Nothing Special   »   [go: up one dir, main page]

JP2007280849A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2007280849A
JP2007280849A JP2006107810A JP2006107810A JP2007280849A JP 2007280849 A JP2007280849 A JP 2007280849A JP 2006107810 A JP2006107810 A JP 2006107810A JP 2006107810 A JP2006107810 A JP 2006107810A JP 2007280849 A JP2007280849 A JP 2007280849A
Authority
JP
Japan
Prior art keywords
substrate
photoelectric conversion
conversion element
counter electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006107810A
Other languages
Japanese (ja)
Other versions
JP5160045B2 (en
Inventor
Tetsuya Ezure
哲也 江連
Hiroshi Matsui
浩志 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006107810A priority Critical patent/JP5160045B2/en
Publication of JP2007280849A publication Critical patent/JP2007280849A/en
Application granted granted Critical
Publication of JP5160045B2 publication Critical patent/JP5160045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element having high power generation characteristics by preventing the deterioration of an electrolyte or a semiconductor caused by heat in a heat process in sealing. <P>SOLUTION: The photoelectric conversion element is equipped with a counter electrode made of a first conductive substrate; a second insulating transparent substrate; and a porous oxide semiconductor layer arranged on one side of the second substrate through a transparent conductive film, the porous oxide semiconductor layer comprises a working electrode facing the one side of the first substrate and an electrolyte layer arranged in at least one part between the counter electrode and the working electrode, the first substrate has the area narrower than the second substrate, and photo-curing resin is arranged so as to cover the electrolyte layer and at least the side of the first substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光電変換素子に係る。より詳しくは、新しい封止構造により、優れた発電特性を有する光電変換素子に関する。   The present invention relates to a photoelectric conversion element. More specifically, the present invention relates to a photoelectric conversion element having excellent power generation characteristics by a new sealing structure.

環境問題、資源問題などを背景に、クリーンエネルギーとしての太陽電池が注目を集めている。太陽電池としては単結晶、多結晶あるいはアモルファスのシリコンを用いたものがある。しかし、従来のシリコン系太陽電池は製造コストが高い、原料供給が不充分などの課題が残されており、大幅普及には至っていない。   Against the backdrop of environmental problems and resource problems, solar cells as clean energy are attracting attention. Some solar cells use single crystal, polycrystalline or amorphous silicon. However, conventional silicon-based solar cells still have problems such as high production costs and insufficient supply of raw materials, and have not been widely spread.

また、Cu−In−Se系(CIS系とも呼ぶ)などの化合物系太陽電池が開発されており、極めて高い光電変換効率を示すなど優れた特徴を有しているが、コストや環境負荷などの問題があり、やはり大幅普及への障害となっている。   In addition, compound solar cells such as Cu-In-Se (also referred to as CIS) have been developed and have excellent characteristics such as extremely high photoelectric conversion efficiency. There is a problem, and it is still an obstacle to widespread use.

これらに対して、色素増感型太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、安価で高い光電変換効率を得られる光電変換素子として着目されている(非特許文献1を参照)。   On the other hand, the dye-sensitized solar cell has been proposed by a group of Gretzel et al. In Switzerland, and has attracted attention as a photoelectric conversion element that can obtain high photoelectric conversion efficiency at low cost (see Non-Patent Document 1). reference).

図4は、従来の色素増感型太陽電池の一例を示す断面図である。
この色素増感型太陽電池100は、増感色素を担持させた多孔質半導体層103が一方の面に形成された第一基板101と、透明導電層104が形成された第二基板105と、これらの間に封入された例えばゲル状電解質からなる電解質層を主な構成要素としている。
FIG. 4 is a cross-sectional view showing an example of a conventional dye-sensitized solar cell.
This dye-sensitized solar cell 100 includes a first substrate 101 on which a porous semiconductor layer 103 carrying a sensitizing dye is formed on one surface, a second substrate 105 on which a transparent conductive layer 104 is formed, The main component is an electrolyte layer made of, for example, a gel electrolyte enclosed between them.

第一基板101としては、光透過性の板材が用いられ、第一基板101の色素増感半導体層103と接する面には導電性を持たせるために透明導電層102が配置されており、第一基板101、透明導電層102および多孔質半導体層103により作用極108をなす。
第二基板105としては、電解質層106と接する側の面には導電性を持たせるために例えば炭素や白金などからなる導電層104が設けられ、第二基板および導電層104により対極109を構成している。
As the first substrate 101, a light transmissive plate material is used, and a transparent conductive layer 102 is disposed on the surface of the first substrate 101 in contact with the dye-sensitized semiconductor layer 103 in order to provide conductivity. A working electrode 108 is formed by one substrate 101, the transparent conductive layer 102, and the porous semiconductor layer 103.
As the second substrate 105, a conductive layer 104 made of, for example, carbon or platinum is provided on the surface on the side in contact with the electrolyte layer 106, and a counter electrode 109 is configured by the second substrate and the conductive layer 104. is doing.

多孔質半導体層103と導電層104が対向するように、第一基板101と第二基板105を所定の間隔をおいて配置し、両基板間の周辺部に熱硬化性樹脂からなる封止剤107を設ける。
そして、この封止剤107を介して2つの基板101、105を貼り合わせてセルを組み上げ、電解液の注入口110を介して、両極108、109間にヨウ素・ヨウ化物イオンなどの酸化・還元対を含む有機電解液を充填し、電荷移送用の電解質層106を形成したものが挙げられる。
The first substrate 101 and the second substrate 105 are arranged at a predetermined interval so that the porous semiconductor layer 103 and the conductive layer 104 face each other, and a sealant made of a thermosetting resin is provided in the peripheral portion between the two substrates. 107 is provided.
Then, the two substrates 101 and 105 are bonded together through the sealing agent 107 to assemble a cell, and oxidation / reduction of iodine / iodide ions or the like between the electrodes 108 and 109 through the electrolyte inlet 110. An organic electrolyte containing a pair is filled and an electrolyte layer 106 for charge transfer is formed.

しかしながら、上記のような構造の従来の光電変換素子では、熱硬化性樹脂を用いて封止していたため、封止の際の熱工程により電解質や増感色素が劣化し、発電特性が低下してしまうという問題があった。   However, since the conventional photoelectric conversion element having the above-described structure was sealed using a thermosetting resin, the electrolyte and the sensitizing dye deteriorated due to the thermal process during sealing, and the power generation characteristics decreased. There was a problem that.

また、従来の光電変換素子では、対極への電気的接触を確立するために、対極の基板自体を、導電性を有するものとし、そこへさらに別の導電性を有するもの(取り出し電極)を物理的に接触させることにより、対極側の端子を取り出していた。   Further, in the conventional photoelectric conversion element, in order to establish electrical contact with the counter electrode, the counter electrode substrate itself is made conductive, and another one having another conductivity (extraction electrode) is physically provided there. Thus, the terminal on the counter electrode side was taken out.

しかしながら、セルサイズが大型化するに伴い、流れる電流量が増加し、対極基板と取り出し電極との接触部分におけるIRドロップの影響が無視できなくなってきた。対極に使用する基板としては、電解液によって溶解などを起こさない耐食性が必要であり、金属チタン板が用いられている。しかし、チタンへは直接リード線をはんだ付けできないために、外部との電気的接続は、物理的接触に頼らざるを得ない状態であった。
O’ Regan B, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991;353:737-739
However, as the cell size increases, the amount of current flowing increases, and the influence of IR drop at the contact portion between the counter electrode substrate and the extraction electrode can no longer be ignored. As a substrate used for the counter electrode, corrosion resistance that does not cause dissolution by the electrolytic solution is necessary, and a metal titanium plate is used. However, since lead wires cannot be soldered directly to titanium, electrical connection with the outside has to rely on physical contact.
O 'Regan B, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991; 353: 737-739

本発明は、このような従来の実情に鑑みて提案されたものであり、封止する際の熱工程による電解質や増感色素への熱による劣化を防止し、優れた発電特性を有する光電変換素子を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and prevents deterioration due to heat to an electrolyte or a sensitizing dye due to a heat process at the time of sealing, and photoelectric conversion having excellent power generation characteristics An object is to provide an element.

本発明の請求項1に記載の光電変換素子は、導電性の第一基材からなる対極と、絶縁性の透明な第二基材と、該第二基材の一面に透明導電膜を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層とを備え、該多孔質酸化物半導体層が前記第一基材の一面と対向して配される作用極と、前記対極と前記作用極との間の少なくとも一部に配された電解質層と、から構成され、前記第一基材は、前記第二基材よりも狭い面積を有し、前記電解質層と前記第一基材の側面部を少なくとも被覆するように硬化性樹脂を配したことを特徴とする。
本発明の請求項2に記載の光電変換素子は、請求項1において、前記硬化性樹脂は、前記対極の前記作用極と反対側の面上であって、外縁部も被覆するように配されていることを特徴とする。
本発明の請求項3に記載の光電変換素子は、請求項1または2において、前記対極は、導電部材から構成され、前記作用極と反対側の面には、該導電部材と異なる金属からなる被膜が配されていることを特徴とする。
本発明の請求項4に記載の光電変換素子は、請求項3において、前記導電部材はチタン基板であり、前記被膜は、はんだ付け可能な単一金属、または該金属を主成分とする合金からなることを特徴とする。
The photoelectric conversion element according to claim 1 of the present invention includes a counter electrode made of a conductive first base material, an insulating transparent second base material, and a transparent conductive film on one surface of the second base material. A working electrode in which the porous oxide semiconductor layer is disposed to face one surface of the first substrate, and the counter electrode. And an electrolyte layer disposed in at least a portion between the working electrode, and the first substrate has a smaller area than the second substrate, and the electrolyte layer and the first electrode A curable resin is disposed so as to cover at least the side surface of the substrate.
The photoelectric conversion element according to claim 2 of the present invention is the photoelectric conversion element according to claim 1, wherein the curable resin is disposed on the surface of the counter electrode opposite to the working electrode and also covers an outer edge portion. It is characterized by.
The photoelectric conversion element according to claim 3 of the present invention is the photoelectric conversion element according to claim 1 or 2, wherein the counter electrode is made of a conductive member, and a surface opposite to the working electrode is made of a metal different from the conductive member. A coating is provided.
The photoelectric conversion element according to claim 4 of the present invention is the photoelectric conversion element according to claim 3, wherein the conductive member is a titanium substrate, and the coating is made of a single metal that can be soldered or an alloy containing the metal as a main component. It is characterized by becoming.

本発明では、作用極よりも狭い面積を有する対極と電解質層との側面部を少なくとも被覆するように硬化性樹脂を配することで封止しているので、封止の際の熱工程が不要となるので、電解質や増感色素の熱による劣化を防止し、優れた発電特性を有する光電変換素子を提供することができる。   In the present invention, since the sealing is performed by disposing the curable resin so as to cover at least the side surface portion of the counter electrode having a smaller area than the working electrode and the electrolyte layer, a thermal process at the time of sealing is unnecessary. Therefore, it is possible to provide a photoelectric conversion element having excellent power generation characteristics by preventing deterioration of the electrolyte and sensitizing dye due to heat.

以下、本発明に係る光電変換素子10の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a photoelectric conversion element 10 according to the present invention will be described with reference to the drawings.

図1は、本発明に係る光電変換素子10A(10)の一実施形態を示す概略断面図である。
本発明の光電変換素子10は、導電性の第一基材11からなる対極12と、絶縁性の透明な第二基材13と、該第二基材13の一面に透明導電膜14を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層15とを備え、該多孔質酸化物半導体層15が前記第一基材11の一面と対向して配される作用極16と、前記対極11と前記作用極16との間の少なくとも一部に配された電解質層17と、から構成される。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a photoelectric conversion element 10A (10) according to the present invention.
The photoelectric conversion element 10 of the present invention includes a counter electrode 12 made of a conductive first base material 11, an insulating transparent second base material 13, and a transparent conductive film 14 on one surface of the second base material 13. And a porous oxide semiconductor layer 15 supporting at least a part of the pigment, and the porous oxide semiconductor layer 15 is disposed to face one surface of the first substrate 11. And an electrolyte layer 17 disposed at least at a part between the counter electrode 11 and the working electrode 16.

そして、本発明の光電変換素子10は、前記第一基材11は、前記第二基材13よりも狭い面積を有し、前記電解質層17と前記第一基材11の側面部を少なくとも被覆するように硬化性樹脂18を配したことを特徴とする。
作用極16よりも狭い面積を有する対極12と電解質層17との側面部を少なくとも被覆するように硬化性樹脂18を配することで封止しているので、封止の際の熱工程が不要となるので、電解質や増感色素の熱による劣化を防止し、優れた発電特性を有することができる。
In the photoelectric conversion element 10 according to the present invention, the first base material 11 has a smaller area than the second base material 13 and covers at least the electrolyte layer 17 and the side surface of the first base material 11. As described above, the curable resin 18 is provided.
Since the sealing is performed by disposing the curable resin 18 so as to cover at least the side surfaces of the counter electrode 12 having a smaller area than the working electrode 16 and the electrolyte layer 17, a heat process is not required for sealing. Thus, deterioration of the electrolyte and sensitizing dye due to heat can be prevented, and excellent power generation characteristics can be obtained.

図2に示す光電変換素子10B(10)のように、前記硬化性樹脂18は、前記対極12の前記作用極16と反対側の面上であって、外縁部も被覆するように配されていることが好ましい。これにより、封止性が向上し、電解質の液漏れを確実に防止することができる。   Like the photoelectric conversion element 10 </ b> B (10) shown in FIG. 2, the curable resin 18 is disposed on the surface opposite to the working electrode 16 of the counter electrode 12 so as to cover the outer edge portion. Preferably it is. Thereby, sealing property improves and it can prevent the liquid leakage of electrolyte reliably.

作用極16は、透明基材(第二基材)13、および、その一方の面に形成された透明導電膜14と、増感色素を担持させた多孔質酸化物半導体層15とから概略構成されている。   The working electrode 16 is schematically composed of a transparent substrate (second substrate) 13, a transparent conductive film 14 formed on one surface thereof, and a porous oxide semiconductor layer 15 carrying a sensitizing dye. Has been.

透明基材13としては、光透過性の素材からなる基板が用いられ、ガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、光電変換素子10の透明基材として用いられるものであればいかなるものでも用いることができる。透明基材13は、これらの中から電解液への耐性などを考慮して適宜選択される。また、透明基材13としては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が90%以上の基板がより好ましい。   As the transparent base material 13, a substrate made of a light-transmitting material is used, and glass, polyethylene terephthalate, polycarbonate, polyether sulfone, etc., as long as they are usually used as a transparent base material for the photoelectric conversion element 10. But it can also be used. The transparent substrate 13 is appropriately selected from these in consideration of resistance to the electrolytic solution and the like. Moreover, as a transparent base material 13, the board | substrate which is excellent in the light transmittance as much as possible is preferable on a use, and the board | substrate whose transmittance | permeability is 90% or more is more preferable.

透明導電膜14は、透明基材13に導電性を付与するために、その一方の面に形成された薄膜である。透明導電性基板の透明性を著しく損なわない構造とするために、透明導電膜14は、導電性金属酸化物からなる薄膜であることが好ましい。
透明導電膜14を形成する導電性金属酸化物としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが用いられる。これらの中でも、成膜が容易かつ製造コストが安価であるという観点から、ITO、FTOが好ましい。また、透明導電膜14は、ITOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜であることが好ましい。
The transparent conductive film 14 is a thin film formed on one surface of the transparent base material 13 in order to impart conductivity. In order to obtain a structure that does not significantly impair the transparency of the transparent conductive substrate, the transparent conductive film 14 is preferably a thin film made of a conductive metal oxide.
Examples of the conductive metal oxide that forms the transparent conductive film 14 include tin-added indium oxide (ITO), fluorine-added tin oxide (FTO), and tin oxide (SnO 2 ). Among these, ITO and FTO are preferable from the viewpoint of easy film formation and low manufacturing costs. The transparent conductive film 14 is preferably a single layer film made of only ITO or a laminated film in which a film made of FTO is laminated on a film made of ITO.

透明導電膜14を、ITOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜とすることにより、可視域における光の吸収量が少なく、導電率が高い透明導電性基板を構成することができる。   By making the transparent conductive film 14 a single-layer film made of only ITO or a laminated film in which a film made of FTO is laminated on a film made of ITO, the amount of light absorption in the visible region is small, and the conductivity A transparent conductive substrate having a high thickness can be formed.

多孔質酸化物半導体層15は、透明導電膜14の上に設けられており、その表面には増感色素が担持されている。多孔質酸化物半導体層15を形成する半導体としては特に限定されず、通常、光電変換素子用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを用いることができる。 The porous oxide semiconductor layer 15 is provided on the transparent conductive film 14, and a sensitizing dye is supported on the surface thereof. The semiconductor for forming the porous oxide semiconductor layer 15 is not particularly limited, and any semiconductor can be used as long as it is usually used for forming a porous oxide semiconductor for a photoelectric conversion element. As such a semiconductor, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), or the like can be used. .

多孔質酸化物半導体層15を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、このポリマーマイクロビーズを加熱処理や化学処理により除去して空隙を形成させ多孔質化する方法などを適用することができる。   As a method for forming the porous oxide semiconductor layer 15, for example, a dispersion in which commercially available oxide semiconductor fine particles are dispersed in a desired dispersion medium or a colloidal solution that can be prepared by a sol-gel method is used as necessary. After adding desired additives, the polymer microbeads are applied by heat treatment or chemical treatment after coating by a known coating method such as screen printing method, ink jet printing method, roll coating method, doctor blade method, spray coating method, etc. It is possible to apply a method of removing the void to form a porous structure.

増感色素としては、ピピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポリフィリン、フタロシアニンなどの含金属錯体、エオニン、ローダミン、メロシアニンなどの有機色素などを適用することができ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。   As sensitizing dyes, ruthenium complexes containing a pyridin structure, terpyridine structure, etc. as ligands, metal-containing complexes such as polyphylline and phthalocyanine, and organic dyes such as eonin, rhodamine and merocyanine can be applied. Therefore, those exhibiting behavior suitable for the intended use and the semiconductor used can be selected without particular limitation.

電解質層17は、多孔質酸化物半導体層15内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層15内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層15と一体に形成されてなるもの、あるいは、イオン性液体、酸化物半導体粒子若しくは導電性粒子を含むゲル状の電解質が用いられる。   The electrolyte layer 17 is formed by impregnating the porous oxide semiconductor layer 15 with the electrolytic solution, or after impregnating the porous oxide semiconductor layer 15 with the electrolytic solution, the electrolytic solution is applied to an appropriate gel. Gelled (quasi-solidified) using an agent and formed integrally with the porous oxide semiconductor layer 15 or a gel-like material containing ionic liquid, oxide semiconductor particles or conductive particles An electrolyte is used.

上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリ−ブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
As said electrolyte solution, what melt | dissolved electrolyte components, such as an iodine, iodide ion, and tertiary butyl pyridine, in organic solvents, such as ethylene carbonate and methoxyacetonitrile, is used.
Examples of the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.

上記イオン性液体としては、特に限定されるものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチオンまたはアニオンとした常温溶融性塩が挙げられる。
常温溶融性塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF 、PF 、F(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。
イオン性液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
Although it does not specifically limit as said ionic liquid, Room temperature meltable salt which is a liquid at room temperature and made the compound which has the quaternized nitrogen atom into a cation or an anion is mentioned.
Examples of the cation of the room temperature melting salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, quaternized ammonium derivatives and the like.
Examples of the anion of the room temperature molten salt include BF 4 , PF 6 , F (HF) n , bistrifluoromethylsulfonylimide [N (CF 3 SO 2 ) 2 ], iodide ions, and the like.
Specific examples of the ionic liquid include salts composed of a quaternized imidazolium cation and iodide ion or bistrifluoromethylsulfonylimide ion.

上記酸化物半導体粒子としては、物質の種類や粒子サイズなどが特に限定されないが、イオン性液体を主体とする電解液との混和製に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質の導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。
このような酸化物半導体粒子としては、TiO、SnO、WO、ZnO、Nb、In、ZrO、Ta、La、SrTiO、Y、Ho、Bi、CeO、Alからなる群から選択される1種または2種以上の混合物が好ましく、二酸化チタン微粒子(ナノ粒子)が特に好ましい。この二酸化チタンの平均粒径は2nm〜1000nm程度が好ましい。
The oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but those that are excellent in mixing with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. . In addition, the oxide semiconductor particles are required to have excellent chemical stability against other coexisting components contained in the electrolyte without reducing the conductivity of the electrolyte. In particular, even when the electrolyte contains a redox pair such as iodine / iodide ions or bromine / bromide ions, the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.
Examples of such oxide semiconductor particles include TiO 2 , SnO 2 , WO 3 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Ta 2 O 5 , La 2 O 3 , SrTiO 3 , Y 2 O. 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 , Al 2 O 3 are preferably selected from one or a mixture of two or more, and titanium dioxide fine particles (nanoparticles) are particularly preferable. The average particle diameter of the titanium dioxide is preferably about 2 nm to 1000 nm.

上記導電性微粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。この導電性粒子の比抵抗の範囲は、好ましくは1.0×10−2Ω・cm以下であり、より好ましくは、1.0×10−3Ω・cm以下である。また、導電性粒子の種類や粒子サイズなどは特に限定されないが、イオン性液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。このような導電性微粒子には、電解質中において導電性が低下しにくく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが求められる。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合でも、酸化反応などによる劣化を生じないものが好ましい。
このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。
As the conductive fine particles, conductive particles such as a conductor and a semiconductor are used. The range of the specific resistance of the conductive particles is preferably 1.0 × 10 −2 Ω · cm or less, and more preferably 1.0 × 10 −3 Ω · cm or less. Further, the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. Such conductive fine particles are required to have excellent chemical stability with respect to other coexisting components contained in the electrolyte, since the conductivity is not easily lowered in the electrolyte. In particular, even when the electrolyte contains an oxidation / reduction pair such as iodine / iodide ion or bromine / bromide ion, an electrolyte that does not deteriorate due to oxidation reaction or the like is preferable.
Examples of such conductive fine particles include those composed mainly of carbon, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.

対極12は、図3に示す光電変換素子10C(10)のように、導電性の第一基材11と、この一方の面上(前記作用極16と反対側の面)に配された、第一基材11と異なる金属からなる被膜19とから構成されていることが好ましい。
第一基材11としては、導電性を有する金属板が用いられるが、チタン板から構成されることが好ましい。
前記被膜19は、Cu等のはんだ付け可能な単一金属、または該金属を主成分とする合金から構成されることが好ましい。
The counter electrode 12 is disposed on the conductive first base material 11 and one of the surfaces (the surface opposite to the working electrode 16) like the photoelectric conversion element 10C (10) shown in FIG. It is preferable that the first substrate 11 and the coating 19 made of a different metal are used.
As the 1st base material 11, although the metal plate which has electroconductivity is used, it is preferable to be comprised from a titanium plate.
The coating 19 is preferably composed of a solderable single metal such as Cu or an alloy containing the metal as a main component.

以上のような構成とすることにより、前記被膜19は、はんだとチタン基板との接合層として機能する。これにより、対極12の被膜19上にリード線をはんだ付けすることが可能となり、対極12と外部配線との電気的接続性を向上することができる。
また、前記被膜19の膜厚は、10nm〜10μmであることが好ましい。前記被膜19の膜厚を前記範囲とすることにより、折り曲げなどに対して剥離しない十分な密着性を有するものとなり、外部配線との電気的接続性をさらに向上することができる。
前記被膜19は、リード線のはんだ付けを可能とすればよく、第一基材11の全面に形成されていてもよいし、一部にのみ形成されていても構わない。
By setting it as the above structures, the said film 19 functions as a joining layer of a solder and a titanium substrate. Thereby, it becomes possible to solder a lead wire on the film 19 of the counter electrode 12, and the electrical connectivity between the counter electrode 12 and the external wiring can be improved.
The film 19 preferably has a thickness of 10 nm to 10 μm. By setting the film thickness of the coating film 19 within the above range, the coating film 19 has sufficient adhesion that does not peel off against bending or the like, and can further improve electrical connectivity with external wiring.
The coating 19 only needs to enable soldering of the lead wires, and may be formed on the entire surface of the first substrate 11 or may be formed only on a part thereof.

硬化性樹脂18としては、対極12をなす第一基材11に対する接着性に優れるものであれば特に限定されないが、例えば、紫外線硬化性アクリル系樹脂に代表される光硬化型樹脂や、エポキシ接着剤に代表される二液硬化型樹脂、ポリウレタン樹脂に代表される湿気硬化型樹脂などが挙げられる。   The curable resin 18 is not particularly limited as long as it has excellent adhesion to the first base material 11 forming the counter electrode 12. For example, a photocurable resin typified by an ultraviolet curable acrylic resin or an epoxy adhesive is used. Examples thereof include two-component curable resins typified by agents and moisture curable resins typified by polyurethane resins.

次に、この実施形態の光電変換素子10Cの製造方法について説明する。
まず、透明基材(第二基材)13の一方の面の全域を覆うように透明導電膜14を形成し、透明導電性基板を作製する。
透明導電膜14を形成する方法としては、特に限定されるものではなく、例えば、スパッタリング法、CVD(化学気相成長)法、スプレー熱分解法(SPD法)、蒸着法などの薄膜形成法が挙げられる。
Next, a method for manufacturing the photoelectric conversion element 10C of this embodiment will be described.
First, the transparent conductive film 14 is formed so as to cover the entire area of one surface of the transparent base material (second base material) 13, and a transparent conductive substrate is produced.
The method for forming the transparent conductive film 14 is not particularly limited, and examples thereof include thin film formation methods such as sputtering, CVD (chemical vapor deposition), spray pyrolysis (SPD), and vapor deposition. Can be mentioned.

その中でも、前記透明導電膜14は、スプレー熱分解法により形成されたものであることが好ましい。透明導電膜14を、スプレー熱分解法により形成することで、容易にヘーズ率を制御することができる。また、スプレー熱分解法は、真空システムが不要なため、製造工程の簡素化低コスト化を図ることができるので好適である。   Among them, the transparent conductive film 14 is preferably formed by a spray pyrolysis method. By forming the transparent conductive film 14 by spray pyrolysis, the haze rate can be easily controlled. In addition, the spray pyrolysis method is preferable because a vacuum system is unnecessary, and thus the manufacturing process can be simplified and the cost can be reduced.

次いで、透明導電膜14を覆うように、多孔質酸化物半導体層15を形成する。この多孔質酸化物半導体層15の形成は、主に塗布工程と乾燥・焼成工程からなる。
塗布工程とは、例えばTiO粉末と界面活性剤および増粘剤を所定の比率で混ぜ合わせてなるTiOコロイドのペーストを、親水性化を図った透明導電膜14の表面に塗布するものである。その際、塗布法としては、加圧手段(例えば、ガラス棒)を用いて前記コロイドを透明導電膜14上に押し付けながら、塗布されたコロイドが均一な厚さを保つように、加圧手段を透明導電膜14の上空を移動させる方法が挙げられる。
Next, the porous oxide semiconductor layer 15 is formed so as to cover the transparent conductive film 14. The formation of the porous oxide semiconductor layer 15 mainly includes a coating process and a drying / firing process.
The coating process is, for example, applying a paste of TiO 2 colloid obtained by mixing TiO 2 powder, a surfactant and a thickener at a predetermined ratio onto the surface of the transparent conductive film 14 that has been made hydrophilic. is there. At this time, as a coating method, a pressing unit (for example, a glass rod) is used to press the colloid onto the transparent conductive film 14 so that the applied colloid maintains a uniform thickness. A method of moving the sky above the transparent conductive film 14 is exemplified.

乾燥・焼成工程とは、例えば大気雰囲気中におよそ30分間、室温にて放置し、塗布されたコロイドを乾燥させた後、電気炉を用いおよそ60分間、450℃の温度にて焼成する方法が挙げられる。   The drying / firing process is, for example, a method in which the coated colloid is allowed to stand at room temperature for about 30 minutes in an air atmosphere and dried, and then baked at a temperature of 450 ° C. for about 60 minutes using an electric furnace. Can be mentioned.

次に、この塗布工程と乾燥・焼成工程により形成された多孔質酸化物半導体層15に対して色素担持を行う。
色素担持用の色素溶液は、例えばアセトニトリルとt−ブタノールを容積比で1:1とした溶媒に対して極微量のN3色素粉末を加えて調整したものを予め準備しておく。
シャーレ状の容器内に入れた色素溶媒に、別途電気炉にて120〜150℃程度に加熱処理した多孔質酸化物半導体層15を浸した状態とし、暗所にて一昼夜(およそ20時間)浸漬する。その後、色素溶液から取り出した多孔質酸化物半導体層15は、アセトニトリルとt−ブタノールからなる混合溶液を用い洗浄する。
上述した工程により、色素担持したTiO薄膜からなる多孔質酸化物半導体層15を透明基板上に設けてなる作用極16(窓極とも呼ぶ)を得る。
Next, a dye is supported on the porous oxide semiconductor layer 15 formed by the coating process and the drying / firing process.
As the dye solution for supporting the dye, for example, a solution prepared by adding an extremely small amount of N3 dye powder to a solvent in which acetonitrile and t-butanol are 1: 1 in volume ratio is prepared in advance.
The porous oxide semiconductor layer 15 that has been separately heated in an electric furnace at about 120 to 150 ° C. is immersed in a dye solvent placed in a petri dish-like container, and is immersed for a whole day and night (approximately 20 hours) in a dark place. To do. Thereafter, the porous oxide semiconductor layer 15 taken out from the dye solution is washed using a mixed solution of acetonitrile and t-butanol.
Through the above-described steps, a working electrode 16 (also referred to as a window electrode) obtained by providing a porous oxide semiconductor layer 15 made of a dye-supported TiO 2 thin film on a transparent substrate is obtained.

一方、チタン板等の金属板からなる第一基材11の一方の面(前記作用極と反対側の面)に、Cu等のはんだ付け可能な単一金属、または該金属を主成分とする合金から構成される被膜19をスパッタリング法等により形成して対極12を得る。   On the other hand, a single metal that can be soldered, such as Cu, or the like as a main component is formed on one surface (surface opposite to the working electrode) of the first substrate 11 made of a metal plate such as a titanium plate. A coating 19 made of an alloy is formed by sputtering or the like to obtain the counter electrode 12.

色素担持させたTiO薄膜からなる多孔質酸化物半導体層15が上方をなすように作用極16を配置し、電解質を塗布した後、この多孔質酸化物半導体層15と第一基材11が対向するように、対極12を作用極16に重ねて設ける。その後、すなわち作用極16と対極12の重なった外周付近に、硬化性樹脂18として未硬化(未重合)の光硬化性樹脂をディスペンサ等により供給し、紫外光を照射して光硬化性樹脂を硬化させて封止する。
このとき、光硬化性樹脂18を、前記対極12の前記作用極16と反対側の面上であって、外縁部も被覆するように供給することが好ましい。これにより、封止性が向上し、電解質の液漏れを確実に防止することができる。
After the working electrode 16 is arranged so that the porous oxide semiconductor layer 15 made of a dye-supported TiO 2 thin film is on the upper side and the electrolyte is applied, the porous oxide semiconductor layer 15 and the first base material 11 are The counter electrode 12 is provided on the working electrode 16 so as to face each other. Thereafter, an uncured (unpolymerized) photocurable resin as a curable resin 18 is supplied by a dispenser or the like around the outer periphery where the working electrode 16 and the counter electrode 12 overlap, and the photocurable resin is irradiated with ultraviolet light. Cure and seal.
At this time, it is preferable to supply the photocurable resin 18 on the surface of the counter electrode 12 on the side opposite to the working electrode 16 so as to cover the outer edge portion. Thereby, sealing property improves and it can prevent the liquid leakage of electrolyte reliably.

光照射の方法としては、特に限定されるものではないが、外周部に配された光硬化性樹脂18の部分のみ選択的に照射してもよいし、素子全体に照射してもよい。
対極12の第一基板11が不透明な材料からなるので、素子全体に光を照射しても、対極側から照射すれば素子内部には光は入射せず、電解質等が光によって劣化することはない。
The light irradiation method is not particularly limited, but only the portion of the photocurable resin 18 disposed on the outer peripheral portion may be selectively irradiated, or the entire device may be irradiated.
Since the first substrate 11 of the counter electrode 12 is made of an opaque material, even if the entire element is irradiated with light, if it is irradiated from the counter electrode side, the light does not enter the element, and the electrolyte or the like is deteriorated by the light. Absent.

このようにして得られる光電変換素子は、作用極よりも狭い面積を有する対極と電解質層との側面部を少なくとも被覆するように光硬化性樹脂を配することで封止しているので、封止の際の熱工程が不要となる。これにより電解質や半導体の熱による劣化を防止し、優れた発電特性を有するものとなる。   The photoelectric conversion element thus obtained is sealed by disposing a photocurable resin so as to cover at least the side surface portion of the counter electrode having a smaller area than the working electrode and the electrolyte layer. The heat process at the time of stopping becomes unnecessary. As a result, deterioration of the electrolyte and semiconductor due to heat is prevented, and excellent power generation characteristics are obtained.

さらに、この光電変換素子では、対極の、作用極反対側の面に金属からなる被膜19が配されているので、対極にリード線をはんだ付けすることが可能となり、外部配線との接続性を向上することができる。   Furthermore, in this photoelectric conversion element, since the coating film 19 made of metal is disposed on the surface of the counter electrode opposite to the working electrode, it is possible to solder a lead wire to the counter electrode, and to connect with external wiring. Can be improved.

(実施例1)
ガラス基板(410mm×140mm)上に、スプレー熱分解法によりITO透明導電膜を700nmの厚さに成膜した。
透明導電性基板の透明導電層上に、酸化チタン微粒子多孔質層を約6μmの厚さに形成した。そして該酸化チタン微粒子多孔質膜にN3色素(Ru(2,2’-bipyridine-4,4’-dicarboxylic acid)(NCS))を担持させることで多孔質酸化物半導体層を形成し、作用極を得た。
Example 1
An ITO transparent conductive film having a thickness of 700 nm was formed on a glass substrate (410 mm × 140 mm) by spray pyrolysis.
A titanium oxide fine particle porous layer was formed to a thickness of about 6 μm on the transparent conductive layer of the transparent conductive substrate. Then, a porous oxide semiconductor layer is formed by supporting the N3 dye (Ru (2,2′-bipyridine-4,4′-dicarboxylic acid) 2 (NCS) 2 ) on the titanium oxide fine particle porous film, A working electrode was obtained.

対極は、金属チタン基板上に、銅からなる被膜をスパッタリング法により200nmの厚みに成膜することで作製した。
得られた作用極と対極との間に電解質を介在させて積層し、対極と電解質層との側面部に硬化性樹脂として紫外線硬化性アクリル系樹脂を配して封止することで色素増感型の光電変換素子を作製した。電解質には、メトキシアセトニトリルを溶媒とした揮発系電解液を用いた。
The counter electrode was produced by forming a film made of copper with a thickness of 200 nm on a titanium metal substrate by sputtering.
Dye sensitization by laminating an electrolyte between the obtained working electrode and the counter electrode, and sealing by placing an ultraviolet curable acrylic resin as a curable resin on the side surface of the counter electrode and the electrolyte layer. A type photoelectric conversion element was produced. As the electrolyte, a volatile electrolytic solution using methoxyacetonitrile as a solvent was used.

(実施例2)
金属チタン基板上に、ニッケルからなる被膜をスパッタリング法により200nmの厚みに成膜することで対極を作製した。この対極を用いる他は、実施例1と同様にして光電変換素子を作製した。
(Example 2)
On the metal titanium substrate, a counter electrode was prepared by forming a film made of nickel to a thickness of 200 nm by sputtering. A photoelectric conversion element was produced in the same manner as in Example 1 except that this counter electrode was used.

(比較例1)
実施例1と同様にして対極および作用極を作製した。
多孔質酸化物半導体層が上方をなすように作用極を配置し、この多孔質酸化物半導体層と金属チタン基板が対向するように、対極を作用極に重ねて設けることにより積層体が形成される。その後、積層体の側部、すなわち作用極と対極の重なった外周付近を、熱硬化性樹脂からなる封止部材で封止した。
封止部材が固化した後、積層体の空隙、すなわち作用極と対極と封止部材で囲まれた空間内に、対極に設けた注入口から電解質溶液を注入することにより光電変換素子を作製した。
(Comparative Example 1)
A counter electrode and a working electrode were produced in the same manner as in Example 1.
The laminated body is formed by arranging the working electrode so that the porous oxide semiconductor layer faces upward and providing the counter electrode on the working electrode so that the porous oxide semiconductor layer and the metal titanium substrate face each other. The Thereafter, the side of the laminate, that is, the vicinity of the outer periphery where the working electrode and the counter electrode overlap each other was sealed with a sealing member made of a thermosetting resin.
After the sealing member was solidified, a photoelectric conversion element was produced by injecting an electrolyte solution from an injection port provided in the counter electrode into the gap of the laminate, that is, the space surrounded by the working electrode, the counter electrode, and the sealing member. .

(比較例2)
ガラス基板上にFTO(フッ素ドープ酸化スズ)を成膜し、さらにその上に白金をスパッタリング法により成膜することで対極を作製した。この対極を用いる他は、比較例1と同様にして光電変換素子を作製した。
(Comparative Example 2)
A counter electrode was produced by forming a film of FTO (fluorine-doped tin oxide) on a glass substrate and further forming a film of platinum thereon by a sputtering method. A photoelectric conversion element was produced in the same manner as in Comparative Example 1 except that this counter electrode was used.

以上のようにして得られた実施例および比較例の光電変換素子について発電特性を測定した。その結果を表1に示す。なお、実施例1にて作製したセルを用い、4端子法にて接触抵抗をキャンセルして測定した特性を、参考例として表1に併せて示す。   The power generation characteristics of the photoelectric conversion elements of Examples and Comparative Examples obtained as described above were measured. The results are shown in Table 1. In addition, the characteristic measured by canceling the contact resistance by the four-terminal method using the cell manufactured in Example 1 is also shown in Table 1 as a reference example.

Figure 2007280849
Figure 2007280849

表1から明らかなように、光硬化性樹脂を用いて封止した実施例1および実施例2の光電変換素子では、熱硬化性樹脂を用いて封止した比較例1の光電変換素子に比べて、優れた光電変換効率が得られた、これは、封止の際の熱工程が不要となったため、電解質や半導体の熱による劣化が防止されたためと考えられる。   As is clear from Table 1, the photoelectric conversion elements of Example 1 and Example 2 sealed using a photocurable resin were compared with the photoelectric conversion element of Comparative Example 1 sealed using a thermosetting resin. Thus, an excellent photoelectric conversion efficiency was obtained. This is considered to be because a heat process at the time of sealing became unnecessary, and deterioration of the electrolyte and semiconductor due to heat was prevented.

また、対極に金属被膜を形成した実施例1および実施例2の光電変換素子では、いずれも金属チタン基板にリード線を直接はんだ付けすることが可能となり、4端子法にて接触抵抗をキャンセルして測定した特性と遜色ない結果となった。一方、基板が大型化したことで流れる電流量が増加し、物理的接触によりリード接続した比較例2ではIRドロップが大きくなり特性が大幅に低下してしまった。   Moreover, in the photoelectric conversion elements of Example 1 and Example 2 in which the metal film is formed on the counter electrode, it is possible to directly solder the lead wire to the metal titanium substrate, and the contact resistance is canceled by the four-terminal method. The results were inferior to the measured characteristics. On the other hand, the amount of current flowing increased due to the increase in size of the substrate, and in Comparative Example 2 in which lead connection was made by physical contact, the IR drop was increased and the characteristics were greatly deteriorated.

本発明は、色素増感型太陽電池に代表される光電変換素子に適用可能である。   The present invention can be applied to a photoelectric conversion element represented by a dye-sensitized solar cell.

本発明に係る光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element which concerns on this invention. 本発明に係る光電変換素子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the photoelectric conversion element which concerns on this invention. 本発明に係る光電変換素子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the photoelectric conversion element which concerns on this invention. 従来の光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional photoelectric conversion element.

符号の説明Explanation of symbols

10 光電変換素子、11 第一基材、12 対極、13 第二基材、14 透明導電膜、15 多孔質酸化物半導体層、16 作用極、17 電解質層、18 硬化性樹脂、19 被膜。
DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element, 11 1st base material, 12 Counter electrode, 13 2nd base material, 14 Transparent electrically conductive film, 15 Porous oxide semiconductor layer, 16 Working electrode, 17 Electrolyte layer, 18 Curable resin, 19 Film

Claims (4)

導電性の第一基材からなる対極と、
絶縁性の透明な第二基材と、該第二基材の一面に透明導電膜を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層とを備え、該多孔質酸化物半導体層が前記第一基材の一面と対向して配される作用極と、
前記対極と前記作用極との間の少なくとも一部に配された電解質層と、から構成され、
前記第一基材は、前記第二基材よりも狭い面積を有し、前記電解質層と前記第一基材の側面部を少なくとも被覆するように硬化性樹脂を配したことを特徴とする光電変換素子。
A counter electrode made of a conductive first substrate;
An insulating transparent second base material, and a porous oxide semiconductor layer disposed on one surface of the second base material via a transparent conductive film and supporting a pigment at least in part. A working electrode in which a physical semiconductor layer is disposed to face one surface of the first base;
An electrolyte layer disposed at least in part between the counter electrode and the working electrode,
The first substrate has an area smaller than that of the second substrate, and a curable resin is disposed so as to cover at least the electrolyte layer and a side surface of the first substrate. Conversion element.
前記硬化性樹脂は、前記対極の前記作用極と反対側の面上であって、外縁部も被覆するように配されていることを特徴とする請求項1に記載の光電変換素子。   2. The photoelectric conversion element according to claim 1, wherein the curable resin is disposed on a surface of the counter electrode opposite to the working electrode and covers an outer edge portion. 前記対極において、前記作用極と反対側の面には、該導電部材と異なる金属からなる被膜が配されていることを特徴とする請求項1または2に記載の光電変換素子。   3. The photoelectric conversion element according to claim 1, wherein a film made of a metal different from the conductive member is disposed on a surface of the counter electrode opposite to the working electrode. 前記導電部材はチタン基板であり、前記被膜は、はんだ付け可能な単一金属、または該金属を主成分とする合金からなることを特徴とする請求項3に記載の光電変換素子。
The photoelectric conversion element according to claim 3, wherein the conductive member is a titanium substrate, and the coating is made of a single metal that can be soldered or an alloy containing the metal as a main component.
JP2006107810A 2006-04-10 2006-04-10 Photoelectric conversion element Expired - Fee Related JP5160045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107810A JP5160045B2 (en) 2006-04-10 2006-04-10 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107810A JP5160045B2 (en) 2006-04-10 2006-04-10 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2007280849A true JP2007280849A (en) 2007-10-25
JP5160045B2 JP5160045B2 (en) 2013-03-13

Family

ID=38682070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107810A Expired - Fee Related JP5160045B2 (en) 2006-04-10 2006-04-10 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5160045B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133688A1 (en) 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2010198821A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Photoelectric conversion element
JP2010198834A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Method for manufacturing photoelectric conversion element module
JP2011222323A (en) * 2010-04-09 2011-11-04 Fujikura Ltd Metal substrate, carbon nanotube electrode and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173680A (en) * 1998-12-04 2000-06-23 Nikon Corp Coloring matter sensitizing solar battery and manufacture thereof
JP2000348783A (en) * 1999-06-01 2000-12-15 Nikon Corp Manufacture of pigment-sensitized type solar cell
JP2006100069A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator
JP2006120418A (en) * 2004-10-20 2006-05-11 Norio Shimizu Dye-sensitized solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173680A (en) * 1998-12-04 2000-06-23 Nikon Corp Coloring matter sensitizing solar battery and manufacture thereof
JP2000348783A (en) * 1999-06-01 2000-12-15 Nikon Corp Manufacture of pigment-sensitized type solar cell
JP2006100069A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator
JP2006120418A (en) * 2004-10-20 2006-05-11 Norio Shimizu Dye-sensitized solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133688A1 (en) 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2010198821A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Photoelectric conversion element
JP2010198834A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Method for manufacturing photoelectric conversion element module
JP2011222323A (en) * 2010-04-09 2011-11-04 Fujikura Ltd Metal substrate, carbon nanotube electrode and method for manufacturing the same

Also Published As

Publication number Publication date
JP5160045B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5028804B2 (en) Functional device
EP2287961B1 (en) Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
JP5351553B2 (en) Photoelectric conversion element module
AU2008321843B2 (en) Electrode substrate for photoelectric conversion element, method of manufacturing electrode substrate for photoelectric conversion element, and photoelectric conversion element
JP5185550B2 (en) Photoelectric conversion element and manufacturing method thereof
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
JP5095126B2 (en) Photoelectric conversion element
JP5160045B2 (en) Photoelectric conversion element
JP5134867B2 (en) Photoelectric conversion element
JP2005158379A (en) Photoelectric conversion element, its manufacturing method, electronic device and its manufacturing method
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP2004319130A (en) Manufacturing method of photoelectric transfer device, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of semiconductor particulate layer and laminate structure
JP5465446B2 (en) Photoelectric conversion element
JP2007242544A (en) Photoelectric converter and its manufacturing method, and surface treatment solution of metal oxide porous layer
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP5005206B2 (en) Working electrode of dye-sensitized solar cell, dye-sensitized solar cell including the same, and method for producing working electrode of dye-sensitized solar cell
JP2008181691A (en) Photoelectric conversion element and first electrode used for the same
JP5160051B2 (en) Photoelectric conversion element
JP5128076B2 (en) Dye-sensitized solar cell and method for producing the same
JP4942919B2 (en) Photoelectric conversion element and manufacturing method thereof
JP5191631B2 (en) Method for manufacturing counter electrode and method for manufacturing photoelectric conversion element
JP5313278B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2013004178A (en) Dye-sensitized solar battery, and method of manufacturing the same
JP2007273104A (en) Working electrode, photoelectric conversion element, and manufacturing method of working electrode
JP2007273105A (en) Working electrode, its manufacturing method, and photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R151 Written notification of patent or utility model registration

Ref document number: 5160045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees