Nothing Special   »   [go: up one dir, main page]

JP2007277715A - Plated material and electric/electronic component using the same - Google Patents

Plated material and electric/electronic component using the same Download PDF

Info

Publication number
JP2007277715A
JP2007277715A JP2007068018A JP2007068018A JP2007277715A JP 2007277715 A JP2007277715 A JP 2007277715A JP 2007068018 A JP2007068018 A JP 2007068018A JP 2007068018 A JP2007068018 A JP 2007068018A JP 2007277715 A JP2007277715 A JP 2007277715A
Authority
JP
Japan
Prior art keywords
layer
alloy
compound
plating material
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007068018A
Other languages
Japanese (ja)
Other versions
JP4653133B2 (en
Inventor
Kazuo Yoshida
和生 吉田
Kyota Suzai
京太 須齋
Yoshiaki Ogiwara
吉章 荻原
Gakuo Uno
岳夫 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007068018A priority Critical patent/JP4653133B2/en
Publication of JP2007277715A publication Critical patent/JP2007277715A/en
Application granted granted Critical
Publication of JP4653133B2 publication Critical patent/JP4653133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated material suitable for the sliding part of a connection terminal and an electric/electronic component such as a fitting type multipolar connector whose inserting/extracting properties are improved by using the plated material. <P>SOLUTION: The plated material 7 is obtained by arranging a base layer 2 composed of Ni or the like on an electrically-conductive substrate 1, a copper-based layer 3 composed of Cu or a Cu alloy on the base layer, an intermediate layer 4 composed of a Cu-Sn intermetallic compound on the copper-based layer, a tin-based layer 5 composed of Sn or a Sn alloy on the intermediate layer, in this order, and an outermost layer 6 composed of the Cu-Sn intermetallic compound on the tin-based layer. When the plated material 7 is used as a material for the sliding surface of a terminal or the like, the inserting/extracting properties of the terminal can be improved advantageously since the outermost layer 6 is composed of the hard Cu-Sn intermetallic compound and a fretting phenomenon is hardly caused even when the contact pressure between terminals is made low. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、接続端子の摺動部などに好適なめっき材料、および前記めっき材料を用いて挿抜性を改善した、嵌合型多極コネクタなどの電気電子部品に関する。   The present invention relates to a plating material suitable for a sliding portion of a connection terminal and the like, and an electrical / electronic component such as a fitting-type multipolar connector whose insertion / removability is improved by using the plating material.

銅(Cu)、銅合金などの導電性基体(以下、適宜、基体と記す。)上に錫(Sn)、錫合金などのめっき層を設けためっき材料は、基体の優れた導電性と強度、およびめっき層の優れた電気接続性、耐食性およびはんだ付け性を備えた高性能導体として知られており、各種の端子やコネクタなどに広く用いられている。このめっき材料は、通常、亜鉛(Zn)などの基体の合金成分(以下、適宜、基体成分と記す。)が前記めっき層に拡散するのを防止するため、基体上にバリア機能を有するニッケル(Ni)、コバルト(Co)、鉄(Fe)などが下地めっきされる。   A plating material in which a plating layer such as tin (Sn) or tin alloy is provided on a conductive substrate such as copper (Cu) or a copper alloy (hereinafter referred to as a substrate as appropriate) has excellent conductivity and strength of the substrate. In addition, it is known as a high-performance conductor having excellent electrical connectivity, corrosion resistance, and solderability of the plating layer, and is widely used for various terminals and connectors. This plating material is usually nickel (which has a barrier function on the substrate) in order to prevent the alloy component of the substrate such as zinc (Zn) (hereinafter, appropriately referred to as a substrate component) from diffusing into the plating layer. Ni), cobalt (Co), iron (Fe), and the like are subjected to base plating.

自動車のエンジンルーム内などの高温環境下では、端子表面のSnめっき層はSnが易酸化性のため表面に酸化皮膜が形成されるが、この酸化皮膜は脆いため端子接続時に破れ、その下の未酸化Snめっき層が露出して良好な電気接続性が得られる。   In a high temperature environment such as in an automobile engine room, the Sn plating layer on the surface of the terminal has an oxide film formed on the surface because Sn is easily oxidizable, but this oxide film is brittle and breaks when the terminal is connected. The unoxidized Sn plating layer is exposed and good electrical connectivity is obtained.

ところで近年、電子制御化が進む中で嵌合型コネクタが多極化したため、オス端子群とメス端子群を挿抜する際に多大な力が必要になり、特に、自動車のエンジンルーム内などの狭い空間では挿抜作業が困難なため前記挿抜力の低減が強く求められている。   By the way, in recent years, with the progress of electronic control, the mating connector has become multipolar, so a great deal of force is required when inserting and removing the male terminal group and the female terminal group, especially in a narrow space such as in the engine room of an automobile. Since insertion / extraction work is difficult, reduction of the insertion / extraction force is strongly demanded.

前記挿抜力を低減する方法として、コネクタ端子表面のSnめっき層を薄くして端子間の接触圧力を弱める方法が考えられるが、この方法はSnめっき層が軟質のため端子の接触面間にフレッティング現象が起きて端子間が導通不良になることがある。   As a method of reducing the insertion / extraction force, a method of reducing the contact pressure between the terminals by thinning the Sn plating layer on the surface of the connector terminal is conceivable, but this method causes the flapping between the contact surfaces of the terminals because the Sn plating layer is soft. Tinging phenomenon may occur, resulting in poor continuity between terminals.

前記フレッティング現象とは、振動や温度変化などが原因で端子の接触面間に起きる微摺動により、端子表面の軟質のSnめっき層が摩耗し酸化して、比抵抗の大きい摩耗粉になる現象で、この現象が端子間に発生すると接続不良が起きる。そして、この現象は端子間の接触圧力が低いほど起き易い。   The fretting phenomenon is that the soft Sn plating layer on the surface of the terminal wears and oxidizes due to fine sliding that occurs between the contact surfaces of the terminal due to vibration, temperature change, etc., and becomes a wear powder having a large specific resistance. When this phenomenon occurs between terminals, a connection failure occurs. This phenomenon is more likely to occur as the contact pressure between the terminals is lower.

前記フレッティング現象を防止するため、基材上に、フレッティング現象が起き難い硬質のCuSnなどのCu−Sn金属間化合物層を形成する方法(特許文献1、2)が提案されたが、この方法はCu−Sn金属間化合物層にCuなどの基材成分が大量に拡散してCu−Sn金属間化合物層が脆化するという問題があった。 In order to prevent the fretting phenomenon, a method (Patent Documents 1 and 2) for forming a Cu—Sn intermetallic compound layer such as hard Cu 6 Sn 5 on which a fretting phenomenon hardly occurs has been proposed. However, this method has a problem that a base material component such as Cu diffuses in a large amount in the Cu—Sn intermetallic compound layer and the Cu—Sn intermetallic compound layer becomes brittle.

前記基体とCu−Sn金属間化合物層間にNi層を設けて基体成分の拡散を防止しためっき材料(特許文献3)はNi層とCu−Sn金属間化合物層間にSn層もCu層も存在しないため、この材料を、基体上にNi、Cu、Snをこの順に層状にめっきし、これを熱処理して製造する際に、めっき積層体のめっき厚みをCuとSnの化学量論比を踏まえて厳密に設計し、かつその熱処理を徹底した管理の基で行う必要があり、製造に多大な労力を要した。   The plating material (Patent Document 3) in which the Ni layer is provided between the base and the Cu—Sn intermetallic compound layer to prevent the diffusion of the base component does not exist between the Ni layer and the Cu—Sn intermetallic compound layer. Therefore, when this material is produced by plating Ni, Cu, and Sn in this order on a substrate and heat-treating them, the plating thickness of the plated laminate is determined based on the stoichiometric ratio of Cu and Sn. It was necessary to design strictly and perform the heat treatment based on thorough management, and much labor was required for manufacturing.

特開2000−212720号公報JP 2000-212720 A 特開2000−226645号公報JP 2000-226645 A 特開2004−68026号公報JP 2004-68026 A

本発明は、接続端子の摺動部などに好適なめっき材料、および前記めっき材料を用いて挿抜性を改善した嵌合型多極コネクタなどの電気電子部品の提供を目的とする。   An object of the present invention is to provide a plating material suitable for a sliding portion of a connection terminal and the like, and an electric / electronic component such as a fitting type multipolar connector whose insertion / removability is improved by using the plating material.

請求項1に記載した発明は、導電性基体上にニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金のいずれか1種からなる下地層、その上に銅または銅合金からなる銅系層、その上にCu−Sn金属間化合物からなる中間層、その上に錫または錫合金からなる錫系層、その上にCu−Sn金属間化合物からなる最外層が設けられていることを特徴とするめっき材料である。   The invention described in claim 1 is a base layer made of any one of nickel, nickel alloy, cobalt, cobalt alloy, iron, and iron alloy on a conductive substrate, and a copper-based layer made of copper or a copper alloy thereon. And an intermediate layer made of a Cu—Sn intermetallic compound, a tin-based layer made of tin or a tin alloy thereon, and an outermost layer made of a Cu—Sn intermetallic compound thereon. Plating material to be used.

請求項2に記載した発明は、導電性基体上にニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金のいずれか1種からなる下地層、その上にCu−Sn金属間化合物からなる中間層、その上に錫または錫合金からなる錫系層、その上にCu−Sn金属間化合物からなる最外層が設けられていることを特徴とするめっき材料である。   According to the second aspect of the present invention, there is provided a base layer made of any one of nickel, nickel alloy, cobalt, cobalt alloy, iron, and iron alloy on a conductive substrate, and an intermediate made of a Cu—Sn intermetallic compound thereon. A plating material comprising: a layer, a tin-based layer made of tin or a tin alloy thereon, and an outermost layer made of a Cu—Sn intermetallic compound thereon.

請求項3に記載した発明は、前記中間層および最外層のCu−Sn金属間化合物がCuSn化合物を主体とすることを特徴とする請求項1または2に記載のめっき材料である。 The invention described in claim 3 is a plating material according to claim 1 or 2, wherein the intermediate layer and the outermost layer of the Cu-Sn intermetallic compound is characterized by mainly comprising Cu 3 Sn compound.

請求項4に記載した発明は、前記中間層および最外層のCu−Sn金属間化合物がCuSn化合物を主体とすることを特徴とする請求項1または2に記載のめっき材料である。 The invention described in claim 4 is a plating material according to claim 1 or 2, wherein the intermediate layer and the outermost layer of the Cu-Sn intermetallic compound is characterized by mainly containing Cu 6 Sn 5 compound.

請求項5に記載した発明は、前記中間層が上下2層からなり、下側(基体側)の中間層がCuSn化合物を主体とし、上側の中間層がCuSn化合物を主体とし、前記最外層が上下2層からなり、下側(基体側)の最外層がCuSn化合物を主体とし、上側の最外層がCuSn化合物を主体とすることを特徴とする請求項1または2に記載のめっき材料である。 In the invention described in claim 5, the intermediate layer is composed of two upper and lower layers, the lower (base side) intermediate layer is mainly composed of a Cu 3 Sn compound, and the upper intermediate layer is mainly composed of a Cu 6 Sn 5 compound. The outermost layer is composed of two upper and lower layers, and the lower (substrate side) outermost layer is mainly composed of a Cu 6 Sn 5 compound, and the upper outermost layer is mainly composed of a Cu 3 Sn compound. The plating material according to 1 or 2.

請求項6に記載した発明は、前記CuSn化合物にSn相またはSn合金相が分散していることを特徴とする請求項4または5に記載のめっき材料である。 The invention described in claim 6 is the plating material according to claim 4 or 5, wherein an Sn phase or an Sn alloy phase is dispersed in the Cu 6 Sn 5 compound.

請求項7に記載した発明は、導電性基体上にニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金のいずれか1種からなる下地層、その上に銅または銅合金からなる銅系層、その上にCu−Sn金属間化合物からなる最外層が設けられており、前記最外層のCu−Sn金属間化合物がCuSn化合物を主体とし、前記CuSn化合物にSn相またはSn合金相が分散していることを特徴とするめっき材料である。 The invention described in claim 7 is a base layer made of any one of nickel, nickel alloy, cobalt, cobalt alloy, iron and iron alloy on a conductive substrate, and a copper-based layer made of copper or a copper alloy thereon. , thereon and the outermost layer is provided consisting of Cu-Sn intermetallic compound, the Cu-Sn intermetallic compound of the outermost layer is composed mainly of Cu 6 Sn 5 compound, Sn phase in the Cu 6 Sn 5 compound or The plating material is characterized in that the Sn alloy phase is dispersed.

請求項8に記載した発明は、導電性基体上にニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金のいずれか1種からなる下地層、その上にCu−Sn金属間化合物からなる最外層が設けられており、前記最外層のCu−Sn金属間化合物がCuSn化合物を主体とし、前記CuSn化合物にSn相またはSn合金相が分散していることを特徴とするめっき材料である。 According to the eighth aspect of the present invention, a base layer made of any one of nickel, nickel alloy, cobalt, cobalt alloy, iron and iron alloy is formed on a conductive substrate, and a Cu—Sn intermetallic compound is further formed thereon. the outer layer is provided, Cu-Sn intermetallic compound of said outermost layer is composed mainly of Cu 6 Sn 5 compound, Sn phase or Sn alloy phase in the Cu 6 Sn 5 compound, characterized in that the dispersed It is a plating material.

請求項9に記載した発明は、前記導電性基体上に、下地層が少なくとも2層設けられていることを特徴とする請求項1乃至8のいずれかに記載のめっき材料である。   The invention described in claim 9 is the plating material according to any one of claims 1 to 8, wherein at least two underlayers are provided on the conductive substrate.

請求項10に記載した発明は、電気電子部品の少なくとも摺動部が請求項1乃至9のいずれかに記載のめっき材料からなることを特徴とする電気電子部品である。   According to a tenth aspect of the present invention, there is provided an electric / electronic component characterized in that at least a sliding portion of the electric / electronic component is made of the plating material according to any one of the first to ninth aspects.

請求項11に記載した発明は、嵌合型コネクタまたは接触子に用いられることを特徴とする請求項10に記載の電気電子部品である。   An eleventh aspect of the present invention is an electrical / electronic component according to the tenth aspect, which is used for a fitting-type connector or a contact.

本発明のめっき材料は最外層が硬質のCu−Sn金属間化合物からなるため、めっき層を薄くして端子間の接触圧力を小さくしても、フレッティング現象が起き難い。従って本発明のめっき材料を摺動部に用いた端子などの電気電子部品は良好な挿抜性および電気接続性が安定して得られる。   Since the outermost layer is made of a hard Cu—Sn intermetallic compound, the fretting phenomenon is unlikely to occur even if the plating layer is thinned to reduce the contact pressure between terminals. Therefore, electrical / electronic parts such as terminals using the plating material of the present invention for the sliding portion can stably obtain good insertion / extraction and electrical connectivity.

本発明のめっき材料は、導電性基体上にNiなどからなる下地層が設けられるので基体成分が最外層に拡散するのが防止される。
請求項1に記載した発明では前記下地層上にCuなどからなる銅系層、Cu−Sn金属間化合物層からなる中間層、Snなどからなる錫系層が設けられているので、また請求項2に記載した発明では前記下地層上にCu−Sn金属間化合物層からなる中間層およびSnなどからなる錫系層が設けられているので、請求項7に記載した発明では前記下地層上にCuなどからなる銅系層が設けられているので、いずれもNiなどの下地層成分が最外層に拡散するのが防止される。従って、良好な電気接続性がより安定して得られる。
In the plating material of the present invention, since the base layer made of Ni or the like is provided on the conductive base, the base component is prevented from diffusing into the outermost layer.
In the invention described in claim 1, since the copper-based layer made of Cu or the like, the intermediate layer made of Cu-Sn intermetallic compound layer, or the tin-based layer made of Sn or the like is provided on the underlayer, the invention is also claimed. In the invention described in 2, since an intermediate layer made of a Cu—Sn intermetallic compound layer and a tin-based layer made of Sn or the like are provided on the foundation layer, in the invention described in claim 7, the interlayer is formed on the foundation layer. Since the copper-based layer made of Cu or the like is provided, any of the underlayer components such as Ni is prevented from diffusing into the outermost layer. Therefore, good electrical connectivity can be obtained more stably.

本発明のめっき材料を、基体上に、例えば、Ni、Cu(内)、Sn、Cu(外)をこの順に層状にめっきしてめっき積層体とし、このめっき積層体を熱処理して製造する際に、前記積層体のCu(内)層とSn層、或いはSn層のみを残存させるので、または前記めっき材料の最外層または中間層にSn相またはSn合金相が分散した状態にするので、めっき積層体の設計および前記めっき積層体の熱処理が容易に行える。従って本発明のめっき材料は生産性に優れる。   When the plating material of the present invention is produced by plating, for example, Ni, Cu (inner), Sn, Cu (outer) in this order on a substrate to form a plating laminate, and heat-treating the plating laminate In addition, the Cu (inner) layer and the Sn layer or only the Sn layer of the laminate are left, or the Sn phase or the Sn alloy phase is dispersed in the outermost layer or the intermediate layer of the plating material. The design of the laminate and the heat treatment of the plated laminate can be easily performed. Therefore, the plating material of the present invention is excellent in productivity.

本発明のめっき材料7は、図1(イ)に示すように、導電性基体1上に、Niなどからなる下地層2、その上にCuなどからなる銅系層3、その上にCu−Sn金属間化合物からなる中間層4、その上にSnなどからなる錫系層5、その上にCu−Sn金属間化合物からなる最外層6を設けたもの(請求項1)、図1(ロ)に示すように、導電性基体1上に、Niなどからなる下地層2、その上にCu−Sn金属間化合物からなる中間層4、その上にSnなどからなる錫系層5、その上にCu−Sn金属間化合物からなる最外層6を設けたもの(請求項2)、前記請求項1または2に記載しためっき材料のCu−Sn金属間化合物からなる最外層または/および中間層にSn相またはSn合金相が分散したもの(請求項6)、図1(ハ)に示すように、導電性基体1上に、Niなどからなる下地層2、その上にCuなどからなる銅系層3、その上にCuSn化合物を主体としSn相またはSn合金相9が分散したCu−Sn金属間化合物からなる最外層6を設けたもの(請求項7)、図1(ニ)に示すように、導電性基体1上に、Niなどからなる下地層2、その上にCuSn化合物を主体としSn相またはSn合金相9が分散したCu−Sn金属間化合物からなる最外層6を設けたもの(請求項8)などである。 As shown in FIG. 1 (a), the plating material 7 of the present invention has a base layer 2 made of Ni or the like on a conductive substrate 1, a copper-based layer 3 made of Cu or the like thereon, and a Cu-- An intermediate layer 4 made of an Sn intermetallic compound, a tin-based layer 5 made of Sn or the like thereon, and an outermost layer 6 made of a Cu—Sn intermetallic compound thereon (Claim 1), FIG. ), A base layer 2 made of Ni or the like, an intermediate layer 4 made of a Cu—Sn intermetallic compound thereon, a tin-based layer 5 made of Sn or the like thereon, and a conductive layer 1. The outermost layer 6 made of a Cu—Sn intermetallic compound is provided on the outermost layer or / and the intermediate layer made of a Cu—Sn intermetallic compound of the plating material according to claim 1 or 2. Sn phase or Sn alloy phase dispersed (Claim 6), as shown in FIG. As, on the conductive substrate 1, an underlayer 2 made of Ni, a copper-based layer 3 made of Cu is formed thereon, Sn phase or Sn alloy phase 9 mainly composed of Cu 6 Sn 5 compound thereon dispersion The outermost layer 6 made of the Cu—Sn intermetallic compound is provided (Claim 7), and as shown in FIG. 1 (d), the base layer 2 made of Ni, etc. And an outermost layer 6 made of a Cu—Sn intermetallic compound mainly composed of a Cu 6 Sn 5 compound and having a Sn phase or an Sn alloy phase 9 dispersed therein (Claim 8).

請求項1に記載した発明のめっき材料は、例えば、図2に示すように、導電性基体1上にNi層2’、Cu層3’、Sn層4’、Cu層5’をこの順にめっきしてめっき積層体8を作製し、これを熱処理して、前記Cu層3’とSn層4’をCu−Sn金属間化合物層(中間層)に反応させ、さらにSn層4’とCu層5’をCu−Sn金属間化合物層(最外層)に反応させて製造される。この反応の間、基体の合金成分の熱拡散はNi層2’により阻止される。   The plating material according to the first aspect of the present invention is, for example, as shown in FIG. 2, on a conductive substrate 1, a Ni layer 2 ′, a Cu layer 3 ′, a Sn layer 4 ′, and a Cu layer 5 ′ are plated in this order. Then, the plated laminated body 8 is produced, and this is heat-treated to cause the Cu layer 3 ′ and the Sn layer 4 ′ to react with the Cu—Sn intermetallic compound layer (intermediate layer), and further, the Sn layer 4 ′ and the Cu layer. It is produced by reacting 5 ′ with a Cu—Sn intermetallic compound layer (outermost layer). During this reaction, thermal diffusion of the alloy components of the substrate is blocked by the Ni layer 2 '.

めっき積層体8のCu層3’、Sn層4’、Cu層5’の体積比は、請求項1に記載した発明ではめっき材料7の最外層6のCu−Sn金属間化合物層の必要厚みを考慮し、さらに熱処理後のめっき材料7に銅系層3と錫系層5が形成されるように決める。また請求項2に記載した発明では錫系層が形成されるように決める。前記熱処理後のめっき材料7に形成される銅系層3や錫系層5の厚みは特に厳密に規定する必要がないため、めっき積層体8の設計およびその熱処理が容易に行える。従って本発明のめっき材料は生産性に優れる。   In the invention described in claim 1, the volume ratio of the Cu layer 3 ′, the Sn layer 4 ′, and the Cu layer 5 ′ of the plating laminate 8 is the required thickness of the Cu—Sn intermetallic compound layer of the outermost layer 6 of the plating material 7. In consideration of the above, it is further determined that the copper-based layer 3 and the tin-based layer 5 are formed on the plating material 7 after the heat treatment. In the invention described in claim 2, the tin-based layer is determined to be formed. Since the thickness of the copper-based layer 3 and the tin-based layer 5 formed on the plating material 7 after the heat treatment does not need to be particularly strictly defined, the plating laminate 8 can be easily designed and heat-treated. Therefore, the plating material of the present invention is excellent in productivity.

めっき積層体8のCu層(内)3’の厚みは通常0.01μm以上とする。上限は実用面、材料費、製造コストなどを考慮して5.0μm程度が望ましい。なおCu層(内)3’がCuのとき、その厚みが薄いと熱処理後のめっき材料7の銅系層3に微細孔が多数存在しバリア機能が失われることがあるので、めっき積層体8のCu層(内)3’の厚みはCu合金の場合より若干厚めにする。   The thickness of the Cu layer (inner) 3 ′ of the plated laminate 8 is usually 0.01 μm or more. The upper limit is preferably about 5.0 μm in consideration of practical aspects, material costs, manufacturing costs, and the like. When the Cu layer (inner) 3 ′ is Cu, if the thickness is thin, the copper-based layer 3 of the plating material 7 after the heat treatment has many fine holes and the barrier function may be lost. The thickness of the Cu layer (inner) 3 ′ is made slightly thicker than that of the Cu alloy.

本発明において、Cu層(外)5’が熱処理で完全にCu−Sn金属間化合物に反応するのには長時間を要するため、熱処理後に、めっき材料7の最外層6の表面にCuまたはCu化合物が若干残存することがあるが、このことでめっき材料7の機能が低下することは殆どなく、従ってめっき材料7の最外層6の表面にCuまたはCu合金が残存するものも本発明のめっき材料である。前記CuまたはCu化合物は薬品などを用いて除去するのが望ましい。   In the present invention, since it takes a long time for the Cu layer (outer) 5 ′ to completely react with the Cu—Sn intermetallic compound by the heat treatment, Cu or Cu is formed on the surface of the outermost layer 6 of the plating material 7 after the heat treatment. Although some of the compound may remain, this hardly reduces the function of the plating material 7, so that the Cu or Cu alloy remains on the surface of the outermost layer 6 of the plating material 7. Material. The Cu or Cu compound is desirably removed using a chemical or the like.

本請求項2、8に記載した発明のめっき材料は、前記熱処理後のめっき材料7の下地層2上に銅系層3が存在しないものであるが、銅系層3が存在しないからといって、このめっき材料の端子挿抜性などの特性が低下することは殆どない。   In the plating materials of the present invention described in claims 2 and 8, the copper-based layer 3 is not present on the base layer 2 of the plated material 7 after the heat treatment, but the copper-based layer 3 is not present. Thus, characteristics such as terminal insertion / extraction of the plating material are hardly deteriorated.

本発明において、最外層をCu−Sn金属間化合物層とする端子摺動部と、最外層をSn層とする電線圧着部を含むめっき材料は、例えば自動車用端子として使用されるが、このようなめっき材料は、前記電線圧着部となる箇所のみCu層(外)のめっき時にマスキングを施したうえで、熱処理することにより電線圧着部にのみ最表面にSn層を残しためっき材料を製造できる。この方法によれば、最外層の材質が部位ごとに異なるめっき材料を容易に製造できる。   In the present invention, a plating material including a terminal sliding portion whose outermost layer is a Cu-Sn intermetallic compound layer and a wire crimping portion whose outermost layer is a Sn layer is used as, for example, an automobile terminal. The plating material can produce a plating material in which the Sn layer is left on the outermost surface only in the wire crimping part by performing heat treatment after masking the Cu layer (outside) only at the portion to be the wire crimping part. . According to this method, it is possible to easily manufacture a plating material in which the material of the outermost layer is different for each part.

前記めっき積層体8の熱処理をリフロー処理(連続処理)により施す場合は、めっき積層体の実体温度を好ましくは232〜500℃にして0.1秒以上10分以下、より好ましくは100秒以下、さらに好ましくは10秒以下加熱して施す。このリフロー処理は、たとえばリフロー炉内の温度を500℃〜900℃に保ち10分以下、好ましくは100秒以下、より好ましくは10秒以下で加熱を施すことで実現される。実際には実体温度による温度よりリフロー炉内の温度のほうが計測しやすいため、リフロー炉内の温度管理を行うことによりリフロー処理を施すことが望ましい。なお、熱処理をバッチ処理により施す場合は前記めっき積層体8を好ましくは50〜250℃の炉内に数10分乃至数時間保持して施す。なお、熱処理をリフロー処理により施す場合の温度や加熱時間は、めっき積層体の厚みなどに適合した条件に設定する必要があるが、後述する実施例において説明するように、個々の具体的条件は、適宜設定することができる。   When the heat treatment of the plating laminate 8 is performed by reflow treatment (continuous treatment), the actual temperature of the plating laminate is preferably 232 to 500 ° C. and is 0.1 second or longer and 10 minutes or shorter, more preferably 100 seconds or shorter, More preferably, it is heated for 10 seconds or less. This reflow treatment is realized, for example, by maintaining the temperature in the reflow furnace at 500 ° C. to 900 ° C. and heating for 10 minutes or less, preferably 100 seconds or less, more preferably 10 seconds or less. Actually, since the temperature in the reflow furnace is easier to measure than the temperature due to the actual temperature, it is desirable to perform the reflow process by managing the temperature in the reflow furnace. In addition, when performing heat processing by batch processing, the said plating laminated body 8 is preferably hold | maintained for several 10 minutes thru | or several hours in a 50-250 degreeC furnace. It should be noted that the temperature and heating time when heat treatment is performed by reflow treatment must be set to conditions suitable for the thickness of the plated laminate, etc., but as described in the examples described later, individual specific conditions are Can be set as appropriate.

本発明において、導電性基体1には、端子に要求される導電性、機械的強度および耐熱性を有する銅、リン青銅、黄銅、洋白、ベリリウム銅、コルソン合金などの銅系材料、鉄、ステンレス鋼などの鉄系材料、銅被覆鉄材やニッケル被覆鉄材などの複合材料、各種のニッケル合金やアルミニウム合金などの金属材料が適宜用いられる。   In the present invention, the conductive substrate 1 includes copper, phosphor bronze, brass, white, beryllium copper, Corson alloy and other copper-based materials, iron, Iron-based materials such as stainless steel, composite materials such as copper-coated iron materials and nickel-coated iron materials, and metal materials such as various nickel alloys and aluminum alloys are appropriately used.

前記導電性基体1に用いられる各種金属材料のうち、特に銅、銅合金などの銅系材料は導電性と機械的強度のバランスに優れ好適である。前記導電性基体が銅系材料以外の場合は、その表面に銅または銅合金を被覆しておくと耐食性および下地めっき層との密着性が向上する。   Of the various metal materials used for the conductive substrate 1, copper-based materials such as copper and copper alloys are particularly suitable because of their excellent balance between conductivity and mechanical strength. When the conductive substrate is other than a copper-based material, corrosion resistance and adhesion to the underlying plating layer are improved by covering the surface with copper or a copper alloy.

前記導電性基体1上に設ける下地層2は、基体1の成分が最外層6に熱拡散するのを防止するバリア機能を有するNi、Co、Feなどの金属、これらを主成分とするNi−P系、Ni−Sn系、Co−P系、Ni−Co系、Ni−Co−P系、Ni−Cu系、Ni−Cr系、Ni−Zn系、Ni−Fe系などの合金が好適に用いられる。これら金属および合金は、めっき処理性が良好で、価格的にも問題がない。中でも、NiおよびNi合金はバリア機能が高温環境下にあっても衰えないため推奨される。   The base layer 2 provided on the conductive substrate 1 is made of a metal such as Ni, Co, Fe or the like having a barrier function for preventing the components of the substrate 1 from thermally diffusing into the outermost layer 6, and Ni— having these as a main component. P, Ni—Sn, Co—P, Ni—Co, Ni—Co—P, Ni—Cu, Ni—Cr, Ni—Zn, Ni—Fe, and other alloys are preferred. Used. These metals and alloys have good plating processability and no problem in price. Among these, Ni and Ni alloys are recommended because the barrier function does not deteriorate even in a high temperature environment.

前記下地層2に用いるNiなどの金属(合金)は、融点が1000℃以上と高く、接続コネクタの使用環境温度は200℃以下と低いため、下地層はそれ自身熱拡散を起こし難いうえ、そのバリア機能が有効に発現される。下地層2には、導電性基体1の材質によっては導電性基体1と銅系層3との(銅系層3が存在しない場合には導電性基体1と中間層4との)密着性を高める機能もある。   Since the metal (alloy) such as Ni used for the underlayer 2 has a high melting point of 1000 ° C. or higher and the operating environment temperature of the connector is as low as 200 ° C. or less, the underlayer itself hardly causes thermal diffusion. The barrier function is effectively expressed. Depending on the material of the conductive substrate 1, the base layer 2 may have adhesion between the conductive substrate 1 and the copper-based layer 3 (the conductive substrate 1 and the intermediate layer 4 when the copper-based layer 3 is not present). There is also a function to enhance.

下地層2の厚みは、0.05μm未満ではそのバリア機能が十分に発揮されなくなり、3μmを超えるとめっき歪みが大きくなって基体1から剥離し易くなる。従って0.05〜3μmが望ましい。下地層の厚みの上限は端子加工性を考慮すると1.5μm、さらには0.5μmが望ましい。   When the thickness of the underlayer 2 is less than 0.05 μm, the barrier function is not fully exhibited, and when it exceeds 3 μm, the plating distortion increases and the base layer 1 is easily peeled off. Therefore, 0.05 to 3 μm is desirable. The upper limit of the thickness of the underlayer is preferably 1.5 μm, more preferably 0.5 μm, considering the terminal processability.

前記めっき積層体8のCu層(内、外)には、Cuの他、Cu−Sn系などの銅合金が適用できる。銅合金のCu濃度は50質量%以上が望ましい。   In addition to Cu, a Cu alloy such as Cu—Sn can be applied to the Cu layer (inside and outside) of the plated laminate 8. The Cu concentration of the copper alloy is desirably 50% by mass or more.

前記めっき積層体8のSn層4’がSnでCu層(内、外)3’、 5’がCuの場合のSn層4’とCu層(内+外)の体積比(Sn層/Cu層)が1.9以上のめっき積層体に所定の熱処理を施すことにより、基体1上に下地層2、その上に銅系層3、その上にCu−Sn金属間化合物層(中間層)4、その上に錫系層5、その上にCu−Sn金属間化合物層(最外層)6が形成された請求項1に記載した発明のめっき材料7が得られる。めっき積層体8のCu層(内)3’を薄くするか、設けないことにより前記銅系層3の存在しない請求項2に記載した発明のめっき材料7が得られる。
めっき積層体8のSn層4’の厚みは0.038〜4.0μmが望ましく、その上限は3.0μmであることがさらに望ましい。
When the Sn layer 4 'of the plating laminate 8 is Sn and the Cu layer (inner / outer) 3', and 5 'is Cu, the volume ratio of the Sn layer 4' and the Cu layer (inner + outer) (Sn layer / Cu Layer) is subjected to a predetermined heat treatment, whereby a base layer 2 is formed on the substrate 1, a copper-based layer 3 is formed thereon, and a Cu—Sn intermetallic compound layer (intermediate layer) is formed thereon. 4. A plating material 7 according to the invention described in claim 1 in which a tin-based layer 5 is formed thereon and a Cu—Sn intermetallic compound layer (outermost layer) 6 is formed thereon. By thinning or not providing the Cu layer (inner) 3 ′ of the plated laminate 8, the plating material 7 according to the invention described in claim 2 in which the copper-based layer 3 does not exist can be obtained.
The thickness of the Sn layer 4 ′ of the plated laminate 8 is preferably 0.038 to 4.0 μm, and the upper limit is more preferably 3.0 μm.

前記めっき積層体8のNi層2’、Cu層(内、外)3’、 5’およびSn層4’はPVD法などによっても形成できるが、湿式めっき法が簡便かつ低コストで望ましい。   The Ni layer 2 ′, Cu layers (inside and outside) 3 ′, 5 ′ and Sn layer 4 ′ of the plated laminate 8 can be formed by a PVD method or the like, but a wet plating method is preferable because it is simple and low cost.

本発明において、最外層のCu−Sn金属間化合物層6としてはCuSn、CuSn、CuSnなどが挙げられる。CuSnはCuの1体積に対しSnの1.90体積が反応して生成される。CuSnはCuの1体積に対しSnの0.76体積が反応して生成される。CuSnはCuの1体積に対しSnの0.57体積が反応して生成される。 In the present invention, examples of the outermost Cu—Sn intermetallic compound layer 6 include Cu 6 Sn 5 , Cu 3 Sn, and Cu 4 Sn. Cu 6 Sn 5 is produced by reacting 1.90 volumes of Sn with 1 volume of Cu. Cu 3 Sn is produced by reacting 0.76 volume of Sn with 1 volume of Cu. Cu 4 Sn is produced by reacting 0.57 volume of Sn with 1 volume of Cu.

従って、Sn層4’とCu層(内+外)の体積比(Sn層/Cu層)が、例えば1.90を超えるめっき積層体8を長時間熱処理するとCuSnが主体の中間層4或いは最外層6が形成される。
熱処理時間が短いときは、めっき積層体8のCu層(内、外)3’、 5’のSn層4’から離れた箇所にはCuSn或いはCuSnが主体のCu−Sn金属間化合物が形成される。このようなめっき材料(請求項5に記載した発明)によってもフレッティング現象が起き難い端子などが得られる。
Accordingly, when the plating laminate 8 having a volume ratio (Sn layer / Cu layer) of the Sn layer 4 ′ and the Cu layer (inside + outside) exceeds 1.90, for example, when the heat treatment is performed for a long time, the intermediate layer mainly composed of Cu 6 Sn 5 4 or the outermost layer 6 is formed.
When the heat treatment time is short, Cu 3 Sn or Cu 4 Sn mainly composed of Cu 3 Sn or Cu 4 Sn is disposed at a position away from the Cu layer (inside and outside) 3 ′ and 5 ′ of the plated laminate 8. A compound is formed. Even with such a plating material (the invention described in claim 5), it is possible to obtain a terminal or the like that hardly causes fretting phenomenon.

本発明において、最外層のCu−Sn金属間化合物層6をCuSn層とCuSn層の2層で構成する場合(請求項5に記載した発明)の各層の厚みは特に規定しないが、CuSnは0.01〜5.0μm、CuSnは0.008〜4.0μmが望ましい。中間層(Cu−Sn金属間化合物層)についても同様である。 In the present invention, the thickness of each layer in the case where the outermost Cu—Sn intermetallic compound layer 6 is composed of two layers of a Cu 6 Sn 5 layer and a Cu 3 Sn layer (the invention described in claim 5) is not particularly defined. However, Cu 6 Sn 5 is desirably 0.01 to 5.0 μm, and Cu 3 Sn is desirably 0.008 to 4.0 μm. The same applies to the intermediate layer (Cu—Sn intermetallic compound layer).

前記めっき積層体8のSn層4’の体積比が大きく、かつ熱処理を高温側または長時間側に設定して施す場合は、めっき積層体8のSn層4’を形成していたSnまたはSn合金が、中間層4または最外層6にSn相またはSn合金相(9)が分散することがある。この場合もフレッティング現象が起き難い端子などが得られる点、めっき積層体8の設計およびその熱処理が容易に行える点については他の実施形態と変わるところはない。   When the volume ratio of the Sn layer 4 ′ of the plating laminate 8 is large and the heat treatment is performed on the high temperature side or the long time side, the Sn or Sn forming the Sn layer 4 ′ of the plating laminate 8 is formed. In the alloy, the Sn phase or the Sn alloy phase (9) may be dispersed in the intermediate layer 4 or the outermost layer 6. In this case as well, there is no difference from the other embodiments in that a terminal that is less likely to cause fretting phenomenon can be obtained, and that the plated laminate 8 can be easily designed and heat-treated.

本発明において、Sn相またはSn合金相(9)が分散した中間層4または最外層6のCu−Sn金属間化合物は、通常CuSn化合物が主体となる。 In the present invention, the Cu—Sn intermetallic compound of the intermediate layer 4 or the outermost layer 6 in which the Sn phase or the Sn alloy phase (9) is dispersed is usually mainly a Cu 6 Sn 5 compound.

本発明において、最外層6のCu−Sn金属間化合物(CuSn)によるフレッティング現象の防止効果はSn相またはSn合金相(9)の有無に関係なく良好に得られる。 In the present invention, the effect of preventing the fretting phenomenon by the Cu—Sn intermetallic compound (Cu 6 Sn 5 ) in the outermost layer 6 can be obtained satisfactorily regardless of the presence or absence of the Sn phase or the Sn alloy phase (9).

本発明において、めっき材料7の各層間(導電性基体と下地層間を含む)に、隣接する層より薄い異種材料のめっき層を介在させてもよい。まためっき材料7の形状は、条、丸線、角線など任意である。   In the present invention, a plating layer made of a different material thinner than the adjacent layers may be interposed between the layers of the plating material 7 (including the conductive substrate and the base layer). Moreover, the shape of the plating material 7 is arbitrary, such as a strip, a round line, and a square line.

[実施例1]
厚み0.25mmの銅合金(黄銅)条に脱脂および酸洗をこの順に施し、次いで前記銅合金条にNi、Cu、Sn、Cuをこの順に層状に電気めっきしてめっき積層体を作製し、次いでこのめっき積層体8に熱処理をリフロー処理法により施して図1(イ)に示す構成のめっき材料7を製造した。熱処理条件は、リフロー炉内の温度を740℃、サンプルの実体温度を285℃とした。めっき積層体8のNi層2’の厚みは0.4μmとし、Cu層(内)3’、Sn層4’、Cu層(外)5’の厚み(体積)は種々に変化させた。Sn層4’とCu層(内+外)の厚み(体積)比(Sn層/Cu層)は1.95〜2.20の範囲で種々に変化させた。
各金属のめっき条件を表1に示す。
[Example 1]
Degreasing and pickling are performed in this order on a copper alloy strip (brass) having a thickness of 0.25 mm, and then Ni, Cu, Sn, and Cu are electroplated in this order on the copper alloy strip in order to produce a plated laminate. Next, the plating laminate 8 was subjected to a heat treatment by a reflow processing method to produce a plating material 7 having the structure shown in FIG. The heat treatment conditions were such that the temperature in the reflow furnace was 740 ° C. and the actual temperature of the sample was 285 ° C. The thickness of the Ni layer 2 ′ of the plated laminate 8 was 0.4 μm, and the thickness (volume) of the Cu layer (inner) 3 ′, Sn layer 4 ′, and Cu layer (outer) 5 ′ was variously changed. The thickness (volume) ratio (Sn layer / Cu layer) of the Sn layer 4 ′ and the Cu layer (inside + outside) was variously changed in the range of 1.95 to 2.20.
Table 1 shows the plating conditions for each metal.

Figure 2007277715
Figure 2007277715

得られた各々のめっき材料について、下記の微摺動試験を摺動往復回数1000回まで行い、接触抵抗値の変化を連続的に測定した。   About each obtained plating material, the following fine sliding test was done to the frequency | count of sliding reciprocation 1000 times, and the change of the contact resistance value was measured continuously.

前記微摺動試験は次のようにして行った。
即ち、図3に示すように各2枚のめっき材料11、12を用意し、各々脱脂洗浄後に、めっき材料11に設けた曲率半径1.05mmの半球状張出部(凸部外面が最外層面)11aに、めっき材料12の最外層面12aを、接触圧力3Nで接触させ、この状態で両者を、温度20℃、湿度65%の環境下で、摺動距離30μmで往復摺動させ、両めっき材料11、12間に開放電圧20mVを負荷して定電流5mAを流し、摺動中の電圧降下を4端子法により測定して電気抵抗の変化を1秒ごとに求めた。往復運動の周波数は約3.3Hzで行った。微摺動試験前の接触抵抗値と微摺動試験中の最大接触抵抗値を表2に示す。
The fine sliding test was performed as follows.
That is, as shown in FIG. 3, two plating materials 11 and 12 are prepared, and after each degreasing and cleaning, a hemispherical overhanging portion (the outer surface of the convex portion is the outermost surface) having a radius of curvature of 1.05 mm provided on the plating material 11 The outermost layer surface 12a of the plating material 12 is brought into contact with the layer surface 11a at a contact pressure of 3N, and in this state, both are reciprocated at a sliding distance of 30 μm in an environment of a temperature of 20 ° C. and a humidity of 65%. An open-circuit voltage of 20 mV was applied between the plating materials 11 and 12, a constant current of 5 mA was applied, and the voltage drop during sliding was measured by the four-terminal method to determine the change in electrical resistance every second. The frequency of reciprocating motion was about 3.3 Hz. Table 2 shows the contact resistance value before the fine sliding test and the maximum contact resistance value during the fine sliding test.

各めっき材料7について、(1)最外層6と中間層4のCu−Sn金属間化合物層の厚み、および錫系層5の厚みをコクール社製のR50溶液を用いたアノード溶解法により測定した。(2)銅系層3および最外層6の表面に残存するCuの厚みをコクール社製のR52の溶液を用いたアノード溶解法により測定した。(3)下地層(Ni層)2の厚みを、蛍光X線膜厚計を用いて測定した。測定面積はいずれも1cmとした。各厚みの測定結果を表2に併記した。 About each plating material 7, (1) The thickness of the Cu-Sn intermetallic compound layer of the outermost layer 6 and the intermediate | middle layer 4, and the thickness of the tin-type layer 5 were measured by the anodic dissolution method using R50 solution made from a Cocourt company. . (2) The thickness of Cu remaining on the surfaces of the copper-based layer 3 and the outermost layer 6 was measured by an anodic dissolution method using a solution of R52 manufactured by Kocourt. (3) The thickness of the underlayer (Ni layer) 2 was measured using a fluorescent X-ray film thickness meter. The measurement area was 1 cm 2 for all. The measurement results for each thickness are also shown in Table 2.

[実施例2]
熱処理をバッチ処理法により施した他は、実施例1と同じ方法により図1(イ)または(ロ)に示す構成のめっき材料7を製造し、実施例1と同じ試験、調査を行った。
[Example 2]
A plating material 7 having the structure shown in FIG. 1 (a) or (b) was manufactured by the same method as in Example 1 except that the heat treatment was performed by a batch processing method, and the same tests and investigations as in Example 1 were performed.

[比較例1]
めっき積層体のSn層とCu層(内+外)の体積比(Sn層/Cu層)を1.90とした他は、実施例1または2と同じ方法によりめっき材料を製造し、実施例1と同じ試験、調査を行った。
[Comparative Example 1]
A plating material was produced by the same method as in Example 1 or 2, except that the volume ratio (Sn layer / Cu layer) of the Sn layer and the Cu layer (inside + outside) of the plating laminate was 1.90. The same test and investigation as in No. 1 were conducted.

[比較例2]
めっき積層体のSn層とCu層(内+外)の体積比(Sn層/Cu層)を1.80とした他は、実施例1または2と同じ方法によりめっき材料を製造し、実施例1と同じ試験、調査を行った。
[Comparative Example 2]
A plating material was produced by the same method as in Example 1 or 2, except that the volume ratio (Sn layer / Cu layer) of the Sn layer and the Cu layer (inside + outside) of the plating laminate was 1.80. The same test and investigation as in No. 1 were conducted.

[比較例3]
銅合金基体上にNi下地層とSn最外層をこの順に電気めっきしためっき材料について実施例1と同じ試験、調査を行った。Snの厚みは2通りに変えた。
[Comparative Example 3]
The same test and investigation as in Example 1 were performed on a plating material obtained by electroplating a Ni underlayer and an Sn outermost layer in this order on a copper alloy substrate. The thickness of Sn was changed in two ways.

実施例1、2および比較例1〜3の調査結果を表2に示す。なお、表2における熱処理条件は、サンプルの実体温度を記載している。   The investigation results of Examples 1 and 2 and Comparative Examples 1 to 3 are shown in Table 2. In addition, the heat treatment conditions in Table 2 describe the actual temperature of the sample.

Figure 2007277715
Figure 2007277715

表2から明らかなように、本発明例のめっき材料7(実施例1、2)は、いずれも微摺動試験中の最大接触抵抗値が低かった。これは本発明例のめっき材料7は、最外層6が硬質のCu−Sn金属間化合物からなるためフレッティング現象が起き難く、しかも最外層6の下に錫系層5および中間層4が存在してNiなどの下地成分の熱拡散が防止され、さらに下地層2により基体1の成分の熱拡散が防止されて、最外層6が汚染されずその機能が良好に保持されたためである。   As is apparent from Table 2, the plating materials 7 of Examples of the present invention (Examples 1 and 2) all had a low maximum contact resistance value during the fine sliding test. This is because the plating material 7 of the present invention has an outermost layer 6 made of a hard Cu—Sn intermetallic compound, so that the fretting phenomenon hardly occurs, and the tin-based layer 5 and the intermediate layer 4 exist below the outermost layer 6. This is because the thermal diffusion of the base component such as Ni is prevented, and further, the thermal diffusion of the component of the substrate 1 is prevented by the base layer 2, and the outermost layer 6 is not contaminated and its function is well maintained.

これに対し、比較例1は銅系層も錫系層も存在しないため製造が困難であった。また比較例2は前記体積比が1.80のため最外層表面にCu層が残存し、また比較例3は最外層がSn層のためフレッティング現象が起きて、いずれも接触抵抗が大幅に増加した。   In contrast, Comparative Example 1 was difficult to manufacture because neither a copper-based layer nor a tin-based layer was present. In Comparative Example 2, the volume ratio is 1.80, so that the Cu layer remains on the outermost layer surface. In Comparative Example 3, the outermost layer is a Sn layer, and thus fretting phenomenon occurs. Increased.

前記微摺動試験で接触抵抗が10mΩを超えると自動車用端子への使用が困難とされているが、本発明のめっき材料7(実施例1、2)はいずれも10mΩを大幅に下回っており自動車用端子として十分使用できるものである。   When the contact resistance exceeds 10 mΩ in the fine sliding test, it is considered difficult to use for automobile terminals, but the plating materials 7 (Examples 1 and 2) of the present invention are significantly below 10 mΩ. It can be used as a car terminal.

[実施例3]
下地層2をNi層(0.2μm)とNi−Co−P系合金層(0.2μm)の2層に設けた他は、実施例1のNo.1と同じ方法によりめっき材料を作製し、実施例1と同じ方法により微摺動試験を行った。その結果、接触抵抗は初期値が1.7mΩ、微摺動試験中の最大値が3.2mΩといずれも極めて低い値を示した。これは基体1の成分の拡散が熱処理時および使用中において、より確実に防止されたためである。
[Example 3]
Example No. 1 in Example 1 except that the underlayer 2 was provided in two layers, a Ni layer (0.2 μm) and a Ni—Co—P alloy layer (0.2 μm). A plating material was produced by the same method as in Example 1, and a fine sliding test was conducted by the same method as in Example 1. As a result, the initial value of the contact resistance was 1.7 mΩ, and the maximum value during the micro-sliding test was 3.2 mΩ, both showing extremely low values. This is because the diffusion of the components of the substrate 1 is more reliably prevented during the heat treatment and during use.

[実施例4]
めっき積層体8の熱処理時間を短くした(熱処理時間:12h)他は、実施例2のNo.4と同じ方法によりめっき材料7を作製し、実施例1と同じ方法により微摺動試験を行った。このめっき材料7は、中間層4の下側(基体側)がCuSn化合物を主体とし、上側がCuSn化合物を主体とし、最外層6の下側(基体側)がCuSn化合物を主体とし、上側がCuSn化合物を主体とするめっき材料であったが、接触抵抗は、初期値が2.1mΩ、微摺動試験中の最大値が4.6mΩであり、中間層4および最外層6の全体がCuSn化合物を主体とするめっき材料(実施例2のNo.4)と同等の低い接触抵抗値を示した。
[Example 4]
Other than shortening the heat treatment time of the plated laminate 8 (heat treatment time: 12 h) A plating material 7 was produced by the same method as in Example 4, and a fine sliding test was conducted by the same method as in Example 1. In this plating material 7, the lower side (base side) of the intermediate layer 4 is mainly composed of Cu 3 Sn compound, the upper side is mainly composed of Cu 6 Sn 5 compound, and the lower side (base side) of the outermost layer 6 is Cu 6 Sn. Although the plating material was mainly composed of 5 compounds and the upper side was mainly composed of Cu 3 Sn compound, the contact resistance had an initial value of 2.1 mΩ and a maximum value of 4.6 mΩ in the micro-sliding test. The entire layer 4 and outermost layer 6 exhibited a low contact resistance value equivalent to the plating material (No. 4 in Example 2) mainly composed of Cu 6 Sn 5 compound.

[実施例5]
実施例1のNo.3のめっき積層体8を用い、リフロー処理を実施例1No.3の場合より高めの温度(リフロー炉内の温度:770℃)で施した他は、実施例1と同じ方法によりめっき材料7を製造した。
得られためっき材料7は、構成が図1(イ)に示したものとほぼ同じであるが、錫系層5の厚みが減少し、最外層6および中間層4はCuSnを主体とするCu−Sn金属間化合物にSn相またはSn合金相9が分散し、図1(イ)と図1(ハ)の中間の構成を有するものであった。
このめっき材料7について実施例1と同じ摺動試験を行い、接触抵抗値の変化を連続的に測定した。その結果は、接触抵抗は初期値が1.8mΩ、最大値が3.6mΩであり、実施例1のNo.3の結果と同等であった。
[Example 5]
No. of Example 1 No. 3 plating laminate 8 and reflow treatment in Example 1 No. The plating material 7 was manufactured by the same method as Example 1 except having performed at the temperature higher than the case of 3 (temperature in a reflow furnace: 770 degreeC).
The obtained plating material 7 has substantially the same structure as that shown in FIG. 1A, but the thickness of the tin-based layer 5 is reduced, and the outermost layer 6 and the intermediate layer 4 are mainly composed of Cu 6 Sn 5 . The Sn phase or the Sn alloy phase 9 was dispersed in the Cu—Sn intermetallic compound to have an intermediate structure between FIG. 1 (A) and FIG. 1 (C).
This plating material 7 was subjected to the same sliding test as in Example 1, and the change in the contact resistance value was continuously measured. As a result, the contact resistance had an initial value of 1.8 mΩ and a maximum value of 3.6 mΩ. It was equivalent to the result of 3.

[実施例6]
実施例2のNo.6の積層体を用い、熱処理を実施例2No.6の場合より高めの温度(サンプルの実体温度:180℃)で施した他は、実施例1と同じ方法によりめっき材料を製造した。
得られためっき材料は、構成が図1(ロ)に示したものとほぼ同じであるが、錫系層5の厚みが減少し、最外層6および中間層4はCuSnを主体とするCu−Sn金属間化合物にSn相またはSn合金相9が分散し、図1(ロ)と図1(ハ)の中間の構成を有するものであった。
このめっき材料7について実施例1と同じ摺動試験を行い、接触抵抗値の変化を連続的に測定した。その結果、接触抵抗は初期値が1.8mΩ、最大値が3.8mΩであり、実施例1のNo.3の結果と同等であった。
[Example 6]
No. 2 in Example 2. No. 6 was used for heat treatment in Example 2 No. A plating material was produced by the same method as in Example 1 except that it was performed at a temperature higher than the case of 6 (substance temperature of the sample: 180 ° C.).
The obtained plating material has substantially the same structure as that shown in FIG. 1B, but the thickness of the tin-based layer 5 is reduced, and the outermost layer 6 and the intermediate layer 4 are mainly composed of Cu 6 Sn 5. The Sn phase or the Sn alloy phase 9 was dispersed in the Cu—Sn intermetallic compound to be formed, and had an intermediate configuration between FIG. 1 (B) and FIG. 1 (C).
This plating material 7 was subjected to the same sliding test as in Example 1, and the change in the contact resistance value was continuously measured. As a result, the contact resistance had an initial value of 1.8 mΩ and a maximum value of 3.8 mΩ. It was equivalent to the result of 3.

[実施例7]
厚み0.25mmの銅合金(黄銅)条に脱脂および酸洗をこの順に施し、次いで前記銅合金条にNi、Cu、Sn、Cuをこの順に層状に表1に示す条件で電気めっきしてめっき積層体8を作製し、次いでこのめっき積層体8に熱処理をリフロー処理法により実施例5と同じ条件で施してめっき材料7を製造し、実施例1と同じ試験、調査を行った。ここでは、めっき積層体8のNi層2’の厚みは0.4μmとし、Cu層(内)3’とCu層(外)5’の厚み(体積)比(内/外)は3.0とし、Sn層4’とCu層(内+外)の厚み(体積)比(Sn層/Cu層)は2.60とした。なお、Sn層4’の厚みは1.0μmとした。
[Example 7]
A copper alloy strip (brass) having a thickness of 0.25 mm is subjected to degreasing and pickling in this order, and then the copper alloy strip is electroplated with Ni, Cu, Sn, and Cu in this order in the order of layers as shown in Table 1. The laminated body 8 was produced, and then the plated laminated body 8 was subjected to a heat treatment by the reflow treatment method under the same conditions as in Example 5 to produce a plating material 7. The same tests and investigations as in Example 1 were performed. Here, the thickness of the Ni layer 2 ′ of the plated laminate 8 is 0.4 μm, and the thickness (volume) ratio (inner / outer) of the Cu layer (inner) 3 ′ and the Cu layer (outer) 5 ′ is 3.0. The thickness (volume) ratio (Sn layer / Cu layer) of the Sn layer 4 ′ and the Cu layer (inside + outside) was 2.60. The thickness of the Sn layer 4 ′ was 1.0 μm.

得られためっき材料7は、構成が図1(ハ)に示すような、下地層2上に銅系層3が、その上に最外層6が形成されたものであり、最外層6はCuSnを主体とするCu−Sn金属間化合物にSn相またはSn合金相9が分散したものであった。
このめっき材料7について実施例1と同じ摺動試験を行い、接触抵抗値の変化を連続的に測定した。その結果、接触抵抗は初期値が1.8mΩ、最大値が3.9mΩであり、実施例1のNo.3の結果と同等であった。
The obtained plating material 7 has a structure as shown in FIG. 1 (c), in which the copper-based layer 3 is formed on the base layer 2, and the outermost layer 6 is formed thereon. The outermost layer 6 is made of Cu. The Sn phase or Sn alloy phase 9 was dispersed in a Cu—Sn intermetallic compound mainly composed of 6 Sn 5 .
This plating material 7 was subjected to the same sliding test as in Example 1, and the change in the contact resistance value was continuously measured. As a result, the contact resistance had an initial value of 1.8 mΩ and a maximum value of 3.9 mΩ. It was equivalent to the result of 3.

[実施例8]
実施例7において、Cu層(内)3’とCu層(外)5’の厚み(体積)比(内/外)を1.0とし、Sn層とCu層(内+外)の厚み(体積)比(Sn層/Cu層)を2.60とした他は、実施例7と同じ方法によりめっき材料7を製造し、実施例7と同じ試験、調査を行った。
[Example 8]
In Example 7, the thickness (volume) ratio (inner / outer) of the Cu layer (inner) 3 ′ and the Cu layer (outer) 5 ′ is 1.0, and the thickness of the Sn layer and Cu layer (inner + outer) ( A plating material 7 was produced by the same method as in Example 7 except that the volume ratio (Sn layer / Cu layer) was 2.60, and the same tests and investigations as in Example 7 were performed.

得られためっき材料7は、構成が図1(ニ)に示すような、下地層2上に最外層6が形成されたものであり、最外層6はCuSnを主体とするCu−Sn金属間化合物にSn相またはSn合金相9が分散したものであった。このめっき材料は、接触抵抗が初期値1.9mΩ、最大値4.0mΩであり実施例1のNo.3の結果と同等であった。 The resulting plated material 7 is configuration as shown in FIG. 1 (d), which outermost layer 6 is formed on the underlying layer 2, the outermost layer 6 is mainly composed of Cu 6 Sn 5 Cu- The Sn phase or the Sn alloy phase 9 was dispersed in the Sn intermetallic compound. This plating material had an initial value of 1.9 mΩ and a maximum value of 4.0 mΩ as the contact resistance. It was equivalent to the result of 3.

実施例5〜8の試験結果から、中間層4および最外層6、または最外層6のCu−Sn金属間化合物にSn相またはSn合金相9が分散しためっき材料7においても低い接触抵抗値が得られることがわかる。このめっき材料7は中間層4或いは最外層6にSn相およびSn合金相9が分散されたものであり、実施例1〜4と同様、めっき積層体8の設計および熱処理が容易に行え、生産性に優れる。   From the test results of Examples 5 to 8, the contact resistance value is low even in the plating material 7 in which the Sn phase or the Sn alloy phase 9 is dispersed in the intermediate layer 4 and the outermost layer 6 or the Cu—Sn intermetallic compound of the outermost layer 6. It turns out that it is obtained. This plating material 7 is obtained by dispersing the Sn phase and the Sn alloy phase 9 in the intermediate layer 4 or the outermost layer 6. As in Examples 1 to 4, the plating laminate 8 can be easily designed and heat-treated. Excellent in properties.

実施例1〜8で得られためっき材料7を用いて嵌合型コネクタ端子を製造し、自動車のエンジンルーム内で実用に供したところ、いずれも長期に渡り良好な挿抜性が安定して得られることが確認された。   When the fitting type connector terminal is manufactured using the plating material 7 obtained in Examples 1 to 8 and put into practical use in the engine room of an automobile, good insertion / extraction properties can be stably obtained over a long period of time. It was confirmed that

(イ)〜(ニ)は本発明のめっき材料の実施形態の一例を示す斜視説明図である。(A)-(d) is a perspective explanatory drawing which shows an example of embodiment of the plating material of this invention. 本発明のめっき材料の製造に用いるめっき積層体の実施形態を示す斜視説明図である。It is a perspective explanatory view showing an embodiment of a plating layered product used for manufacture of a plating material of the present invention. 微摺動試験方法の斜視説明図である。It is a perspective explanatory view of a fine sliding test method.

符号の説明Explanation of symbols

1 導電性基体
2 Niなどからなる下地層
3 CuまたはCu合金からなる銅系層
4 Cu−Sn金属間化合物からなる中間層
5 SnまたはSn合金からなる錫系層
6 Cu−Sn金属間化合物からなる最外層
7 めっき材料
2’ Ni層
3’ Cu層(内)
4’ Sn層
5’ Cu層(外)
8 めっき積層体
9 Sn相またはSn合金相
11 めっき材料
11aめっき材料に設けた半球状張出部
12 めっき材料
12aめっき材料の最外層面
DESCRIPTION OF SYMBOLS 1 Conductive substrate 2 Base layer made of Ni or the like 3 Copper-based layer made of Cu or Cu alloy 4 Intermediate layer made of Cu-Sn intermetallic compound 5 Tin-based layer made of Sn or Sn alloy 6 From Cu-Sn intermetallic compound Outermost layer 7 plating material 2 ′ Ni layer 3 ′ Cu layer (inner)
4 'Sn layer 5' Cu layer (outside)
8 Plating laminate 9 Sn phase or Sn alloy phase 11 Plating material 11a Hemispherical overhang 12 provided on plating material Plating material 12a Outermost layer surface of plating material

Claims (11)

導電性基体上にニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金のいずれか1種からなる下地層、その上に銅または銅合金からなる銅系層、その上にCu−Sn金属間化合物からなる中間層、その上に錫または錫合金からなる錫系層、その上にCu−Sn金属間化合物からなる最外層が設けられていることを特徴とするめっき材料。   A base layer made of any one of nickel, nickel alloy, cobalt, cobalt alloy, iron, and iron alloy on a conductive substrate, a copper-based layer made of copper or a copper alloy thereon, and a Cu-Sn metal space between them A plating material comprising: an intermediate layer made of a compound; a tin-based layer made of tin or a tin alloy; and an outermost layer made of a Cu—Sn intermetallic compound. 導電性基体上にニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金のいずれか1種からなる下地層、その上にCu−Sn金属間化合物からなる中間層、その上に錫または錫合金からなる錫系層、その上にCu−Sn金属間化合物からなる最外層が設けられていることを特徴とするめっき材料。   An underlayer made of nickel, nickel alloy, cobalt, cobalt alloy, iron or iron alloy on a conductive substrate, an intermediate layer made of Cu-Sn intermetallic compound thereon, and tin or a tin alloy thereon A plating material, comprising: a tin-based layer comprising: an outermost layer comprising a Cu—Sn intermetallic compound; 前記中間層および最外層のCu−Sn金属間化合物がCuSn化合物を主体とすることを特徴とする請求項1または2に記載のめっき材料。 Plating material according to claim 1 or 2, wherein the intermediate layer and the outermost layer of the Cu-Sn intermetallic compound is characterized by mainly comprising Cu 3 Sn compound. 前記中間層および最外層のCu−Sn金属間化合物がCuSn化合物を主体とすることを特徴とする請求項1または2に記載のめっき材料。 The plating material according to claim 1, wherein the Cu—Sn intermetallic compound of the intermediate layer and the outermost layer is mainly composed of a Cu 6 Sn 5 compound. 前記中間層が上下2層からなり、下側(基体側)の中間層がCuSn化合物を主体とし、上側の中間層がCuSn化合物を主体とし、前記最外層が上下2層からなり、下側(基体側)の最外層がCuSn化合物を主体とし、上側の最外層がCuSn化合物を主体とすることを特徴とする請求項1または2に記載のめっき材料。 The intermediate layer is composed of two upper and lower layers, the lower (substrate side) intermediate layer is mainly composed of Cu 3 Sn compound, the upper intermediate layer is mainly composed of Cu 6 Sn 5 compound, and the outermost layer is composed of upper and lower layers. The plating material according to claim 1, wherein the outermost layer on the lower side (substrate side) is mainly composed of a Cu 6 Sn 5 compound, and the uppermost outermost layer is mainly composed of a Cu 3 Sn compound. 前記CuSn化合物にSn相またはSn合金相が分散していることを特徴とする請求項4または5に記載のめっき材料。 The plating material according to claim 4 or 5, wherein an Sn phase or an Sn alloy phase is dispersed in the Cu 6 Sn 5 compound. 導電性基体上にニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金のいずれか1種からなる下地層、その上に銅または銅合金からなる銅系層、その上にCu−Sn金属間化合物からなる最外層が設けられており、前記最外層のCu−Sn金属間化合物がCuSn化合物を主体とし、前記CuSn化合物にSn相またはSn合金相が分散していることを特徴とするめっき材料。 A base layer made of any one of nickel, nickel alloy, cobalt, cobalt alloy, iron, and iron alloy on a conductive substrate, a copper-based layer made of copper or a copper alloy thereon, and a Cu-Sn metal space between them and the outermost layer is provided made of a compound, the Cu-Sn intermetallic compound of said outermost layer is composed mainly of Cu 6 Sn 5 compound, Sn phase or Sn alloy phase in the Cu 6 Sn 5 compound is dispersed Plating material characterized by 導電性基体上にニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金のいずれか1種からなる下地層、その上にCu−Sn金属間化合物からなる最外層が設けられており、前記最外層のCu−Sn金属間化合物がCuSn化合物を主体とし、前記CuSn化合物にSn相またはSn合金相が分散していることを特徴とするめっき材料。 A base layer made of any one of nickel, nickel alloy, cobalt, cobalt alloy, iron, and iron alloy is provided on the conductive substrate, and an outermost layer made of Cu-Sn intermetallic compound is provided on the base layer. plating material Cu-Sn intermetallic compound layer is mainly composed of Cu 6 Sn 5 compound, Sn phase or Sn alloy phase in the Cu 6 Sn 5 compound, characterized in that the dispersed. 前記導電性基体上に、下地層が少なくとも2層設けられていることを特徴とする請求項1乃至8のいずれかに記載のめっき材料。   The plating material according to claim 1, wherein at least two underlayers are provided on the conductive substrate. 電気電子部品の少なくとも摺動部が請求項1乃至9のいずれかに記載のめっき材料からなることを特徴とする電気電子部品。   An electrical / electronic component, wherein at least a sliding portion of the electrical / electronic component is made of the plating material according to claim 1. 嵌合型コネクタまたは接触子に用いられることを特徴とする請求項10に記載の電気電子部品。   The electric / electronic component according to claim 10, wherein the electric / electronic component is used for a fitting-type connector or a contact.
JP2007068018A 2006-03-17 2007-03-16 Plating material and electric / electronic component using the plating material Expired - Fee Related JP4653133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068018A JP4653133B2 (en) 2006-03-17 2007-03-16 Plating material and electric / electronic component using the plating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006075336 2006-03-17
JP2007068018A JP4653133B2 (en) 2006-03-17 2007-03-16 Plating material and electric / electronic component using the plating material

Publications (2)

Publication Number Publication Date
JP2007277715A true JP2007277715A (en) 2007-10-25
JP4653133B2 JP4653133B2 (en) 2011-03-16

Family

ID=38679446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068018A Expired - Fee Related JP4653133B2 (en) 2006-03-17 2007-03-16 Plating material and electric / electronic component using the plating material

Country Status (1)

Country Link
JP (1) JP4653133B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057707A1 (en) * 2007-10-31 2009-05-07 Nippon Mining & Metals Co., Ltd. Tin-plated material for electronic part
WO2010084532A1 (en) * 2009-01-20 2010-07-29 三菱伸銅株式会社 Conductive member and method for producing the same
JP2010196084A (en) * 2009-02-23 2010-09-09 Mitsubishi Shindoh Co Ltd Electroconductive member and production method therefor
WO2010119489A1 (en) * 2009-04-14 2010-10-21 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP2010248616A (en) * 2009-03-26 2010-11-04 Kobe Steel Ltd Sn-PLATED COPPER OR COPPER ALLOY HAVING EXCELLENT HEAT RESISTANCE AND MANUFACTURING METHOD THEREOF
JP2010262861A (en) * 2009-05-08 2010-11-18 Kobe Steel Ltd Press-fit terminal
JP2010267418A (en) * 2009-05-12 2010-11-25 Furukawa Electric Co Ltd:The Connector
JP2011063875A (en) * 2009-08-18 2011-03-31 Mitsubishi Shindoh Co Ltd Conductive member and method of manufacturing the same
JP2011080117A (en) * 2009-10-07 2011-04-21 Mitsubishi Shindoh Co Ltd Conductive member and method of manufacturing the same
JP2013222659A (en) * 2012-04-18 2013-10-28 Auto Network Gijutsu Kenkyusho:Kk Electrical contact material for connector, method of manufacturing the same, and electrical contact point for connector
KR101544264B1 (en) 2012-08-29 2015-08-12 가부시키가이샤 고베 세이코쇼 Sn-PLATED COPPER ALLOY STRIP HAVING EXCELLENT HEAT RESISTANCE
WO2017169318A1 (en) * 2016-03-31 2017-10-05 日新製鋼株式会社 Automotive terminal
KR101827195B1 (en) * 2014-02-20 2018-02-08 가부시키가이샤 고베 세이코쇼 Surface coating layer-equipped copper alloy plate strip having excellent heat resistance
WO2021173788A1 (en) * 2020-02-26 2021-09-02 Raytheon Company Cu3sn via metallization in electrical devices for low-temperature 3d-integration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135226A (en) * 1997-10-27 1999-05-21 Harness Syst Tech Res Ltd Manufacture of fitting type connecting terminal
JP2003082499A (en) * 2001-09-11 2003-03-19 Kobe Steel Ltd Tin-copper intermetallic compound-dispersed tinned terminal
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP2005307240A (en) * 2004-04-19 2005-11-04 Dowa Mining Co Ltd Sn-COATED ELECTRICALLY CONDUCTIVE MATERIAL AND ITS PRODUCTION METHOD
JP2005315419A (en) * 2004-03-31 2005-11-10 Nichias Corp Metal gasket
JP2005344188A (en) * 2004-06-04 2005-12-15 Furukawa Electric Co Ltd:The Method for producing plating material and electrical/electronic component using the plating material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135226A (en) * 1997-10-27 1999-05-21 Harness Syst Tech Res Ltd Manufacture of fitting type connecting terminal
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor
JP2003082499A (en) * 2001-09-11 2003-03-19 Kobe Steel Ltd Tin-copper intermetallic compound-dispersed tinned terminal
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP2005315419A (en) * 2004-03-31 2005-11-10 Nichias Corp Metal gasket
JP2005307240A (en) * 2004-04-19 2005-11-04 Dowa Mining Co Ltd Sn-COATED ELECTRICALLY CONDUCTIVE MATERIAL AND ITS PRODUCTION METHOD
JP2005344188A (en) * 2004-06-04 2005-12-15 Furukawa Electric Co Ltd:The Method for producing plating material and electrical/electronic component using the plating material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203438B1 (en) 2007-10-31 2012-11-21 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Tin-plated material for electronic part
JP2009108389A (en) * 2007-10-31 2009-05-21 Nikko Kinzoku Kk Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
WO2009057707A1 (en) * 2007-10-31 2009-05-07 Nippon Mining & Metals Co., Ltd. Tin-plated material for electronic part
WO2010084532A1 (en) * 2009-01-20 2010-07-29 三菱伸銅株式会社 Conductive member and method for producing the same
US8981233B2 (en) 2009-01-20 2015-03-17 Mitsubishi Shindoh Co., Ltd. Conductive member and method for producing the same
US8698002B2 (en) 2009-01-20 2014-04-15 Mitsubishi Shindoh Co., Ltd. Conductive member and method for producing the same
CN102239280B (en) * 2009-01-20 2014-03-19 三菱伸铜株式会社 Conductive member and method for producing the same
JP2010196084A (en) * 2009-02-23 2010-09-09 Mitsubishi Shindoh Co Ltd Electroconductive member and production method therefor
JP2010248616A (en) * 2009-03-26 2010-11-04 Kobe Steel Ltd Sn-PLATED COPPER OR COPPER ALLOY HAVING EXCELLENT HEAT RESISTANCE AND MANUFACTURING METHOD THEREOF
WO2010119489A1 (en) * 2009-04-14 2010-10-21 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP2010262861A (en) * 2009-05-08 2010-11-18 Kobe Steel Ltd Press-fit terminal
JP2010267418A (en) * 2009-05-12 2010-11-25 Furukawa Electric Co Ltd:The Connector
JP2011063875A (en) * 2009-08-18 2011-03-31 Mitsubishi Shindoh Co Ltd Conductive member and method of manufacturing the same
JP2011080117A (en) * 2009-10-07 2011-04-21 Mitsubishi Shindoh Co Ltd Conductive member and method of manufacturing the same
JP2013222659A (en) * 2012-04-18 2013-10-28 Auto Network Gijutsu Kenkyusho:Kk Electrical contact material for connector, method of manufacturing the same, and electrical contact point for connector
KR101544264B1 (en) 2012-08-29 2015-08-12 가부시키가이샤 고베 세이코쇼 Sn-PLATED COPPER ALLOY STRIP HAVING EXCELLENT HEAT RESISTANCE
KR101827195B1 (en) * 2014-02-20 2018-02-08 가부시키가이샤 고베 세이코쇼 Surface coating layer-equipped copper alloy plate strip having excellent heat resistance
US10233517B2 (en) 2014-02-20 2019-03-19 Kobe Steel, Ltd. Copper alloy sheet strip with surface coating layer excellent in heat resistance
WO2017169318A1 (en) * 2016-03-31 2017-10-05 日新製鋼株式会社 Automotive terminal
JP2017183144A (en) * 2016-03-31 2017-10-05 日新製鋼株式会社 Automotive terminal
WO2021173788A1 (en) * 2020-02-26 2021-09-02 Raytheon Company Cu3sn via metallization in electrical devices for low-temperature 3d-integration
US11854879B2 (en) 2020-02-26 2023-12-26 Raytheon Company Cu3Sn via metallization in electrical devices for low-temperature 3D-integration

Also Published As

Publication number Publication date
JP4653133B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4653133B2 (en) Plating material and electric / electronic component using the plating material
JP4934456B2 (en) Plating material and electric / electronic component using the plating material
JP5192878B2 (en) Connectors and metal materials for connectors
JP5355935B2 (en) Metal materials for electrical and electronic parts
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
WO2017090638A1 (en) Tin-plated copper terminal material, terminal, and wire terminal part structure
JP2008223143A (en) Plated material and method for preparation thereof, and electric and electronic parts using the same
WO2015045856A1 (en) Electric contact material for connector, and method for producing same
CN110997985A (en) Silver-coated membrane terminal material and silver-coated membrane terminal
JP2008248294A (en) Plated material having lubricative particle, method of manufacturing the same and electric or electronic component using the same
JP2009135097A (en) Metal material for electric and electronic equipment, method of manufacturing metal material for electric and electronic equipment
JP2010267418A (en) Connector
US10998108B2 (en) Electrical contact material, method of producing an electrical contact material, and terminal
JP2019073803A (en) Connector terminal material, terminal, and electric wire terminal part structure
JP5261278B2 (en) Connectors and metal materials for connectors
JP2012057212A (en) Composite plated material, and electric component and electronic component using the same
JP2005344188A (en) Method for producing plating material and electrical/electronic component using the plating material
JP7060514B2 (en) Conductive strip
JP2004225070A (en) Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP4514061B2 (en) Plating material, manufacturing method thereof, and electric / electronic parts using the same
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP2008196010A (en) Plating material for connector terminal
JP2007204854A (en) Plated material, method of producing the same, and electrical/electronic part using the same
JP2005105419A (en) Plated material, method of producing the same, and electrical/electronic part using the same
JP2020196909A (en) Material for electrical contact and its manufacturing method, connector terminal, connector and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R151 Written notification of patent or utility model registration

Ref document number: 4653133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees