opened, the internal space 22c of the main valve element 22a is connected to the gas outlet side 21b of the gas flow path 21 via the gas flow paths 21d and 21e, and is thus applied to the main valve element 22a. Since the influence of the internal pressure is almost eliminated from the balance of pressure, the main valve body 22a is opened with a very small force by operating the main valve body 22a by the large-diameter portion 27a of the operating rod 27 of the piston 26. Become.

ガス流路21が開放されると、消火剤貯蔵容器1からガス流路21のガス出口側21bに消火剤ガスが流入するが、減圧装置2は、流路弁22の両側の受圧面に、消火剤貯蔵容器1内の消火剤ガスの供給側ガス圧P0及び出口側ガス圧P2が、また、ピストン26の一方の受圧面に定圧ガス源からの基準ガス圧P1が、他方の受圧面に出口側ガス圧P2が、それぞれ所定の面積割合でかかるように構成されているため、以下の式(1)に従って流路弁22及びピストン26は、瞬時に平衡し、本例の場合、出口側ガス圧P2は、起動用ガス容器11−1、11−2、11−3の基準ガス圧P1と略等しい値(例えば、35℃において、10MPa)に保持される。
(A−C)P0+(C+B)P2=B・P1+A・P2 ・・・(1)
P2=(B・P1−(A−C)P0)/(C+B−A) ・・・(2)
ここで、Aは主弁体22aの弁座29aの直径、Bはピストン26の直径、Cは流路弁22の出口側ガス圧P2がかかる下方の受圧面の直径である。
When the gas flow path 21 is opened, the extinguishing agent gas flows from the fire extinguisher storage container 1 to the gas outlet side 21b of the gas flow path 21, but the decompression device 2 is connected to the pressure receiving surfaces on both sides of the flow path valve 22. The supply-side gas pressure P0 and the outlet-side gas pressure P2 of the extinguishing agent gas in the extinguishing agent storage container 1, the reference gas pressure P1 from the constant pressure gas source on one pressure receiving surface of the piston 26, and the other pressure receiving surface. Since the outlet side gas pressure P2 is configured to be applied at a predetermined area ratio, the flow path valve 22 and the piston 26 are instantaneously balanced according to the following formula (1). The gas pressure P2 is maintained at a value substantially equal to the reference gas pressure P1 of the startup gas containers 11-1, 11-2, 11-3 (for example, 10 MPa at 35 ° C.).
(A 2 −C 2 ) P 0 + (C 2 + B 2 ) P 2 = B 2 · P 1 + A 2 · P 2 (1)
P2 = (B 2 · P 1 − (A 2 −C 2 ) P 0) / (C 2 + B 2 −A 2 ) (2)
Here, A is the diameter of the valve seat 29a of the main valve body 22a, B is the diameter of the piston 26, and C is the diameter of the lower pressure receiving surface to which the outlet side gas pressure P2 of the flow path valve 22 is applied.

この場合において、減圧装置2によって保持される出口側ガス圧P2は、定圧ガス源、すなわち、起動用ガス容器11−1、11−2、11−3の基準ガス圧P1自体を調整したり、起動用ガス容器11−1、11−2、11−3に圧力調整器を配設し、この圧力調整器により基準ガス圧P1を調整したり、後述の第3実施例に示すように流路弁22及びピストン26の形状を異ならせること等により変更することができるが、不活性ガス消火設備の設計上、出口側ガス圧P2が基準ガス圧P0と略等しい値に保持されるように構成することが望ましい。   In this case, the outlet side gas pressure P2 held by the decompression device 2 adjusts the reference gas pressure P1 itself of the constant pressure gas source, that is, the startup gas containers 11-1, 11-2, 11-3, A pressure regulator is arranged in the starting gas container 11-1, 11-2, 11-3, and the reference gas pressure P1 is adjusted by this pressure regulator, or a flow path as shown in a third embodiment to be described later. Although it can be changed by changing the shapes of the valve 22 and the piston 26, etc., the design is such that the outlet side gas pressure P2 is kept substantially equal to the reference gas pressure P0 in the design of the inert gas fire extinguishing equipment. It is desirable to do.

なお、この減圧装置2は、定圧ガス源、すなわち、起動用ガス容器11−1、11−2、11−3からの窒素ガスの供給を停止するとともに、定圧ガス供給流路24内の窒素ガスを排出することにより、流路弁22を閉鎖することができる機能を有するものであり、この機能を利用して、一旦開放した消火剤貯蔵容器1を閉鎖するように構成することも可能である。   The decompression device 2 stops the supply of nitrogen gas from the constant pressure gas source, that is, the starting gas containers 11-1, 11-2, 11-3, and nitrogen gas in the constant pressure gas supply flow path 24. It is possible to close the fire-extinguishing agent storage container 1 once opened by using this function. .

また、この減圧装置2は、ガス流路21のガス出口側21bから加圧状態の消火剤ガスを導入することにより、流路弁22を自動的に開放して消火剤ガスを消火剤貯蔵容器1に充填することができる。この場合、ガス流路21のガス出口側21bからの消火剤ガスの導入を停止(加圧状態を解除)することにより、流路弁22が自動的に閉鎖して充填した消火剤ガスを消火剤貯蔵容器1に貯蔵することができる。   Moreover, this decompression device 2 introduces a fire extinguisher gas in a pressurized state from the gas outlet side 21b of the gas flow path 21, thereby automatically opening the flow path valve 22 and supplying the fire extinguisher gas to the fire extinguisher storage container. 1 can be filled. In this case, by stopping the introduction of the extinguishing agent gas from the gas outlet side 21b of the gas flow path 21 (releasing the pressurization state), the flow path valve 22 automatically closes and extinguishes the filled extinguishing gas. It can be stored in the agent storage container 1.

そして、この減圧装置2は、消火剤貯蔵容器1内の消火剤ガスの圧力、すなわち、供給側ガス圧P0が、基準ガス圧P1以下に低下するまでは、出口側ガス圧P2を基準ガス圧P1と略等しい値に保持する機能を有しているため、消火剤ガスの放出により消火剤貯蔵容器内の消火剤ガスの圧力が低下した場合でも、出口側ガス圧P2を基準ガス圧P1と略等しい値に維持することにより、消火剤ガスの放出量を一定に保つことができる。   And this decompression device 2 uses the outlet side gas pressure P2 as the reference gas pressure until the pressure of the extinguisher gas in the extinguisher storage container 1, that is, the supply side gas pressure P0 drops below the reference gas pressure P1. Since it has a function of maintaining a value substantially equal to P1, even when the pressure of the extinguishing agent gas in the extinguishing agent storage container decreases due to the release of the extinguishing agent gas, the outlet side gas pressure P2 is set to the reference gas pressure P1. By maintaining substantially the same value, the discharge amount of the extinguishing agent gas can be kept constant.

次に、この減圧装置2を容器弁として用いた上記のガス系消火設備の火災の際の動作について説明する。
いま、消火対象区画6−1に火災が発生したとすれば、火災発見者がこの消火対象区画6−1に対応する押釦(手動操作の場合)を操作すると、電気信号が起動用ガス容器開放用のソレノイド12−1に送られ、ソレノイド12−1が動作して起動用ガス容器11−1が開放される。
起動用ガス容器11−1が開放されることにより放出された起動用ガスは、まず、選択弁開放装置10−1に導入されて選択弁9−1を開放してから、不還弁14−1を経て起動用ガス管路13−1を通り、不還弁14−A及び不還弁14−Bを通過してすべての容器弁2に至って消火剤貯蔵容器1を5本とも開放する。
このとき、不還弁14−2及び不還弁14−3を通過することができないため、選択弁9−2及び選択弁9−3は開放されない。
ところで、容器弁2には、高圧の供給側ガス圧P0を定圧ガス源からの基準ガス圧P1によって規定される所定の出口側ガス圧P2に減圧することができる減圧装置を用いているため、開放された5本の消火剤貯蔵容器1から基準ガス圧P1以下に規制された不活性ガスが、容器弁2、連結管3、集合管4、選択弁9−1、主配管5−1及び枝管8−1を介して噴射ヘッド7−1まで送られ、噴射ヘッド7−1から消火対象区画6−1内に放出される。
Next, the operation of the gas fire extinguishing equipment using the decompression device 2 as a container valve in the event of a fire will be described.
Now, assuming that a fire has occurred in the fire extinguishing target section 6-1, when the fire finder operates a push button (in the case of manual operation) corresponding to the fire extinguishing target section 6-1, the electrical signal is opened to the start gas container. The solenoid 12-1 is operated and the activation gas container 11-1 is opened.
The start-up gas released by opening the start-up gas container 11-1 is first introduced into the selection valve opening device 10-1 to open the selection valve 9-1, and then the non-return valve 14-. 1 through the starting gas line 13-1, pass through the non-return valve 14-A and the non-return valve 14-B, reach all the container valves 2, and open all five extinguishing agent storage containers 1.
At this time, since it cannot pass through the non-return valve 14-2 and the non-return valve 14-3, the selection valve 9-2 and the selection valve 9-3 are not opened.
By the way, because the container valve 2 uses a pressure reducing device that can reduce the high supply gas pressure P0 to a predetermined outlet gas pressure P2 defined by the reference gas pressure P1 from the constant pressure gas source, The inert gas regulated to the reference gas pressure P1 or less from the five fire extinguishing agent storage containers 1 opened is the container valve 2, the connecting pipe 3, the collecting pipe 4, the selection valve 9-1, the main pipe 5-1, It is sent to the ejection head 7-1 through the branch pipe 8-1, and discharged from the ejection head 7-1 into the fire extinguishing target section 6-1.

また、消火対象区画6−2に火災が発生したとすれば、火災発見者がこの消火対象区画6−2に対応する押釦(手動操作の場合)を操作すると、電気信号が起動用ガス容器開放用のソレノイド12−2に送られ、ソレノイド12−2が動作して起動用ガス容器11−2が開放される。
起動用ガス容器11−2が開放されることにより放出された起動用ガスは、まず、選択弁開放装置10−2に導入されて選択弁9−2を開放してから、不還弁14−2を経て起動用ガス管路13−2を通り、不還弁14−Bを通過して容器弁2に至って消火剤貯蔵容器1を3本だけ、すなわち、消火剤貯蔵容器1−3、1−4、1−5を開放する。
このとき、不還弁14−Aを通過することができないため、消火剤貯蔵容器1のうち2本、すなわち、消火剤貯蔵容器1−1、1−2は開放されない。
また、不還弁14−1及び不還弁14−3を通過することができないため、選択弁9−1及び選択弁9−3は開放されない。
ところで、容器弁2には、容器弁2には、高圧の供給側ガス圧P0を定圧ガス源からの基準ガス圧P1によって規定される所定の出口側ガス圧P2に減圧することができる減圧装置を用いているため、開放された3本の消火剤貯蔵容器1−3、1−4、1−5から基準ガス圧P1以下に規制された不活性ガスが、容器弁2、連結管3、集合管4、選択弁9−2、主配管5−2及び枝管8−2を介して噴射ヘッド7−2まで送られ、噴射ヘッド7−2から消火対象区画6−2内に放出される。
Further, if a fire has occurred in the fire extinguishing target section 6-2, when the fire finder operates a push button (in the case of manual operation) corresponding to the fire extinguishing target section 6-2, an electrical signal is opened to the start gas container. Is sent to the solenoid 12-2 for operation, and the solenoid 12-2 is operated to open the starting gas container 11-2.
The starting gas released by opening the starting gas container 11-2 is first introduced into the selective valve opening device 10-2 to open the selective valve 9-2, and then the non-return valve 14-. 2 passes through the starting gas line 13-2, passes through the non-return valve 14-B, reaches the container valve 2, and has only three extinguishing agent storage containers 1, that is, the extinguishing agent storage containers 1-3, -4, 1-5 are opened.
At this time, since it cannot pass through the non-return valve 14-A, two of the extinguishing agent storage containers 1, that is, the extinguishing agent storage containers 1-1 and 1-2 are not opened.
Moreover, since it cannot pass through the non-return valve 14-1 and the non-return valve 14-3, the selection valve 9-1 and the selection valve 9-3 are not opened.
By the way, the container valve 2 includes a pressure reducing device capable of reducing the high supply side gas pressure P0 to a predetermined outlet side gas pressure P2 defined by the reference gas pressure P1 from the constant pressure gas source. Therefore, the inert gas regulated to the reference gas pressure P1 or less from the three opened extinguishing agent storage containers 1-3, 1-4, and 1-5 is the container valve 2, the connecting pipe 3, It is sent to the ejection head 7-2 through the collecting pipe 4, the selection valve 9-2, the main pipe 5-2, and the branch pipe 8-2, and discharged from the ejection head 7-2 into the fire extinguishing target section 6-2. .

また、消火対象区画6−3に火災が発生したとすれば、火災発見者がこの消火対象区画6−3に対応する押釦(手動操作の場合)を操作すると、電気信号が起動用ガス容器開放用のソレノイド12−3に送られ、ソレノイド12−3が動作して起動用ガス容器11−3が開放される。
起動用ガス容器11−3が開放されることにより放出された起動用ガスは、まず、選択弁開放装置10−3に導入されて選択弁9−3を開放してから、不還弁14−3を経て起動用ガス管路13−3を通り、容器弁2に至って消火剤貯蔵容器1を1本だけ、すなわち、消火剤貯蔵容器1−5を開放する。
このとき、不還弁14−Bを通過することができない(したがって、当然、不還弁14−Aも通過することができない)ため、消火剤貯蔵容器1のうち4本、すなわち、消火剤貯蔵容器1−1、1−2、1−3、1−4は開放されない。
また、不還弁14−1及び不還弁14−2を通過することができないため、選択弁9−1及び選択弁9−2は開放されない。
ところで、容器弁2には、容器弁2には、高圧の供給側ガス圧P0を定圧ガス源からの基準ガス圧P1によって規定される所定の出口側ガス圧P2に減圧することができる減圧装置を用いているため、開放された1本の消火剤貯蔵容器1−5から基準ガス圧P1以下に規制された不活性ガスが、容器弁2、連結管3、集合管4、選択弁9−3、主配管5−3及び枝管8−3を介して噴射ヘッド7−3まで送られ、噴射ヘッド7−3から消火対象区画6−3内に放出される。
Also, if a fire has occurred in the fire extinguishing target section 6-3, when the fire finder operates a push button (in the case of manual operation) corresponding to the fire extinguishing target section 6-3, the electrical signal is released from the start gas container. Is sent to the solenoid 12-3 for operation, and the solenoid 12-3 operates to open the starting gas container 11-3.
The starting gas released by opening the starting gas container 11-3 is first introduced into the selection valve opening device 10-3 to open the selection valve 9-3, and then the non-return valve 14-. 3, the starting gas pipe 13-3, the container valve 2, and only one extinguishing agent storage container 1, that is, the extinguishing agent storage container 1-5 is opened.
At this time, since the non-return valve 14-B cannot pass through (therefore, the non-return valve 14-A cannot pass through naturally), four of the fire-extinguishing agent storage containers 1, that is, the extinguishing agent storage. The containers 1-1, 1-2, 1-3, and 1-4 are not opened.
Moreover, since it cannot pass through the non-return valve 14-1 and the non-return valve 14-2, the selection valve 9-1 and the selection valve 9-2 are not opened.
By the way, the container valve 2 includes a pressure reducing device capable of reducing the high supply side gas pressure P0 to a predetermined outlet side gas pressure P2 defined by the reference gas pressure P1 from the constant pressure gas source. Therefore, the inert gas regulated to the reference gas pressure P1 or less from the opened one extinguishing agent storage container 1-5 becomes the container valve 2, the connecting pipe 3, the collecting pipe 4, and the selection valve 9-. 3. It is sent to the jet head 7-3 via the main pipe 5-3 and the branch pipe 8-3, and discharged from the jet head 7-3 into the fire extinguishing target section 6-3.

以上、消火対象区画が3区画で、消火剤貯蔵容器1の本数が5本の場合を例にして説明したが、消火対象区画の数及び消火剤貯蔵容器1の本数並びに開放される消火剤貯蔵容器1の本数は、本実施例のものに限定されるものではなく、必要に応じて任意に設定することができる。   As described above, the case where the number of fire extinguishing target sections is three and the number of fire extinguishing agent storage containers 1 is five has been described as an example. However, the number of fire extinguishing target sections, the number of fire extinguishing agent storage containers 1, and the extinguishing agent storage opened. The number of containers 1 is not limited to that of the present embodiment, and can be arbitrarily set as necessary.

そして、上記減圧装置2は、高圧の供給側ガス圧P0を所定の出口側ガス圧P2に減圧する減圧装置を、コンパクトな構造により実現することができ、また、出口側ガス圧P2の値を基準ガス圧P1を変えることによって広い範囲で、かつ、高精度に調整することができ、さらに、放出開始圧と制御圧(最大出口圧力)の差を小さくすることができる。
このため、この減圧装置2をガス系消火設備に適用した場合には、消火設備の二次側機器の耐圧グレードを上げることなく消火剤ガスの充填圧力を高めることができるとともに、供給側ガス圧が低下した場合でも、消火剤ガスの放出量を一定に保つことができ、さらに、放出開始圧と制御圧(最大出口圧力)の差が小さいことから最大放出流量が小さくなり、消火剤ガスの放出時の避圧開口を大きくする必要がなく、避圧開口に接続するダクト等の設備のコストを低廉化することができる。
And the said pressure reduction apparatus 2 can implement | achieve the pressure reduction apparatus which pressure-reduces the high supply side gas pressure P0 to the predetermined | prescribed exit side gas pressure P2 by a compact structure, Moreover, the value of the exit side gas pressure P2 can be set. By changing the reference gas pressure P1, it can be adjusted in a wide range and with high accuracy, and the difference between the discharge start pressure and the control pressure (maximum outlet pressure) can be reduced.
For this reason, when this decompression device 2 is applied to a gas fire extinguishing equipment, the filling pressure of the extinguishing agent gas can be increased without increasing the pressure resistance grade of the secondary equipment of the fire extinguishing equipment, and the supply side gas pressure Even if the pressure drops, the discharge amount of the extinguishing agent gas can be kept constant, and the difference between the discharge start pressure and the control pressure (maximum outlet pressure) is small, so the maximum discharge flow rate becomes small and the extinguishing agent gas There is no need to increase the pressure relief opening at the time of discharge, and the cost of equipment such as a duct connected to the pressure relief opening can be reduced.

また、上記のガス系消火設備においては、本発明に係る減圧装置を従来の容器弁に代えて用いるようにしたが、これに限定されず、図3に示すように、上記のガス系消火設備における消火剤貯蔵容器1と選択弁9−1、9−2、9−3とを接続する集合管4の適所に、上記第1実施例の減圧装置2と同様の構造及び作用の減圧装置18を配設するとともに、起動用ガス容器11−1、11−2、11−3とは別に、定圧ガス源として、窒素ガスを充填した定圧ガス容器19を設けることもできる。
このように、集合管4に本発明に係る減圧装置18を設けることにより、容器弁2に通常の容器弁を使用することができ、設備費を低廉にすることができる。なお、消火剤貯蔵容器1から減圧装置18に至るまでの容器弁2、連結管3及び集合管4等の消火設備の一次側機器には消火剤ガスの高いガス圧がかかることとなり、このため、これら一次側機器は、この高いガス圧に耐えるように構成する必要があるが、集合管4等は、主配管5−1、5−2、5−3に比べ管の内径が小さいため、耐圧が高く、このため、消火設備の一次側機器の耐圧グレードを上げる必要がないため、設備費を低廉にすることができるとともに、既存の設備にもそのまま適用することができる。
Further, in the above gas fire extinguishing equipment, the decompression device according to the present invention is used in place of the conventional container valve. However, the present invention is not limited to this, and as shown in FIG. The pressure reducing device 18 having the same structure and function as those of the pressure reducing device 2 of the first embodiment is disposed at an appropriate position of the collecting pipe 4 connecting the extinguishing agent storage container 1 and the selection valves 9-1, 9-2, 9-3. In addition to the starting gas containers 11-1, 11-2, and 11-3, a constant pressure gas container 19 filled with nitrogen gas may be provided as a constant pressure gas source.
Thus, by providing the pressure reducing device 18 according to the present invention in the collecting pipe 4, a normal container valve can be used for the container valve 2, and the equipment cost can be reduced. In addition, the high pressure of the extinguishing agent gas is applied to the primary side equipment of the extinguishing equipment such as the container valve 2, the connecting pipe 3, and the collecting pipe 4 from the extinguishing agent storage container 1 to the decompression device 18. These primary devices need to be configured to withstand this high gas pressure, but the collecting pipe 4 and the like have a smaller inner diameter than the main pipes 5-1, 5-2, and 5-3. Since the pressure resistance is high and it is not necessary to raise the pressure resistance grade of the primary equipment of the fire extinguishing equipment, the equipment cost can be reduced and it can be applied to existing equipment as it is.

図4に、本発明の減圧装置の第2実施例を示す。
この減圧装置2は、副弁体22bに、弁座29bに当接する面が球面状の弁体を用いたもので、より具体的には、副弁体22bには、直径数mm程度のナイロン66等の合成樹脂製の球体を使用し、この副弁体22bを、ばね23により円柱状(アスペクト比:1程度)のピストン22dを介してガス流路21を閉鎖する方向に付勢するようにしている。
また、この減圧装置2は、消火剤貯蔵容器1に装着した状態で、ばね支持体25を減圧装置2から取り外すことにより、流路弁22等の部品の着脱が可能な構成としているため、減圧装置2の保守等を簡易に行うことができる利点を有している。
なお、本実施例のその他の構成及び作用は、上記第1実施例の減圧装置2と同様である。
FIG. 4 shows a second embodiment of the decompression device of the present invention.
This decompression device 2 uses a valve body having a spherical surface that contacts the valve seat 29b as the sub-valve element 22b. More specifically, the sub-valve element 22b has a nylon diameter of about several millimeters. A spherical body made of synthetic resin such as 66 is used, and this sub-valve body 22b is biased by a spring 23 in a direction to close the gas flow path 21 via a cylindrical piston 22d (aspect ratio: about 1). I have to.
In addition, since the decompression device 2 is configured to be able to attach and detach components such as the flow path valve 22 by removing the spring support 25 from the decompression device 2 in a state where the decompression device 2 is mounted on the fire extinguisher storage container 1, There is an advantage that maintenance and the like of the apparatus 2 can be easily performed.
In addition, the other structure and effect | action of a present Example are the same as that of the pressure reduction apparatus 2 of the said 1st Example.

図5に、本発明の減圧装置の第3実施例を示す。
この減圧装置2は、副弁体22bに、弁座29bに当接する面が球面状の弁体を用いたもので、より具体的には、副弁体22bには、直径数mm程度のナイロン66等の合成樹脂製の球体を使用し、この副弁体22bを、ばね23によりガス流路21を閉鎖する方向に付勢するようにしている。
また、この減圧装置2は、消火剤貯蔵容器1に装着した状態で、ばね支持体25を減圧装置2から取り外すことにより、流路弁22等の部品の着脱が可能な構成としているため、減圧装置2の保守等を簡易に行うことができる利点を有している。
また、この減圧装置2は、ピストン26の形状を変更可能にしたもので、より具体的には、ピストン26及びピストン26を収納するシリンダ部分を交換することにより、大きな減圧(特に限定されるものではないが、例えば、減圧比30:1)を必要とする場合(図5(a))と、大きな減圧を必要としない場合(図5(b)及び(c))との変更を簡易に行うことができるようにしている。
なお、本実施例のその他の構成及び作用は、上記第1実施例の減圧装置2と同様である。
FIG. 5 shows a third embodiment of the decompression device of the present invention.
This decompression device 2 uses a valve body having a spherical surface that contacts the valve seat 29b as the sub-valve element 22b. More specifically, the sub-valve element 22b has a nylon diameter of about several millimeters. A spherical body made of synthetic resin such as 66 is used, and this sub-valve body 22 b is biased by a spring 23 in a direction to close the gas flow path 21.
In addition, since the decompression device 2 is configured to be able to attach and detach components such as the flow path valve 22 by removing the spring support 25 from the decompression device 2 in a state where the decompression device 2 is mounted on the fire extinguisher storage container 1, There is an advantage that maintenance and the like of the apparatus 2 can be easily performed.
In addition, the decompression device 2 can change the shape of the piston 26. More specifically, by replacing the piston 26 and the cylinder portion that houses the piston 26, a large decompression (particularly limited) However, for example, it is easy to change between a case where the pressure reduction ratio is 30: 1 (FIG. 5A) and a case where a large pressure reduction is not required (FIGS. 5B and 5C). To be able to do.
In addition, the other structure and effect | action of a present Example are the same as that of the pressure reduction apparatus 2 of the said 1st Example.

以上、本発明の減圧装置について、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、各実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものであり、また、減圧の対象ガスも、窒素のほか、アルゴン、二酸化炭素等の不活性ガス、産業用の各種ガス等の広範なガスに用いることができる。   As described above, the decompression device of the present invention has been described based on a plurality of examples.However, the present invention is not limited to the configurations described in the above examples, and the configurations described in the examples are appropriately combined. The configuration can be changed as appropriate without departing from the spirit of the invention, and the target gas for decompression is not limited to nitrogen, but includes a wide range of inert gases such as argon and carbon dioxide, and various industrial gases. Can be used for various gases.

本発明の減圧装置は、放出開始圧と制御圧(最大出口圧力)の差を小さくすることができる特性を有していることから、ガス系消火設備の用途に好適に用いることができるほか、例えば、原子力発電所や半導体製造工場等の設備内に定圧で各種のガスを供給する定圧ガス供給設備等の広範な用途に用いることができる。   Since the decompression device of the present invention has a characteristic capable of reducing the difference between the discharge start pressure and the control pressure (maximum outlet pressure), it can be suitably used for gas-based fire extinguishing equipment, For example, it can be used for a wide range of applications such as a constant-pressure gas supply facility that supplies various gases at a constant pressure in facilities such as nuclear power plants and semiconductor manufacturing plants.

ガス系消火設備の一例を示す図である。It is a figure showing an example of gas fire extinguishing equipment. 本発明の減圧装置の第1実施例を示し、(a)は流路弁閉鎖時の断面図、(b)は副弁体開放時の断面図、(c)は主弁体開放時の断面図である。1 shows a first embodiment of a pressure reducing device according to the present invention, wherein (a) is a sectional view when a flow path valve is closed, (b) is a sectional view when a sub-valve element is opened, and (c) is a section when a main valve element is opened. FIG. ガス系消火設備の変形例を示す図である。It is a figure which shows the modification of gas type fire extinguishing equipment. 本発明の減圧装置の第2実施例を示し、(a)は流路弁閉鎖時の断面図、(b)は副弁体開放時の断面図、(c)は主弁体開放時の断面図である。2 shows a second embodiment of the decompression device of the present invention, wherein (a) is a cross-sectional view when the flow path valve is closed, (b) is a cross-sectional view when the sub-valve element is opened, and (c) is a cross-section when the main valve element is opened. FIG. 本発明の減圧装置の第3実施例を示し、(a)は大きな減圧を必要とする減圧装置の平面断面図、(b)は大きな減圧を必要としない減圧装置の平面断面図、(c)同正面断面図である。3 shows a third embodiment of the decompression device of the present invention, wherein (a) is a plan sectional view of a decompression device that requires a large decompression, (b) is a plan sectional view of a decompression device that does not require a large decompression, and (c). It is the same front sectional view. 従来の減圧装置を示す断面図である。It is sectional drawing which shows the conventional pressure reduction apparatus.

符号の説明Explanation of symbols

1 消火剤貯蔵容器
2 容器弁(減圧装置)
21 ガス流路
22 流路弁
22a 主弁体
22b 副弁体
23 ばね
24 定圧ガス供給流路
25 ばね支持体
26 ピストン
27 操作棒
28 ばね
29a 弁座
29b 弁座
6 消火対象区画
7 噴射ヘッド
18 減圧装置
P0 供給側ガス圧
P1 基準ガス圧
P2 出口側ガス圧
1 Fire extinguisher storage container 2 Container valve (pressure reduction device)
DESCRIPTION OF SYMBOLS 21 Gas flow path 22 Flow path valve 22a Main valve body 22b Subvalve body 23 Spring 24 Constant pressure gas supply flow path 25 Spring support body 26 Piston 27 Operation rod 28 Spring 29a Valve seat 29b Valve seat 6 Fire extinguishing object section 7 Injection head 18 Pressure reduction Equipment P0 Supply side gas pressure P1 Reference gas pressure P2 Outlet side gas pressure

Claims (2)

両側の受圧面に供給側ガス圧(P0)及び出口側ガス圧(P2)がそれぞれ所定の面積割合でかかるように構成したガス流路(21)に配設した流路弁(22)と、一方の受圧面に基準ガス圧(P1)が、他方の受圧面に出口側ガス圧(P2)がかかるように構成するとともに、前記他方の受圧面に流路弁(22)を操作する操作棒(27)を突設したピストン(26)とからなる減圧装置において、前記流路弁(22)を、主弁体(22a)と、副弁体(22b)とで構成し、ピストン(26)の操作棒(27)により副弁体(22b)、主弁体(22a)の順に操作することにより流路弁(22)を開放するようにしたことを特徴とする減圧装置。   A flow path valve (22) disposed in a gas flow path (21) configured such that a supply side gas pressure (P0) and an outlet side gas pressure (P2) are respectively applied to the pressure receiving surfaces on both sides at a predetermined area ratio; An operating rod that is configured so that the reference gas pressure (P1) is applied to one pressure receiving surface and the outlet side gas pressure (P2) is applied to the other pressure receiving surface, and the flow path valve (22) is operated to the other pressure receiving surface. In the decompression device comprising the piston (26) projecting (27), the flow path valve (22) comprises a main valve body (22a) and a sub-valve body (22b), and the piston (26) The pressure reducing device is characterized in that the flow valve (22) is opened by operating the auxiliary valve body (22b) and the main valve body (22a) in this order by the operation rod (27). 副弁体(22b)に対して供給側ガス圧(P0)をかけるガス流路に絞り部(21f)を形成したことを特徴とする請求項1記載の減圧装置。   The pressure reducing device according to claim 1, wherein a throttle part (21f) is formed in a gas flow path for applying a supply side gas pressure (P0) to the sub-valve element (22b).
JP2006114207A 2006-04-18 2006-04-18 Decompressor Active JP4588662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114207A JP4588662B2 (en) 2006-04-18 2006-04-18 Decompressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114207A JP4588662B2 (en) 2006-04-18 2006-04-18 Decompressor

Publications (2)

Publication Number Publication Date
JP2007286944A true JP2007286944A (en) 2007-11-01
JP4588662B2 JP4588662B2 (en) 2010-12-01

Family

ID=38758651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114207A Active JP4588662B2 (en) 2006-04-18 2006-04-18 Decompressor

Country Status (1)

Country Link
JP (1) JP4588662B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130649A1 (en) * 2017-01-12 2018-07-19 Minimax Gmbh & Co. Kg Constant-pressure valve, and alarm valve station and sprinkler system comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272785A (en) * 1990-12-29 1994-09-27 Koguma Kikai Kk Opening/closing device of automatic valve
JPH0675012U (en) * 1993-03-31 1994-10-21 伊藤工機株式会社 Governor with double closing mechanism
JPH10307629A (en) * 1997-03-03 1998-11-17 Koatsu:Kk Pressure reducing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272785A (en) * 1990-12-29 1994-09-27 Koguma Kikai Kk Opening/closing device of automatic valve
JPH0675012U (en) * 1993-03-31 1994-10-21 伊藤工機株式会社 Governor with double closing mechanism
JPH10307629A (en) * 1997-03-03 1998-11-17 Koatsu:Kk Pressure reducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130649A1 (en) * 2017-01-12 2018-07-19 Minimax Gmbh & Co. Kg Constant-pressure valve, and alarm valve station and sprinkler system comprising same

Also Published As

Publication number Publication date
JP4588662B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP2813318B2 (en) Inert gas fire extinguishing equipment
JP5117518B2 (en) Gas fire extinguishing equipment
JP5706656B2 (en) Liquefied gas discharge equipment
US20030131849A1 (en) System for use in administrating therapeutic gas to a patient
US20180221695A1 (en) Silent fire suppression system
US9581295B2 (en) Economizer biasing valve for cryogenic fluids
JP5031381B2 (en) Pressure reducing device and gas fire extinguishing equipment using the pressure reducing device
JP4588662B2 (en) Decompressor
JP2008175261A5 (en)
JP3058841B2 (en) Decompression device
JP5341168B2 (en) Decompressor
JP4319605B2 (en) Release method of inert gas fire extinguishing agent in inert gas fire extinguishing equipment
JP3929214B2 (en) Gas fire extinguishing equipment
KR101223924B1 (en) Permeable Gas Assembly for Gas Delivery
JP3811675B2 (en) Quick opening pressure control valve and fire extinguisher using the same
JP5507269B2 (en) Pressure reducing device and gas fire extinguishing equipment using the pressure reducing device
KR20180000084U (en) Piping purge apparatus
JP4417293B2 (en) Quick opening pressure control valve and fire extinguisher using the same
JP3605277B2 (en) How to use inert gas fire extinguishing equipment
JP3096658B2 (en) Decompression device for fire extinguishing equipment
JP2960012B2 (en) Decompression device for gas fire extinguishing equipment
JP3315062B2 (en) Starting system for gas fire extinguishing equipment
JP3342663B2 (en) Starting system for gas fire extinguishing equipment
JP4608041B2 (en) Fail-safe delivery valve for pressurized tanks
JP6685810B2 (en) Gas fire extinguishing system with a non-return valve in the starting gas line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250