Nothing Special   »   [go: up one dir, main page]

JP2007279287A - Structured illuminating optical system and structured illuminating microscope having the same - Google Patents

Structured illuminating optical system and structured illuminating microscope having the same Download PDF

Info

Publication number
JP2007279287A
JP2007279287A JP2006104045A JP2006104045A JP2007279287A JP 2007279287 A JP2007279287 A JP 2007279287A JP 2006104045 A JP2006104045 A JP 2006104045A JP 2006104045 A JP2006104045 A JP 2006104045A JP 2007279287 A JP2007279287 A JP 2007279287A
Authority
JP
Japan
Prior art keywords
optical system
light beam
structured illumination
observed
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006104045A
Other languages
Japanese (ja)
Inventor
Yumiko Ouchi
由美子 大内
Hisao Osawa
日佐雄 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006104045A priority Critical patent/JP2007279287A/en
Publication of JP2007279287A publication Critical patent/JP2007279287A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To capture at high speed information about a super-resolution image formed in a plurality of directions. <P>SOLUTION: The structured illuminating optical system includes: a space modulation element (2), which generates a diffracted luminous flux for forming an interference fringe (F) on a surface (13a) to be observed; and luminous flux rotating means (4 and 42), which is disposed between the space modulation element (2) and the surface (13a) to be observed, and rotates the diffracted luminous flux, running from the space modulation element (2) to the surface (13a), around a normal line of the surface (13a). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空間変調された照明光で被観察面を照明する構造化照明光学系、及びそれを備えた構造化照明顕微鏡に関する。   The present invention relates to a structured illumination optical system that illuminates a surface to be observed with spatially modulated illumination light, and a structured illumination microscope including the structured illumination optical system.

生体標本などの被観察物を超解像観察する手法に、回折格子等の空間変調素子を用いて被観察物を構造化照明し、結像光学系の解像限界を超える高い空間周波数の光線を結像に寄与させるものがある(特許文献1,2等を参照)。構造化照明の方法には、被観察物上に回折格子を直接配置する方法の他に、照明光学系内の標本面と共役な面へ回折格子を挿入し、そのパターンを被観察物上へ投影する方法も有効である。何れの場合も、構造化照明された被観察物の像(変調像)を検出し、その変調像を復調すれば、被観察物の超解像観察が可能となる。   A high-resolution light beam that exceeds the resolution limit of the imaging optical system by structuring and illuminating the observation object using a spatial modulation element such as a diffraction grating as a technique for super-resolution observation of an observation object such as a biological specimen. (See Patent Documents 1 and 2, etc.). In the structured illumination method, in addition to the method of directly arranging the diffraction grating on the object to be observed, the diffraction grating is inserted into a surface conjugate with the sample surface in the illumination optical system, and the pattern is placed on the object to be observed. A projection method is also effective. In either case, super-resolution observation of the object to be observed is possible by detecting the image (modulated image) of the object that is structured and illuminated and demodulating the modulated image.

但し、変調像を復調するには、位相の異なる複数の変調像のデータが必要であり、そのために、回折格子を格子ピッチの方向へシフトさせながら変調像の検出を繰り返す必要がある。さらに、超解像効果を被観察物上の各方向に亘り得るためには、回折格子の配置方向を回転させ、各々の回転位置においてこのようなシフトを行う必要がある。したがって、回折格子には、シフト用のアクチュエータと回転ステージとを組み合わせた機構が必要となる。
特開平11−242189公報 米国再発行特許発明第38307号明細書
However, in order to demodulate the modulation image, data of a plurality of modulation images having different phases is required. For this reason, it is necessary to repeatedly detect the modulation image while shifting the diffraction grating in the direction of the grating pitch. Furthermore, in order to obtain the super-resolution effect in each direction on the object to be observed, it is necessary to rotate the arrangement direction of the diffraction grating and perform such a shift at each rotation position. Therefore, the diffraction grating requires a mechanism that combines a shift actuator and a rotary stage.
JP 11-242189 A US Reissue Patent No. 38307 Specification

しかし、回転ステージにアクチュエータを組み合わせると、機構や配線が複雑になるので、回転と停止を高速に繰り返すことは難しくなり、必要なデータを得るまでに時間が掛かる。因みに、機構や配線を単純化するため、二次元の回折格子を使用し、それを2方向へのみシフトさせることも考えられるが、2つのシフト方向と2つの格子ピッチ方向とを厳密に一致させることは難しく、精度の点で不十分となる。   However, when an actuator is combined with a rotary stage, the mechanism and wiring become complicated, so it is difficult to repeat rotation and stop at high speed, and it takes time to obtain necessary data. Incidentally, in order to simplify the mechanism and wiring, it is possible to use a two-dimensional diffraction grating and shift it only in two directions, but the two shift directions and the two grating pitch directions are exactly matched. This is difficult and inadequate in terms of accuracy.

そこで本発明は、複数方向に亘る超解像画像の情報を高速取得するのに適した構造化照明光学系、及び複数方向に亘る超解像画像の情報を高速取得することの可能な構造化照明顕微鏡を提供することを目的とする。   Therefore, the present invention provides a structured illumination optical system suitable for high-speed acquisition of super-resolution image information in a plurality of directions, and a structured structure capable of high-speed acquisition of super-resolution image information in a plurality of directions. An object is to provide an illumination microscope.

本発明の構造化照明光学系は、被観察面上に干渉縞を形成する空間変調素子と、前記空間変調素子と前記被観察面との間に配置され、前記空間変調素子から前記被観察面へ向かう前記回折光束を前記被観察面の法線周りに回転させる光束回転手段とを備えたことを特徴とする。
なお、前記光束回転手段は、前記回折光束を奇数回反射する反射光学系と、その反射光学系の全体を回転させる回転機構とからなり、前記反射光学系の入射光軸、射出光軸、回転軸は、同一直線上に存在することが望ましい。
The structured illumination optical system according to the present invention includes a spatial modulation element that forms interference fringes on a surface to be observed, and is disposed between the spatial modulation element and the surface to be observed. And a light beam rotating means for rotating the diffracted light beam traveling toward the normal line of the surface to be observed.
The light beam rotating means includes a reflection optical system that reflects the diffracted light beam an odd number of times and a rotation mechanism that rotates the entire reflection optical system, and the incident optical axis, the emission optical axis, and the rotation of the reflection optical system. The axes are preferably on the same straight line.

また、前記反射光学系は、例えば、像回転プリズムである。
また、前記反射光学系の前記空間変調素子側には、前記反射光学系と共に回転する偏光素子が挿入され、前記反射光学系の前記被観察面側には、前記被観察面側へ固定される1/2波長板が挿入され、前記偏光素子の透過軸の方向は、前記回折光束の偏光方向が前記反射光学系の反射面に対しP偏光又はS偏光となるように設定され、前記1/2波長板の光学軸の方向は、前記反射光学系から射出した前記回折光束の分離方向に垂直な方向と、前記偏光素子の透過軸の方向との双方に対し等しい角度を成すように設定されることが望ましい。
The reflection optical system is, for example, an image rotation prism.
A polarizing element that rotates together with the reflection optical system is inserted on the spatial modulation element side of the reflection optical system, and is fixed to the observation surface side on the observation surface side of the reflection optical system. A half-wave plate is inserted, and the direction of the transmission axis of the polarizing element is set so that the polarization direction of the diffracted light beam is P-polarized light or S-polarized light with respect to the reflecting surface of the reflective optical system. The direction of the optical axis of the two-wave plate is set so as to form an equal angle with respect to both the direction perpendicular to the separation direction of the diffracted light beam emitted from the reflection optical system and the direction of the transmission axis of the polarizing element. It is desirable.

また、本発明の構造化照明光学系において、前記干渉縞の位相を変化させる位相変化手段を更に備えてもよい。
また、前記位相変化手段は、例えば、前記空間変調素子をその変調方向へシフトさせるシフト機構である。
また、本発明の構造化照明顕微鏡は、本発明の何れかの構造化照明光学系と、前記干渉縞の形成された前記被観察面からの光を結像する結像光学系とを備えたことを特徴とする。
Moreover, the structured illumination optical system of the present invention may further include phase changing means for changing the phase of the interference fringes.
The phase changing means is, for example, a shift mechanism that shifts the spatial modulation element in the modulation direction.
The structured illumination microscope of the present invention includes any one of the structured illumination optical systems of the present invention and an imaging optical system that forms an image of light from the observation surface on which the interference fringes are formed. It is characterized by that.

なお、本発明の構造化照明顕微鏡は、前記結像光学系が結像する前記被観察面の像を撮像する撮像素子と、前記撮像素子の出力を演算処理する計算機とを更に備えてもよい。   The structured illumination microscope of the present invention may further include an image sensor that captures an image of the surface to be observed that is imaged by the imaging optical system, and a computer that performs arithmetic processing on the output of the image sensor. .

本発明によれば、複数方向に亘る超解像画像の情報を高速取得するのに適した構造化照明光学系、及び複数方向に亘る超解像画像の情報を高速に取得することができる構造化照明顕微鏡が実現する。   According to the present invention, a structured illumination optical system suitable for high-speed acquisition of super-resolution image information in a plurality of directions and a structure capable of acquiring high-resolution image information in a plurality of directions at high speed. Realization of an integrated illumination microscope.

[第1実施形態]
本発明の第1実施形態を説明する。本実施形態は、超解像観察が可能な顕微鏡装置の実施形態である。
先ず、本顕微鏡装置の構成を説明する。
図1は、本顕微鏡装置の概略構成図である。図1に示すとおり、本顕微鏡装置には、レーザ光源1、光ファイバ1a、コレクタレンズ2、1次元の周期構造を持つ位相型・透過型の回折格子3、直線偏光板31、入射光軸と射出光軸とを同一直線上に持つダブプリズム4、1/2波長板32、レンズ5、0次光カット絞り6、レンズ7、視野絞り8、レンズ9、励起フィルタ10、ダイクロイックミラー11、対物レンズ12、蛍光色素で標識された生体などの標本13、バリアフィルタ14、第2対物レンズ15、CCDカメラなどの撮像装置21、回路やコンピュータなどの制御・演算装置22、液晶表示ディスプレイなどの画像表示装置23、ピエゾ素子などのアクチュエータ41、及び回転ステージ42が配置される。
[First Embodiment]
A first embodiment of the present invention will be described. This embodiment is an embodiment of a microscope apparatus capable of super-resolution observation.
First, the configuration of the microscope apparatus will be described.
FIG. 1 is a schematic configuration diagram of the microscope apparatus. As shown in FIG. 1, this microscope apparatus includes a laser light source 1, an optical fiber 1a, a collector lens 2, a phase-type / transmission-type diffraction grating 3 having a one-dimensional periodic structure, a linearly polarizing plate 31, an incident optical axis, and the like. Dove prism 4, half-wave plate 32, lens 5, zeroth-order light cut stop 6, lens 7, field stop 8, lens 9, excitation filter 10, dichroic mirror 11, objective Lens 12, sample 13 such as a living body labeled with a fluorescent dye, barrier filter 14, second objective lens 15, imaging device 21 such as a CCD camera, control / arithmetic unit 22 such as a circuit or a computer, an image such as a liquid crystal display A display device 23, an actuator 41 such as a piezo element, and a rotary stage 42 are arranged.

レーザ光源1からの光束は、光ファイバ1aによって導光され、その光ファイバ1aの端面1Aに二次光源を生成する。その二次光源からの光束は、コレクタレンズ2によって平行光に変換され、回折格子3を照明する。その回折格子3で発生した各次数の回折光束は、直線偏光板31を通過することにより直線偏光となり、ダブプリズム4の入射面4bへ入射する。回折光束は、入射面4bからダブプリズム4の内部へ進入すると、ダブプリズム4の底面4aにおいて全反射した後、ダブプリズム4の射出面4cから外部へ射出する。その回折光束は、1/2波長板32を通過することにより偏光方向を変化させ、レンズ5により、0次光カット絞り6の配置面の各位置に次数毎に集光する。この配置面は、光ファイバ1aの端面1Aとレンズ2,5に関し共役な面である。   The light beam from the laser light source 1 is guided by the optical fiber 1a and generates a secondary light source on the end face 1A of the optical fiber 1a. The light beam from the secondary light source is converted into parallel light by the collector lens 2 and illuminates the diffraction grating 3. The diffracted light beams of the respective orders generated in the diffraction grating 3 pass through the linear polarizing plate 31 to become linearly polarized light and enter the incident surface 4 b of the Dove prism 4. When the diffracted light beam enters the dove prism 4 from the entrance surface 4 b, it is totally reflected on the bottom surface 4 a of the dove prism 4 and then exits from the exit surface 4 c of the dove prism 4. The diffracted light beam passes through the half-wave plate 32 to change the polarization direction, and is condensed by the lens 5 at each position on the arrangement surface of the 0th-order light cut stop 6 for each order. This arrangement surface is a conjugate surface with respect to the end surface 1A of the optical fiber 1a and the lenses 2 and 5.

この回折光束のうち、0次回折光束及び2次以降の高次回折光束は、0次光カット絞り6によって遮光され、±1次回折光束のみが0次光カット絞り6を通過する。その±1次回折光束は、レンズ7によって視野絞り8の配置面に集光した後、レンズ9及び励起フィルタ10を経てダイクロイックミラー11へ入射する。
ダイクロイックミラー11へ入射した±1次回折光束は、ダイクロイックミラー11を反射し、対物レンズ12の後ろ側焦点面に集光した後、対物レンズ12の先端側からそれぞれ平行光となって射出すると、標本面13aへ所定角度で入射し、互いに干渉する(2光束干渉)。この2光束干渉により、標本面13aにはストライプ状の干渉縞Fが形成される。これによって、標本面13aは、空間変調された照明光で照明(構造化照明)されたことになる。
Among the diffracted light beams, the 0th-order diffracted light beam and the second-order and higher-order diffracted light beams are shielded by the 0th-order light cut diaphragm 6, and only the ± 1st-order diffracted light beams pass through the 0th-order light cut diaphragm 6. The ± first-order diffracted light beams are condensed on the arrangement surface of the field stop 8 by the lens 7 and then enter the dichroic mirror 11 through the lens 9 and the excitation filter 10.
The ± first-order diffracted light beams incident on the dichroic mirror 11 are reflected by the dichroic mirror 11 and condensed on the rear focal plane of the objective lens 12, and then emitted as parallel light from the front end side of the objective lens 12. It enters the sample surface 13a at a predetermined angle and interferes with each other (two-beam interference). Due to the two-beam interference, a striped interference fringe F is formed on the sample surface 13a. As a result, the sample surface 13a is illuminated (structured illumination) with spatially modulated illumination light.

この干渉縞Fによって照明された標本面13aでは、蛍光色素が励起され、蛍光を発する。このときの標本面13aを対物レンズ12の側から見ると、モアレ縞が観察される。このモアレ縞は、標本13が有する微細構造と干渉縞Fのパターンとが成すものであって、標本13の微細構造を、干渉縞Fのパターンの空間周波数の分だけ低い空間周波数帯域で表現するものである。よって、対物レンズ12の解像限界を超える高い空間周波数の構造の蛍光までもが、対物レンズ12によって捉えられることになる。   On the specimen surface 13a illuminated by the interference fringes F, the fluorescent dye is excited and emits fluorescence. When the sample surface 13a at this time is viewed from the objective lens 12 side, moire fringes are observed. The moire fringes are formed by the fine structure of the specimen 13 and the pattern of the interference fringes F. The fine structure of the specimen 13 is expressed in a spatial frequency band that is lower by the spatial frequency of the pattern of the interference fringes F. Is. Therefore, even the fluorescence having a high spatial frequency structure exceeding the resolution limit of the objective lens 12 is captured by the objective lens 12.

対物レンズ12によって捉えられた蛍光は、ダイクロイックミラー11及びバリアフィルタ14を透過した後、第2対物レンズ15によって、標本面13aの変調像16を結像する。この変調像16は、撮像装置21によって画像として検出され、制御・演算装置22へと取り込まれる。
さて、以上の本顕微鏡装置において、干渉縞Fのパターンを決定する回折格子3は、アクチュエータ41によって格子線と直交する方向Dbへシフト可能である。この方向Dbへ回折格子3がシフトすると、干渉縞Fは、そのパターンの空間周波数を維持したまま位相のみを変化させる。
The fluorescence captured by the objective lens 12 passes through the dichroic mirror 11 and the barrier filter 14, and then forms a modulated image 16 on the sample surface 13a by the second objective lens 15. The modulated image 16 is detected as an image by the imaging device 21 and is taken into the control / arithmetic device 22.
In the above microscope apparatus, the diffraction grating 3 that determines the pattern of the interference fringes F can be shifted by the actuator 41 in the direction Db perpendicular to the grating lines. When the diffraction grating 3 is shifted in this direction Db, the interference fringe F changes only the phase while maintaining the spatial frequency of the pattern.

また、回折格子3の後段に配置されたダブプリズム4は、その光軸の周りを回転ステージ42によって回転可能である。このダブプリズム4が回転すると、ダブプリズム4から射出する±1次回折光束は、各光線の角度関係を維持したまま光軸の周りに回転する。このとき、標本面13aへ入射する±1次回折光束も、各光線の角度関係を維持したまま光軸Zの周りに回転する。よって、干渉縞Fは、そのパターンを維持したままその方向のみを回転させる。   Further, the Dove prism 4 arranged at the rear stage of the diffraction grating 3 can be rotated around the optical axis by a rotary stage 42. When the Dove prism 4 rotates, the ± first-order diffracted light beams emitted from the Dove prism 4 rotate around the optical axis while maintaining the angular relationship of the respective rays. At this time, the ± first-order diffracted light beams incident on the sample surface 13a also rotate around the optical axis Z while maintaining the angular relationship between the light beams. Therefore, the interference fringe F rotates only in that direction while maintaining the pattern.

因みに、ダブプリズム4は、一般に平行系内に配置される像回転プリズムであり、ダブプリズム4の回転角度θと像の回転角度θ’(ここでは、±1次回折光束の分離方向であって、干渉縞Fの回転角度である。)との関係は、θ’=2θである。
ここで、ダブプリズム4の入射面4b及び射出面4cは、光軸に対し傾斜しているため、入射角度の異なる光線の光路長に差異を与え、収差を発生させてしまうので、像共役、瞳共役共に収差を補正する一般の顕微鏡にはあまり使われていない。しかし、本顕微鏡装置では、光源としてレーザー光源1を用いるので、干渉縞Fに寄与する±1次回折光束は、コヒーレンス長の十分に長い単一波長の光束である。
Incidentally, the Dove prism 4 is an image rotation prism that is generally arranged in a parallel system, and the rotation angle θ of the Dove prism 4 and the rotation angle θ ′ of the image (here, the direction of separating ± first-order diffracted light beams) , The rotation angle of the interference fringe F.) is θ ′ = 2θ.
Here, since the incident surface 4b and the exit surface 4c of the Dove prism 4 are inclined with respect to the optical axis, the optical path lengths of the light beams having different incident angles are different, and aberration is generated. Both pupil conjugates are not often used in general microscopes that correct aberrations. However, since this microscope apparatus uses the laser light source 1 as a light source, the ± first-order diffracted light beam that contributes to the interference fringes F is a light beam having a single wavelength with a sufficiently long coherence length.

したがって、±1次回折光束の各光線にダブプリズム4から光路差が与えられても、その光路差がコヒーレンス長よりも短い限りは、標本面13a上で+1次回折光束は互いに干渉し、干渉縞Fを形成することができる。
一方、±1次回折光束の集光面、つまり瞳共役面(0次光カット絞り6の配置面など)では、そこへ集光する光束に角度による光路差が生じると、標本面13aに形成される干渉縞Fのコントラストが低下してしまう。
Therefore, even if an optical path difference is given from the Dove prism 4 to each ray of the ± first-order diffracted light beam, as long as the optical path difference is shorter than the coherence length, the + 1st-order diffracted light beams interfere with each other on the sample surface 13a. Stripes F can be formed.
On the other hand, on the condensing surface of the ± 1st order diffracted light beam, that is, the pupil conjugate surface (such as the surface on which the 0th order light cut stop 6 is disposed), if a light path difference depending on the angle occurs in the light beam condensed there, it is formed on the sample surface 13a. The contrast of the interference fringes F to be reduced is lowered.

そのため、本顕微鏡装置では、ダブプリズム4の挿入箇所は、瞳共役に関して平行系の位置である、回折格子3とレンズ5との間となっている(図1参照)。なお、本顕微鏡装置では、レンズ7と視野絞り8との間、又は視野絞り8とレンズ9との間も、瞳共役に関して平行系の位置であるが、一般に、標本13からレンズ7までの光学系は、顕微鏡本体の筐体内に収められていることが多く、回転ステージ42を配置するスペースがないので、ダブプリズム4の挿入箇所としては、回折格子3とレンズ5との間が最も適していると考えられる。   Therefore, in this microscope apparatus, the insertion location of the Dove prism 4 is between the diffraction grating 3 and the lens 5, which is a parallel system position with respect to the pupil conjugate (see FIG. 1). In this microscope apparatus, the position between the lens 7 and the field stop 8 or between the field stop 8 and the lens 9 is also a parallel system position with respect to pupil conjugation. Since the system is often housed in the housing of the microscope main body and there is no space for placing the rotary stage 42, the position between the diffraction grating 3 and the lens 5 is most suitable as the insertion location of the Dove prism 4. It is thought that there is.

また、ダブプリズム4の入射側及び射出側に配置された直線偏光板31及び1/2波長板32は、ダブプリズム4の回転に依らず干渉縞Fのコントラストを維持するために挿入された光学素子である。このうち、直線偏光板31は、ダブプリズム4と共に回転ステージ42によって回転可能であり、1/2波長板32は、回転ステージ42によって回転しない。これらの直線偏光板31及び1/2波長板32とダブプリズム4との関係については、後に詳述する。   Further, the linearly polarizing plate 31 and the half-wave plate 32 arranged on the incident side and the exit side of the Dove prism 4 are optically inserted to maintain the contrast of the interference fringes F regardless of the rotation of the Dove prism 4. It is an element. Among these, the linearly polarizing plate 31 can be rotated by the rotary stage 42 together with the Dove prism 4, and the half-wave plate 32 is not rotated by the rotary stage 42. The relationship between the linearly polarizing plate 31 and the half-wave plate 32 and the dove prism 4 will be described in detail later.

次に、制御・演算装置22の動作を説明する。
制御・演算装置22は、以下の手順(1)〜(4)を実行することにより必要なデータを取得する。
(1)回転ステージ42を制御してダブプリズム4及び直線偏光板31の回転角度θを0°(基準位置)にセットする。
Next, the operation of the control / arithmetic unit 22 will be described.
The control / arithmetic unit 22 acquires necessary data by executing the following procedures (1) to (4).
(1) The rotation stage 42 is controlled to set the rotation angle θ of the Dove prism 4 and the linearly polarizing plate 31 to 0 ° (reference position).

(2)アクチュエータ41及び撮像装置21を制御し、干渉縞Fの位相を3段階に変化させ、変調像16の画像を各位相の下で1枚ずつ取得する。
(3)回転ステージ42を制御してダブプリズム4及び直線偏光板31の回転角度θを+60°にセットし、手順(2)を実行する。
(4)回転ステージ42を制御してダブプリズム4及び直線偏光板31の回転角度θを−60°にセットし、手順(2)を実行する。
(2) The actuator 41 and the imaging device 21 are controlled, the phase of the interference fringe F is changed in three stages, and one image of the modulated image 16 is acquired under each phase.
(3) The rotation stage 42 is controlled to set the rotation angle θ of the Dove prism 4 and the linearly polarizing plate 31 to + 60 °, and the procedure (2) is executed.
(4) The rotation stage 42 is controlled to set the rotation angle θ of the Dove prism 4 and the linearly polarizing plate 31 to −60 °, and the procedure (2) is executed.

以上の手順により必要なデータを取得すると、制御・演算装置22は、そのデータへ公知の画像処理演算を施し、標本13の超解像画像を取得する。この超解像画像は、画像表示装置23へ表示される。
次に、直線偏光板31及び1/2波長板32とダブプリズム4との関係を説明する。
干渉縞Fのコントラストを高くするためには、標本面13aへ入射する±1次回折光束をS偏光にすることが望ましい。なぜなら、2光束干渉の干渉強度は、2光束がS偏光の場合はコントラストは1となるが、2光束がP偏光の場合はコントラストは、入射角度φ0に依存しcos(2φ0)となる。また、2光束が非偏光の場合はコントラストは二者の平均となる。したがって、有限なφ0に対してP偏光の混入は干渉縞Fのコントラストを低下させてしまい、超解像観察の精度を低下させてしまい好ましくない。このため、標本面13aに対する±1次回折光束は、S偏光に設定される必要がある。
When the necessary data is acquired by the above procedure, the control / arithmetic unit 22 performs a known image processing calculation on the data and acquires a super-resolution image of the specimen 13. This super-resolution image is displayed on the image display device 23.
Next, the relationship between the linearly polarizing plate 31 and the half-wave plate 32 and the dove prism 4 will be described.
In order to increase the contrast of the interference fringes F, it is desirable that the ± first-order diffracted light beams incident on the specimen surface 13a be S-polarized light. This is because the interference intensity of two-beam interference is 1 when the two beams are S-polarized light, but the contrast is cos (2φ 0 ) depending on the incident angle φ 0 when the two beams are P-polarized light. . When the two light beams are non-polarized light, the contrast is the average of the two. Therefore, the mixing of P-polarized light with respect to finite φ 0 is not preferable because the contrast of the interference fringes F is lowered and the accuracy of super-resolution observation is lowered. For this reason, the ± first-order diffracted light beam with respect to the specimen surface 13a needs to be set to S-polarized light.

但し、本顕微鏡装置では、ダブプリズム4により±1次回折光束が回転するので、標本面13aに対する±1次回折光束の偏光方向をS偏光に保つための工夫が必要となる。ダブプリズム4と共に回転する直線偏光板31と、回転しない1/2波長板32とが挿入されたのは、そのためである。
図2は、ダブプリズム4の周辺の様子を示す斜視図である。ここでは、光軸周りの各角度を、回折格子3の格子線方向を基準とした角度で表す。図2は、ダブプリズム4及び直線偏光板31の回転角度θが0°のときの様子を示している。
However, in this microscope apparatus, since the ± 1st-order diffracted light beam is rotated by the Dove prism 4, it is necessary to devise a technique for keeping the polarization direction of the ± 1st-order diffracted light beam with respect to the specimen surface 13a as S-polarized light. This is why the linearly polarizing plate 31 that rotates together with the dove prism 4 and the non-rotating half-wave plate 32 are inserted.
FIG. 2 is a perspective view showing a state around the Dove prism 4. Here, each angle around the optical axis is represented by an angle with respect to the grating line direction of the diffraction grating 3. FIG. 2 shows a state where the rotation angle θ of the Dove prism 4 and the linear polarizing plate 31 is 0 °.

図2に示すとおり、本顕微鏡装置では、直線偏光板31の透過軸a31とダブプリズム4の底面4aとが平行、かつ1/2波長板32の光学軸a32の方向は0°(つまり回折格子3の格子線と平行)という条件(条件1)が満たされている。
先ず、θ=0°のときの光線の振る舞いを説明する。
回折格子3から射出した±1次回折光束L+1,L−1の分離方向D1は、格子線と直交するので、90°である。θ=0°のとき、直線偏光板31の透過軸a31の方向も0°なので、直線偏光板31を透過した±1次回折光束L+1,L−1の偏光方向P1も、0°である。これらの±1次回折光束L+1,L−1は、ダブプリズム4の底面4aにてS偏光の状態で反射し、S偏光のままダブプリズム4から射出する。θ=0°なので、ダブプリズム4から射出した±1次回折光束L+1’,L−1’の分離方向D1’は、ダブプリズム4への入射時と同じく90°となる。
As shown in FIG. 2, in this microscope apparatus, the transmission axis a31 of the linear polarizing plate 31 and the bottom surface 4a of the Dove prism 4 are parallel, and the direction of the optical axis a32 of the half-wave plate 32 is 0 ° (that is, a diffraction grating). 3 (parallel to the grid line 3) (condition 1) is satisfied.
First, the behavior of light rays when θ = 0 ° will be described.
The separation direction D1 of the ± first-order diffracted light beams L + 1 and L−1 emitted from the diffraction grating 3 is 90 ° because it is orthogonal to the grating lines. When θ = 0 °, the direction of the transmission axis a31 of the linearly polarizing plate 31 is also 0 °. Therefore, the polarization direction P1 of the ± first-order diffracted light beams L + 1 and L−1 transmitted through the linearly polarizing plate 31 is also 0 °. These ± 1st-order diffracted light beams L + 1 and L−1 are reflected by the bottom surface 4a of the Dove prism 4 in the S-polarized state, and are emitted from the Dove prism 4 while being S-polarized. Since θ = 0 °, the separation direction D1 ′ of the ± 1st-order diffracted light beams L + 1 ′ and L−1 ′ emitted from the Dove prism 4 is 90 ° as in the case of entering the Dove prism 4.

それらの±1次回折光束L+1’,L−1’は、1/2波長板32を通過するときに、その偏光方向P1を、光学軸a32を対称軸として反転させ、P1’へと変化させる。光学軸a32の方向は0°であり、θ=0°のときに偏光方向P1は0°なので、反転後の偏光方向P1’は、反転前の偏光方向P1と同じく0°となる。
したがって、θ=0°のとき、1/2波長板32から射出する±1次回折光束L+1’,L−1’の分離方向D1’は90°であり、それらの偏光方向P1’は0°であり、両者は直交する。その結果、標本面13aへ入射する±1次回折光束L+1’,L−1’は、その標本面13aに対しS偏光となる。
When these ± first-order diffracted light beams L + 1 ′ and L−1 ′ pass through the half-wave plate 32, their polarization directions P1 are reversed with the optical axis a32 as the symmetry axis, and changed to P1 ′. . The direction of the optical axis a32 is 0 °, and when θ = 0 °, the polarization direction P1 is 0 °. Therefore, the polarization direction P1 ′ after inversion is 0 ° similarly to the polarization direction P1 before inversion.
Therefore, when θ = 0 °, the separation direction D1 ′ of ± first-order diffracted light beams L + 1 ′ and L−1 ′ emitted from the half-wave plate 32 is 90 °, and their polarization direction P1 ′ is 0 °. And they are orthogonal. As a result, the ± first-order diffracted light beams L + 1 ′ and L−1 ′ incident on the sample surface 13a become S-polarized light with respect to the sample surface 13a.

なお、図2において、回折格子3の射出側光路A、直線偏光板31の射出側光路B、ダブプリズム4の射出側光路C、1/2波長板32の射出側光路Dを標本側から見ると、それぞれ図3(A),(B),(C),(D)のとおりである。
以下、図3に基づき±1次回折光束L+1,L−1の分離方向Dの変化と偏光方向P0の変化とを個別に説明する。
2, the exit side optical path A of the diffraction grating 3, the exit side optical path B of the linearly polarizing plate 31, the exit side optical path C of the Dove prism 4, and the exit side optical path D of the half-wave plate 32 are viewed from the sample side. 3 (A), (B), (C), and (D), respectively.
Hereinafter, the change in the separation direction D of the ± first-order diffracted light beams L + 1 and L-1 and the change in the polarization direction P0 will be individually described with reference to FIG.

先ず、分離方向Dに関係するのは、回折格子3とダブプリズム4である。回折格子3の通過直後(図3(A))、分離方向DはD1に設定され、ダブプリズム4の通過直後(図3(C))、分離方向DはD1’となる。このうち、回折格子3は、θに依らず分離方向Dを90°に設定する働きがあり、ダブプリズム4は、θに応じて分離方向Dを2θだけ回転させる働きがある。但し、θ=0°のときには、ダブプリズム4による回転量は0°となるので、分離方向Dのトータルの回転量は、90°となる。   First, the diffraction grating 3 and the dove prism 4 are related to the separation direction D. Immediately after passing through the diffraction grating 3 (FIG. 3A), the separation direction D is set to D1, and immediately after passing through the Dove prism 4 (FIG. 3C), the separation direction D is D1 '. Of these, the diffraction grating 3 has a function of setting the separation direction D to 90 ° regardless of θ, and the Dove prism 4 has a function of rotating the separation direction D by 2θ according to θ. However, when θ = 0 °, the amount of rotation by the Dove prism 4 is 0 °, so the total amount of rotation in the separation direction D is 90 °.

一方、偏光方向P0に関係するのは、直線偏光板31と1/2波長板32である。直線偏光板31の通過直後(図3(B))、偏光方向P0はP1に設定され、1/2波長板32の通過直後(図3(D))、偏光方向P0はP1’に設定される。このうち、直線偏光板31は、偏光方向P0をθに設定する働きがあり、1/2波長板32は、θに依らず偏光方向P0を光学軸a32に関し反転させる働きがある。但し、θ=0°のときには、直線偏光板31による偏光方向P0の回転量は0°であり、そのとき偏光方向P1と1/2波長板32の光学軸a32の方向とが一致するので、1/2波長板32による偏光方向P0の回転量も0°となる。したがって、θ=0°のとき、偏光方向P0のトータルの回転量は、0°となる。   On the other hand, the linearly polarizing plate 31 and the half-wave plate 32 are related to the polarization direction P0. Immediately after passing through the linear polarizing plate 31 (FIG. 3B), the polarization direction P0 is set to P1, and immediately after passing through the half-wave plate 32 (FIG. 3D), the polarization direction P0 is set to P1 ′. The Among these, the linearly polarizing plate 31 has a function of setting the polarization direction P0 to θ, and the half-wave plate 32 has a function of inverting the polarization direction P0 with respect to the optical axis a32 regardless of θ. However, when θ = 0 °, the rotation amount of the polarization direction P0 by the linearly polarizing plate 31 is 0 °, and at this time, the polarization direction P1 and the direction of the optical axis a32 of the half-wave plate 32 coincide. The rotation amount of the polarization direction P0 by the half-wave plate 32 is also 0 °. Therefore, when θ = 0 °, the total rotation amount in the polarization direction P0 is 0 °.

なお、一般にダブプリズム4の底面4aにおける全反射の際に、P偏光成分とS偏光成分で位相差が発生し、偏光状態が変化するが、本実施形態の条件1では、偏光板の軸a31とダブプリズム4の底面4aとを平行とし、ダブプリズム4への入射光をS偏光のみに設定しているので、全反射前後で偏光が維持され、偏光方向P0には関係しない。
以上の結果、分離方向Dのトータルの回転量と偏光方向P0のトータルの回転量には90°の差が生じ、分離方向Dと偏光方向P0とが最終的に直交することは明らかである。
In general, during total reflection at the bottom surface 4a of the Dove prism 4, a phase difference occurs between the P-polarized component and the S-polarized component, and the polarization state changes. However, in condition 1 of the present embodiment, the axis a31 of the polarizing plate. And the bottom surface 4a of the Dove prism 4 are made parallel, and the incident light to the Dove prism 4 is set to only S-polarized light, so that the polarization is maintained before and after total reflection and is not related to the polarization direction P0.
As a result of the above, a difference of 90 ° occurs between the total rotation amount in the separation direction D and the total rotation amount in the polarization direction P0, and it is clear that the separation direction D and the polarization direction P0 are finally orthogonal.

次に、θ=60°のときの光線の振る舞いを説明する。
図4は、ダブプリズム4の周辺の様子を示す斜視図である(θ=60°のとき)。
回折格子3から射出する±1次回折光束L+1,L−1の分離方向D1は、θに依らず90°である。しかし、θ=60°のとき、直線偏光板31の透過軸a31の方向は60°となるので、直線偏光板31を透過した±1次回折光束L+1,L−1の偏光方向P1は、60°となる。直線偏光板31とダブプリズム4とは同じ姿勢なので、これらの±1次回折光束L+1,L−1は、ダブプリズム4の底面4aにてS偏光の状態で反射し、S偏光のままダブプリズム4から射出する。θ=60°なので、ダブプリズム4から射出した±1次回折光束L+1’,L−1’の分離方向は、2×60°=120°だけ回転しており、最初の分離方向D1(90°)と合わせると、分離方向D1’は、90°+120°=210°となる。
Next, the behavior of light rays when θ = 60 ° will be described.
FIG. 4 is a perspective view showing a state around the Dove prism 4 (when θ = 60 °).
The separation direction D1 of the ± first-order diffracted light beams L + 1 and L-1 emitted from the diffraction grating 3 is 90 ° regardless of θ. However, when θ = 60 °, the direction of the transmission axis a31 of the linearly polarizing plate 31 is 60 °. Therefore, the polarization direction P1 of the ± first-order diffracted light beams L + 1 and L−1 transmitted through the linearly polarizing plate 31 is 60 °. Since the linearly polarizing plate 31 and the Dove prism 4 have the same posture, these ± 1st-order diffracted beams L + 1 and L-1 are reflected in the S-polarized state on the bottom surface 4a of the Dove prism 4, and remain as the S-polarized dove prism. Eject from 4. Since θ = 60 °, the separation direction of the ± first-order diffracted light beams L + 1 ′ and L−1 ′ emitted from the Dove prism 4 is rotated by 2 × 60 ° = 120 °, and the first separation direction D1 (90 ° ), The separation direction D1 ′ is 90 ° + 120 ° = 210 °.

それらの±1次回折光束L+1’,L−1’は、1/2波長板32を通過するときに、その偏光方向P1を、光学軸a32を対称軸として反転させ、P1’へと変化させる。光学軸a32の方向はθに依らず0°であるのに対し、θ=60°のときに偏光方向P1は60°となっているので、反転後の偏光方向P1’は、120°となる。
したがって、θ=60°のとき、1/2波長板32から射出する±1次回折光束L+1’,L−1’の分離方向D1’は210°であり、それらの偏光方向P1’は120°であり、両者は直交する。その結果、標本面13aへ入射する±1次回折光束L+1’,L−1’は、その標本面13aに対しS偏光となる。
When these ± first-order diffracted light beams L + 1 ′ and L−1 ′ pass through the half-wave plate 32, their polarization directions P1 are reversed with the optical axis a32 as the symmetry axis, and changed to P1 ′. . While the direction of the optical axis a32 is 0 ° regardless of θ, the polarization direction P1 is 60 ° when θ = 60 °, so the polarization direction P1 ′ after inversion is 120 °. .
Therefore, when θ = 60 °, the separation direction D1 ′ of the ± first-order diffracted light beams L + 1 ′ and L−1 ′ emitted from the half-wave plate 32 is 210 °, and their polarization direction P1 ′ is 120 °. And they are orthogonal. As a result, the ± first-order diffracted light beams L + 1 ′ and L−1 ′ incident on the sample surface 13a become S-polarized light with respect to the sample surface 13a.

なお、図4において、回折格子3の射出側光路A、直線偏光板31の射出側光路B、ダブプリズム4の射出側光路C、1/2波長板32の射出側光路Dを標本側から見ると、それぞれ図5(A),(B),(C),(D)のとおりである。
以下、図5に基づき±1次回折光束L+1,L−1の分離方向Dの変化と偏光方向P0の変化とを個別に説明する。
In FIG. 4, the exit side optical path A of the diffraction grating 3, the exit side optical path B of the linear polarizing plate 31, the exit side optical path C of the Dove prism 4, and the exit side optical path D of the half-wave plate 32 are viewed from the sample side. 5A, 5B, 5C, and 5D, respectively.
Hereinafter, the change in the separation direction D of the ± first-order diffracted light beams L + 1 and L-1 and the change in the polarization direction P0 will be individually described with reference to FIG.

先ず、分離方向Dに関係するのは、回折格子3とダブプリズム4である。回折格子3の通過直後(図5(A))、分離方向DはD1に設定され、ダブプリズム4の通過直後(図5(C))、分離方向DはD1’となる。このうち、回折格子3は、θに依らず分離方向Dを90°に設定する働きがあり、ダブプリズム4は、θに応じて分離方向Dを2θだけ回転させる働きがある。特に、θ=60°のときには、ダブプリズム4による回転量は、2θ=120°となる。したがって、θ=60°のとき、分離方向Dのトータルの回転量は、90°+120°=210°となる。   First, the diffraction grating 3 and the dove prism 4 are related to the separation direction D. Immediately after passing through the diffraction grating 3 (FIG. 5A), the separation direction D is set to D1, and immediately after passing through the Dove prism 4 (FIG. 5C), the separation direction D is D1 '. Of these, the diffraction grating 3 has a function of setting the separation direction D to 90 ° regardless of θ, and the Dove prism 4 has a function of rotating the separation direction D by 2θ according to θ. In particular, when θ = 60 °, the amount of rotation by the Dove prism 4 is 2θ = 120 °. Therefore, when θ = 60 °, the total rotation amount in the separation direction D is 90 ° + 120 ° = 210 °.

一方、偏光方向P0に関係するのは、直線偏光板31と1/2波長板32である。直線偏光板31の通過後(図5(B))、偏光方向P0はP1に設定され、1/2波長板32の通過直後(図5(D))、偏光方向P0はP1’となる。このうち、直線偏光板31は、偏光方向P0をθに設定する働きがあり、1/2波長板32は、θに依らず偏光方向P0を光学軸a32に関し反転させる働きがある。特に、θ=60°のときには、直線偏光板31による偏光方向P0の回転量は60°であり、そのとき偏光方向P1と1/2波長板32の光学軸a32の方向とが60°の角度を成すので、1/2波長板32による偏光方向P0の回転量は60°となる。したがって、θ=60°のとき、偏光方向P0のトータルの回転量は、120°となる。   On the other hand, the linearly polarizing plate 31 and the half-wave plate 32 are related to the polarization direction P0. After passing through the linear polarizing plate 31 (FIG. 5B), the polarization direction P0 is set to P1, and immediately after passing through the half-wave plate 32 (FIG. 5D), the polarization direction P0 becomes P1 '. Among these, the linearly polarizing plate 31 has a function of setting the polarization direction P0 to θ, and the half-wave plate 32 has a function of inverting the polarization direction P0 with respect to the optical axis a32 regardless of θ. In particular, when θ = 60 °, the rotation amount of the polarization direction P0 by the linearly polarizing plate 31 is 60 °, and at this time, the angle between the polarization direction P1 and the direction of the optical axis a32 of the half-wave plate 32 is 60 °. Therefore, the rotation amount of the polarization direction P0 by the half-wave plate 32 is 60 °. Therefore, when θ = 60 °, the total rotation amount in the polarization direction P0 is 120 °.

以上の結果、分離方向Dのトータルの回転量と偏光方向P0のトータルの回転量とには90°の差が生じ、分離方向Dと偏光方向P0とが最終的に直交することは明らかである。
図示省略するが、θ=−60°のときのダブプリズム4の周辺の様子は、分離方向D1を対称軸として図4,図5を反転させたものとなる。したがって、θ=−60°であるときも、標本面13aへ入射する±1次回折光束L+1’,L−1’は、その標本面13aに対しS偏光となる。
As a result, there is a difference of 90 ° between the total rotation amount in the separation direction D and the total rotation amount in the polarization direction P0, and it is clear that the separation direction D and the polarization direction P0 are finally orthogonal. .
Although not shown, the state of the periphery of the dove prism 4 when θ = −60 ° is obtained by inverting FIGS. 4 and 5 with the separation direction D1 as the axis of symmetry. Therefore, even when θ = −60 °, the ± first-order diffracted light beams L + 1 ′ and L−1 ′ incident on the sample surface 13a become S-polarized light with respect to the sample surface 13a.

以上の結果、本顕微鏡装置では、上述した手順(1)〜(4)において、回転角度θを0°,+60°,−60°に切り替えるときに、干渉縞Fのコントラストを確実に高く保つことができる。よって、必要なデータを高精度に取得することができる。
次に、0次光カット絞り6を説明する。
図6は、0次光カット絞り6を光軸方向から見た図である。図6(a)は、θ=0°のときの様子、図6(B)は、θ=60°のときの様子、図6(C)は、θ=−60°のときの様子である。図6に示すように、本顕微鏡装置では、±1次回折光束L+1’,L−1’の分離方向が0°、+120°,−120°の3通りに設定されるので、±1次回折光束L+1’,L−1’の集光箇所も、3通り(合計6箇所)となる。
As a result, in this microscope apparatus, when the rotation angle θ is switched to 0 °, + 60 °, and −60 ° in the steps (1) to (4) described above, the contrast of the interference fringes F is reliably kept high. Can do. Therefore, necessary data can be acquired with high accuracy.
Next, the 0th-order light cut stop 6 will be described.
FIG. 6 is a view of the zero-order light cut stop 6 as seen from the optical axis direction. 6A shows a state when θ = 0 °, FIG. 6B shows a state when θ = 60 °, and FIG. 6C shows a state when θ = −60 °. . As shown in FIG. 6, in this microscope apparatus, the separation directions of the ± first-order diffracted light beams L + 1 ′ and L-1 ′ are set in three ways: 0 °, + 120 °, and −120 °. There are also three ways of converging the light beams L + 1 ′ and L−1 ′ (6 places in total).

このため、0次光カット絞り6の開口部6Cは、これら6つの集光箇所の全てをカバーしている必要がある。図6において、符号Zで示すのは光軸であり、符号6Aで示すのは2次以降の高次回折光を遮光するリング状の遮光板であり、符号6Bで示すのは0次回折光を遮光する円形の遮光板であり、符号6Dで示すのは遮光板6Aと遮光板6Bとを互いに固定するアームである(このアーム6Dは、遮光板6A,6Bと同一の部材で構成されてもよい。)。このアーム6Dは、0次光カット絞り6を、遮光板6Aと遮光板6Bとを同一面上に配置した単一部品として構成するために設けられたものであるが、本顕微鏡装置では、図6(A),(B),(C)に示すとおり、±1次回折光束L+1’,L−1’の6つの集光箇所の何れにも掛からない位置に配置される必要がある。   For this reason, the opening 6C of the 0th-order light cut stop 6 needs to cover all of these six condensing locations. In FIG. 6, reference numeral Z denotes an optical axis, reference numeral 6A denotes a ring-shaped light-shielding plate that shields second-order and higher-order diffracted light, and reference numeral 6B denotes light-shielding zero-order diffracted light. A circular light shielding plate is denoted by reference numeral 6D, and an arm for fixing the light shielding plate 6A and the light shielding plate 6B to each other (this arm 6D may be composed of the same member as the light shielding plates 6A and 6B). .) The arm 6D is provided to configure the zero-order light cut stop 6 as a single component in which the light shielding plate 6A and the light shielding plate 6B are arranged on the same plane. As shown in 6 (A), (B), and (C), it is necessary to be disposed at a position that does not reach any of the six condensing portions of ± first-order diffracted light beams L + 1 ′ and L−1 ′.

なお、ガラス基板上に遮光板6A,6Bと同形の遮光部をパターニングしてなる0次光カット絞りを用いれば、アーム6Dを省略することもできるが、ガラス基板の表面で余分な反射光が生じ、干渉縞Fにノイズを与える可能性があるので、0次光カット絞り6は、遮光板とアームとの組み合わせで構成されることが最も望ましい。
以上、本顕微鏡装置では、干渉縞Fの方向を回転させるために、回折格子3の後段にダブプリズム4を挿入し、それを回転ステージ42で回転させる。したがって、回折格子3は、アクチュエータ41によってシフトされれば十分であり、回転ステージに載せられる必要は無い。このように、回転ステージ42の回転対象とアクチュエータ41のシフト対象とが異なれば、両者の機構及び配線をシンプルにすることができるので、回転ステージ42の回転と停止とを高速に繰り返すことも可能である。したがって、本顕微鏡装置の制御・演算装置22は、上述した手順(1)〜(4)を高速に行い、超解像画像を高速に取得することが可能である。
If a 0th-order light cut stop is formed by patterning a light-shielding part having the same shape as the light-shielding plates 6A and 6B on the glass substrate, the arm 6D can be omitted, but excess reflected light is generated on the surface of the glass substrate. Since it may occur and give noise to the interference fringes F, it is most desirable that the 0th-order light cut stop 6 is composed of a combination of a light shielding plate and an arm.
As described above, in this microscope apparatus, in order to rotate the direction of the interference fringe F, the Dove prism 4 is inserted in the subsequent stage of the diffraction grating 3 and is rotated by the rotary stage 42. Therefore, it is sufficient that the diffraction grating 3 is shifted by the actuator 41 and does not need to be placed on the rotary stage. Thus, if the rotation target of the rotary stage 42 and the shift target of the actuator 41 are different, the mechanism and wiring of both can be simplified, so that the rotation and stop of the rotary stage 42 can be repeated at high speed. It is. Therefore, the control / arithmetic unit 22 of the microscope apparatus can perform the above-described procedures (1) to (4) at high speed and can obtain a super-resolution image at high speed.

また、本顕微鏡装置には、ダブプリズム4と共に回転する直線偏光板31と、適切に配置された1/2波長板32とが備えられるので、標本面13a上の干渉縞Fのコントラストは高く保たれ、したがって、超解像画像の取得精度も高まる。
(変形例)
なお、本顕微鏡装置は、条件1:「直線偏光板31の透過軸a31とダブプリズム4の底面4aとが平行、かつ1/2波長板32の光学軸a32の方向は0°(つまり回折格子3の格子線と平行)」を満たしたが、次に説明する条件2、条件3、条件4の何れかに変更しても、同じ効果が得られる。
In addition, since the microscope apparatus includes the linearly polarizing plate 31 that rotates together with the Dove prism 4 and the appropriately arranged half-wave plate 32, the contrast of the interference fringes F on the specimen surface 13a is kept high. Therefore, the acquisition accuracy of the super-resolution image is also increased.
(Modification)
In this microscope apparatus, condition 1: “the transmission axis a31 of the linear polarizing plate 31 and the bottom surface 4a of the Dove prism 4 are parallel, and the direction of the optical axis a32 of the half-wave plate 32 is 0 ° (that is, the diffraction grating). However, even if the condition is changed to any one of the condition 2, condition 3, and condition 4 described below, the same effect can be obtained.

<条件2>
図7(A),(B),(C),(D)は、条件2を示す図であり、条件2を満たすときの光路A,B,C,Dを標本側から見た様子である(但し、図示はθ=0°のみ)。図7に示すとおり、条件2は、「直線偏光板31の透過軸a31とダブプリズム4の底面4aとが平行、かつ1/2波長板32の光学軸a32の方向は90°(回折格子3の格子線と垂直)」である。
<Condition 2>
FIGS. 7A, 7B, 7C, and 7D are views showing condition 2, and show optical paths A, B, C, and D when condition 2 is satisfied as viewed from the sample side. (However, the illustration shows only θ = 0 °). As shown in FIG. 7, the condition 2 is that “the transmission axis a31 of the linearly polarizing plate 31 and the bottom surface 4a of the Dove prism 4 are parallel, and the direction of the optical axis a32 of the half-wave plate 32 is 90 ° (diffraction grating 3 Is perpendicular to the grid line.

このように、1/2波長板32の光学軸a32が90°に設定された場合も、1/2波長板32へ入射する光の偏光方向P1が同じであれば、1/2波長板32から射出する光の偏光方向P1’(=光学軸a32を対称軸としてP1を反転したもの)は、光学軸a32が0°に設定されたときと同じになる。よって、この条件2によっても条件1と同じ効果が得られる。   Thus, even when the optical axis a32 of the half-wave plate 32 is set to 90 °, the half-wave plate 32 is provided if the polarization direction P1 of the light incident on the half-wave plate 32 is the same. The polarization direction P1 ′ of the light emitted from (= inverted P1 with the optical axis a32 as the symmetry axis) is the same as when the optical axis a32 is set to 0 °. Therefore, the same effect as condition 1 can be obtained by this condition 2.

<条件3>
図8(A),(B),(C),(D)は、条件3を示す図であり、条件3を満たすときの光路A,B,C,Dを標本側から見た様子である(但し、図示はθ=0°のみ)。図8に示すとおり、条件3は、「直線偏光板31の透過軸a31とダブプリズム4の底面4aとが垂直、かつ1/2波長板32の光学軸a32の方向は45°」である。
<Condition 3>
FIGS. 8A, 8B, 8C, and 8D are views showing condition 3, and show optical paths A, B, C, and D when condition 3 is satisfied as seen from the sample side. (However, the illustration shows only θ = 0 °). As shown in FIG. 8, the condition 3 is “the transmission axis a31 of the linearly polarizing plate 31 and the bottom surface 4a of the dove prism 4 are perpendicular and the direction of the optical axis a32 of the half-wave plate 32 is 45 °”.

このように、直線偏光板31の透過軸a31をダブプリズム4の底面4aと垂直にすると、底面4aにて反射する光は、P偏光となる。しかし、この条件3では、1/2波長板32の光学軸a32の方向が45°に設定されるので、1/2波長板32を通過した光の偏光方向P1’を分離方向D1’に対し垂直にすることができる。よって、この条件3によっても条件1と同じ効果が得られる。   As described above, when the transmission axis a31 of the linearly polarizing plate 31 is perpendicular to the bottom surface 4a of the dove prism 4, the light reflected by the bottom surface 4a becomes P-polarized light. However, under this condition 3, the direction of the optical axis a32 of the half-wave plate 32 is set to 45 °, so that the polarization direction P1 ′ of the light that has passed through the half-wave plate 32 is set to the separation direction D1 ′. Can be vertical. Therefore, the same effect as condition 1 can be obtained by this condition 3.

<条件4>
図9(A),(B),(C),(D)は、条件4を示す図であり、条件4を満たすときの光路A,B,C,Dを標本側から見た様子である(但し、図示はθ=0°のみ)。図9に示すとおり、条件4は、「直線偏光板31の透過軸a31とダブプリズム4の底面4aとが垂直、かつ1/2波長板32の光学軸a32の方向は−45°」である。つまり、条件3において、1/2波長板32の光学軸a32の方向を90°回転させたものに等しい。したがって、この条件4によっても、条件3と同じ効果、つまり条件1と同じ効果が得られる。
<Condition 4>
FIGS. 9A, 9B, 9C, and 9D are views showing condition 4, and the optical paths A, B, C, and D when the condition 4 is satisfied are viewed from the sample side. (However, the illustration shows only θ = 0 °). As shown in FIG. 9, the condition 4 is “the transmission axis a31 of the linearly polarizing plate 31 and the bottom surface 4a of the dove prism 4 are perpendicular, and the direction of the optical axis a32 of the half-wave plate 32 is −45 °”. . That is, in condition 3, it is equal to the direction of the optical axis a32 of the half-wave plate 32 rotated by 90 °. Therefore, even under this condition 4, the same effect as the condition 3, that is, the same effect as the condition 1 is obtained.

さらに、以上の条件1,2,3,4をまとめると、少なくとも、本顕微鏡装置は、次の条件、すなわち「直線偏光板31の透過軸a31の方向は、±1次回折光束L+1,L−1の偏光方向がダブプリズム4の底面4aに対しP偏光又はS偏光となるような方向であり、1/2波長板32の光学軸a32の方向は、ダブプリズム4を通過した±1次回折光束L+1’,L−1’の非分離方向と直線偏光板31の透過軸a31の方向との双方に対し等しい角度を成す」を満たせばよい。   Furthermore, when the above conditions 1, 2, 3, and 4 are summarized, at least the present microscope apparatus has the following condition, that is, “the direction of the transmission axis a31 of the linearly polarizing plate 31 is ± first-order diffracted light beams L + 1, L−. The polarization direction of 1 is P-polarized light or S-polarized light with respect to the bottom surface 4 a of the Dove prism 4, and the direction of the optical axis a 32 of the half-wave plate 32 is ± first-order diffraction that has passed through the Dove prism 4. It is only necessary to satisfy “the same angle is formed with respect to both the non-separating direction of the light beams L + 1 ′ and L−1 ′ and the direction of the transmission axis a31 of the linearly polarizing plate 31”.

但し、ここでいう「非分離方向」とは、分離方向D1’と垂直な方向であって、干渉縞Fの縞方向に対応する方向である。
また、本顕微鏡装置では、0次光カット絞り6を用いたが、0次回折光束の強度が十分に小さく、干渉縞Fに影響しない場合には、それを省略しても構わない。
[第2実施形態]
本発明の第2実施形態を説明する。本実施形態も、顕微鏡装置の実施形態である。ここでは、第1実施形態との相違点のみ説明する。相違点は、光源及び回折格子の種類と、像回転プリズムの種類及び挿入位置とにある。
However, the “non-separation direction” here is a direction perpendicular to the separation direction D1 ′ and corresponding to the fringe direction of the interference fringes F.
In this microscope apparatus, the 0th-order light cut stop 6 is used. However, when the intensity of the 0th-order diffracted light beam is sufficiently small and does not affect the interference fringes F, it may be omitted.
[Second Embodiment]
A second embodiment of the present invention will be described. This embodiment is also an embodiment of a microscope apparatus. Here, only differences from the first embodiment will be described. The difference lies in the types of light source and diffraction grating, the type of image rotation prism, and the insertion position.

図10は、本顕微鏡装置の概略構成図である。図10に示すとおり、本顕微鏡装置には、レーザ光源1の代わりに水銀ランプなどの放電光源101が配置され、位相型の回折格子3の代わりに濃度型の回折格子103が配置され、ダブプリズム4の代わりにアッベプリズム104が配置される。
アッベプリズム104は、ダブプリズム4とは異なり、その入射面104cと射出面104eとが光軸に垂直である。入射面104cからアッベプリズム104へ入射した光束は、アッベプリズム104の3つの面104b、104a、104dにて順に反射した後、各光線の角度関係を保ったまま面104eから射出する。
FIG. 10 is a schematic configuration diagram of the microscope apparatus. As shown in FIG. 10, in this microscope apparatus, a discharge light source 101 such as a mercury lamp is arranged instead of the laser light source 1, a density type diffraction grating 103 is arranged instead of the phase type diffraction grating 3, and a dove prism. Instead of 4, an Abbe prism 104 is arranged.
Unlike the Dove prism 4, the Abbe prism 104 has an entrance surface 104c and an exit surface 104e perpendicular to the optical axis. The light beam that has entered the Abbe prism 104 from the incident surface 104c is sequentially reflected by the three surfaces 104b, 104a, and 104d of the Abbe prism 104, and then exits from the surface 104e while maintaining the angular relationship between the light beams.

このようなアッベプリズム104は、その挿入箇所が平行光束でなくとも収差が発生しないので、挿入箇所の自由度が高いという利点がある。因みに、図10では、アッベプリズム104の挿入箇所をレンズ5と0次光カット絞り6との間とした。但し、挿入箇所はこの位置に限定されるものではない。
このアッベプリズム104も、第1実施形態のダブプリズム4と同様、回転ステージ42により、その光軸の周りを回転可能である。アッベプリズム104と直線偏光板31と1/2波長板32との関係は、第1実施形態におけるダブプリズム4と直線偏光板31と1/2波長板32との関係と、同様に設定される。
Such an Abbe prism 104 has an advantage that the degree of freedom of the insertion portion is high because no aberration occurs even if the insertion portion is not a parallel light beam. Incidentally, in FIG. 10, the insertion place of the Abbe prism 104 is between the lens 5 and the 0th-order light cut stop 6. However, the insertion location is not limited to this position.
The Abbe prism 104 can also be rotated around its optical axis by the rotary stage 42, similarly to the Dove prism 4 of the first embodiment. The relationship between the Abbe prism 104, the linearly polarizing plate 31, and the half-wave plate 32 is set similarly to the relationship between the Dove prism 4, the linearly polarizing plate 31, and the half-wave plate 32 in the first embodiment. .

このアッベプリズム104は、角度の異なる入射光線の間に位相差を与えないので、本顕微鏡装置では光源としてコヒーレンス長の短い放電光源101を用いたにも拘わらず、超解像観察に適した良好な干渉縞Fを生成することができる。
また、本顕微鏡装置では、単色性の低い放電光源101を使用したので、それに合わせて、回折格子として濃度型の回折格子103を用いた。濃度型の回折格子103は、位相型の回折格子と異なり、その回折強度が波長に依存しないからである。但し、濃度型の回折格子103は、比較的強い強度の0次回折光束を発生するので、本顕微鏡装置において0次光カット絞り6は必須となる。
Since this Abbe prism 104 does not give a phase difference between incident light beams having different angles, this microscope apparatus is suitable for super-resolution observation even though the discharge light source 101 having a short coherence length is used as the light source. Interference fringes F can be generated.
Further, in the present microscope apparatus, since the discharge light source 101 having low monochromaticity is used, the density type diffraction grating 103 is used as the diffraction grating in accordance therewith. This is because the density type diffraction grating 103 is different from the phase type diffraction grating in that the diffraction intensity does not depend on the wavelength. However, since the density type diffraction grating 103 generates a 0th-order diffracted light beam having a relatively strong intensity, the 0th-order light cut stop 6 is essential in this microscope apparatus.

[その他]
なお、上述した各実施形態では、±1次回折光束を回転させるために、ダブプリズム、アッベプリズムなどの像回転プリズムを用いたが、奇数枚のミラーを組み合わせて同じ機能の反射光学系を構成し、それを像回転プリズムの代わりに用いてもよい。
また、上述した各実施形態では、空間変調素子として1次元かつ透過型の回折格子を使用したが、反射型の回折格子や2次元の回折格子、その他の空間変調素子を使用してもよい。
[Others]
In each of the above-described embodiments, an image rotating prism such as a Dove prism or an Abbe prism is used to rotate the ± first-order diffracted light beam. However, a reflective optical system having the same function is configured by combining an odd number of mirrors. However, it may be used in place of the image rotation prism.
In each of the above-described embodiments, a one-dimensional and transmission diffraction grating is used as the spatial modulation element. However, a reflection diffraction grating, a two-dimensional diffraction grating, and other spatial modulation elements may be used.

また、上述した各実施形態では、干渉縞Fの方向を回転させるために、±1次回折光束を回転させたが、光束を回転させる代わりに、標本13を回転ステージに載せて、それを光軸周りに回転させてもよい。但し、標本13を回転させるよりも、光束を回転させる方が、回転前後の位置決め精度が高い点で望ましい。   In each of the above-described embodiments, the ± first-order diffracted light beam is rotated in order to rotate the direction of the interference fringe F. Instead of rotating the light beam, the sample 13 is placed on a rotary stage and is reflected by light. You may rotate around an axis. However, rotating the light beam is more preferable than rotating the specimen 13 in terms of high positioning accuracy before and after the rotation.

第1実施形態の顕微鏡装置の概略構成図である。It is a schematic block diagram of the microscope apparatus of 1st Embodiment. ダブプリズム4の周辺の様子を示す斜視図である(θ=0°のとき)。It is a perspective view which shows the mode of the periphery of the dove prism 4 (when (theta) = 0 degree). 図2の光路A,B,C,Dを標本側から見た図である。It is the figure which looked at the optical path A, B, C, D of FIG. 2 from the sample side. ダブプリズム4の周辺の様子を示す斜視図である(θ=60°のとき)。It is a perspective view which shows the mode of the periphery of the dove prism 4 (when (theta) = 60 degrees). 図4の光路A,B,C,Dを標本側から見た図である。It is the figure which looked at optical path A, B, C, D of Drawing 4 from the sample side. 0次光カット絞り6を光軸方向から見た図である。It is the figure which looked at the 0th-order light cut stop 6 from the optical axis direction. 条件2を満たすときの光路A,B,C,Dを標本側から見た図である(θ=0°のとき)。It is the figure which looked at optical path A, B, C, D when the condition 2 is satisfied from the sample side (when θ = 0 °). 条件3を満たすときの光路A,B,C,Dを標本側から見た図である(θ=0°のとき)。It is the figure which looked at optical path A, B, C, D when the condition 3 is satisfied from the sample side (when θ = 0 °). 条件4を満たすときの光路A,B,C,Dを標本側から見た様子である(θ=0°のとき)。The optical paths A, B, C, and D when the condition 4 is satisfied are viewed from the sample side (when θ = 0 °). 第2実施形態の顕微鏡装置の概略構成図である。It is a schematic block diagram of the microscope apparatus of 2nd Embodiment.

符号の説明Explanation of symbols

1…レーザ光源,1a…光ファイバ,2…コレクタレンズ,3…回折格子,31…直線偏光板,4…ダブプリズム,32…1/2波長板,6…0次光カット絞り,7…レンズ,8…視野絞り,9…レンズ,10…励起フィルタ,11…ダイクロイックミラー,12…対物レンズ,13…標本,14…バリアフィルタ,15…第2対物レンズ,21…撮像装置,41…アクチュエータ,42…回転ステージ
DESCRIPTION OF SYMBOLS 1 ... Laser light source, 1a ... Optical fiber, 2 ... Collector lens, 3 ... Diffraction grating, 31 ... Linear polarizing plate, 4 ... Dove prism, 32 ... 1/2 wavelength plate, 6 ... 0th-order light cut stop, 7 ... Lens , 8 ... Field stop, 9 ... Lens, 10 ... Excitation filter, 11 ... Dichroic mirror, 12 ... Objective lens, 13 ... Sample, 14 ... Barrier filter, 15 ... Second objective lens, 21 ... Imaging device, 41 ... Actuator, 42 ... Rotation stage

Claims (8)

被観察面上に干渉縞を形成するための回折光束を生成する空間変調素子と、
前記空間変調素子と前記被観察面との間に配置され、前記空間変調素子から前記被観察面へ向かう前記回折光束を前記被観察面の法線周りに回転させる光束回転手段と、
を備えたことを特徴とする構造化照明光学系。
A spatial modulation element that generates a diffracted light beam for forming interference fringes on the surface to be observed;
A light beam rotating means disposed between the spatial modulation element and the surface to be observed, and rotating the diffracted light beam from the spatial modulation element toward the surface to be observed around a normal line of the surface to be observed;
A structured illumination optical system comprising:
前記光束回転手段は、
前記回折光束を奇数回反射する反射光学系と、その反射光学系の全体を回転させる回転機構とからなり、
前記反射光学系の入射光軸、射出光軸、回転軸は、同一直線上に存在する
ことを特徴とする請求項1に記載の構造化照明光学系。
The light beam rotating means includes
A reflection optical system that reflects the diffracted light beam an odd number of times, and a rotation mechanism that rotates the entire reflection optical system,
The structured illumination optical system according to claim 1, wherein an incident optical axis, an outgoing optical axis, and a rotation axis of the reflection optical system exist on the same straight line.
前記反射光学系は、
像回転プリズムである
ことを特徴とする請求項2に記載の反射光学系。
The reflective optical system is
The reflection optical system according to claim 2, wherein the reflection optical system is an image rotation prism.
前記反射光学系の前記空間変調素子側には、
前記反射光学系と共に回転する偏光素子が挿入され、
前記反射光学系の前記被観察面側には、
前記被観察面側へ固定される1/2波長板が挿入され、
前記偏光素子の透過軸の方向は、
前記回折光束の偏光方向が前記反射光学系の反射面に対しP偏光又はS偏光となるように設定され、
前記1/2波長板の光学軸の方向は、
前記反射光学系から射出した前記回折光束の分離方向に垂直な方向と、前記偏光素子の透過軸の方向との双方に対し等しい角度を成すように設定される
ことを特徴とする請求項2又は請求項3に記載の構造化照明光学系。
On the spatial modulation element side of the reflective optical system,
A polarizing element that rotates together with the reflection optical system is inserted,
On the observed surface side of the reflective optical system,
A half-wave plate fixed to the observed surface side is inserted,
The direction of the transmission axis of the polarizing element is:
The polarization direction of the diffracted light beam is set to be P-polarized light or S-polarized light with respect to the reflective surface of the reflective optical system,
The direction of the optical axis of the half-wave plate is
3. The apparatus according to claim 2, wherein the angle is set to be equal to both a direction perpendicular to a separation direction of the diffracted light beam emitted from the reflection optical system and a direction of a transmission axis of the polarizing element. The structured illumination optical system according to claim 3.
前記干渉縞の位相を変化させる位相変化手段を更に備えた
ことを特徴とする請求項1乃至請求項4の何れか1項に記載の構造化照明光学系。
The structured illumination optical system according to any one of claims 1 to 4, further comprising phase changing means for changing a phase of the interference fringes.
前記位相変化手段は、
前記空間変調素子をその変調方向へシフトさせるシフト機構である
ことを特徴とする請求項5に記載の構造化照明光学系。
The phase changing means includes
The structured illumination optical system according to claim 5, wherein the structured illumination optical system is a shift mechanism that shifts the spatial modulation element in the modulation direction.
請求項1乃至請求項6の何れか1項に記載の構造化照明光学系と、
前記干渉縞の形成された前記被観察面からの光を結像する結像光学系と
を備えたことを特徴とする構造化照明顕微鏡。
The structured illumination optical system according to any one of claims 1 to 6,
A structured illumination microscope comprising: an imaging optical system that forms an image of light from the observation surface on which the interference fringes are formed.
前記結像光学系が結像する前記被観察面の像を撮像する撮像素子と、
前記撮像素子の出力を演算処理する計算機と
を更に備えたことを特徴とする請求項7に記載の構造化照明顕微鏡。
An image sensor that captures an image of the surface to be observed formed by the imaging optical system;
The structured illumination microscope according to claim 7, further comprising: a computer that performs arithmetic processing on an output of the image sensor.
JP2006104045A 2006-04-05 2006-04-05 Structured illuminating optical system and structured illuminating microscope having the same Withdrawn JP2007279287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104045A JP2007279287A (en) 2006-04-05 2006-04-05 Structured illuminating optical system and structured illuminating microscope having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104045A JP2007279287A (en) 2006-04-05 2006-04-05 Structured illuminating optical system and structured illuminating microscope having the same

Publications (1)

Publication Number Publication Date
JP2007279287A true JP2007279287A (en) 2007-10-25

Family

ID=38680816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104045A Withdrawn JP2007279287A (en) 2006-04-05 2006-04-05 Structured illuminating optical system and structured illuminating microscope having the same

Country Status (1)

Country Link
JP (1) JP2007279287A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507040A (en) * 2007-12-20 2011-03-03 カール ツァイス マイクロイメージング ゲーエムベーハー microscope
WO2012153495A1 (en) * 2011-05-06 2012-11-15 株式会社ニコン Structured illumination microscope and structured illumination viewing method
WO2013001805A1 (en) * 2011-06-29 2013-01-03 株式会社ニコン Structured illumination optical system and structured illumination microscope device
WO2013011680A1 (en) * 2011-07-15 2013-01-24 株式会社ニコン Structured illumination device, structured illumination microscope, and structured illumination method
WO2013021615A1 (en) * 2011-08-11 2013-02-14 株式会社ニコン Structured illumination device, structured illumination method, and structured illumination microscope device
WO2014040800A1 (en) * 2012-09-11 2014-03-20 Carl Zeiss Microscopy Gmbh Optical arrangement and light microscope
JP2014508969A (en) * 2011-03-01 2014-04-10 アプライド プレシジョン インコーポレイテッド System and method for illumination phase control in fluorescence microscopy
JP2014514592A (en) * 2011-03-01 2014-06-19 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション Variable orientation lighting pattern rotator
JP2015007754A (en) * 2013-05-28 2015-01-15 株式会社ニコン Structured illumination device and structured illumination microscope device
CN108227174A (en) * 2018-02-02 2018-06-29 北京工业大学 A kind of microstructure optical illumination super-resolution fluorescence micro imaging method and device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054780B2 (en) 2007-12-20 2018-08-21 Carl Zeiss Microscopy Gmbh Microscope
JP2011507040A (en) * 2007-12-20 2011-03-03 カール ツァイス マイクロイメージング ゲーエムベーハー microscope
DE102007063274B8 (en) 2007-12-20 2022-12-15 Albert-Ludwigs-Universität Freiburg microscope
JP2014508969A (en) * 2011-03-01 2014-04-10 アプライド プレシジョン インコーポレイテッド System and method for illumination phase control in fluorescence microscopy
JP2014514592A (en) * 2011-03-01 2014-06-19 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション Variable orientation lighting pattern rotator
US9477072B2 (en) 2011-03-01 2016-10-25 Ge Healthcare Bio-Sciences Corp. Systems and methods for illumination phase control in fluorescence microscopy
US10228552B2 (en) 2011-05-06 2019-03-12 Nikon Corporation Structured illuminating microscopy and structured illuminating observation method
WO2012153495A1 (en) * 2011-05-06 2012-11-15 株式会社ニコン Structured illumination microscope and structured illumination viewing method
US9535241B2 (en) 2011-05-06 2017-01-03 Nikon Corporation Structured illuminating microscopy and structured illuminating observation method
JP5594429B2 (en) * 2011-05-06 2014-09-24 株式会社ニコン Structured illumination microscope and structured illumination observation method
WO2013001805A1 (en) * 2011-06-29 2013-01-03 株式会社ニコン Structured illumination optical system and structured illumination microscope device
WO2013011680A1 (en) * 2011-07-15 2013-01-24 株式会社ニコン Structured illumination device, structured illumination microscope, and structured illumination method
JP5641142B2 (en) * 2011-07-15 2014-12-17 株式会社ニコン Structured illumination device, structured illumination microscope, structured illumination method
WO2013021615A1 (en) * 2011-08-11 2013-02-14 株式会社ニコン Structured illumination device, structured illumination method, and structured illumination microscope device
WO2014040800A1 (en) * 2012-09-11 2014-03-20 Carl Zeiss Microscopy Gmbh Optical arrangement and light microscope
US10133046B2 (en) 2012-09-11 2018-11-20 Carl Zeiss Microscopy Gmbh Optical arrangement and light microscope
JP2015527618A (en) * 2012-09-11 2015-09-17 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Optical apparatus and optical microscope
JP2015007754A (en) * 2013-05-28 2015-01-15 株式会社ニコン Structured illumination device and structured illumination microscope device
CN108227174A (en) * 2018-02-02 2018-06-29 北京工业大学 A kind of microstructure optical illumination super-resolution fluorescence micro imaging method and device
CN108227174B (en) * 2018-02-02 2020-10-16 北京工业大学 Microstructure light illumination super-resolution fluorescence microscopic imaging method and device

Similar Documents

Publication Publication Date Title
JP2007279287A (en) Structured illuminating optical system and structured illuminating microscope having the same
EP2093601B1 (en) Microscope device and image processing method
JP5751328B2 (en) Structured illumination optical system and structured illumination microscope apparatus
US7808701B2 (en) Microscope apparatus
TWI710864B (en) Pattern angle spatial selection structured illumination imaging
TWI725875B (en) Structured illumination imaging system and method of creating a high-resolution image using structured light
JP2007199397A (en) Microscope apparatus
JP6194710B2 (en) Structured illumination device and structured illumination microscope device
WO2014017067A1 (en) Structured lighting device and structured lighting microscope
TW202043811A (en) Dual optical grating slide structured illumination imaging
JP2007199571A (en) Microscope
JP4616692B2 (en) Displacement detector
JP3564210B2 (en) Confocal optics
JP6413364B2 (en) Illumination optical system and microscope apparatus
JP4869656B2 (en) Interferometer
JP6127451B2 (en) Structured illumination device and structured illumination microscope device
JP5939301B2 (en) Structured illumination observation device
JP5743209B2 (en) Microscope equipment
WO2022050221A1 (en) Microscope
JP6409260B2 (en) Structured illumination device and structured illumination microscope device
JP6286982B2 (en) Structured illumination microscope
CN110044854B (en) Illumination imaging of pattern angle space selection structure
JP2002196253A (en) Interference fringe projection optical system and microscope using this optical system
JP2001194625A (en) Optical image processor
JP2001099613A (en) Oblique incidence interferometer device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707