JP2007277498A - Process for purification of epoxy resin - Google Patents
Process for purification of epoxy resin Download PDFInfo
- Publication number
- JP2007277498A JP2007277498A JP2006109529A JP2006109529A JP2007277498A JP 2007277498 A JP2007277498 A JP 2007277498A JP 2006109529 A JP2006109529 A JP 2006109529A JP 2006109529 A JP2006109529 A JP 2006109529A JP 2007277498 A JP2007277498 A JP 2007277498A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- ppm
- organic chlorine
- less
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
本発明は、主として半導体封止用をはじめとした電気絶縁材料等の電気電子産業用に好適な、極めて有機塩素量の少ないエポキシ樹脂の精製方法に関する。 The present invention relates to a method for purifying an epoxy resin having a very small amount of organic chlorine, which is suitable mainly for use in the electrical and electronic industries such as electrical insulation materials including semiconductor sealing.
多価フェノール類とエピハロヒドリンとをアルカリ金属水酸化物の存在下で反応させてグリシジルエーテル化して製造されたエポキシ樹脂は、硬化剤により架橋させた場合、大きな架橋密度を有する硬化樹脂となり、優れた耐薬品性、耐湿性、耐熱性を示すものである。
エポキシ樹脂には無機塩素イオンや分子中に存在する加水分解性塩素化物が含まれる。それらの不純物塩素化物の内、無機塩素イオンと一部の易加水分解性塩素は従来の技術で容易に低減する事が出来るが、その他の難加水分解性有機塩素を低減させることは非常に困難であった。従来、電気電子用途に使用されるエポキシ樹脂の有機塩素量は600〜1000ppm程度が標準的であった。
しかし、近年、電子部品の高度集積化に伴い回路の微細化が進み、使用されるエポキシ樹脂にも更なる低塩素化の要求があった。
Epoxy resin produced by reacting polyphenols with epihalohydrin in the presence of an alkali metal hydroxide to glycidyl ether, when cured with a curing agent, becomes a cured resin having a large crosslinking density and is excellent. It shows chemical resistance, moisture resistance, and heat resistance.
Epoxy resins include inorganic chloride ions and hydrolyzable chlorinated compounds present in the molecule. Among those impurities chlorinated products, inorganic chlorine ions and some easily hydrolyzable chlorine can be easily reduced by conventional techniques, but it is very difficult to reduce other hardly hydrolyzable organic chlorines. Met. Conventionally, the amount of organic chlorine in epoxy resins used for electrical and electronic applications is typically about 600 to 1000 ppm.
However, in recent years, as electronic components have been highly integrated, miniaturization of circuits has progressed, and there has been a demand for further chlorination of the epoxy resin used.
この様な背景から、有機塩素量を低減するために様々な製造方法が提案されている。
例えば、特許文献1では、不活性溶媒中でエポキシ化合物に平均粒径300μm以下の粉末状アルカリ金属水酸化物を作用させた後、生成物を非極性溶媒により抽出することを特徴とするエポキシ化合物の精製方法が開示されている。
しかしながら、その製造方法は例えば、ビスフェノールF型エポキシ化合物の場合は、樹脂100g対して400mlのトルエンと更に抽出に400mlのヘプタンを使用しており、得られた精製エポキシ化合物は61gと工業的生産を考えた場合はかなり効率の悪いものとなっている。またアルカリ金属水酸化物をアルコールに溶解して行う方法も提案されているが、十分に低塩素化することは出来ていない。このように従来の精製方法では、有機塩素量が200ppm以下の高純度エポキシ樹脂を得るのは困難であり、たとえ得られたとしても、副反応を抑制するために多量の有機溶剤が必要であったり、貧溶媒による抽出操作等が必要であり、工業的に製造する場合不利であった。
For example, in Patent Document 1, an epoxy compound is characterized in that a powdery alkali metal hydroxide having an average particle size of 300 μm or less is allowed to act on an epoxy compound in an inert solvent, and then the product is extracted with a nonpolar solvent. A purification method is disclosed.
However, for example, in the case of a bisphenol F-type epoxy compound, 400 ml of toluene and 400 ml of heptane are used for extraction with respect to 100 g of resin, and the obtained purified epoxy compound has an industrial production of 61 g. When considered, it is quite inefficient. A method of dissolving an alkali metal hydroxide in alcohol has also been proposed, but it has not been sufficiently chlorinated. Thus, with the conventional purification method, it is difficult to obtain a high-purity epoxy resin having an organic chlorine content of 200 ppm or less, and even if obtained, a large amount of organic solvent is required to suppress side reactions. In addition, an extraction operation with a poor solvent is required, which is disadvantageous when industrially produced.
本発明は、有機塩素量が200ppm以下であるエポキシ樹脂を工業的に高収率で得られる精製方法を提供することを目的とするものである。 An object of this invention is to provide the refinement | purification method which can obtain the epoxy resin whose organic chlorine amount is 200 ppm or less industrially with a high yield.
本発明者らはこうした実状に鑑み、有機塩素量が低く工業的に製造するのに有利なエポキシ樹脂の精製方法を求めて鋭意検討した結果、有機塩素量が2000ppm以下のエポキシ樹脂を有機溶剤類に溶解して、特定の濃度のアルカリ金属水酸化物を、特定の量使用して、有機塩素の分解反応を行い、有機塩素含有量が200ppm以下の高純度エポキシ樹脂を得るエポキシ樹脂の精製方法が上述の特性及び効果を満たすものであることを見いだし、本発明を完成させるに至った。
すなわち、本発明は、有機塩素含有量が2000ppm以下のエポキシ樹脂を有機溶剤類に溶解して、水溶液濃度が濃度が55〜75重量%のアルカリ金属水酸化物を、樹脂1kgに対して0.05〜0.5モル添加して、50〜100℃の温度で有機塩素の分解反応を行い、有機塩素量が200ppm以下の高純度エポキシ樹脂を得ることを特徴とするエポキシ樹脂の精製方法に関するものである。
In light of these circumstances, the present inventors have intensively studied for a method for purifying an epoxy resin having a low amount of organic chlorine and advantageous for industrial production. As a result, an epoxy resin having an organic chlorine amount of 2000 ppm or less has been reduced to organic solvents. A method for purifying an epoxy resin, which is dissolved in an alkali metal hydroxide having a specific concentration to perform a decomposition reaction of organic chlorine to obtain a high-purity epoxy resin having an organic chlorine content of 200 ppm or less Was found to satisfy the above-mentioned characteristics and effects, and the present invention was completed.
That is, according to the present invention, an epoxy resin having an organic chlorine content of 2000 ppm or less is dissolved in an organic solvent, and an alkali metal hydroxide having an aqueous solution concentration of 55 to 75% by weight is added to 0.1 kg of resin. The present invention relates to a method for purifying an epoxy resin, characterized by adding 05 to 0.5 mol and decomposing organic chlorine at a temperature of 50 to 100 ° C. to obtain a high-purity epoxy resin having an organic chlorine content of 200 ppm or less. It is.
本発明のエポキシ樹脂の精製方法により、有機塩素量の著しく低減された高純度エポキシ樹脂を、高い収率で得ることが可能となった。 The method for purifying an epoxy resin of the present invention makes it possible to obtain a high-purity epoxy resin with a significantly reduced amount of organic chlorine in a high yield.
本発明における精製反応の対象となるエポキシ樹脂としては有機塩素含有量が2000ppm以下、好ましくは有機塩素含有量が1000ppm以下のエポキシ樹脂である。有機塩素量が2000ppm以上だと、樹脂粘度の増大及びエポキシ基の損失を抑えて、有機塩素量を十分に低減することが出来ない為である。これらのエポキシ樹脂の具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールE、ビスフェノールC、ビスフェノールZ、ビスフェノールS、ビスフェノールフルオレン、ビフェノール、ハイドロキノン、レゾルシン、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、ジヒドロキシナフタレン、フェノールアラルキル樹脂、テルペンフェノール等と、エピクロルヒドリンから製造されるエポキシ樹脂及びそれらの分子蒸留品である精製反応に用いる有機溶剤としては、通常エポキシ樹脂の精製反応に使用される、トルエン、メチルイソブチルケトンを使用する。また必要に応じてエチレングリコールジメチルエーテル及び、ジエチレングリコールジメチルエーテル、ジメチルスルホキシド、ジオキサン等の非プロトン系極性溶媒を併用することが出来る。非プロトン系極性溶媒は使用しなくても有機塩素量200ppm以下のエポキシ樹脂を得ることは可能であるが、3官能以上の成分が含まれるエポキシ樹脂の場合には、有機溶剤類の一部を非プロトン系極性溶媒に置き換えることは、樹脂粘度の増大を防ぐために有効である。 The epoxy resin to be subjected to the purification reaction in the present invention is an epoxy resin having an organic chlorine content of 2000 ppm or less, and preferably an organic chlorine content of 1000 ppm or less. This is because when the amount of organic chlorine is 2000 ppm or more, the increase in resin viscosity and the loss of epoxy groups are suppressed, and the amount of organic chlorine cannot be sufficiently reduced. Specific examples of these epoxy resins include bisphenol A, bisphenol F, bisphenol E, bisphenol C, bisphenol Z, bisphenol S, bisphenol fluorene, biphenol, hydroquinone, resorcin, phenol novolac, cresol novolac, bisphenol A novolak, dihydroxynaphthalene, As an organic solvent used in a purification reaction that is a phenol aralkyl resin, terpene phenol, or the like, an epoxy resin produced from epichlorohydrin, or a molecular distillation product thereof, toluene or methyl isobutyl ketone, which is usually used in a purification reaction of an epoxy resin, is used. use. Further, if necessary, an aprotic polar solvent such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether, dimethyl sulfoxide, dioxane or the like can be used in combination. Although it is possible to obtain an epoxy resin having an organic chlorine content of 200 ppm or less without using an aprotic polar solvent, in the case of an epoxy resin containing a trifunctional or higher component, a part of the organic solvent is used. Replacing with an aprotic polar solvent is effective for preventing an increase in resin viscosity.
精製反応を行うときの有機溶剤は、不揮発分が40〜80重量%の範囲で使用される。不揮発分が80重量%であると樹脂粘度の増大及びエポキシ基の損失につながる。また40重量%以下であると有機塩素量の低減効果が小さい。
本発明に使用されるアルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられるが、特に水酸化カリウムが好ましい。アルカリ金属水酸化物の使用量は樹脂1kgに対して0.05モル〜0.5モルであり、好ましくは0.1モル〜0.3モルである。アルカリ金属水酸化物の使用量が多すぎると、樹脂粘度の増大及びエポキシ基の損失につながる。また、少なすぎると有機塩素量の低減効果が小さい。
アルカリ金属水酸化物は、水溶液濃度55%〜75%の範囲で使用される。水溶液濃度が75%より高いと触媒作用が強すぎて、樹脂粘度の増大及エポキシ基の損失につながる。また、濃度が55%より低いと有機塩素量の低減効果が小さい。アルカリ金属水酸化物は規定の濃度になっていれば、水溶液の状態でも、固形のアルカリ金属水酸化物と必要量の水を別に添加しても良い。
The organic solvent used in the purification reaction has a nonvolatile content in the range of 40 to 80% by weight. If the non-volatile content is 80% by weight, the resin viscosity increases and the epoxy group is lost. Further, if it is 40% by weight or less, the effect of reducing the amount of organic chlorine is small.
Examples of the alkali metal hydroxide used in the present invention include sodium hydroxide, potassium hydroxide, calcium hydroxide and the like, and potassium hydroxide is particularly preferable. The usage-amount of an alkali metal hydroxide is 0.05 mol-0.5 mol with respect to 1 kg of resin, Preferably it is 0.1 mol-0.3 mol. If the amount of the alkali metal hydroxide used is too large, it leads to an increase in resin viscosity and loss of epoxy groups. If the amount is too small, the effect of reducing the amount of organic chlorine is small.
The alkali metal hydroxide is used in an aqueous solution concentration range of 55% to 75%. If the aqueous solution concentration is higher than 75%, the catalytic action is too strong, leading to an increase in resin viscosity and loss of epoxy groups. If the concentration is lower than 55%, the effect of reducing the amount of organic chlorine is small. As long as the alkali metal hydroxide has a prescribed concentration, a solid alkali metal hydroxide and a necessary amount of water may be added separately in an aqueous solution state.
本発明では、アルカリ金属水酸化物の濃度が反応速度に影響するため系内水分は0.2%以内であることが好ましい。
回収溶剤等を使用する場合で水分濃度が高い場合は反応前に脱水等の処置を行うか、水分濃度を測定しアルカリ金属水酸化物の水溶液濃度を決定することが好ましい。
精製反応の反応温度は、50〜100℃である。
100℃より高温であると樹脂粘度の増大及びエポキシ基の損失につながる。50℃より温度が低いと有機塩素量の低減効果が小さい。精製反応時間は2〜10時間程度で行うが、好ましくは3〜6時間である。反応終了後に、メチルイソブチルケトンやトルエン等の溶剤にて希釈して、副生成した塩を水洗処理により除去し、樹脂溶液のpHが7〜4になるようにリン酸、リン酸ナトリウム、シュウ酸、酢酸、炭酸等を添加して中和を行い更に水洗を繰り返した後、濾過して溶剤類を減圧蒸留により回収し、目的とした有機塩素量200ppm以下、加水分解性塩素量が20ppm以下のエポキシ樹脂が得られる。
本願発明の精製反応により得られる、高純度エポキシ樹脂は、有機性塩素量が200ppm以下、加水分解性塩素量が20ppm以下であり、電気及び電子産業用の封止材等に好適に使用される。
In the present invention, since the concentration of the alkali metal hydroxide affects the reaction rate, the moisture in the system is preferably within 0.2%.
When the recovered solvent is used and the water concentration is high, it is preferable to carry out a treatment such as dehydration before the reaction or measure the water concentration to determine the aqueous solution concentration of the alkali metal hydroxide.
The reaction temperature of the purification reaction is 50 to 100 ° C.
A temperature higher than 100 ° C. leads to an increase in resin viscosity and loss of epoxy groups. When the temperature is lower than 50 ° C., the effect of reducing the amount of organic chlorine is small. The purification reaction time is about 2 to 10 hours, preferably 3 to 6 hours. After completion of the reaction, it is diluted with a solvent such as methyl isobutyl ketone and toluene, and the by-produced salt is removed by washing with water, and phosphoric acid, sodium phosphate and oxalic acid so that the pH of the resin solution becomes 7-4. Then, neutralization was performed by adding acetic acid, carbonic acid, etc., and further washing with water was repeated, and the solvent was recovered by distillation under reduced pressure. The target amount of organic chlorine was 200 ppm or less, and the amount of hydrolyzable chlorine was 20 ppm or less. An epoxy resin is obtained.
The high-purity epoxy resin obtained by the purification reaction of the present invention has an organic chlorine content of 200 ppm or less and a hydrolyzable chlorine content of 20 ppm or less, and is suitably used as a sealing material for the electrical and electronic industries. .
以下、本発明を実施例をもって詳細に説明するが、これらに限定されるものではない。尚、以下の説明においてのエポキシ当量、有機塩素量及び、加水分解性塩量はそれぞれ以下の方法で測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not limited to these. In the following description, the epoxy equivalent, the amount of organic chlorine, and the amount of hydrolyzable salt were measured by the following methods.
エポキシ当量はJIS K7236による方法で測定した。
有機塩素量は、エポキシ樹脂をブチルカルビトールに溶解し、1N−水酸化カリウムのプロピレングリコール溶液を添加して直火で10分間還流反応させ、遊離した塩素量を酢酸酸性下で0.01N−硝酸銀溶液で電位差滴定装置により測定し、これを試料重量で除した値である。
加水分解性塩素量は、エポキシ樹脂を所定量のジオキサンに溶解し、0.1N−水酸化カリウムのエタノール溶液を添加して70℃のウオーターバス中で30分間反応させ、遊離した塩素量を酢酸酸性下で0.01N−硝酸銀溶液で電位差滴定装置により測定し、これを試料重量で除した値である。
The epoxy equivalent was measured by the method according to JIS K7236.
The amount of organic chlorine is obtained by dissolving an epoxy resin in butyl carbitol, adding a 1N-potassium hydroxide propylene glycol solution and performing a reflux reaction for 10 minutes in an open flame. It is a value obtained by measuring with a potentiometric titrator with a silver nitrate solution and dividing this by the sample weight.
The hydrolyzable chlorine amount is obtained by dissolving an epoxy resin in a predetermined amount of dioxane, adding an ethanol solution of 0.1 N potassium hydroxide and reacting in a water bath at 70 ° C. for 30 minutes. It is the value which measured by the potentiometric titration apparatus with the 0.01N-silver nitrate solution under acidity, and remove | divided this by the sample weight.
実施例1
撹拌噐、温度計、窒素ガス導入装置、滴下装置、冷却管及び油水分離装置を備えた内容量1リッターのガラスフラスコに東都化成社製YD−8125(BPA型液状エポキシ樹脂;有機塩素量900ppm、エポキシ当量173g/eq)300重量部、トルエン100重量部、を仕込み、窒素ガスを流しながら40℃まで加熱して溶解した。同温度で固形水酸化カリウム2.52重量部と1.68重量部の水を加えて。80℃迄昇温後、3時間同温度で反応を行った。反応終了後、トルエン450重量部、温水75重量部を加えて水洗した。次に、リン酸水溶液で中和し、水洗水が中性になるまで樹脂溶液を数回水洗した。さらに5mmHg以下の減圧下、160℃の温度で5分間保持してトルエンを留去し290重量部のエポキシ樹脂を得た。得られた樹脂のエポキシ当量は178g/eq、有機塩素量120ppm、加水分解性塩素量6ppmであった。
Example 1
YD-8125 manufactured by Tohto Kasei Co., Ltd. (BPA type liquid epoxy resin; organic chlorine content 900 ppm, in a glass flask having an internal volume of 1 liter equipped with a stirrer, a thermometer, a nitrogen gas introducing device, a dropping device, a cooling pipe and an oil / water separator. Epoxy equivalent 173 g / eq) 300 parts by weight and toluene 100 parts by weight were charged, and dissolved by heating to 40 ° C. while flowing nitrogen gas. At the same temperature, 2.52 parts by weight of solid potassium hydroxide and 1.68 parts by weight of water were added. After raising the temperature to 80 ° C., the reaction was carried out at the same temperature for 3 hours. After completion of the reaction, 450 parts by weight of toluene and 75 parts by weight of warm water were added and washed with water. Next, it neutralized with the phosphoric acid aqueous solution, and the resin solution was washed with water several times until the washing water became neutral. Further, under a reduced pressure of 5 mmHg or less, the temperature was maintained at 160 ° C. for 5 minutes, and toluene was distilled off to obtain 290 parts by weight of an epoxy resin. The epoxy equivalent of the obtained resin was 178 g / eq, the amount of organic chlorine was 120 ppm, and the amount of hydrolyzable chlorine was 6 ppm.
実施例2
撹拌噐、温度計、窒素ガス導入装置、滴下装置、冷却管及び油水分離装置を備えた内容量1リッターのガラスフラスコに東都化成社製YDF−8170(BPF型液状エポキシ樹脂;有機塩素量800ppm、エポキシ当量159g/eq)300重量部、トルエン160重量部、ジメチルスルホキシド40重量部を仕込み、窒素ガスを流しながら40℃まで加熱して溶解した。同温度で固形水酸化カリウム1.68重量部と1.12重量部の水を加えて80℃迄昇温後、同温度で3時間反応を行った。反応終了後、トルエン350重量部、温水75重量部を加えて水洗した。次に、リン酸水溶液で中和し、水洗水が中性になるまで樹脂溶液を数回水洗した。さらに5mmHg以下の減圧下、160℃の温度で5分間保持してトルエン、ジメチルスルホキシドを留去し285gのエポキシ樹脂を得た。得られた樹脂のエポキシ当量は163g/eq、有機塩素量160ppm、加水分解性塩素量8ppmであった。
Example 2
YDF-8170 manufactured by Tohto Kasei Co., Ltd. (BPF type liquid epoxy resin; organic chlorine content 800 ppm, in a glass flask having an internal volume of 1 liter equipped with a stirring vessel, a thermometer, a nitrogen gas introducing device, a dropping device, a cooling pipe and an oil / water separator. 300 parts by weight of epoxy equivalent (159 g / eq), 160 parts by weight of toluene, and 40 parts by weight of dimethyl sulfoxide were charged and dissolved by heating to 40 ° C. while flowing nitrogen gas. At the same temperature, 1.68 parts by weight of solid potassium hydroxide and 1.12 parts by weight of water were added and the temperature was raised to 80 ° C., followed by reaction at the same temperature for 3 hours. After completion of the reaction, 350 parts by weight of toluene and 75 parts by weight of warm water were added and washed with water. Next, it neutralized with the phosphoric acid aqueous solution, and the resin solution was washed with water several times until the washing water became neutral. Furthermore, it hold | maintained for 5 minutes at the temperature of 160 degreeC under pressure reduction of 5 mmHg or less, and toluene and the dimethylsulfoxide were distilled off and the 285-g epoxy resin was obtained. The epoxy equivalent of the obtained resin was 163 g / eq, the amount of organic chlorine was 160 ppm, and the amount of hydrolyzable chlorine was 8 ppm.
実施例3
撹拌噐、温度計、窒素ガス導入装置、滴下装置、冷却管及び油水分離装置を備えた内容量1リッターのガラスフラスコに東都化成社製YDCN−500−2(クレゾールノボラック型液固形エポキシ樹脂;有機塩素量800ppm、エポキシ当量201g/eq)250重量部、トルエン300重量部、ジメチルスルホキシド50重量部を仕込み、窒素ガスを流しながら40℃まで加熱して溶解した。同温度で固形水酸化カリウム2.81重量部と1.87重量部の水を加えて。80℃迄昇温後、3時間同温度で反応を行った。反応終了後、トルエン220重量部、温水65重量部を加えて水洗した。次に、リン酸水溶液で中和し、水洗水が中性になるまで樹脂溶液を数回水洗した。さらに5mmHg以下の減圧下、160℃の温度で5分間保持してトルエン、ジメチルスルホキシドを留去し220重量部のエポキシ樹脂を得た。得られた樹脂のエポキシ当量は206g/eq、有機塩素量180ppm、加水分解性塩素量10ppmであった。
Example 3
YDCN-500-2 (Cresol novolac type liquid solid epoxy resin manufactured by Toto Kasei Co., Ltd .; organic) to a glass flask having an internal volume of 1 liter equipped with a stirring vessel, a thermometer, a nitrogen gas introducing device, a dropping device, a cooling pipe and an oil / water separator. Chlorine amount 800 ppm, epoxy equivalent 201 g / eq) 250 parts by weight, toluene 300 parts by weight, dimethyl sulfoxide 50 parts by weight were charged and dissolved by heating to 40 ° C. while flowing nitrogen gas. At the same temperature, add 2.81 parts by weight of solid potassium hydroxide and 1.87 parts by weight of water. After raising the temperature to 80 ° C., the reaction was carried out at the same temperature for 3 hours. After completion of the reaction, 220 parts by weight of toluene and 65 parts by weight of warm water were added and washed with water. Next, it neutralized with the phosphoric acid aqueous solution, and the resin solution was washed with water several times until the washing water became neutral. Furthermore, it hold | maintained for 5 minutes at the temperature of 160 degreeC under pressure reduction of 5 mmHg or less, Toluene and dimethylsulfoxide were distilled off and 220 weight part epoxy resin was obtained. The epoxy equivalent of the obtained resin was 206 g / eq, the amount of organic chlorine was 180 ppm, and the amount of hydrolyzable chlorine was 10 ppm.
本願発明の精製反応により得られる、高純度エポキシ樹脂は、有機性塩素量が200ppm以下、加水分解性塩素量が20ppm以下であり、電気及び電子産業用の封止材等に好適に使用される。 The high-purity epoxy resin obtained by the purification reaction of the present invention has an organic chlorine content of 200 ppm or less and a hydrolyzable chlorine content of 20 ppm or less, and is suitably used as a sealing material for the electrical and electronic industries. .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006109529A JP2007277498A (en) | 2006-04-12 | 2006-04-12 | Process for purification of epoxy resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006109529A JP2007277498A (en) | 2006-04-12 | 2006-04-12 | Process for purification of epoxy resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007277498A true JP2007277498A (en) | 2007-10-25 |
Family
ID=38679277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006109529A Pending JP2007277498A (en) | 2006-04-12 | 2006-04-12 | Process for purification of epoxy resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007277498A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113185671A (en) * | 2021-05-27 | 2021-07-30 | 复旦大学 | Impurity removal and purification method for epoxy resin |
CN114989396A (en) * | 2022-07-20 | 2022-09-02 | 杜彪 | Method for removing organic chlorine impurities in epoxy resin through MOFs (metal-organic frameworks) material |
CN115006915A (en) * | 2022-06-29 | 2022-09-06 | 江苏扬农锦湖化工有限公司 | Treatment method of aged resin wastewater |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6490214A (en) * | 1987-10-01 | 1989-04-06 | Mitsui Petrochemical Ind | Purification of epoxy resin |
JPH01108219A (en) * | 1987-10-21 | 1989-04-25 | Mitsui Petrochem Ind Ltd | Purification of epoxy resin |
JPH0247129A (en) * | 1988-08-10 | 1990-02-16 | Asahi Chiba Kk | Purification of epoxy resin |
-
2006
- 2006-04-12 JP JP2006109529A patent/JP2007277498A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6490214A (en) * | 1987-10-01 | 1989-04-06 | Mitsui Petrochemical Ind | Purification of epoxy resin |
JPH01108219A (en) * | 1987-10-21 | 1989-04-25 | Mitsui Petrochem Ind Ltd | Purification of epoxy resin |
JPH0247129A (en) * | 1988-08-10 | 1990-02-16 | Asahi Chiba Kk | Purification of epoxy resin |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113185671A (en) * | 2021-05-27 | 2021-07-30 | 复旦大学 | Impurity removal and purification method for epoxy resin |
CN113185671B (en) * | 2021-05-27 | 2022-09-16 | 复旦大学 | Impurity removal and purification method for epoxy resin |
CN115006915A (en) * | 2022-06-29 | 2022-09-06 | 江苏扬农锦湖化工有限公司 | Treatment method of aged resin wastewater |
CN115006915B (en) * | 2022-06-29 | 2023-10-20 | 江苏扬农锦湖化工有限公司 | Treatment method of aged resin wastewater |
CN114989396A (en) * | 2022-07-20 | 2022-09-02 | 杜彪 | Method for removing organic chlorine impurities in epoxy resin through MOFs (metal-organic frameworks) material |
CN114989396B (en) * | 2022-07-20 | 2023-09-19 | 智仑超纯环氧树脂(西安)有限公司 | Method for removing organochlorine impurities in epoxy resin through MOFs material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100693849B1 (en) | Process for the elimination of materials containing hydrolyzable halides and other high molecular weight materials from epihalohydrin derived epoxy resins | |
JP5130728B2 (en) | Epoxy resin purification method | |
US20170218273A1 (en) | Flame-retardant epoxy resin, method for preparing same, and flame-retardant epoxy resin composition containing same | |
JP6048559B2 (en) | Triallyl isocyanurate, triallyl cyanurate and method for producing triallyl isocyanurate | |
JP2007277498A (en) | Process for purification of epoxy resin | |
JP3458465B2 (en) | Manufacturing method of high purity epoxy resin | |
JP6095620B2 (en) | Epoxy resin having binaphthalene skeleton | |
JPH0517463A (en) | Production of highly pure epoxy resin | |
JP4846078B2 (en) | Method for producing epoxy resin with low hydrolyzable chlorine content | |
JP7061538B2 (en) | Method for purifying diglycidylamine-based epoxy compounds | |
JP5743647B2 (en) | Method for producing epoxy compound | |
JPS63264622A (en) | Polyfunctional epoxy resin | |
JPH09268218A (en) | Production of epoxy resin, epoxy resin composition and irs cured material | |
JP2016023265A (en) | Method for producing dicyclopentadienes modified phenolic resin, and dicyclopentadienes modified phenolic resin, epoxy resin and cured product | |
JP4383180B2 (en) | Method for producing crystalline epoxy compound | |
JP4874494B2 (en) | Production method of epoxy resin | |
JPS6264817A (en) | Purification of epoxy resin | |
JPH05331155A (en) | Production of glycidyl ether | |
JP5083988B2 (en) | Epoxy resin composition | |
JPS62187718A (en) | Method for removal of chlorine from epoxy resin | |
JP2007056089A (en) | Method for producing purified epoxy resin | |
JP2008266604A (en) | Method for producing refined epoxy compound | |
JPH10218969A (en) | Production of epoxy resin | |
JPH11199656A (en) | Novolak resin, epoxy resin, epoxy resin composition and cured product thereof | |
JPH0759616B2 (en) | Method for producing epoxy resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20090310 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A711 | Notification of change in applicant |
Effective date: 20100421 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110517 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110520 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20111028 Free format text: JAPANESE INTERMEDIATE CODE: A02 |