Nothing Special   »   [go: up one dir, main page]

JP2007269765A - Method for producing acyl compound of saccharide and apparatus therefor - Google Patents

Method for producing acyl compound of saccharide and apparatus therefor Download PDF

Info

Publication number
JP2007269765A
JP2007269765A JP2006101070A JP2006101070A JP2007269765A JP 2007269765 A JP2007269765 A JP 2007269765A JP 2006101070 A JP2006101070 A JP 2006101070A JP 2006101070 A JP2006101070 A JP 2006101070A JP 2007269765 A JP2007269765 A JP 2007269765A
Authority
JP
Japan
Prior art keywords
saccharide
temperature
reaction
water
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006101070A
Other languages
Japanese (ja)
Other versions
JP5077911B2 (en
Inventor
Yutaka Ikushima
豊 生島
Masahiro Sato
正大 佐藤
Hajime Kawanami
肇 川波
Keiichiro Matsushima
景一郎 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Prefecture
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hokkaido Prefecture
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Prefecture, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hokkaido Prefecture
Priority to JP2006101070A priority Critical patent/JP5077911B2/en
Publication of JP2007269765A publication Critical patent/JP2007269765A/en
Application granted granted Critical
Publication of JP5077911B2 publication Critical patent/JP5077911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously synthesizing an acyl compound of saccharide from a carboxylic acid anhydride and a saccharide in the absence of a catalyst in a short time in a high yield/in high selectivity, to obtain a reaction composition thereof and to provide a simultaneous acylation technology with conversion to a saccharified of high additional value. <P>SOLUTION: The method for producing an acyl compound of saccharide comprises using a subcritical fluid or a supercritical fluid at 100-400°C under 0.1-40 MPa pressure as a reaction solvent, introducing a substrate and the reaction solvent into a circulation type high-temperature and high-pressure apparatus in the absence of a catalyst and changing conditions of temperature and an amount of carboxylic acid anhydride to continuously synthesize an acyl compound of saccharide from a carboxylic acid anhydride and a saccharide in a high yield in high selectivity at a high speed. The reaction composition thereof is obtained. The apparatus therefor is provided. Consequently, the method for producing an acylated saccharide having a high additional value by simultaneous acylation with conversion to a saccharide having a high additional value is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、糖類のアシル化合物、その製造方法と装置に関するものであり、更に詳しくは、高温高圧状態の水あるいは酢酸それらの混合溶媒を反応溶媒とし、無触媒かつ一段階で糖類のアシル化合物を製造する方法に関するものである。本発明は、温度100〜400℃、圧力0.1〜40MPaの水あるいは酢酸、それらの混合溶媒を反応溶媒として、触媒無添加で無水カルボン酸と糖類から糖類のアシル化合物を一段階かつ短時間、連続的に合成する方法及びその反応組成物を提供するものである。ここで、糖類としては、単糖類、二糖類、多糖類が挙げられ、具体的には、単糖類としてグルコース、マンノース、ガラクトース、フルクトース等が挙げられ、二糖類としてサッカロース等が挙げられ、多糖類としてセルロース等が挙げられる。   The present invention relates to an acyl compound of a saccharide, a process for producing the same, and more specifically, and more specifically, a high-temperature and high-pressure water or acetic acid mixed solvent is used as a reaction solvent, and the saccharide acyl compound is non-catalyzed in one step. It relates to a method of manufacturing. In the present invention, water or acetic acid at a temperature of 100 to 400 ° C., a pressure of 0.1 to 40 MPa, a mixed solvent thereof is used as a reaction solvent, and a saccharide acyl compound from carboxylic anhydride and saccharide is added in one step in a short time without adding a catalyst. The present invention provides a continuous synthesis method and a reaction composition thereof. Here, examples of the saccharide include monosaccharides, disaccharides, and polysaccharides. Specific examples of the saccharide include glucose, mannose, galactose, and fructose. Examples of the disaccharide include saccharose and the like. Examples thereof include cellulose.

糖類のアシル化合物は、原料もしくは基質の機能性を改質向上し、更に付加価値を付与するため、香料、医薬品、食品分野等において有用である。通常、糖類のアシル化合物を合成する場合、従来法では、非プロトン性有機溶媒に加えて、酸・塩基触媒が必要であり、食品、医薬品に利用される場合、残存する有機溶媒、触媒の除去は大きな労力を必要とし、環境に影響を与えるのみならず生体に有害である等の問題点を有していた。本発明は、無水カルボン酸と糖類から、無触媒で、水を用いるプロセスのみで糖類のアシル化合物を合成する方法とその反応組成物を提供するものであり、香料、医薬品や食品のみならず、化成品合成にも応用可能であり、糖類のアシル化合物を効率良く、短時間で、連続的に生産し、提供することを可能にするものである。   Saccharic acyl compounds are useful in the field of flavors, pharmaceuticals, foods, and the like because they improve and improve the functionality of raw materials or substrates and add added value. In general, when synthesizing acyl compounds of sugars, the conventional method requires an acid / base catalyst in addition to the aprotic organic solvent. When used in foods and pharmaceuticals, the remaining organic solvent and catalyst are removed. Requires a lot of labor and has problems such as being harmful to the living body as well as affecting the environment. The present invention provides a method for synthesizing an acyl compound of a saccharide only from a carboxylic anhydride and a saccharide without using a catalyst and a process using water, and a reaction composition thereof. The present invention can also be applied to synthesis of chemical products, and can efficiently produce and provide saccharide acyl compounds in a short time.

従来、無水カルボン酸と糖類から糖アシル化合物を合成する方法が種々報告されている(例えば、非特許文献1参照)。ここで、糖類と無水カルボン酸から糖アシル化合物を合成する技術を完成すれば、通常は、アミノ糖類からのアシル化合物が合成を可能となるため、特にグルコースを用いて糖アシル化合物を合成する技術が報告されている。先行技術文献によれば、無溶媒あるいは非プロトン性有機溶媒中、10等量の無水酢酸とCoCl触媒により、グルコースペンタアセテートが90%の収率で得られている(非特許文献2)。また、安定なN−アシル中間体形成を経由することでアシル基を活性化するDMAPの発見は、革新的な技術とされ、いくつかの糖類のアシル化が報告されている(非特許文献3)。 Conventionally, various methods for synthesizing sugar acyl compounds from carboxylic anhydrides and saccharides have been reported (see, for example, Non-Patent Document 1). Here, if a technique for synthesizing a sugar acyl compound from a saccharide and a carboxylic anhydride is completed, an acyl compound from an amino sugar can usually be synthesized. Therefore, a technique for synthesizing a sugar acyl compound using glucose in particular. Has been reported. According to the prior art document, glucose pentaacetate is obtained in 90% yield with 10 equivalents of acetic anhydride and CoCl 3 catalyst in a solvent-free or aprotic organic solvent (Non-patent Document 2). In addition, the discovery of DMAP that activates an acyl group via the formation of a stable N-acyl intermediate is considered an innovative technique, and acylation of some saccharides has been reported (Non-patent Document 3). ).

ところが、DMAPは、1等量以上のアミンを利用することから、ルイス酸である金属トリフラートが提案され、MeSiOTf(非特許文献4)では、ジアセトン−D−グルコースから対応するアシル化物は得られていないが、Bi(OTf)の場合、ジアセトン−D−グルコースからモノベンゾエートを91%の収率で、ウリジンから99%でトリベンゾエートを得ている(非特許文献5)。更に、V(OTf)が触媒活性を示さないが、そのオキソ化合物であるV(O)(OTf)が触媒活性があることが見出され、V=Oの触媒活性化が注目された(特許文献3、非特許文献6)。ジアセトン−D−グルコースからモノアセテートを75%の収率で、3等量の無水酢酸をアシル化剤としてD−マルトースからD−マルトースオクタアセテートを85%の収率で、β―シクロデキストリンから90%の収率で対応するアシル化合物を得ている(図1)。 However, since DMAP uses one or more equivalents of amine, metal triflate, which is a Lewis acid, is proposed, and Me 3 SiOTf (Non-patent Document 4) provides a corresponding acylated product from diacetone-D-glucose. In the case of Bi (OTf) 3 , tribenzoate was obtained from diacetone-D-glucose in a yield of 91% and from uridine in 99% (Non-patent Document 5). Furthermore, V (OTf) 3 did not show catalytic activity, but its oxo compound V (O) (OTf) 2 was found to have catalytic activity, and attention was paid to catalytic activation of V = O. (Patent Literature 3, Non-Patent Literature 6). Monoacetate from diacetone-D-glucose in 75% yield, 3 equivalents of acetic anhydride as acylating agent, D-maltose from D-maltose octaacetate in 85% yield, 90% from β-cyclodextrin % Yield of the corresponding acyl compound (FIG. 1).

ここで、上記の先行技術文献では、有機塩基、ルイス酸、固体酸のような触媒に加えて有機溶媒が糖類のアシル化にとって必要不可欠である。また、高温条件では不純物が生成し、選択率を低下させるという理由から、糖類のアシル化は常温で行うのが最適であり、高温条件は不適であるとされている(特許文献1、2)。一方、糖類のアシル化における溶媒としての水の可能性に関しては、通常、粗生成物に糖類のアシル化剤を添加し無水条件で糖類のアシル化する方法が一般的であって、水は糖類のアシル化を阻害するとされ(特許文献4)、ある文献では、溶媒として水を列挙しているが、実際には使用されていない(特許文献1、2参照)。   Here, in the above prior art documents, an organic solvent in addition to a catalyst such as an organic base, a Lewis acid, and a solid acid is indispensable for acylation of saccharides. Moreover, it is said that the acylation of saccharides is optimally performed at room temperature because impurities are generated under high temperature conditions and the selectivity is lowered, and high temperature conditions are unsuitable (Patent Documents 1 and 2). . On the other hand, regarding the possibility of water as a solvent in the acylation of saccharides, generally, a method of acylating saccharides under anhydrous conditions by adding a saccharide acylating agent to the crude product, (Patent Document 4). In one document, water is listed as a solvent, but it is not actually used (see Patent Documents 1 and 2).

ところが、アルドール反応に対する触媒活性と水中でのルイス酸の安定性との相関を元素ごと系統的に比較検討し、他の反応への適用可能性を示唆した例も存在する(非特許文献7)。更に、Bi(OTf)が触媒の場合には、脱水処理をしていない水を含有する、湿った有機溶媒が反応を促進し、収率向上が観察された文献も存在する(非特許文献5)。したがって、糖類のアシル化に対する溶媒としての水の有効性はこれまで明確ではなく、実施もされなかった。他方、Bi(OTf)を触媒とする場合の無溶媒条件では、収率が低下し、有機溶媒が必要であると報告されている(非特許文献5)。 However, the correlation between the catalytic activity for the aldol reaction and the stability of Lewis acid in water is systematically compared for each element, and there is an example suggesting the applicability to other reactions (Non-patent Document 7). . Furthermore, when Bi (OTf) 3 is a catalyst, there is a document in which a wet organic solvent containing water that has not been dehydrated promotes the reaction and an improvement in yield is observed (non-patent document). 5). Thus, the effectiveness of water as a solvent for saccharide acylation has not been clear and implemented before. On the other hand, it has been reported that under the solvent-free conditions when Bi (OTf) 3 is used as a catalyst, the yield decreases and an organic solvent is required (Non-patent Document 5).

反応後における後処理は、通常の触媒・有機溶媒中糖類のアシル化では、反応混合物に中和剤を添加して中和後、抽出溶媒と水あるいは飽和食塩水を加え分液し、溶媒層はその後、乾燥、溶媒除去、蒸留あるいは精留のプロセスを得て目的物を得るが、水層には水の他に、触媒、有機溶媒、酢酸、基質、生成物、副生成物、無機物の複雑な混合物が含有される。ここで、水層からの触媒の分離が容易である場合には、回収再生され、再使用されるが、分離が困難である場合には、そのまま廃棄・処分される(図2)。無触媒・高温高圧水中の糖類のアシル化の場合のように、水層に触媒、有機溶媒が含有されず、水、酢酸、生成物のみが含有されるならば、生成物をデカンテーションにより分離後、水層に対して共沸混合物を形成する物質を添加した共沸蒸留を行うことで、水と氷酢酸とに分離することが可能である(特許文献5)。このことは、水の再生を可能にし、通常法に比べて、環境低減型のプロセスであることを意味する(図3)。ところが、D−グルコースからD−マンノースのような高付加価値の糖に変換すると同時に化学的に安定なアシル化糖を得る方法(高付加価値糖への変換を伴った同時アシル化)は、これまで報告されていない。   After the reaction, the post-treatment is performed by adding a neutralizing agent to the reaction mixture to neutralize the saccharide in the normal catalyst / organic solvent. After neutralization, the extraction solvent and water or saturated saline are added to separate the solvent layer. After that, the desired product is obtained by the process of drying, solvent removal, distillation or rectification. In addition to water, the water layer contains catalyst, organic solvent, acetic acid, substrate, product, by-product, inorganic substance. A complex mixture is contained. Here, when the separation of the catalyst from the aqueous layer is easy, it is recovered and regenerated and reused, but when the separation is difficult, it is discarded and disposed as it is (FIG. 2). As in the case of acylation of sugars in non-catalyzed high-temperature and high-pressure water, if the water layer contains no catalyst or organic solvent but only water, acetic acid, and product, the product is separated by decantation. Then, it can be separated into water and glacial acetic acid by performing azeotropic distillation in which a substance that forms an azeotropic mixture is added to the aqueous layer (Patent Document 5). This means that the water can be regenerated and is a process of reducing the environment as compared with the normal method (FIG. 3). However, a method of converting a D-glucose into a high-value-added sugar such as D-mannose and simultaneously obtaining a chemically stable acylated sugar (simultaneous acylation with conversion to a high-value-added sugar) Not reported until.

ところで、グルコースのような安価な糖から、マンノースのような高機能性で高付加価値糖への変換に関しては、酵素法による場合が多く報告されている。特にマンノースイソメラーゼによるD−フルクトースから、D−マンノースへの変換への報告は非常に多い。通常、この場合のイソメラーゼは、グルコースを基質としないことから(例えば、特許文献6、7、8)、安価なD−グルコースからD−マンノースを合成する場合には、フルクトースイソメラーゼによってD−グルコースからD−フルクトースへの変換が必要とされ、多くのフルクトースイソメラーゼが発見されている(例えば、特許文献9、10、11)。一方、流通型装置でグルコース水溶液にモリブデン酸触媒水溶液を混合後、130℃で反応させると、D−グルコースからD−マンノースが32%の収率で得られることが知られている(特許文献12)。   By the way, regarding the conversion from an inexpensive sugar such as glucose to a high-functional and high-value-added sugar such as mannose, many cases have been reported by an enzymatic method. In particular, there are many reports on conversion of D-fructose to D-mannose by mannose isomerase. In general, isomerase in this case does not use glucose as a substrate (for example, Patent Documents 6, 7, and 8). Therefore, when synthesizing D-mannose from inexpensive D-glucose, fructose isomerase is used to produce D-glucose. Conversion to D-fructose is required, and many fructose isomerases have been discovered (for example, Patent Documents 9, 10, and 11). On the other hand, it is known that D-mannose can be obtained from D-glucose in a yield of 32% when a molybdate catalyst aqueous solution is mixed with a glucose aqueous solution in a flow-type apparatus and then reacted at 130 ° C. (Patent Document 12). ).

このように、従来法では、糖類のアシル化及び高付加価値糖への変換を伴った同時アシル化の場合、触媒及び有機溶媒が必要であるため、製品の品質上、反応後の分離操作において、触媒、有機溶媒やカルボン酸の除去が必要であり、分離操作後の水層は廃棄物となりやすく、廃液の問題を生じる。更に、環境に対する影響や生体への有害性への配慮から、またヒトが経口する食品・医薬品の安全性から、触媒・有機溶媒のより高度な分離が要求されており、長時間と多段階行程を要する酵素法から脱却することは困難な状況にある。ここで、高度分離に必要なコストは合成操作と同程度であり、望ましくは触媒と有機溶媒を使用しない方が良い。以上のことから、当該技術分野においては、簡単、低コスト、環境低減型の合成プロセスで、分離操作が容易かつ高度分離が可能で、触媒や有機溶媒の残存しない糖類のアシル化合物の連続的合成を可能とする合成手法が強く要請されていた。   As described above, in the conventional method, in the case of simultaneous acylation accompanied by acylation of saccharides and conversion to high-value-added sugars, a catalyst and an organic solvent are required. In addition, it is necessary to remove the catalyst, the organic solvent, and the carboxylic acid, and the aqueous layer after the separation operation tends to be waste, which causes a problem of waste liquid. In addition, due to consideration for environmental impacts and harmfulness to living organisms, and for the safety of foods and pharmaceuticals that are orally administered by humans, more advanced separation of catalysts and organic solvents is required. It is difficult to get out of the enzymatic method that requires Here, the cost required for high-level separation is comparable to that of the synthesis operation, and it is preferable not to use a catalyst and an organic solvent. In view of the above, in this technical field, a continuous synthesis of acyl compounds of saccharides that can be easily and highly separated by a simple, low-cost, environmentally-reduced synthesis process, with no catalyst or organic solvent remaining. There has been a strong demand for a synthesis method that enables this.

特開平9−169690号公報JP 9-169690 A 特開平9−176081号公報Japanese Patent Laid-Open No. 9-176081 米国特許第6,541,659号明細書US Pat. No. 6,541,659 米国特許第6,005,122号明細書US Pat. No. 6,005,122 米国特許第5,980,696号明細書US Pat. No. 5,980,696 特開2001−245691号公報JP 2001-245691 A 特開平06−292578号公報Japanese Patent Laid-Open No. 06-292578 特開平11−075836号公報Japanese Patent Laid-Open No. 11-075836 特開平09−191894号公報JP 09-191894 A 特開平08−187080号公報Japanese Patent Laid-Open No. 08-187080 特開平06−046853号公報Japanese Patent Laid-Open No. 06-046853 特開昭56−068696号公報JP-A-56-068696 W.Green,P.G.Wuts,Protective Groups in Organic Synthesis,3rd ed.,Wiley,New York,1999,p150W. Green, P.M. G. Wuts, Protective Groups in Organic Synthesis, 3rd ed. , Wiley, New York, 1999, p150 S.Ahmad,J.Iqbal,Chem.Commun.,1987,114S. Ahmad, J. et al. Iqbal, Chem. Commun. , 1987, 114. G.Hofle,W.Steglich,H.Vorbruggen.,Angrew.Chem.Int.Ed.,1978,17,569.b)A.Hassner,L.R.Krepski,V.Alexanian,Tetrahedron,1978,34,2069G. Hofle, W.M. Steglich, H.M. Vorbruggen. , Angrew. Chem. Int. Ed. 1978, 17, 569. b) A. Hassner, L .; R. Krepski, V.M. Alexian, Tetrahedron, 1978, 34, 2069 P.A.Procopiu,S.P.D.Baugh,S.S.Flack,G.G.A.Inglis,J.Org.,Chem.,1998,63,2342P. A. Procopiu, S.M. P. D. Baugh, S.M. S. Flack, G.M. G. A. Inglis, J. et al. Org. , Chem. 1998, 63, 2342 J.Otera,A.Orita,C.Tanahashi,A.Kakuta,Angrew.Chem.Int.Ed.,2000,39,2877J. et al. Otera, A .; Orita, C.I. Tanahashi, A .; Kakuta, Angrew. Chem. Int. Ed. 2000, 39, 2877 C−T.Chen,J−H.Kuo,C−H.Li,N.B.Barhate,S−W.Hon,T−W.Li,S−D.Chao,C−C.Liu,Y−C.Li,I−H.Chang,J−S.Lin,C−J.Liu and Y−C.Chou,Org.Lett.,2001,3,3729CT Chen, JH. Kuo, C-H. Li, N .; B. Barhate, SW. Hon, TW. Li, SD. Chao, CC. Liu, YC. Li, I-H. Chang, JS. Lin, CJ. Liu and YC. Chou, Org. Lett. , 2001, 3, 3729 S.Kobayashi,S.Nagayama,T.Busujima,J.Am.Chem.Soc.,1998,120,8287S. Kobayashi, S .; Nagayama, T .; Busimama, J .; Am. Chem. Soc. 1998, 120, 8287

このような状況のなかで、本発明者らは、上記従来技術に鑑みて、低コストで、環境に優しい簡単な高速合成プロセスで、上記糖類のアシル化合物を連続的に合成することができる新しい合成方法を開発することを目標として鋭意研究を積み重ねた結果、高温高圧水、又は亜臨界水又は超臨界水を反応溶媒とすることで、無触媒で無水カルボン酸と糖類から糖類のアシル化合物を合成できることを見出し、本発明を完成するに至った。本発明は、無水カルボン酸と糖類から糖類のアシル化合物を無触媒で、短時間の反応条件下で連続的に合成する方法及びその反応組成物を提供することを目的とするものである。   Under such circumstances, in view of the above prior art, the present inventors are able to continuously synthesize acyl compounds of the above sugars with a simple high-speed synthesis process that is low in cost and friendly to the environment. As a result of intensive research with the goal of developing a synthesis method, high-temperature and high-pressure water, subcritical water or supercritical water is used as a reaction solvent, so that saccharide acyl compounds from carboxylic anhydrides and sugars can be produced without catalyst. The inventors have found that they can be synthesized and have completed the present invention. An object of the present invention is to provide a method for continuously synthesizing an acyl compound of a saccharide from a carboxylic anhydride and a saccharide under a non-catalyst under a short reaction condition and a reaction composition thereof.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)無水カルボン酸と糖類との反応組成物であって、触媒及び有機溶媒の残存がないことを特徴とする糖類のアシル化合物組成物。
(2)無水カルボン酸と糖類から糖類のアシル化合物を合成する方法であって、高温高圧状態の亜臨界流体ないし超臨界流体を反応溶媒として使用し、触媒を用いることなく、無水カルボン酸と糖類から1段階の合成反応で糖類のアシル化合物を合成することを特徴とする糖類のアシル化合物の製造方法。
(3)高温高圧状態の亜臨界ないし超臨界水を反応溶媒として使用する、前記(2)記載の方法。
(4)糖類として、単糖類もしくは二糖類もしくは多糖類を用いる、前記(2)記載の方法。
(5)温度100〜400℃、圧力0.1〜40MPaの亜臨界流体ないし超臨界流体を反応溶媒として使用する、前記(2)記載の方法。
(6)亜臨界流体ないし超臨界流体として、水、酢酸、それ以外の無機溶媒、もしくは有機溶媒もしくは無機溶媒と有機溶媒の混合溶媒を用いる、前記(2)記載の方法。
(7)糖類を溶解ないしは分散させ、無水カルボン酸と常温で混合後、反応を実施する、前記(2)の方法。
(8)安価な糖から高機能性・高付加価値糖類に変換しつつ同時アシル化し、高付加価値アシル化糖を製造する、前記(2)記載の方法。
(9)糖類に無機塩を添加することにより選択性を変化させる、前記(2)記載の方法。
(10)流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜60秒の範囲で変化させることで合成反応を実施する、前記(2)記載の方法。
(11)水を送液する水送液ポンプ、水加熱用コイル、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備していることを特徴とする糖類のアシル化合物合成装置。
(12)前記(2)記載の方法において、アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、糖類のアシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し回収する簡易な連続分離法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A reaction composition of a carboxylic anhydride and a saccharide, wherein the saccharide acyl compound composition is characterized by having no catalyst and no organic solvent remaining.
(2) A method for synthesizing an acyl compound of a saccharide from a carboxylic anhydride and a saccharide using a subcritical fluid or a supercritical fluid in a high temperature and high pressure state as a reaction solvent, and without using a catalyst, the carboxylic anhydride and the saccharide A method for producing a saccharide acyl compound, comprising synthesizing a saccharide acyl compound by a one-step synthesis reaction.
(3) The method according to (2) above, wherein subcritical or supercritical water in a high temperature and high pressure state is used as a reaction solvent.
(4) The method according to (2) above, wherein a monosaccharide, a disaccharide or a polysaccharide is used as the saccharide.
(5) The method according to (2) above, wherein a subcritical fluid or supercritical fluid having a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa is used as a reaction solvent.
(6) The method according to (2) above, wherein water, acetic acid, another inorganic solvent, an organic solvent, or a mixed solvent of an inorganic solvent and an organic solvent is used as the subcritical fluid or supercritical fluid.
(7) The method of (2), wherein the reaction is carried out after dissolving or dispersing the saccharide and mixing with carboxylic anhydride at room temperature.
(8) The method according to (2) above, wherein a high-value-added acylated sugar is produced by simultaneous acylation while converting from an inexpensive sugar to a high-functional and high-value-added sugar.
(9) The method according to (2) above, wherein the selectivity is changed by adding an inorganic salt to the saccharide.
(10) The method according to (2) above, wherein the synthesis reaction is carried out by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time in the range of 3 to 60 seconds.
(11) A water feed pump for feeding water, a water heating coil, a high temperature and high pressure flow cell, a reactant feed pump for feeding a substrate, a furnace body, a reactant introduction pipe for introducing the reactant into the furnace body, a reaction An apparatus for synthesizing an acyl compound of a saccharide, comprising a drain line for discharging a solution, a cooling flange, and a back pressure valve for setting a pressure.
(12) In the method described in (2) above, after acylation, water is injected into the recovered aqueous solution, followed by decantation. After separation into an oil / water bilayer solution, an oil layer containing an acyl compound of a saccharide is separated and recovered. On the other hand, a simple continuous separation method in which acetic acid and water are separated and recovered from the aqueous layer by azeotropic distillation.

次に、本発明について更に詳細に説明する。
本発明は、化1のカルボン酸無水物と化2の糖類から、化3に示すように糖類のアシル化合物を、一段階の反応プロセスで、触媒無添加、短時間の反応条件下で、連続的に合成することを特徴とするものである。本発明では、上記反応溶媒として、温度100〜400℃、圧力0.1〜40MPaの亜臨界流体、超臨界流体が用いられ、好適には亜臨界水が用いられる。また、反応条件として、好適には、温度200〜250℃、圧力5MPa、反応時間が3〜60秒の範囲、より好適には10秒程度に調整される。化1の式中、Rはアルキル基又はアルキル基以外のヘテロ原子を含む置換基であり、化2の式中、Rはアルキル基又はアルキル基以外のヘテロ原子を含む置換基であり、Qは炭素又は炭素以外のヘテロ原子、置換ヘテロ原子であり、具体的には、酸素(O)、窒化水素(NH)、アルキル置換窒素(NR’)、である。
Next, the present invention will be described in more detail.
According to the present invention, an acyl compound of a saccharide as shown in Chemical Formula 3 is continuously formed from a carboxylic acid anhydride of Chemical Formula 1 and a saccharide of Chemical Formula 2 in a one-step reaction process without adding a catalyst and in a short reaction condition. It is characterized by synthesizing automatically. In the present invention, a subcritical fluid or a supercritical fluid having a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa is used as the reaction solvent, and subcritical water is preferably used. The reaction conditions are preferably adjusted to a temperature of 200 to 250 ° C., a pressure of 5 MPa, a reaction time of 3 to 60 seconds, and more preferably about 10 seconds. In the formula of Chemical Formula 1, R is an alkyl group or a substituent containing a hetero atom other than an alkyl group. In the formula of Chemical Formula 2, R is a substituent containing a hetero atom other than an alkyl group or an alkyl group, and Q is Carbon or a heteroatom other than carbon or a substituted heteroatom, specifically, oxygen (O), hydrogen nitride (NH), or alkyl-substituted nitrogen (NR ′).

Figure 2007269765
Figure 2007269765

Figure 2007269765
Figure 2007269765

Figure 2007269765
Figure 2007269765

本発明においては、上記基質及び反応溶媒を反応容器に導入して所定の反応時間で合成反応を実施するものである。したがって、上記反応器としては、例えば、バッチ式の高温高圧反応容器、及び連続型の流通式高温高圧反応装置を使用することができるが、本発明は、これら反応装置型式に特に制限されるものでない。   In the present invention, the substrate and the reaction solvent are introduced into a reaction vessel and a synthesis reaction is carried out in a predetermined reaction time. Therefore, as the reactor, for example, a batch-type high-temperature and high-pressure reaction vessel and a continuous flow-type high-temperature and high-pressure reactor can be used, but the present invention is particularly limited to these reactor types. Not.

本発明の方法では、反応溶媒として、上記高温高圧状態にある亜臨界流体、超臨界流体が用いられるが、具体的には、亜臨界二酸化炭素(常温以上、0.1MPa以上)、亜臨界水(100℃以上、0.1MPa以上)、亜臨界メタノール(100℃以上、0.1MPa以上)、亜臨界エタノール(100℃以上、0.1MPa以上)、超臨界二酸化炭素(34℃以上、7.38MPa以上)、超臨界水(375℃以上、22MPa以上)、超臨界メタノール(239℃以上、8.1MPa以上)、超臨界エタノール(241℃以上、6.1MPa以上)、同じ状態の混合溶媒が例示され、好適には、亜臨界水(200−250℃、5MPa以上)が用いられる。反応溶媒としては、上記以外の有機溶媒や無機溶媒を任意の割合で含むことができ、具体的には、有機溶媒として、アセトン、アセトニトリル、テトラヒドロフラン等、無機溶媒として酢酸、アンモニア等を含む反応溶液に代替することも可能である。   In the method of the present invention, the subcritical fluid and supercritical fluid in the high temperature and high pressure state are used as the reaction solvent. Specifically, subcritical carbon dioxide (normal temperature or higher, 0.1 MPa or higher), subcritical water is used. (100 ° C. or higher, 0.1 MPa or higher), subcritical methanol (100 ° C. or higher, 0.1 MPa or higher), subcritical ethanol (100 ° C. or higher, 0.1 MPa or higher), supercritical carbon dioxide (34 ° C. or higher, 7. 38 MPa or more), supercritical water (375 ° C. or more, 22 MPa or more), supercritical methanol (239 ° C. or more, 8.1 MPa or more), supercritical ethanol (241 ° C. or more, 6.1 MPa or more), a mixed solvent in the same state It is illustrated and subcritical water (200-250 degreeC, 5 Mpa or more) is used suitably. As a reaction solvent, an organic solvent or an inorganic solvent other than those described above can be contained in any ratio. Specifically, a reaction solution containing acetone, acetonitrile, tetrahydrofuran, etc. as an organic solvent, and acetic acid, ammonia, etc. as an inorganic solvent. It is also possible to substitute.

本発明では、上記亜臨界流体、超臨界流体の反応溶媒の組成、温度及び圧力条件、基質の種類及びその使用量、反応時間を調整することにより、短時間で、効率良く、反応生成物を合成することができる。また、本発明では、例えば、基質及び反応溶媒を流通式高温高圧装置に導入し、それらの反応時間を3〜60秒の範囲で変えることにより、所定の反応生成物を合成することができる。上記反応条件は、使用する出発原料、目的とする反応生成物の種類等により適宜設定することができる。   In the present invention, by adjusting the composition of the reaction solvent of the subcritical fluid and supercritical fluid, the temperature and pressure conditions, the type and amount of the substrate used, and the reaction time, the reaction product can be efficiently produced in a short time. Can be synthesized. Moreover, in this invention, a predetermined | prescribed reaction product can be synthesize | combined by introduce | transducing a substrate and a reaction solvent into a flow-type high temperature / high pressure apparatus, and changing those reaction time in the range of 3 to 60 second, for example. The reaction conditions can be appropriately set depending on the starting material used, the type of the desired reaction product, and the like.

本発明の方法では、従来、触媒存在下で行われていた、カルボン酸無水物と糖類からの糖類のアシル化合物の合成を、高速で連続的に、しかも、無触媒で実施できるため、長時間を要するプロセスを効率化することができる。また、本発明の方法では、従来用いられた触媒を全く使用しないので、反応後の溶液の中和処理、無害化処理等の後処理・処分の必要がなく、環境負荷低減を達成可能である。更に、反応後は、デカンテーションのような静置分離操作のみであるため、触媒や有機溶媒の分離回収の必要性はなく、生成物分離が容易になる。本発明によれば、触媒無添加で、10秒程度の短時間で、転化率99%で総選択率97%で糖類のアシル化合物を合成することができる。本発明の合成方法は、香料、医薬品、食品に利用可能な、糖類のアシル化合物を効率良く、大量に高速で連続的に生産することを可能にするものとして有用である。   In the method of the present invention, the synthesis of an acyl compound of a saccharide from a carboxylic acid anhydride and a saccharide, which has heretofore been carried out in the presence of a catalyst, can be carried out continuously at a high speed and without a catalyst. Can be made more efficient. Further, in the method of the present invention, since a conventionally used catalyst is not used at all, there is no need for post-treatment / disposal such as neutralization treatment and detoxification treatment of the solution after the reaction, and environmental load reduction can be achieved. . Further, after the reaction, only a stationary separation operation such as decantation is performed, so that there is no need to separate and recover the catalyst and the organic solvent, and the product separation becomes easy. According to the present invention, an acyl compound of a saccharide can be synthesized in a short time of about 10 seconds without addition of a catalyst with a conversion rate of 99% and a total selectivity of 97%. The synthesis method of the present invention is useful as a method that enables efficient and continuous production of saccharide acyl compounds that can be used in fragrances, pharmaceuticals, and foods in large quantities at high speed.

従来、二酸化炭素等の亜臨界流体、超臨界流体を利用して、リパーゼや触媒を用いた糖類のアシル化を実施した例が報告されている。しかし、カルボン酸無水物と糖類から、無触媒条件の亜臨界水プロセスで糖類のアシル化合物を高収率で合成できることを実証した例はなく、本発明の対象とする糖類のアシル化合物の合成反応法は、本発明者らによって初めてその有効性が実証されたものである。しかも、従来法でカルボン酸無水物と糖類から合成される糖類のアシル化合物は、触媒及び有機溶媒の残存が問題とされていたが、本発明でカルボン酸無水物と糖類から合成される反応組成物は、触媒及び有機溶媒の残存がなく、本発明の糖類のアシル化合物組成物は、従来製品にない利点を有している。   Conventionally, an example in which saccharide acylation using a lipase or a catalyst is performed using a subcritical fluid such as carbon dioxide or a supercritical fluid has been reported. However, there is no example demonstrating that a saccharide acyl compound can be synthesized in high yield from a carboxylic acid anhydride and a saccharide in a non-catalytic subcritical water process. The method has been proved by the present inventors for the first time. Moreover, the saccharide acyl compound synthesized from the carboxylic acid anhydride and the saccharide by the conventional method had a problem of remaining catalyst and organic solvent, but the reaction composition synthesized from the carboxylic acid anhydride and the saccharide in the present invention. The product has no catalyst and no organic solvent remaining, and the saccharide acyl compound composition of the present invention has advantages not found in conventional products.

本発明では、無触媒条件で無水カルボン酸と糖類の合成反応を実現するために、例えば、基質をあらかじめ溶媒に溶解した溶液を送液し、亜臨界流体、超臨界流体中の反応経過を高温高圧赤外フロ−セル(図4)により赤外分光分析によって観察する流通型高温高圧赤外分光その場測定装置(図5)を用いることも可能である。しかしながら、高温高圧赤外フローセルを窓なし高温高圧フローセル(図6)に交換し、超臨界流体の流れに対して直接反応物の流れを接触反応するように配管配置した方が、高温高圧赤外フロ−セルにおけるセル窓付近におけるリーク等の問題が発生せず、より高流量で短時間に合成を実施することが可能である。これらのことから、この窓なし高温高圧フローセルを装着した装置を後述する実施例で用いた。   In the present invention, in order to realize a synthesis reaction of carboxylic anhydride and saccharide under non-catalytic conditions, for example, a solution in which a substrate is dissolved in a solvent in advance is fed, and the reaction progress in a subcritical fluid and a supercritical fluid is increased to a high temperature. It is also possible to use a flow-type high-temperature high-pressure infrared spectroscopic in-situ measuring device (FIG. 5) that is observed by infrared spectroscopic analysis with a high-pressure infrared flow cell (FIG. 4). However, it is better to replace the high-temperature and high-pressure infrared flow cell with a windowless high-temperature and high-pressure flow cell (FIG. 6) and arrange the piping so that the reactant flow directly contacts the supercritical fluid flow. There is no problem such as leakage in the vicinity of the cell window in the flow cell, and synthesis can be performed in a short time at a higher flow rate. For these reasons, an apparatus equipped with this windowless high-temperature and high-pressure flow cell was used in Examples described later.

ここで、窓なし高温高圧フローセル本体(図6)については、例えば、市販のSUS316製のクロス1にネジを切り、次に説明する温度センサ−シ−ス(図7の12)に固定できるようにする。炉体雰囲気の温度を測定せずに、セル温度を示すように温度センサ−を調節し、シ−ス固定ネジとオネジ3でネジ止めする。SUS316の配管4はクロス1にワンリングフェラル付きのテ−パ−ネジ2でクロス1に接続される。もちろん、クロス1は、エンドネジで一つの流路を塞ぐことによってティーとしても使用可能である。   Here, the windowless high-temperature high-pressure flow cell main body (FIG. 6) can be fixed to a temperature sensor sheath (12 in FIG. 7) described below by, for example, cutting a screw in a commercially available SUS316 cloth 1. To. Without measuring the temperature of the furnace body atmosphere, the temperature sensor is adjusted to indicate the cell temperature, and is fixed with a case fixing screw and a male screw 3. The pipe 4 of SUS316 is connected to the cross 1 with a taper screw 2 with a one-ring ferrule. Of course, the cloth 1 can also be used as a tee by closing one flow path with an end screw.

図7は、窓なし高温高圧フロ−セルを装着した流通式高温高圧反応装置の炉体部分であり、反応装置本体である。これを、図5の流通型高温高圧流体その場赤外分光測定装置の斜線位置に設置すれば、赤外分光は測定できないものの、温度、圧力、流量が可変な亜臨界・超臨界流体接触合成反応装置として利用可能となる。なお、この場合における反応観察は、排出後の水溶液を採取し、GC−FIDにより、生成物の純品を用いた検量線から定量を実施し、GC/MSにより定性分析を実施した。   FIG. 7 shows a reactor body portion of a flow-type high-temperature high-pressure reactor equipped with a windowless high-temperature high-pressure flow cell, which is a reactor main body. If this is installed in the shaded position of the flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer shown in Fig. 5, the infrared spectroscopy cannot be measured, but subcritical / supercritical fluid contact synthesis with variable temperature, pressure and flow rate. It can be used as a reactor. In this case, the observation of the reaction was performed by collecting the aqueous solution after discharge, quantifying from a calibration curve using a pure product by GC-FID, and qualitatively analyzing by GC / MS.

以下、図7について説明すると、水送液ポンプ5から水が送液され、冷却フランジ8を通過後、炉体13へ送液される。管コイル9を通過後、高温高圧状態で温度センサー11が挿入された温度センサ−シ−ス12に支持固定された高温高圧フロ−セル14に導入される。一方、反応物が反応物送液ポンプ6及び7から送液され、ティー18で混合された後、冷却フランジ8を通過後、炉体13へ送液される。コイル状反応物導入管10を通過後、温度センサ−シ−ス12に固定された高温高圧フロ−セル14に導入される。高温高圧フロ−セルを通過した溶液は、配管17を通過後、冷却フランジ8を通過して、炉体外を空冷されながら通過する。その後、圧力を設定している背圧弁19からの排出液を採取し、サンプルとする。ここで、反応物や生成物を含む排出液の加熱による影響を排除する場合には、急速昇温を実施し、反応物導入ライン10と排出液ライン17の配管をできるだけ短く、水加熱用コイル9をできるだけ長くすることが望ましい。本発明は、これらに限らず、これらと同効の反応装置であれば同様に使用することができる。   Hereinafter, with reference to FIG. 7, water is fed from the water feed pump 5, and after passing through the cooling flange 8, is sent to the furnace body 13. After passing through the tube coil 9, it is introduced into a high-temperature / high-pressure flow cell 14 supported and fixed to a temperature sensor case 12 in which a temperature sensor 11 is inserted in a high-temperature / high-pressure state. On the other hand, the reactants are fed from the reactant feed pumps 6 and 7, mixed by the tee 18, passed through the cooling flange 8, and then sent to the furnace body 13. After passing through the coiled reactant introduction tube 10, it is introduced into a high-temperature and high-pressure flow cell 14 fixed to the temperature sensor case 12. The solution that has passed through the high-temperature and high-pressure flow cell passes through the piping 17 and then passes through the cooling flange 8 and passes outside the furnace body while being air-cooled. Thereafter, the discharged liquid from the back pressure valve 19 for which the pressure is set is collected and used as a sample. Here, in order to eliminate the influence of heating of the discharge liquid containing the reactants and products, rapid heating is performed, and the piping of the reactant introduction line 10 and the discharge liquid line 17 is made as short as possible so that the water heating coil It is desirable to make 9 as long as possible. The present invention is not limited to these, and any reaction apparatus having the same effect as these can be used in the same manner.

本発明により、次のような効果が奏される。
(1)カルボン酸無水物と糖類から高速で連続的に糖類のアシル化合物を合成することができる。
(2)触媒及び有機溶媒を用いない合成プロセスを実現できる。
(3)高付加価値の糖類へ変換も可能となる。
(4)そのため、触媒及び有機溶媒の残存がなく、生体に対して有害性のない安全性の高い糖類のアシル化合物組成物を提供できる。
(5)生成物が水に溶解しない場合には、排出された油水分散水溶液に対して更に水を注入することで、洗浄しつつ油水二層に分液し、高純度の生成物を容易に回収できる。
(6)香料、医薬品、食品として有用な糖類のアシル化合物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得る新しい生産技術を提供できる。
The following effects are exhibited by the present invention.
(1) An acyl compound of a saccharide can be synthesized continuously at high speed from a carboxylic acid anhydride and a saccharide.
(2) A synthesis process without using a catalyst and an organic solvent can be realized.
(3) It can be converted into high-value-added sugars.
(4) Therefore, it is possible to provide a highly safe saccharide acyl compound composition that is free of residual catalyst and organic solvent and is not harmful to the living body.
(5) When the product does not dissolve in water, water is injected into the discharged oil-water dispersion aqueous solution to separate the oil and water into two layers while washing, and a high-purity product can be easily obtained. Can be recovered.
(6) As a new mass production process of saccharide acyl compounds useful as fragrances, pharmaceuticals, and foods, a new production technology that can replace existing production processes can be provided.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(実施例1−6)
本実施例では、合成条件を、無触媒、圧力5MPa、滞留時間9.9秒一定として温度の効果を検討とした。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、純水を流量5.0ml/minで送液し、所定温度、圧力5MPaに設定し、亜超臨界水とした。その後、トルエンを内標準として添加した(基質の5mol%)無水酢酸をポンプ6から、33wt%のグルコース飽和水溶液をポンプ7から、混合溶液が0.5ml/minとなるように送液した(混合後のグルコース濃度:0.18mol/kg、グルコース/無水酢酸=1/35モル等量)。
(Example 1-6)
In this example, the effect of temperature was examined with the synthesis conditions set to no catalyst, a pressure of 5 MPa, and a residence time of 9.9 seconds. First, pure water is sent at a flow rate of 5.0 ml / min to the apparatus in which the main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. Submerged and set to a predetermined temperature and a pressure of 5 MPa to obtain subsupercritical water. Thereafter, toluene was added as an internal standard (5 mol% of the substrate) and acetic anhydride was fed from the pump 6 and a 33 wt% saturated aqueous glucose solution was fed from the pump 7 so that the mixed solution was 0.5 ml / min (mixed) Later glucose concentration: 0.18 mol / kg, glucose / acetic anhydride = 1/35 mol equivalent).

基質送液後、30分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え、振とうし、組成分析をGC/MS分析計(Hewlett Packard社製HP6890、カラム HP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルは、Willey デ−タベ−スで一致度90%以上で確認した。また、定量分析及び市販試薬がある場合の定性分析は、トルエンを内標準としてGC−FID(Agilent社製GC6890、カラム DB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間20分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 30 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone is added to 1 ml of the collected aqueous solution, shaken, and composition analysis is performed using a GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retained) Time 2 minutes), temperature rising rate 10 ° C./min, final column temperature 250 ° C. (holding time 2 minutes)), and the mass spectrum obtained was confirmed by the Willy database with a concordance of 90% or higher. did. In addition, quantitative analysis and qualitative analysis in the case where there are commercially available reagents are GC-FID (GC6890 manufactured by Agilent, column DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 using toluene as an internal standard. C. (retention time 0.5 minutes), temperature increase rate 20 ° C./min, final column temperature 230 ° C. (retention time 20 minutes)).

温度150℃、160℃、170℃、180℃、190℃、200℃の5点の温度を検討した結果、温度180℃において、ペンタアセテートの総収率が82%と極大となり(図8)、このとき、転化率が99.7%、選択率はα−グルコースペンタアセテート(α−GAc5)16%、β−グルコースペンタアセテート(β−GAc5)15%、α−マンノースペンタアセテート(α−MAc5)19%、β−マンノースペンタアセテート(β−MAc5)10%、α−フルクトースペンタアセテート(α−FAc5)6%、β−フルクトースペンタアセテート(β−FAc5)15%となった(図9)。   As a result of examining five temperatures of 150 ° C., 160 ° C., 170 ° C., 180 ° C., 190 ° C., and 200 ° C., the total yield of pentaacetate reached a maximum of 82% at a temperature of 180 ° C. (FIG. 8). At this time, the conversion was 99.7%, the selectivity was α-glucose pentaacetate (α-GAc5) 16%, β-glucose pentaacetate (β-GAc5) 15%, α-mannose pentaacetate (α-MAc5). 19%, β-mannose pentaacetate (β-MAc5) 10%, α-fructose pentaacetate (α-FAc5) 6%, β-fructose pentaacetate (β-FAc5) 15% (FIG. 9).

(実施例7−9)
本実施例では、合成条件を、無触媒、温度200℃、滞留時間9.0秒一定として圧力の効果を検討とした。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、純水を流量5.0ml/minで送液し、温度200℃、所定圧力2MPa又は5MPa又は15MPaに設定し、亜超臨界水とした。その後、トルエンを内標準として添加した(基質の5mol%)無水酢酸をポンプ6から、33wt%のグルコース飽和水溶液をポンプ7から、混合溶液が1.0ml/minとなるように送液した(混合後のグルコース濃度:0.36mol/kg、グルコース/無水酢酸=1/30モル等量)。
(Example 7-9)
In this example, the effect of pressure was examined with the synthesis conditions set to no catalyst, a temperature of 200 ° C., and a residence time of 9.0 seconds. First, pure water is sent at a flow rate of 5.0 ml / min to the apparatus in which the main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. 7 is installed in the flow-type high-temperature and high-pressure fluid in situ infrared spectrometer shown in FIG. Submerged and set to a temperature of 200 ° C. and a predetermined pressure of 2 MPa, 5 MPa or 15 MPa to obtain subsupercritical water. Thereafter, toluene was added as an internal standard (5 mol% of the substrate) and acetic anhydride was fed from the pump 6 and a 33 wt% saturated aqueous glucose solution was fed from the pump 7 so that the mixed solution became 1.0 ml / min (mixed) Later glucose concentration: 0.36 mol / kg, glucose / acetic anhydride = 1/30 mol equivalent).

基質送液後、30分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え振とうし、組成分析をGC/MS分析計(Hewlett Packard社製HP6890、カラム HP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルは、Willey デ−タベ−スで一致度90%以上で確認した。また、定量分析及び市販試薬がある場合の定性分析は、トルエンを内標準としてGC−FID(Agilent社製GC6890、カラム DB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間20分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 30 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone was added to 1 ml of the collected aqueous solution and shaken, and composition analysis was performed using a GC / MS analyzer (HP 6890 manufactured by Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time) 2 minutes), temperature rising rate 10 ° C./min, final column temperature 250 ° C. (holding time 2 minutes)), and the obtained mass spectrum was confirmed by the Willy database with a concordance of 90% or more. . In addition, quantitative analysis and qualitative analysis in the case where there are commercially available reagents are GC-FID (GC6890 manufactured by Agilent, column DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 using toluene as an internal standard. C. (retention time 0.5 minutes), temperature increase rate 20 ° C./min, final column temperature 230 ° C. (retention time 20 minutes)).

その結果、転化率はすべて99%であり、総収率56%、62%、62%とほぼ同一であった。生成物は、温度依存性の検討の場合と同じα−グルコースペンタアセテート(α−GAc5)、β−グルコースペンタアセテート(β−GAc5)、α−マンノースペンタアセテート(α−MAc5)、β−マンノースペンタアセテート(β−MAc5)、α−フルクトースペンタアセテート(α−FAc5)、β−フルクトースペンタアセテート(β−FAc5)が生成し、圧力による効果はほとんど観察されなかった(図10)。   As a result, the conversions were all 99%, which were almost the same as the total yields of 56%, 62% and 62%. The products are the same α-glucose pentaacetate (α-GAc5), β-glucose pentaacetate (β-GAc5), α-mannose pentaacetate (α-MAc5), β-mannose pentane as in the case of the temperature dependence study. Acetate (β-MAc5), α-fructose pentaacetate (α-FAc5) and β-fructose pentaacetate (β-FAc5) were produced, and the effect due to pressure was hardly observed (FIG. 10).

(実施例10−19)
本実施例では、合成条件を、無触媒、温度200℃、圧力5MPa、滞留時間9.0秒一定として無水酢酸量の効果を検討とした。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、純水を流量5.0ml/minで送液し、所定温度、圧力5MPaに設定し、亜超臨界水とした。その後、トルエンを内標準として添加した(基質の5mol%)無水酢酸をポンプ6から、33wt%のグルコース飽和水溶液をポンプ7から、混合溶液が1.0ml/minとなるように送液した(混合後のグルコース濃度:0.01〜0.54mol/kg)。
(Examples 10-19)
In this example, the effect of the amount of acetic anhydride was examined with the synthesis conditions set to no catalyst, temperature 200 ° C., pressure 5 MPa, and residence time 9.0 seconds. First, pure water is sent at a flow rate of 5.0 ml / min to the apparatus in which the main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. Submerged and set to a predetermined temperature and a pressure of 5 MPa to obtain subsupercritical water. Thereafter, toluene was added as an internal standard (5 mol% of the substrate) and acetic anhydride was fed from the pump 6 and a 33 wt% saturated aqueous glucose solution was fed from the pump 7 so that the mixed solution became 1.0 ml / min (mixed) Later glucose concentration: 0.01-0.54 mol / kg).

基質送液後、30分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え、振とうし、組成分析をGC/MS分析計(Hewlett Packard社製HP6890、カラム HP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルは、Willey デ−タベ−スで一致度90%以上で確認した。また、定量分析及び市販試薬がある場合の定性分析は、トルエンを内標準としてGC−FID(Agilent社製GC6890、カラム DB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間20分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 30 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone is added to 1 ml of the collected aqueous solution, shaken, and composition analysis is performed using a GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retained) Time 2 minutes), temperature rising rate 10 ° C./min, final column temperature 250 ° C. (holding time 2 minutes)), and the mass spectrum obtained was confirmed by the Willy database with a concordance of 90% or higher. did. In addition, quantitative analysis and qualitative analysis in the case where there are commercially available reagents are GC-FID (GC6890 manufactured by Agilent, column DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 using toluene as an internal standard. C. (retention time 0.5 minutes), temperature increase rate 20 ° C./min, final column temperature 230 ° C. (retention time 20 minutes)).

5.5、10、15、20、25、30、35、40、45、50モル等量を実施した結果、15モル等量で転化率が99%程度となり、総収率は20モル等量付近で36%
それ以降の25等量で54%とやや向上し、50モル等量で83%となった(図11)。α−グルコースペンタアセテート(α−GAc5)、β−グルコースペンタアセテート(β−GAc5)、α−マンノースペンタアセテート(α−MAc5)、β−マンノースペンタアセテート(β−MAc5)、α−フルクトースペンタアセテート(α−FAc5)、β−フルクトースペンタアセテート(β−FAc5)が生成した。選択率は20モル等量付近まで、α−GAc5、β−GAc5、α−MAc5、α−FAc5は無水酢酸の量の増加とともに減少するが、20モル等量以上ですべてのペンタアセテートが増大した(図12)
5.5, 10, 15, 20, 25, 30, 35, 40, 45, 50 molar equivalents. As a result, 15 molar equivalents gave a conversion of about 99% and the total yield was 20 molar equivalents. 36% nearby
Subsequent 25 equivalents improved slightly to 54%, and 50 molar equivalents to 83% (FIG. 11). α-glucose pentaacetate (α-GAc5), β-glucose pentaacetate (β-GAc5), α-mannose pentaacetate (α-MAc5), β-mannose pentaacetate (β-MAc5), α-fructose pentaacetate ( α-FAc5) and β-fructose pentaacetate (β-FAc5) were produced. Selectivities up to around 20 molar equivalents, α-GAc5, β-GAc5, α-MAc5, α-FAc5 decreased with increasing amount of acetic anhydride, but all pentaacetates increased above 20 molar equivalents. (Fig. 12)

(実施例20−22)
本実施例では、合成条件を、無触媒、温度200℃、圧力5MPa、滞留時間9.0秒一定として無機塩の効果を検討とした。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、純水を流量5.0ml/minで送液し、所定温度、所定圧力に設定し、亜超臨界水とした。その後、トルエンを内標準として添加した(基質の5mol%)無水酢酸をポンプ6から、無機塩を溶解させた33wt%のグルコース飽和水溶液(グルコース/無機塩=1/1モル等量)をポンプ7から、混合溶液が1.0ml/minとなるように送液した(混合後のグルコース濃度:0.36mol/kg、グルコース/無水酢酸=1/35モル等量)。
(Examples 20-22)
In this example, the effect of the inorganic salt was examined with the synthesis conditions set to no catalyst, temperature 200 ° C., pressure 5 MPa, and residence time 9.0 seconds. First, pure water is sent at a flow rate of 5.0 ml / min to the apparatus in which the main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. 7 is installed in the flow-type high-temperature and high-pressure fluid in situ infrared spectrometer shown in FIG. Submerged and set to a predetermined temperature and a predetermined pressure to obtain subsupercritical water. Thereafter, acetic anhydride to which toluene was added as an internal standard (5 mol% of the substrate) was added from the pump 6, and a 33 wt% saturated aqueous glucose solution (glucose / inorganic salt = 1/1 mol equivalent) in which the inorganic salt was dissolved was pump 7. The solution was fed so that the mixed solution was 1.0 ml / min (glucose concentration after mixing: 0.36 mol / kg, glucose / acetic anhydride = 1/35 mol equivalent).

基質送液後、30分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え、振とうし、組成分析をGC/MS分析計(Hewlett Packard社製HP6890、カラム HP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルは、Willey デ−タベ−スで一致度90%以上で確認した。また、定量分析及び市販試薬がある場合の定性分析は、トルエンを内標準としてGC−FID(Agilent社製GC6890、カラム DB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間20分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 30 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone is added to 1 ml of the collected aqueous solution, shaken, and composition analysis is performed using a GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retained) Time 2 minutes), temperature rising rate 10 ° C./min, final column temperature 250 ° C. (holding time 2 minutes)), and the mass spectrum obtained was confirmed by the Willy database with a concordance of 90% or higher. did. In addition, quantitative analysis and qualitative analysis in the case where there are commercially available reagents are GC-FID (GC6890 manufactured by Agilent, column DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 using toluene as an internal standard. C. (retention time 0.5 minutes), temperature increase rate 20 ° C./min, final column temperature 230 ° C. (retention time 20 minutes)).

無機塩として、塩化リチウム、塩化ナトリウム、塩化カリウムを実施したところ、転化率がそれぞれ90%、99%、98%となり、総収率がそれぞれ69%、92%、77%とかなりの向上が観察された。総収率の向上に加えて、驚くべきことには、選択率が顕著に変化した。選択率はα−グルコースペンタアセテート(α−GAc5)26%、24%、21%、β−グルコースペンタアセテート(β−GAc5)28%、38%、30%、α−マンノースペンタアセテート(α−MAc5)13%、16%、14%、β−マンノースペンタアセテート(β−MAc5)8%、9%、8%、α−フルクトースペンタアセテート(α−FAc5)0%、1%、2%、β−フルクトースペンタアセテート(β−FAc5)0%、5%、4%となった(図13)。   When lithium chloride, sodium chloride, and potassium chloride were used as inorganic salts, the conversion rates were 90%, 99%, and 98%, respectively, and the overall yields were 69%, 92%, and 77%, respectively. It was done. In addition to the overall yield improvement, surprisingly, the selectivity changed significantly. The selectivity is α-glucose pentaacetate (α-GAc5) 26%, 24%, 21%, β-glucose pentaacetate (β-GAc5) 28%, 38%, 30%, α-mannose pentaacetate (α-MAc5). ) 13%, 16%, 14%, β-mannose pentaacetate (β-MAc5) 8%, 9%, 8%, α-fructose pentaacetate (α-FAc5) 0%, 1%, 2%, β- Fructose pentaacetate (β-FAc5) was 0%, 5%, and 4% (FIG. 13).

比較のために、無機塩を転化しない場合の最高値(温度200℃、圧力5MPa、滞留時間9秒、グルコース/無水酢酸=1/50モル等量)の場合の選択率α−GAc5 20%、β−GAc5 19%、α−MAc5 19%、β−MAc5 11%、α−FAc5 5%、β−FAc5 9%と比較して、α−MAc5、β−MAc5、α−FAc5、β−FAc5の選択率は低下し、α−GAc5、β−GAc5の選択率が向上した。α体よりもβ体の生成が向上する傾向にあった。   For comparison, selectivity α-GAc5 20% when the maximum value is obtained when the inorganic salt is not converted (temperature 200 ° C., pressure 5 MPa, residence time 9 seconds, glucose / acetic anhydride = 1/50 molar equivalent), β-GAc5 19%, α-MAc5 19%, β-MAc5 11%, α-FAc5 5%, β-FAc5 9% compared to α-MAc5, β-MAc5, α-FAc5, β-FAc5 The selectivity decreased and the selectivity of α-GAc5 and β-GAc5 improved. There was a tendency for the production of β-isomer to be better than that of α-isomer.

以上の結果から推定した反応機構を図14に示す。一般的に、グルコース、マンノースのような糖は、エピ化によりα体とβ体がアルドースを経由して相互変換する。しかし、アルドースからアルドース−ケトース転位で、ケトースが生成し、フルクトースと関係している。この反応機構から考えると、マンノース生成は、同じアルドース中間体を経由するという特異的な結果であり、プロセスとして安価な糖から高付加価値に変換する可能性を示している。一方、無機塩の効果は、β−グルコース>α−グルコースの順に選択率が大きく、亜臨界水中で無機塩が溶解しているために、糖が溶解しにくい状態でアシル化されるため、水の特異性がない通常のアシル化に近い反応と考えられる。   The reaction mechanism estimated from the above results is shown in FIG. In general, in sugars such as glucose and mannose, α-form and β-form are interconverted via aldose by epimerization. However, at the aldose-ketose rearrangement from aldose, ketose is produced and is associated with fructose. Considering from this reaction mechanism, mannose production is a specific result of going through the same aldose intermediate, indicating the possibility of converting an inexpensive sugar to a high added value as a process. On the other hand, the effect of the inorganic salt is that the selectivity is in the order of β-glucose> α-glucose, and since the inorganic salt is dissolved in the subcritical water, it is acylated in a state in which the sugar is hardly dissolved. It is considered that the reaction is close to normal acylation without the specificity of.

以上の実施例から、高温高圧水を反応溶媒として、無触媒で糖類のアシル化合物が高収率で合成可能であることが明らかとなった。また、糖類のアシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、糖類のアシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し回収する簡易な連続分離法も構築可能明らかとなった。   From the above examples, it was revealed that an acyl compound of a saccharide can be synthesized in a high yield without using a catalyst with high-temperature and high-pressure water as a reaction solvent. After acylation of saccharides, water is injected into the recovered aqueous solution and decanted, and after separation into an oil / water bilayer solution, an oil layer containing saccharide acyl compounds is separated and recovered, while acetic acid and It became clear that a simple continuous separation method for separating and recovering water by azeotropic distillation could be constructed.

以上詳述したように、本発明は、高温高圧流体を反応溶媒として、カルボン酸無水物及び糖類から有機溶媒を用いることなく、無触媒で糖類のアシル化合物を合成する方法及びその反応組成物に係るものであり、従来法では、糖類とカルボン酸無水物から糖類のアシル化合物の合成は有機溶媒に触媒を添加し数時間の反応を実施する必要があったが、本発明で示した亜臨界流体・超臨界流体を用いることにより、触媒無添加で、有機溶媒を使用することなく高速で連続的に糖類のアシル化合物を合成することが可能となった。このことは、香料、医薬品、食品として有用な糖類のアシル化合物を短時間で、大量に連続的に生産できるというメリットをもたらす。   As described above in detail, the present invention provides a method for synthesizing an acyl compound of a saccharide without using an organic solvent from a carboxylic acid anhydride and a saccharide using a high-temperature and high-pressure fluid as a reaction solvent, and a reaction composition thereof. In the conventional method, synthesis of an acyl compound of a saccharide from a saccharide and a carboxylic acid anhydride required a reaction for several hours by adding a catalyst to an organic solvent. By using a fluid / supercritical fluid, it becomes possible to synthesize acyl compounds of saccharides continuously at a high speed without using a catalyst and without using an organic solvent. This brings about the merit that acyl compounds of saccharides useful as fragrances, pharmaceuticals, and foods can be continuously produced in large quantities in a short time.

また、糖類のアシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、糖類のアシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収する簡易な連続分離法により、氷酢酸と水を分離し、水をリサイクルすることが可能である。これらのことから、合成・分離プロセスを単純化させることで、プロセスの初期コスト及びランニングコストを圧縮することが可能である。更に、中和処理の後処理も不必要であり、環境調和型生産が可能となる。本発明は、香料、医薬品、食品として有用な糖類のアシル化合物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得るものである。   After acylation of saccharides, water is injected into the recovered aqueous solution and decanted, and after separation into an oil / water bilayer solution, an oil layer containing saccharide acyl compounds is separated and recovered, while acetic acid and By a simple continuous separation method in which water is separated and recovered by azeotropic distillation, glacial acetic acid and water can be separated and water can be recycled. From these facts, it is possible to compress the initial cost and running cost of the process by simplifying the synthesis / separation process. Furthermore, post-treatment of the neutralization treatment is unnecessary, and environmentally conscious production becomes possible. INDUSTRIAL APPLICABILITY The present invention can replace existing production processes as a new mass production process for saccharide acyl compounds useful as fragrances, pharmaceuticals, and foods.

触媒・有機溶媒用いる糖類の糖類のアシル化を示す。The acylation of saccharides of saccharides using a catalyst / organic solvent is shown. 触媒・有機溶媒を用いる糖類のアシル化の後処理フローチャートを示す。The post-process flowchart of acylation of the saccharide | sugar using a catalyst and an organic solvent is shown. 無触媒・水溶媒を用いる糖類のアシル化の後処理フローチャートを示す。The post-process flowchart of acylation of the saccharide | sugar using a non-catalyst and a water solvent is shown. 高温高圧赤外フロ−セルを示す。A high-temperature high-pressure infrared flow cell is shown. 実施例で用いた流通型高温高圧流体その場赤外分光測定装置を示す。1 shows a flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer used in the examples. 窓なし高温高圧フローセルを示す。1 shows a high temperature and high pressure flow cell without a window. 実施例で用いた流通式高温高圧反応装置の主要部分を示す。The main part of the flow-type high temperature / high pressure reactor used in the examples is shown. 実施例における糖類のアシル化における温度依存性を示す。The temperature dependence in the acylation of the saccharide | sugar in an Example is shown. 実施例における糖類のアシル化における温度による生成物分布を示す。The product distribution by the temperature in acylation of the saccharide | sugar in an Example is shown. 実施例における糖類のアシル化における圧力依存性を示す。The pressure dependence in acylation of the saccharide | sugar in an Example is shown. 実施例における糖類のアシル化における無水酢酸量の効果を示す。The effect of the amount of acetic anhydride in the acylation of the saccharide in an Example is shown. 実施例における糖類のアシル化における無水酢酸量に対する生成物分布を示す。The product distribution with respect to the acetic anhydride amount in acylation of the saccharide | sugar in an Example is shown. 実施例における糖類のアシル化における塩依存性を示す。The salt dependence in acylation of the saccharide | sugar in an Example is shown. 実施例の場合の糖類のアシル化における推定反応機構を示す。The presumed reaction mechanism in the acylation of the saccharide | sugar in the case of an Example is shown.

符号の説明Explanation of symbols

1 ティ−又はクロス(片側口φ4mmネジ切り)
2 φ4mm×5.0mmL六角ネジ
3 ワンリングフェラル付オネジ
4 SUS316チュ−ブ
5 水送液ポンプ
6 反応物送液ポンプ
7 反応物送液ポンプ
8 冷却フランジ(冷却水が循環する)
9 水加熱コイル
10 反応物導入管
11 温度センサ
12 温度センサ−シ−ス
13 炉体
14 高温高圧フロ−セル(通常昇温ではティ−型、急速昇温ではクロス型)
15 ZnSe窓
16 配管
17 排出配管
18 ティー
19 背圧弁
21 水溶液
22 洗浄水
23 水溶液ポンプ
24 洗浄用純水送液ポンプ
25 炉体加熱システム
26 炉体
27 高温高圧赤外フロ−セル
28 冷却水(入口)
29 冷却水(出口)
30 背圧弁
31 排出水溶液受器
32 可動鏡
33 可動鏡
34 干渉計
35 光源
36 赤外レ−ザ−
37 MCT受光器
38 TGS受光器
39 解析モニタ−
40 SUS316チューブ
41 キャップ
42 温度センサ
43 ユニオン
1 Tee or cloth (one side opening φ4mm threaded)
2 φ4mm × 5.0mmL hexagonal screw 3 Male screw with one ring ferrule 4 SUS316 tube 5 Water feed pump 6 Reactant feed pump 7 Reactant feed pump 8 Cooling flange (cooling water circulates)
9 Water Heating Coil 10 Reactant Introduction Pipe 11 Temperature Sensor 12 Temperature Sensor Case 13 Furnace Body 14 High Temperature and High Pressure Flow Cell (Tee Type for Normal Temperature Increase, Cross Type for Rapid Temperature Increase)
15 ZnSe window 16 Piping 17 Discharge piping 18 Tee 19 Back pressure valve 21 Aqueous solution 22 Washing water 23 Aqueous solution pump 24 Cleaning pure water feed pump 25 Furnace heating system 26 Furnace 27 High-temperature high-pressure infrared flow cell 28 Cooling water (inlet) )
29 Cooling water (exit)
30 Back pressure valve 31 Drained aqueous solution receiver 32 Movable mirror 33 Movable mirror 34 Interferometer 35 Light source 36 Infrared laser
37 MCT receiver 38 TGS receiver 39 Analysis monitor
40 SUS316 tube 41 cap 42 temperature sensor 43 union

Claims (12)

無水カルボン酸と糖類との反応組成物であって、触媒及び有機溶媒の残存がないことを特徴とする糖類のアシル化合物組成物。   A reaction composition of a carboxylic anhydride and a saccharide, wherein there is no remaining catalyst and organic solvent, and the saccharide acyl compound composition. 無水カルボン酸と糖類から糖類のアシル化合物を合成する方法であって、高温高圧状態の亜臨界流体ないし超臨界流体を反応溶媒として使用し、触媒を用いることなく、無水カルボン酸と糖類から1段階の合成反応で糖類のアシル化合物を合成することを特徴とする糖類のアシル化合物の製造方法。   A method of synthesizing an acyl compound of a saccharide from a carboxylic anhydride and a saccharide, using a subcritical or supercritical fluid in a high temperature and high pressure state as a reaction solvent, and one step from the carboxylic anhydride and the saccharide without using a catalyst. A method for producing an acyl compound of a saccharide comprising synthesizing an acyl compound of a saccharide by the synthesis reaction of 高温高圧状態の亜臨界ないし超臨界水を反応溶媒として使用する、請求項2記載の方法。   The method according to claim 2, wherein subcritical or supercritical water in a high temperature and high pressure state is used as a reaction solvent. 糖類として、単糖類もしくは二糖類もしくは多糖類を用いる、請求項2記載の方法。   The method according to claim 2, wherein a monosaccharide, a disaccharide or a polysaccharide is used as the saccharide. 温度100〜400℃、圧力0.1〜40MPaの亜臨界流体ないし超臨界流体を反応溶媒として使用する、請求項2記載の方法。   The method according to claim 2, wherein a subcritical fluid or supercritical fluid having a temperature of 100 to 400 ° C and a pressure of 0.1 to 40 MPa is used as a reaction solvent. 亜臨界流体ないし超臨界流体として、水、酢酸、それ以外の無機溶媒、もしくは有機溶媒もしくは無機溶媒と有機溶媒の混合溶媒を用いる、請求項2記載の方法。   The method according to claim 2, wherein water, acetic acid, other inorganic solvent, an organic solvent, or a mixed solvent of an inorganic solvent and an organic solvent is used as the subcritical fluid or supercritical fluid. 糖類を溶解ないしは分散させ、無水カルボン酸と常温で混合後、反応を実施する、請求項2の方法。   The method according to claim 2, wherein the reaction is carried out after dissolving or dispersing the saccharide and mixing with carboxylic anhydride at room temperature. 安価な糖から高機能性・高付加価値糖類に変換しつつ同時アシル化し、高付加価値アシル化糖を製造する、請求項2記載の方法。   The method according to claim 2, wherein a high-value-added acylated sugar is produced by simultaneous acylation while converting from an inexpensive sugar to a high-functional and high-value-added sugar. 糖類に無機塩を添加することにより選択性を変化させる、請求項2記載の方法。   The method according to claim 2, wherein the selectivity is changed by adding an inorganic salt to the saccharide. 流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜60秒の範囲で変化させることで合成反応を実施する、請求項2記載の方法。   The method according to claim 2, wherein the synthesis reaction is carried out by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time in the range of 3 to 60 seconds. 水を送液する水送液ポンプ、水加熱用コイル、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備していることを特徴とする糖類のアシル化合物合成装置。   Water feed pump for feeding water, coil for water heating, high-temperature and high-pressure flow cell, reactant feed pump for feeding substrate, furnace body, reactant introduction pipe for introducing reactant into the furnace body, discharging reaction solution An apparatus for synthesizing acyl compounds of sugars, comprising a drain line for cooling, a cooling flange, and a back pressure valve for setting pressure. 請求項2記載の方法において、アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、糖類のアシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し回収する簡易な連続分離法。   3. The method according to claim 2, wherein after acylation, water is injected into the recovered aqueous solution and decanted, and after separation into an oil / water bilayer solution, an oil layer containing an acyl compound of a saccharide is separated and recovered, while an aqueous layer A simple continuous separation method that separates and recovers acetic acid and water by azeotropic distillation.
JP2006101070A 2006-03-31 2006-03-31 Method for producing saccharide acyl compounds Expired - Fee Related JP5077911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101070A JP5077911B2 (en) 2006-03-31 2006-03-31 Method for producing saccharide acyl compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101070A JP5077911B2 (en) 2006-03-31 2006-03-31 Method for producing saccharide acyl compounds

Publications (2)

Publication Number Publication Date
JP2007269765A true JP2007269765A (en) 2007-10-18
JP5077911B2 JP5077911B2 (en) 2012-11-21

Family

ID=38672919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101070A Expired - Fee Related JP5077911B2 (en) 2006-03-31 2006-03-31 Method for producing saccharide acyl compounds

Country Status (1)

Country Link
JP (1) JP5077911B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237084A (en) * 1997-02-27 1998-09-08 Nikka Chem Co Ltd Production of acetyl derivative of saccharide
JP2000178294A (en) * 1998-12-17 2000-06-27 T Hasegawa Co Ltd Production of pentaacetyl-beta-d-glucose
JP2005281270A (en) * 2004-03-31 2005-10-13 National Institute Of Advanced Industrial & Technology Isomerization of allyl alcohol and apparatus for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237084A (en) * 1997-02-27 1998-09-08 Nikka Chem Co Ltd Production of acetyl derivative of saccharide
JP2000178294A (en) * 1998-12-17 2000-06-27 T Hasegawa Co Ltd Production of pentaacetyl-beta-d-glucose
JP2005281270A (en) * 2004-03-31 2005-10-13 National Institute Of Advanced Industrial & Technology Isomerization of allyl alcohol and apparatus for the same

Also Published As

Publication number Publication date
JP5077911B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
EP2219779B1 (en) Conversion of glycerine to dichlorohydrins and epichlorohydrin
KumaráKusunuru et al. Copper mediated stereoselective synthesis of C-glycosides from unactivated alkynes
CN109535089B (en) Preparation method of 1H-1,2, 3-triazole
Malinowski et al. Mild Palladium‐Catalyzed Cyanation of Unprotected 2‐Iodoglycals in Aqueous Media as Versatile Tool to Access Diverse C2‐Glycoanalogues
JP2020511405A (en) HMF manufacturing method
Dong et al. Silver-catalyzed stereoselective formation of glycosides using glycosyl ynenoates as donors
JP4836181B2 (en) Acyl compound production method and apparatus
JP5077911B2 (en) Method for producing saccharide acyl compounds
Ermolenko et al. Asymmetric synthesis of amino sugars. Part 2. A novel versatile approach to the chiral non-racemic synthesis of 2-amino-2-deoxy sugars. Preparation of L-glucosamine, L-mannosamine and L-talosamine derivatives
JP5369349B2 (en) Process for producing 5-hydroxymethyl-2-furfurylaldehyde and apparatus therefor
JP5146928B2 (en) Method for producing Claisen rearrangement compound and synthesis apparatus thereof
JP4953341B2 (en) Process for producing polyacyl compound and apparatus therefor
CN108610386B (en) Preparation method of substituted benzyl or substituted phenyl beta-D-hexuronic acid glucoside
JP5549898B2 (en) Process for producing 5-hydroxymethyl-2-furfural
JP2007291096A (en) Selective sequential polyacylation and device therefor
JP5077908B2 (en) Method for producing acylated tocopherol
RU2461543C1 (en) Method for producing paracetamol
JP4784913B2 (en) Citral synthesis method and equipment
WO2002018400A2 (en) Methods of preparing disaccharide and trisaccharide c6-c12fatty acid esters with high alpha content and materials therefrom
JP5091508B2 (en) Glycoside derivatives and non-reducing disaccharides and their production
Monsen et al. Applicability of aluminum amalgam to the reduction of arylnitro groups
RU2495865C1 (en) METHOD OF PRODUCING n-ACETYLAMINOPHENOL
JP5688735B2 (en) Method for producing halogenated substituted saccharide and apparatus for producing the same
JP4310436B2 (en) Terpene hydrocarbon synthesis reaction method
JP2005281270A (en) Isomerization of allyl alcohol and apparatus for the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees