Nothing Special   »   [go: up one dir, main page]

JP2007272532A - Fire detection apparatus - Google Patents

Fire detection apparatus Download PDF

Info

Publication number
JP2007272532A
JP2007272532A JP2006096911A JP2006096911A JP2007272532A JP 2007272532 A JP2007272532 A JP 2007272532A JP 2006096911 A JP2006096911 A JP 2006096911A JP 2006096911 A JP2006096911 A JP 2006096911A JP 2007272532 A JP2007272532 A JP 2007272532A
Authority
JP
Japan
Prior art keywords
image
fire
difference
candidate area
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006096911A
Other languages
Japanese (ja)
Other versions
JP4689518B2 (en
Inventor
Takatoshi Yamagishi
貴俊 山岸
Kazuhisa Nakano
主久 中野
Eisei Morita
英聖 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2006096911A priority Critical patent/JP4689518B2/en
Publication of JP2007272532A publication Critical patent/JP2007272532A/en
Application granted granted Critical
Publication of JP4689518B2 publication Critical patent/JP4689518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fire detection apparatus capable of extracting a right fire candidate area even if a background is bright, while having a small number of fire candidate areas extracted, so that the amount of computations required to determine whether or not a subject is a fire is small. <P>SOLUTION: The fire detection apparatus includes an image pickup means and an image processing means for detecting a fire from an image picked up. The image processing means has a fire candidate area extracting means for extracting a fire candidate area from the image picked up, and a fire detecting means for detecting whether the fire candidate area extracted is the true fire area. The fire candidate area extracting means creates a difference image between the newest image and the previous image; compares the newest image to the previous image at each pixel to create a high-brightness image whose brightness is the higher of the brightness of the images; multiplies the brightness of the difference image by that of the high-brightness image to create a difference brightness product image; and extracts pixels where the difference brightness product of the difference brightness product image is equal to or higher than a threshold as a fire candidate area. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、火災検出に画像処理を用いた火災検出装置に関し、特に監視区域に監視対
象である炎以外の光源が混在する場合に用いて好適な火災検出装置に関するものである。
The present invention relates to a fire detection apparatus using image processing for fire detection, and more particularly to a fire detection apparatus suitable for use when a light source other than a flame to be monitored is mixed in a monitoring area.

従来の火災検出装置は、撮像手段と、撮像手段によって撮像された画像から所定値以上の輝度を有する領域を火災候補領域として抽出する火災候補領域抽出手段と、火災候補領域の画素情報やその火災候補領域に関する情報に基づき、対象物が炎であるか否かを判断する火災判別手段とを備え、火災判別手段は、情報として、対象物画像領域の円形度、対象物画像領域の大きさの時間的分散率、対象物画像領域の大きさの時間変化についての自己相関を割り出し、割り出された対象物画像領域の円形度、対象物画像領域の大きさの時間的分散率、対象物画像領域の大きさの時間変化についての自己相関に基づいて対象物が炎であるか否かを判断する(例えば、特許文献1参照)。   The conventional fire detection device includes an imaging means, a fire candidate area extracting means for extracting an area having a luminance of a predetermined value or more from the image captured by the imaging means as a fire candidate area, pixel information of the fire candidate area and the fire A fire discriminating means for judging whether or not the object is a flame based on information on the candidate area, and the fire discriminating means includes, as information, the circularity of the object image area and the size of the object image area. The auto-correlation for the temporal dispersion rate and the time change of the size of the object image area is calculated, the circularity of the determined object image area, the temporal dispersion rate of the size of the object image area, the object image It is determined whether or not the object is a flame based on the autocorrelation with respect to the temporal change in the size of the region (see, for example, Patent Document 1).

特開平8−305980号公報JP-A-8-305980

しかし、トンネル内での火災を検出するとき、火災候補領域を輝度の高低に基づいて抽出すると、所定値以上の輝度を有する領域、例えば、炎以外に回転灯、車両のテールランプ、ナトリウム灯などの領域が全て抽出されてしまうので、その後火災判別手段で火災候補領域の特徴量を求めるための演算量が火災候補領域の数が多いために膨大になり、火災判別処理に長い時間がかかってしまうという問題がある。
また、輝度値だけによって火災候補領域を抽出すると、背景が明るい場合には、正しい領域を抽出できず、背景を含んだ領域を抽出してしまうという問題がある。
However, when detecting a fire in a tunnel, if a candidate fire area is extracted based on the level of brightness, an area having a brightness higher than a predetermined value, such as a rotating light, a vehicle tail lamp, a sodium light, etc. Since all the areas are extracted, the amount of calculation for obtaining the feature quantity of the fire candidate area by the fire discrimination means becomes enormous due to the large number of fire candidate areas, and it takes a long time for the fire discrimination process. There is a problem.
In addition, when a fire candidate area is extracted based only on luminance values, there is a problem that if the background is bright, a correct area cannot be extracted and an area including the background is extracted.

この発明の目的は、背景が明るくても正しい火災候補領域を抽出でき、抽出される火災候補領域の数が少なく、対象物が火災か否かの判断に要する演算量が少ない火災検出装置を提供することである。   An object of the present invention is to provide a fire detection device that can extract correct fire candidate areas even when the background is bright, has a small number of extracted fire candidate areas, and requires a small amount of calculation for determining whether the object is a fire. It is to be.

この発明に係わる火災検出装置は、監視区域を撮影する撮像手段と、撮影した画像を処理することにより上記監視区域内における火災の検出を行う画像処理手段とを備え、上記画像処理手段が、撮像した画像から火災候補領域を抽出する火災候補領域抽出手段と、抽出された火災候補領域が本当の火災領域であるかを検出する火災検出手段とを有する火災検出装置において、上記火災候補領域抽出手段は、時系列的に連続する最新画像と直前画像との差分画像を作成するフレーム差分処理部と、最新画像と直前画像を画素毎に比較して輝度の高い方の輝度を輝度とする高輝度画像を作成する高輝度画像作成部と、上記差分画像と上記高輝度画像の輝度とを乗算して差分輝度積画像を作成する差分輝度積画像作成部と、上記差分輝度積画像の差分輝度積が閾値以上の画素を火災候補領域として抽出する火災候補領域抽出部と、を有する。   A fire detection apparatus according to the present invention includes an imaging unit that captures an image of a monitoring area, and an image processing unit that detects a fire in the monitoring area by processing the captured image. A fire detection apparatus comprising: a fire candidate area extracting means for extracting a fire candidate area from a captured image; and a fire detection means for detecting whether the extracted fire candidate area is a real fire area. Is a frame difference processing unit that creates a difference image between the latest image and the immediately preceding image that are time-sequentially continuous, and a high luminance that compares the latest image and the immediately preceding image for each pixel and uses the higher luminance as the luminance. A difference between the high-intensity image generation unit that generates an image, a high-intensity image image generation unit that generates a difference-intensity product image by multiplying the difference image and the luminance of the high-intensity image, and the difference between the difference-intensity product images It has a fire candidate region extraction unit that brightness product is extracted more pixel threshold as fire candidate region.

この発明に係わる火災検出装置の効果は、差分画像に高輝度画像を乗算して差分輝度積を求め、その差分輝度積が閾値以上のとき、その画素を火災候補領域として抽出する。このため、明るくて動きのある部分だけが火災候補領域として抽出することができ、明るいが動きのないナトリウム灯や動きはあるが明るくない人物などは火災候補領域として抽出されない。従って、輝度値だけによる抽出に比べ、火災候補領域の数を減少することができ、火災候補領域の特徴量の演算量を減少することができる。また、差分画像を考慮して火災候補領域を抽出するので、背景が明るくても炎のように明るくて動きのある領域だけを正しく火災候補領域として抽出できる。   The effect of the fire detection apparatus according to the present invention is to multiply a difference image by a high luminance image to obtain a difference luminance product, and when the difference luminance product is equal to or greater than a threshold, the pixel is extracted as a fire candidate region. For this reason, only a bright and moving part can be extracted as a fire candidate area, and a bright but non-moving sodium lamp or a person who moves but is not bright is not extracted as a fire candidate area. Therefore, the number of fire candidate areas can be reduced and the amount of calculation of the feature quantity of the fire candidate areas can be reduced as compared with the extraction based only on the luminance value. Further, since the fire candidate area is extracted in consideration of the difference image, only the bright and moving area like a flame can be correctly extracted as the fire candidate area even if the background is bright.

図1は、この発明に係わる火災検出装置のブロック図である。図2は、この発明に係わるトンネル内を監視するCCDカメラが撮影する画像である。
この発明の実施の形態1に係わる火災検出装置1は、図1に示すように、例えばCCDカメラ2を用いた撮像手段としての撮像部3、撮像部3で撮影された画像を処理する画像処理手段としての画像処理装置4、画像処理装置4からの情報を表示する表示部5を備える。なお、撮像手段に用いるCCDカメラ2以外に、CMOSカメラ、赤外線カメラなど監視区域から入射される光信号を電気信号に変換し、二次元に画素が配置されているものであれば何れでもよい。
FIG. 1 is a block diagram of a fire detection apparatus according to the present invention. FIG. 2 is an image taken by a CCD camera that monitors the inside of the tunnel according to the present invention.
As shown in FIG. 1, a fire detection apparatus 1 according to Embodiment 1 of the present invention includes, for example, an image pickup unit 3 as an image pickup unit using a CCD camera 2, and image processing that processes an image taken by the image pickup unit 3. An image processing device 4 as a means and a display unit 5 for displaying information from the image processing device 4 are provided. In addition to the CCD camera 2 used for the image pickup means, any one such as a CMOS camera, an infrared camera or the like that converts an optical signal incident from a monitoring area into an electrical signal and two-dimensionally arranges pixels may be used.

CCDカメラ2は、例えば、1秒間に30回監視区域を撮影し、時系列的に連続する30枚の画像を出力する。
CCDカメラ2は、例えば監視区域としてのトンネル内全体を見渡せる位置に設置される。図2は、CCDカメラ2により撮影された画像で、この画像から分かるようにCCDカメラ2は車両6が走り去って行く方向を映すように、例えばトンネル内の側壁上部に設置されている。CCDカメラ2により撮影された画像には、車両6の回転灯7、ナトリウム灯8、炎9および人物10が撮影されている。
For example, the CCD camera 2 images the monitoring area 30 times per second and outputs 30 images that are continuous in time series.
The CCD camera 2 is installed, for example, at a position overlooking the entire tunnel as a monitoring area. FIG. 2 shows an image taken by the CCD camera 2. As can be seen from this image, the CCD camera 2 is installed, for example, on the upper part of the side wall in the tunnel so as to reflect the direction in which the vehicle 6 runs away. In the image photographed by the CCD camera 2, the rotating lamp 7, the sodium lamp 8, the flame 9 and the person 10 of the vehicle 6 are photographed.

画像処理装置4は、CCDカメラ2で撮影され入力される電気信号を処理する画像入力部11、画像入力部11からの輝度画像を記憶する複数の画像メモリ12、設定値を保存する設定値保存メモリ13、画像メモリ12および設定値保存メモリ13からの情報に基づいて処理を行い火災判別を行う画像処理部16、画像処理部16からの画像情報を表示部5へ出力する画像出力部17を有する。
そして、画像処理装置4は、CPU、ROM、RAM、インターフェース回路を有するコンピュータから構成されている。
The image processing apparatus 4 includes an image input unit 11 that processes an electric signal photographed and input by the CCD camera 2, a plurality of image memories 12 that store luminance images from the image input unit 11, and a setting value storage that stores setting values. An image processing unit 16 that performs processing based on information from the memory 13, the image memory 12, and the set value storage memory 13 and performs fire discrimination, and an image output unit 17 that outputs image information from the image processing unit 16 to the display unit 5. Have.
The image processing apparatus 4 includes a computer having a CPU, a ROM, a RAM, and an interface circuit.

複数の画像メモリ12は、順番が付けられており、小さな数の順番が付けられた画像メモリ12から順に、時系列的に連続する最新の画像から所定の枚数だけ遡る画像が記憶されるように割り当てられている。そして、最新の画像を記憶するときには、最も大きな数の順番が付けられた画像メモリ12に記憶された画像を消去し、画像メモリ12に記憶されている画像をそれが記憶されている画像メモリ12より1つ大きな数の順番が付けられた画像メモリ12に移し変える。それから、最新の画像を最も小さな数の順番が付けられた画像メモリ12に記憶する。   The plurality of image memories 12 are ordered so that a predetermined number of images are stored from the latest time-series consecutive images in order from the image memory 12 with a small number of orders. Assigned. When the latest image is stored, the image stored in the image memory 12 with the largest number is deleted, and the image stored in the image memory 12 is stored in the image memory 12 in which it is stored. The image memory 12 is transferred to the image memory 12 having a larger order. Then, the latest image is stored in the image memory 12 with the smallest number.

画像入力部11は、CCDカメラ2から送られてくる電気信号をデジタル信号に変換するアナログデジタル変換部(A/D変換部)21、画素毎にデジタル信号の大きさを画素の輝度とし、その画素の輝度を画素の値とする輝度画像を作成して画像メモリ12に記憶する輝度画像作成部22を有する。
アナログデジタル変換部21は、CCDカメラ2で撮影されたアナログ電気信号を画素毎に多階調、例えば255階調のデジタル信号に変換する。なお、以下の説明では説明を簡単にするために11階調(0〜11階)としている。
輝度画像作成部22は、最新の画像が入力すると、その最新の画像の画素毎に画素のデジタル信号を平均化して画素の輝度を算出し、その画素の輝度を画素の値として輝度画像を作成する。また、輝度画像作成部22は、最も先に記憶された輝度画像を消去し、他の画像メモリ12に記憶されている輝度画像を1つ古い画像が記憶される画像メモリ12に移し変える。それから、最新の輝度画像を、最も新しい画像が記憶されるように割り当てられている画像メモリ12に記憶する。
The image input unit 11 is an analog / digital conversion unit (A / D conversion unit) 21 that converts an electrical signal sent from the CCD camera 2 into a digital signal. The magnitude of the digital signal for each pixel is the luminance of the pixel. A luminance image creating unit 22 that creates a luminance image having the pixel luminance as the pixel value and stores the luminance image in the image memory 12 is provided.
The analog-digital conversion unit 21 converts an analog electric signal photographed by the CCD camera 2 into a digital signal having multiple gradations, for example, 255 gradations for each pixel. In the following description, 11 gradations (0 to 11 floors) are used for ease of explanation.
When the latest image is input, the luminance image creation unit 22 calculates the luminance of the pixel by averaging the digital signal of the pixel for each pixel of the latest image, and creates the luminance image using the luminance of the pixel as the pixel value. To do. In addition, the luminance image creation unit 22 deletes the luminance image stored first, and transfers the luminance image stored in the other image memory 12 to the image memory 12 in which the one old image is stored. Then, the latest luminance image is stored in the image memory 12 assigned so that the newest image is stored.

画像処理部16は、画像メモリ12に記憶される輝度画像から火災候補領域を抽出する火災候補領域抽出手段25、火災候補領域抽出手段25によって抽出された火災候補領域が本当の火災領域であるか否かを判別して火災を検出する火災検出手段26を有する。
火災候補領域抽出手段25は、画素毎に最新の輝度画像の輝度と直前の輝度画像の輝度との差分を求めて差分画像を作成するフレーム差分処理部31を有する。
The image processing unit 16 extracts a fire candidate area extracting unit 25 that extracts a fire candidate area from the luminance image stored in the image memory 12, and whether the fire candidate area extracted by the fire candidate area extracting unit 25 is a true fire area. Fire detection means 26 for determining whether or not to detect a fire is provided.
The fire candidate area extraction unit 25 includes a frame difference processing unit 31 that obtains a difference between the brightness of the latest brightness image and the brightness of the immediately preceding brightness image for each pixel and creates a difference image.

また、火災候補領域抽出手段25は、画素毎に、最新の輝度画像の輝度と直前の輝度画像の輝度とを比較し、高い方の輝度を画素の値とする高輝度画像を作成する高輝度画像作成部32、画素毎に、差分画像と高輝度画像の輝度とを乗算して得られる差分輝度積を画素値とする差分輝度積画像を作成する差分輝度積画像作成部33を有する。
また、火災候補領域抽出手段25は、画素毎に、差分輝度積画像の差分輝度積が設定値保存メモリ13に記憶されている所定の閾値以上か否かを判断し、差分輝度積が閾値以上のときこの画素が火災候補画素であるとして抽出し、抽出した火災候補画素に他の火災候補画素が隣接しているときには連結し、火災候補領域とする火災候補領域抽出部34を有する。
Further, the fire candidate area extraction unit 25 compares the luminance of the latest luminance image with the luminance of the immediately preceding luminance image for each pixel, and creates a high luminance image having the higher luminance as the pixel value. The image creation unit 32 includes a difference brightness product image creation unit 33 that creates a difference brightness product image having a difference brightness product obtained by multiplying the difference image and the brightness of the high brightness image as a pixel value for each pixel.
In addition, the fire candidate area extraction unit 25 determines, for each pixel, whether or not the difference luminance product of the difference luminance product image is equal to or greater than a predetermined threshold stored in the setting value storage memory 13, and the difference luminance product is equal to or greater than the threshold. At this time, this pixel is extracted as a fire candidate pixel, and when another fire candidate pixel is adjacent to the extracted fire candidate pixel, it is connected to have a fire candidate region extraction unit 34 as a fire candidate region.

火災検出手段26は、火災候補領域特徴量演算手段36、周波数解析演算手段37、火災判別手段38を有する。
火災候補領域特徴量演算手段36は、火災候補領域の特徴量、例えば平均輝度または面積を所定時間に亘って演算する。
周波数解析演算手段37は、ウェーブレット変換演算手段と2次元FFT手段とから構成され、火災候補領域特徴量演算手段36で演算された特徴量の時系列データにウェーブレット変換を行って、時間−周波数スペクトルの画像を求める。そして、2次元FFT手段がその時間−周波数スペクトルの画像に2次元FFTを行って、時間軸の分布と周波数軸の分布を示す画像を求める。また、それぞれ作成した画像から、周波数重心位置の最小値と分散の比率と、X軸の重心平均位置とY軸の重心平均位置の比率とを演算する。
火災判別手段38は、それぞれ演算した周波数重心位置の最小値と分散の比率と、X軸の重心平均位置とY軸の重心平均位置の比率とを基に、所定値と比較して、抽出した火災候補領域が火災(炎)であるか否かの判別を行う。
The fire detection unit 26 includes a fire candidate area feature amount calculation unit 36, a frequency analysis calculation unit 37, and a fire determination unit 38.
The fire candidate area feature quantity calculating means 36 calculates a feature quantity of the fire candidate area, for example, average luminance or area over a predetermined time.
The frequency analysis calculation unit 37 includes a wavelet transform calculation unit and a two-dimensional FFT unit. The frequency analysis calculation unit 37 performs timelet data on the time-series data of the feature amount calculated by the fire candidate region feature amount calculation unit 36 to obtain a time-frequency spectrum. Ask for images. Then, the two-dimensional FFT means performs a two-dimensional FFT on the image of the time-frequency spectrum to obtain an image indicating the time axis distribution and the frequency axis distribution. In addition, the minimum value of the frequency centroid position and the ratio of variance, and the ratio of the centroid average position of the X axis and the centroid average position of the Y axis are calculated from the created images.
The fire discriminating means 38 is extracted by comparing with a predetermined value on the basis of the ratio of the calculated minimum value of the center of gravity of the frequency and the variance, and the ratio of the center of gravity average position of the X axis and the center of gravity center of the Y axis It is determined whether or not the fire candidate area is a fire (flame).

図3は、火災候補領域を抽出する手順を示すフローチャートである。図4は、火災候補領域を抽出する手順で使用または作成される、輝度が数値で表示される輝度画像である。図4において、説明のために、炎9や回転灯7、ナトリウム灯8、人物10の場合を分けて図示している。この図4は、図2の撮影画像においてそれぞれの領域が画像処理部16の処理によってどのように処理されるかを説明するためのものである。図4(a)は、CCDカメラ2で一番最新に撮影した最新画像の直前に撮影された輝度画像である。図4(b)は、最新の時点で撮影された輝度画像であり、代表的に縦横3マスづつ(画素)の画像を11階調で示している。   FIG. 3 is a flowchart showing a procedure for extracting a fire candidate area. FIG. 4 is a luminance image that is used or created in the procedure for extracting the fire candidate area and that displays the luminance as a numerical value. In FIG. 4, the case of the flame 9, the rotating lamp 7, the sodium lamp 8, and the person 10 is illustrated separately for explanation. FIG. 4 is a diagram for explaining how each region in the captured image of FIG. 2 is processed by the processing of the image processing unit 16. FIG. 4A shows a luminance image taken immediately before the latest image taken by the CCD camera 2 most recently. FIG. 4B is a luminance image taken at the latest time point, and typically shows an image of 3 pixels vertically and horizontally (pixels) with 11 gradations.

ここで、図4の直前画像(a)および最新画像(b)において、各領域(炎、ナトリウム灯、人物)のそれぞれの特徴について説明する。
(1)炎、回転灯の場合
この領域は、輝度値が高く、かつ動きのある領域である。しかし、炎の場合は、動く部分は上部に限られるので、直前画像(a)と最新画像(b)では、下部領域の輝度値の変化はほとんどない。
(2)ナトリウム灯(固定光源の場合)
この領域は、輝度値が高いが、直前画像(a)と最新画像(b)において、動き(変化)がほとんどない領域である。仮に、何らかの原因で、輝度値が変化しても(例えば、左上マス、右下マス)、炎の領域のような大きな変化はないので、差分画像(c)では差分値の値が小さく、差分輝度積をとっても所定値を越えることはない。
(3)人物の場合
この領域は、動きはあるが、もともと発光するわけではないので、輝度値が低い領域である。このため、差分画像(c)では差分値が生じるが、輝度値が低いため、差分輝度積(e)を求めても、所定値を越えることはない。
Here, characteristics of each region (flame, sodium lamp, person) in the immediately preceding image (a) and the latest image (b) in FIG. 4 will be described.
(1) In the case of a flame and a rotating lamp This area has a high luminance value and moves. However, in the case of a flame, since the moving part is limited to the upper part, there is almost no change in the luminance value of the lower region between the immediately preceding image (a) and the latest image (b).
(2) Sodium lamp (in case of fixed light source)
This area has a high luminance value, but has almost no movement (change) in the immediately preceding image (a) and the latest image (b). Even if the luminance value changes for some reason (for example, the upper left cell, the lower right cell), there is no large change like the flame region, so in the difference image (c), the value of the difference value is small. The luminance product does not exceed a predetermined value.
(3) In the case of a person This area has a low luminance value because it moves but does not emit light originally. For this reason, a difference value is generated in the difference image (c), but since the luminance value is low, even if the difference luminance product (e) is obtained, the predetermined value is not exceeded.

次に、火災候補領域の抽出手順について図3を参照して説明する。
この図4(a)、図4(b)に示す輝度画像がそれぞれ直前の画像、最新の画像として画像メモリ12に記憶されている。
ステップS101で、フレーム差分処理部31は、最新の画像(図4(b)に示す輝度画像)と直前の画像(図4(a)に示す輝度画像)を画像メモリ12から読み込み、対応する画素毎に差分を求め、その絶対値を算出し、図4(c)に示す差分絶対値が画素の値となる差分画像を作成する。
ステップS102で、高輝度画像作成部32は、対応する画素毎に、最新の画像(図4(b))と直前の画像(図4(a))との輝度を比較して高い輝度の方が画素の値となる高輝度画像(図4(d))を作成する。
ステップS103で、差分輝度積画像作成部33は、画素毎に、図4(c)に示す差分画像の差分絶対値と図4(d)に示す高輝度画像の輝度とを乗算し、図4(e)に示す差分輝度積を画素の値とする差分輝度積画像を作成する。
ステップS104で、火災候補領域抽出部34は、差分輝度積画像の差分輝度積が所定の閾値として設定されている16以上か否かを判断し、差分輝度積が16以上のときその画素を火災候補画素として火災候補画素画像を作成する。
なお、閾値と比較する前に、差分輝度積画像(図4(e))は、例えば、約4秒(計120枚)に亘って画像を累計した上で、輝度積の値を平均化するようにする。また、この際、差分輝度積画像を時間軸方向へLPF処理してもよい。このようにして、明るく動きのある部分を強調した画像が作成できる。
ステップS105で、火災候補画素に対して隣接する他の火災候補画素が有るか否かを判断し、隣接する火災候補画素が有るとき、画素同士を連結し、隣接する火災候補画素がないとき単独の画素を火災候補領域として抽出する。
Next, a procedure for extracting a fire candidate area will be described with reference to FIG.
The luminance images shown in FIGS. 4A and 4B are stored in the image memory 12 as the immediately preceding image and the latest image, respectively.
In step S101, the frame difference processing unit 31 reads the latest image (luminance image shown in FIG. 4B) and the immediately preceding image (luminance image shown in FIG. 4A) from the image memory 12, and corresponding pixels. The difference is calculated for each time, the absolute value thereof is calculated, and a difference image in which the difference absolute value shown in FIG.
In step S102, the high brightness image creation unit 32 compares the brightness of the latest image (FIG. 4B) and the immediately preceding image (FIG. 4A) for each corresponding pixel. A high-intensity image (FIG. 4 (d)) in which is the pixel value is created.
In step S103, the difference luminance product image creation unit 33 multiplies the difference absolute value of the difference image shown in FIG. 4C by the luminance of the high luminance image shown in FIG. A difference luminance product image having the difference luminance product shown in (e) as a pixel value is created.
In step S104, the fire candidate area extraction unit 34 determines whether or not the difference luminance product of the difference luminance product image is 16 or more set as a predetermined threshold value. If the difference luminance product is 16 or more, the pixel is fired. A fire candidate pixel image is created as a candidate pixel.
Prior to the comparison with the threshold value, the difference luminance product image (FIG. 4 (e)), for example, averages the luminance product values after accumulating the images over about 4 seconds (total of 120 images). Like that. At this time, the difference luminance product image may be subjected to LPF processing in the time axis direction. In this way, an image in which a bright and moving part is emphasized can be created.
In step S105, it is determined whether or not there are other fire candidate pixels adjacent to the fire candidate pixel. When there are adjacent fire candidate pixels, the pixels are connected to each other, and when there is no adjacent fire candidate pixel, only Are extracted as fire candidate areas.

このように最新画像と直前画像との輝度の差分画像を作成することで、輝度値は高くても輝度の変化がほとんどない例えばナトリウム灯8を火災候補領域から除くことができ、差分輝度積が所定の閾値以上か否かにより、人間のように動きはあるが輝度としては比較的小さなものを火災候補領域から除くことができるので、火災候補領域として残る領域は明るくて動きのある本当の炎9と回転灯7だけに絞ることができ、火災検出手段26において、火災候補領域の特徴量を求めるための演算量が少なくなる。
また、差分画像を考慮して火災候補領域を抽出するので、背景が明るくても炎のように明るくて動きのある領域だけを正しく火災候補領域として抽出できる。
In this way, by creating a difference image of the luminance between the latest image and the immediately preceding image, for example, the sodium lamp 8 that has almost no change in luminance even if the luminance value is high can be excluded from the fire candidate region, and the difference luminance product is Depending on whether or not it exceeds the predetermined threshold, it is possible to remove from the fire candidate area a thing with a relatively small brightness as a human being, but the area remaining as a fire candidate area is a bright and moving real flame 9 and the revolving light 7 can be reduced, and the amount of calculation for obtaining the feature quantity of the fire candidate area is reduced in the fire detection means 26.
Further, since the fire candidate area is extracted in consideration of the difference image, only the bright and moving area like a flame can be correctly extracted as the fire candidate area even if the background is bright.

また、本当の炎9についても、炎9の根元部分では輝度は高いが輝度の変化は小さいので、火災候補領域として更に小さな領域に絞ることができ、火災検出手段26において、火災候補領域の特徴量を求めるための演算量がさらに少なくなる。
なお、差分輝度積の画素値と所定値とを比較するにあたっては、実施形態で説明したように画素毎に行ってもよいが、複数の画素を一つのブロックとしてまとめ、そのブロック毎に閾値の比較を行うようにしてもよい。例えば、画面を格子状に1200程度に分割して、各ブロック内における差分輝度積の総和が閾値を超えた場合に、そのブロック領域を火災候補領域(注目領域ともいう)とするようにしてもよい。
The true flame 9 also has a high luminance at the base of the flame 9 but a small change in luminance, so that it can be narrowed down to a smaller area as a fire candidate area. The amount of calculation for obtaining the quantity is further reduced.
In addition, when comparing the pixel value of the difference luminance product and the predetermined value, as described in the embodiment, it may be performed for each pixel, but a plurality of pixels are collected as one block, and a threshold value is set for each block. A comparison may be made. For example, when the screen is divided into about 1200 in a grid pattern and the sum of the difference luminance products in each block exceeds a threshold value, the block area may be set as a fire candidate area (also referred to as an attention area). Good.

ここで、閾値について説明する。輝度値を255階調で表す場合、直前画像の輝度値が0で、最新画像の輝度値が255の値をとるとき、差分値が255となり、高輝度画像の輝度値が255となる。従って、差分輝度積画像の値は、255×255で、65025となる。これが差分輝度積画像のとりうる最大値となる。
火災のような場合は、一例として、最新画像が200、直前画像が180程度の値をとるので、差分値20、高輝度画像の値が200であるから、差分輝度積画像は4000となる。このため、輝度値が255階調の場合は、4000程度を閾値の目安とすることができる。
Here, the threshold value will be described. When the luminance value is represented by 255 gradations, when the luminance value of the immediately preceding image is 0 and the luminance value of the latest image is 255, the difference value is 255 and the luminance value of the high luminance image is 255. Therefore, the value of the difference luminance product image is 255 × 255, which is 65025. This is the maximum value that the difference luminance product image can take.
In the case of a fire, for example, the latest image has a value of about 200 and the immediately preceding image has a value of about 180. Therefore, since the difference value is 20 and the value of the high-intensity image is 200, the difference luminance product image is 4000. For this reason, when the luminance value is 255 gradations, about 4000 can be used as a threshold standard.

次に、火災検出手段26の動作について説明する。まず、火災候補領域特徴量演算手段36は、火災候補領域抽出手段25によって抽出された火災候補領域の特徴量を所定の時間に亘って演算する。ここでは、例えば火災候補領域の平均輝度を所定時間にわたって演算し、図5に示すようなデータを収集する。
この平均輝度の時系列データに対して、周波数解析演算手段37を構成するウェーブレット変換演算手段がウェーブレット変換を行い、図6に示す横軸が時間、縦軸が周波数で示される時間−周波数スペクトルの画像を得る。ここで図6(a)に示す時間−周波数スペクトルは、火災候補領域が炎9の場合、図6(b)に示す時間−周波数スペクトルは、火災候補領域が回転灯7の場合のものである。
なお、参考までに図8に図6で示した時間−周波数スペクトルの原画像を示す。
Next, the operation of the fire detection means 26 will be described. First, the fire candidate area feature amount calculation unit 36 calculates the feature amount of the fire candidate area extracted by the fire candidate area extraction unit 25 over a predetermined time. Here, for example, the average brightness of the fire candidate area is calculated over a predetermined time, and data as shown in FIG. 5 is collected.
The wavelet transform computing means constituting the frequency analysis computing means 37 performs wavelet transformation on the time series data of the average luminance, and the time-frequency spectrum is shown with time on the horizontal axis and frequency on the vertical axis shown in FIG. Get an image. Here, the time-frequency spectrum shown in FIG. 6A is for the case where the fire candidate region is the flame 9, and the time-frequency spectrum shown in FIG. 6B is for the case where the fire candidate region is the rotating lamp 7. .
For reference, FIG. 8 shows an original image of the time-frequency spectrum shown in FIG.

図6の時間−周波数スペクトルの画像から分かるように、回転灯7の場合、時間が経過しても周波数が一定であるのに対し、炎9の場合、時間の経過に従って周波数が一定な値をとらずに絶え間なく変化している。このことを何らかの評価値で表せば、その火災候補領域が炎9によるものか回転灯7によるものなのかを識別することができる。評価値の求め方には、色々あるが、ここでは、図6の画像において周波数重心位置の最小値と分散の比率とを演算する。   As can be seen from the image of the time-frequency spectrum of FIG. 6, in the case of the rotating lamp 7, the frequency is constant over time, whereas in the case of the flame 9, the frequency is constant over time. It is constantly changing. If this is expressed by some evaluation value, it is possible to identify whether the candidate fire area is due to the flame 9 or the rotating lamp 7. There are various methods for obtaining the evaluation value. Here, the minimum value of the frequency centroid position and the variance ratio are calculated in the image of FIG.

図6の時間−周波数スペクトルの画像において、回転灯の場合は、炎の場合に比べて、ある高い周波数の値をとり、しかもその値は、時間が経過しても、変化せずほぼ一定の値をとる。つまり、ここで図示しない分散値演算手段が、時間−周波数スペクトルの画像から分散値Vを演算すれば、その分散値Vは、炎の場合は大きい数値となり、回転灯の場合は、小さい値となる。
また、図示しない、周波数軸(Y軸)の重心位置を演算する重心演算手段が、時間−周波数スペクトルの画像から重心Hyを求め、かつその重心Hyの最小値MinHyを求めるようにすれば、その重心の最小値MinHyは、炎の場合は小さい数値となり、回転灯の場合は、大きい数値となる。
従って、評価値S=重心の最小値MinHy/分散Vとすれば、炎の場合、この評価値Sは、回転灯に比べ非常に小さい値となることから、炎による領域なのか回転灯による領域なのかを識別することが可能となる。ここで説明した分散値演算手段と重心演算手段が、分散及び重心を求めて評価値を演算する評価値演算手段の一例となる。
In the image of the time-frequency spectrum of FIG. 6, in the case of a rotating lamp, the value of a certain high frequency is taken compared to the case of a flame, and the value does not change over time and is almost constant. Takes a value. That is, if the dispersion value calculation means (not shown) calculates the dispersion value V from the image of the time-frequency spectrum, the dispersion value V becomes a large value in the case of a flame, and a small value in the case of a rotating lamp. Become.
Further, if a center-of-gravity calculating means (not shown) that calculates the position of the center of gravity of the frequency axis (Y-axis) obtains the center of gravity Hy from the image of the time-frequency spectrum and obtains the minimum value MinHy of the center of gravity Hy, The minimum value MinHy of the center of gravity is a small value in the case of a flame, and is a large value in the case of a rotating lamp.
Therefore, if the evaluation value S = minimum value MinHy / dispersion V of the center of gravity, in the case of a flame, the evaluation value S is very small compared to the rotating lamp. Can be identified. The variance value calculating means and the centroid calculating means described here are an example of an evaluation value calculating means for calculating the evaluation value by obtaining the variance and the centroid.

また、周波数解析演算手段37を構成するもう一つの手段である2次元FFT手段について説明する。2次元FFT手段は、図6の時間−周波数スペクトルに対して、2次元FFT処理を施し、図7に示す、横軸が時間軸の分布、縦軸が周波数軸の分布(複雑さ)を示す画像を求める。ここで、図7(a)に示したものが、炎の場合で、図7(b)に示したものが回転灯の場合である。なお、図7において、白色の部分が強度が一番大きい箇所である。
図7において、炎9の場合には、時間軸に関して高周波まで分布しており、かつ周波数軸に関して低周波に分布していることがわかる。これに対し、回転灯7の場合には、時間軸に関して低周波に分布しており、周波数軸に関して高周波まで分布していることがわかる。ここでは、この図7の画像から、それぞれX軸の重心平均位置とY軸の重心平均位置の比率を演算して評価値を求める。
Further, a two-dimensional FFT unit, which is another unit constituting the frequency analysis calculation unit 37, will be described. The two-dimensional FFT means performs a two-dimensional FFT process on the time-frequency spectrum of FIG. 6, and the horizontal axis indicates the time axis distribution and the vertical axis indicates the frequency axis distribution (complexity) shown in FIG. Ask for an image. Here, the case shown in FIG. 7A is a case of flame, and the case shown in FIG. 7B is a case of a rotating lamp. In FIG. 7, the white part is the place where the intensity is the highest.
In FIG. 7, in the case of the flame 9, it can be seen that the time axis is distributed up to a high frequency and the frequency axis is distributed at a low frequency. On the other hand, in the case of the rotating lamp 7, it can be seen that the time axis is distributed at a low frequency and the frequency axis is distributed to a high frequency. Here, from the image of FIG. 7, the ratio between the X-axis center of gravity average position and the Y-axis center of gravity average position is calculated to obtain the evaluation value.

火災判別手段38は、図6、図7において、それぞれ演算した周波数重心位置の最小値MinHyと分散Vの比率と、X軸の重心平均位置とY軸の重心平均位置の比率とを基に、所定値と比較して火災(炎)であるか否かの判別を行う。   The fire discriminating means 38 in FIG. 6 and FIG. 7 is based on the ratio of the minimum frequency MinHy and the variance V of the calculated frequency center of gravity position, and the ratio of the X axis center of gravity center position to the Y axis center of gravity center position. It is compared with a predetermined value to determine whether or not there is a fire (flame).

この発明に係わる火災検出装置のブロック図である。It is a block diagram of the fire detection apparatus concerning this invention. この発明に係わるトンネル内を監視するCCDカメラが撮影する画像である。It is the image which the CCD camera which monitors the inside of the tunnel concerning this invention image | photographs. 火災候補領域を抽出する手順を示すフローチャートである。It is a flowchart which shows the procedure which extracts a fire candidate area | region. 火災候補領域を抽出する手順で使用または作成される、輝度が数値で表示される輝度画像である。This is a luminance image that is used or created in the procedure for extracting a fire candidate area and that displays the luminance as a numerical value. 火災候補領域の平均輝度の変化をプロットしたグラフである。It is the graph which plotted the change of the average brightness | luminance of a fire candidate area | region. 火災候補領域の平均輝度の変化をウェーブレット変換して得られた時間−周波数スペクトルである。It is the time-frequency spectrum obtained by wavelet transforming the change of the average brightness of the fire candidate area. 図6の時間−周波数スペクトルを2次元FFTして得られた2次元FFT結果である。7 is a two-dimensional FFT result obtained by two-dimensional FFT of the time-frequency spectrum of FIG. 図6に示す時間−周波数スペクトルの原画像である。It is the original image of the time-frequency spectrum shown in FIG.

符号の説明Explanation of symbols

1 火災検出装置、2 CCDカメラ、3 撮像部、4 画像処理装置、5 表示部、6 車両、7 回転灯、8 ナトリウム灯、9 炎、10 人間、11 画像入力部、12 画像メモリ、13 設定値保存メモリ、16 画像処理部、17 画像出力部、21 アナログデジタル変換部(A/D変換部)、22 輝度画像作成部、25 火災候補領域抽出手段、26 火災検出手段、31 フレーム差分処理部、32 高輝度画像作成部、33 差分輝度積画像作成部、34 火災候補領域抽出部、36 火災候補領域特徴量演算手段、37 周波数解析演算手段、38 火災判別手段。   1 Fire detection device, 2 CCD camera, 3 imaging unit, 4 image processing device, 5 display unit, 6 vehicle, 7 rotating lamp, 8 sodium lamp, 9 flame, 10 human, 11 image input unit, 12 image memory, 13 setting Value storage memory, 16 image processing unit, 17 image output unit, 21 analog-digital conversion unit (A / D conversion unit), 22 luminance image creation unit, 25 fire candidate area extraction unit, 26 fire detection unit, 31 frame difference processing unit 32 high luminance image creation unit, 33 differential luminance product image creation unit, 34 fire candidate area extraction unit, 36 fire candidate area feature amount calculation means, 37 frequency analysis calculation means, 38 fire discrimination means.

Claims (2)

監視区域を撮影する撮像手段と、撮影した画像を処理することにより上記監視区域内における火災の検出を行う画像処理手段とを備え、上記画像処理手段が、撮像した画像から火災候補領域を抽出する火災候補領域抽出手段と、抽出された火災候補領域が本当の火災領域であるかを検出する火災検出手段とを有する火災検出装置において、
上記火災候補領域抽出手段は、
時系列的に連続する最新画像と直前画像との差分画像を作成するフレーム差分処理部と、
上記最新画像と上記直前画像とを画素毎に比較して輝度の高い方の輝度を輝度とする高輝度画像を作成する高輝度画像作成部と、
上記差分画像と上記高輝度画像の輝度とを乗算して差分輝度積画像を作成する差分輝度積画像作成部と、
上記差分輝度積画像の差分輝度積が閾値以上の画素を火災候補領域として抽出する火災候補領域抽出部と、
を有することを特徴とする火災検出装置。
The image processing unit includes an image capturing unit that captures an image of the monitoring area and an image processing unit that detects a fire in the monitoring area by processing the captured image, and the image processing unit extracts a fire candidate area from the captured image. In a fire detection apparatus having a fire candidate area extraction means and a fire detection means for detecting whether the extracted fire candidate area is a true fire area,
The fire candidate area extraction means
A frame difference processing unit that creates a difference image between the latest image and the immediately preceding image that are continuous in time series;
A high-brightness image creating unit that creates a high-brightness image in which the brightness of the higher brightness is compared by comparing the latest image and the immediately preceding image for each pixel;
A difference luminance product image creating unit for creating a difference luminance product image by multiplying the difference image and the luminance of the high luminance image;
A candidate fire area extraction unit that extracts, as a fire candidate area, a pixel whose difference brightness product of the difference brightness product image is equal to or greater than a threshold;
A fire detection device characterized by comprising:
上記火災検出手段は、
上記火災候補領域の特徴量を所定時間にわたって演算する火災候補領域特徴量演算手段と、上記火災候補領域特徴量演算手段によって演算された特徴量の時系列データに対して、ウェーブレット変換を行って時間−周波数スペクトルの画像を得るウェーブレット変換演算手段と、上記時間−周波数スペクトルの画像から重心および分散を求めて評価値を演算する評価値演算手段とを備えたことを特徴とする請求項1記載の火災検出装置。
The fire detection means is
A fire candidate area feature quantity computing means for computing the feature quantity of the fire candidate area over a predetermined time, and time-series data of the feature quantity computed by the fire candidate area feature quantity computing means by performing wavelet transform to obtain a time The wavelet transform calculating means for obtaining an image of a frequency spectrum, and an evaluation value calculating means for calculating an evaluation value by obtaining a centroid and a variance from the image of the time-frequency spectrum. Fire detection device.
JP2006096911A 2006-03-31 2006-03-31 Fire detection equipment Active JP4689518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096911A JP4689518B2 (en) 2006-03-31 2006-03-31 Fire detection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096911A JP4689518B2 (en) 2006-03-31 2006-03-31 Fire detection equipment

Publications (2)

Publication Number Publication Date
JP2007272532A true JP2007272532A (en) 2007-10-18
JP4689518B2 JP4689518B2 (en) 2011-05-25

Family

ID=38675277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096911A Active JP4689518B2 (en) 2006-03-31 2006-03-31 Fire detection equipment

Country Status (1)

Country Link
JP (1) JP4689518B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157492A (en) * 2007-12-25 2009-07-16 Sumitomo Electric Ind Ltd Vehicle detection device, vehicle detection system, and vehicle detection method
KR100918436B1 (en) * 2007-11-27 2009-09-24 계명대학교 산학협력단 Fire detection system and method basedon visual data
JP2010097412A (en) * 2008-10-16 2010-04-30 Nohmi Bosai Ltd Smoke detecting apparatus
KR100987786B1 (en) 2008-07-23 2010-10-13 (주)에이치엠씨 Fire detecting system using smoke sensing
KR100993205B1 (en) 2008-11-24 2010-11-10 주식회사 유디코 System and method for detecting disaster occurrence
US8208723B2 (en) 2008-10-14 2012-06-26 Nohmi Bosai Ltd. Smoke detecting apparatus
CN104008368A (en) * 2014-05-13 2014-08-27 重庆大学 Fire recognition method based on maximum entropy threshold segmentation
JP2014197290A (en) * 2013-03-29 2014-10-16 能美防災株式会社 Smoke detection device and smoke detection method
JP2015108924A (en) * 2013-12-04 2015-06-11 能美防災株式会社 Flame detector and flame detection method
US9202115B2 (en) 2012-03-12 2015-12-01 Hanwha Techwin Co., Ltd. Event detection system and method using image analysis
CN110084160A (en) * 2019-04-16 2019-08-02 东南大学 A kind of video forest rocket detection method based on movement and brightness significant characteristics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144166A (en) * 1997-11-06 1999-05-28 Nohmi Bosai Ltd Fire detecting device
JPH11144167A (en) * 1997-11-06 1999-05-28 Nohmi Bosai Ltd Fire detecting device
JP2002032876A (en) * 2000-07-13 2002-01-31 Fujitsu Ltd Fire detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144166A (en) * 1997-11-06 1999-05-28 Nohmi Bosai Ltd Fire detecting device
JPH11144167A (en) * 1997-11-06 1999-05-28 Nohmi Bosai Ltd Fire detecting device
JP2002032876A (en) * 2000-07-13 2002-01-31 Fujitsu Ltd Fire detector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918436B1 (en) * 2007-11-27 2009-09-24 계명대학교 산학협력단 Fire detection system and method basedon visual data
JP2009157492A (en) * 2007-12-25 2009-07-16 Sumitomo Electric Ind Ltd Vehicle detection device, vehicle detection system, and vehicle detection method
KR100987786B1 (en) 2008-07-23 2010-10-13 (주)에이치엠씨 Fire detecting system using smoke sensing
US8208723B2 (en) 2008-10-14 2012-06-26 Nohmi Bosai Ltd. Smoke detecting apparatus
JP2010097412A (en) * 2008-10-16 2010-04-30 Nohmi Bosai Ltd Smoke detecting apparatus
JP4653207B2 (en) * 2008-10-16 2011-03-16 能美防災株式会社 Smoke detector
KR100993205B1 (en) 2008-11-24 2010-11-10 주식회사 유디코 System and method for detecting disaster occurrence
US9202115B2 (en) 2012-03-12 2015-12-01 Hanwha Techwin Co., Ltd. Event detection system and method using image analysis
JP2014197290A (en) * 2013-03-29 2014-10-16 能美防災株式会社 Smoke detection device and smoke detection method
JP2015108924A (en) * 2013-12-04 2015-06-11 能美防災株式会社 Flame detector and flame detection method
CN104008368A (en) * 2014-05-13 2014-08-27 重庆大学 Fire recognition method based on maximum entropy threshold segmentation
CN110084160A (en) * 2019-04-16 2019-08-02 东南大学 A kind of video forest rocket detection method based on movement and brightness significant characteristics

Also Published As

Publication number Publication date
JP4689518B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4689518B2 (en) Fire detection equipment
US7859419B2 (en) Smoke detecting method and device
CN105577983B (en) Apparatus and method for detecting motion mask
JP2006268200A (en) Flame/gas smoke detecting system, and flame/gas smoke detecting method
JP7143174B2 (en) Smoke detection device and smoke identification method
JP5832910B2 (en) Image monitoring device
JP5725194B2 (en) Night scene image blur detection system
JP2012089929A (en) Object detection apparatus, object detection method, monitoring camera system and program
JP7150934B2 (en) Fire detection device and fire detection method
JP4999794B2 (en) Still region detection method and apparatus, program and recording medium
EP2000952A2 (en) Smoke detecting method and device
CN110572636A (en) camera contamination detection method and device, storage medium and electronic equipment
JP2011103037A (en) Detection device
JP4926602B2 (en) Smoke detector
JP2008046967A (en) Fire detection device
JP5015838B2 (en) Smoke detector
JPH09293141A (en) Mobile object detection device
JP3625442B2 (en) Object detection method, object detection apparatus, and object detection program
JP4853657B2 (en) Image processing device
WO2023001373A1 (en) Device and method for processing image data
JP4547213B2 (en) Object detection apparatus and method
JP6124739B2 (en) Image sensor
JP6953184B2 (en) Image processing device and image processing method
JP5215707B2 (en) Smoke detector
JP5015839B2 (en) Smoke detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3