JP2007256346A - Anti-reflection film, polarizing plate and image display device, liquid crystal display device - Google Patents
Anti-reflection film, polarizing plate and image display device, liquid crystal display device Download PDFInfo
- Publication number
- JP2007256346A JP2007256346A JP2006077180A JP2006077180A JP2007256346A JP 2007256346 A JP2007256346 A JP 2007256346A JP 2006077180 A JP2006077180 A JP 2006077180A JP 2006077180 A JP2006077180 A JP 2006077180A JP 2007256346 A JP2007256346 A JP 2007256346A
- Authority
- JP
- Japan
- Prior art keywords
- group
- film
- layer
- preferable
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Surface Treatment Of Optical Elements (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Description
本発明は、液晶表示装置等の表示装置に用いた場合に反射光の色味変動の小さい反射防止フィルム、該反射防止フィルムを用いた偏光板及び画像表示装置、液晶表示装置に関する。 The present invention relates to an antireflection film having a small variation in color of reflected light when used in a display device such as a liquid crystal display device, a polarizing plate using the antireflection film, an image display device, and a liquid crystal display device.
一般に液晶表示装置は、偏光板と液晶セルから構成されている。液晶表示装置の表示品位上の欠点は、視野角と外光の写りこみである。
視野角に関しては、現在TNモードTFT液晶表示装置において、特許文献1〜3に記載のように光学補償シートを偏光板と液晶セルの間に挿入し、視野角の広い液晶表示装置が実現されている。この光学補償シートは、画像着色を解消する効果も併せ持つ。
しかしながら視野角拡大の要求は高くなる一方であり、近年、透明支持体上にディスコティック液晶性化合物からなる光学異方性層を有する光学補償シートを使用することが提案されている。この光学異方性層は、通常、ディスコティック液晶性化合物を含むディスコティック液晶組成物を配向膜の上に塗布し、配向温度よりも高い温度で加熱してディスコティック液晶性化合物を配向させ、その配向状態を固定することにより形成される。一般に、ディスコティック液晶性化合物は、大きな複屈折率を有するとともに、多様な配向形態があり、この配向形態を制御することにより、より視野角を拡大することが可能である。
一方、外光の写りこみに関しては、反射防止フィルムが有効である。反射防止フィルムは、外光の反射によるコントラスト低下や像の写りこみを防止するために、ディスプレイの最表面に配置され、光学干渉の原理を用いて反射率を低減することができる。
In general, a liquid crystal display device is composed of a polarizing plate and a liquid crystal cell. A drawback in the display quality of the liquid crystal display device is a viewing angle and reflection of external light.
Regarding the viewing angle, in the current TN mode TFT liquid crystal display device, as described in
However, the demand for increasing the viewing angle is increasing, and in recent years, it has been proposed to use an optical compensation sheet having an optically anisotropic layer made of a discotic liquid crystalline compound on a transparent support. This optically anisotropic layer is usually formed by applying a discotic liquid crystal composition containing a discotic liquid crystal compound on an alignment film, and heating it at a temperature higher than the alignment temperature to align the discotic liquid crystal compound, It is formed by fixing its orientation state. In general, a discotic liquid crystalline compound has a large birefringence and various alignment forms, and the viewing angle can be further expanded by controlling the alignment forms.
On the other hand, an antireflection film is effective for reflecting external light. The antireflection film is disposed on the outermost surface of the display in order to prevent contrast reduction and image reflection due to reflection of external light, and can reduce the reflectance using the principle of optical interference.
しかしながら従来の反射防止フィルムは、反射率低減に効果はあるが、視野角依存性には効果はないものがほとんどである。しかも反射光色味は見る位置によって外光の影響を受けて色味が変化してしまっていた。 However, most conventional antireflection films are effective in reducing the reflectivity, but are not effective in viewing angle dependency. Moreover, the color of the reflected light has been affected by the influence of external light depending on the viewing position.
また、従来の技術では、主に、17インチ以下の小型あるいは中型の液晶表示装置を想定して、反射防止フィルムおよび光学補償シートが開発されていた。しかし、最近では、19インチ以上の大型、かつ輝度の高い液晶表示装置も想定する必要がある。大型の液晶表示装置の偏光板に、従来の反射防止フィルムを保護フィルムとして、更に従来の光学補償シートを装着したところ、表示装置の端になるにつれて、色味の変化が大きくなって表示装置の視認性を著しく落とすことが明らかになってきた。 In the prior art, an antireflection film and an optical compensation sheet have been developed mainly assuming a small-sized or medium-sized liquid crystal display device of 17 inches or less. However, recently, it is also necessary to assume a liquid crystal display device having a large size of 19 inches or more and high brightness. When a conventional anti-reflection film is used as a protective film and a conventional optical compensation sheet is attached to a polarizing plate of a large liquid crystal display device, the change in color becomes larger as it becomes the edge of the display device. It has become clear that visibility is significantly reduced.
本発明は、液晶表示装置に用いられている従来の反射防止フィルムが有していた上記のような反射光の色味変化に着目して、視野角の広い液晶表示装置に使用した場合に、見る位置が変化しても、反射光の色味変化を小さくすることのできる反射防止フィルムを提供することを課題とする。とりわけ、大型の液晶表示装置に適用した場合でも、表示画面全域での反射光色味変化を抑えることができ、表示品位の高い画像を表示することができる反射防止フィルムを提供することを課題とする。また、本発明は、液晶表示装置に用いて反射光の色味変化の抑制に寄与する偏光板、及び反射光の色味変化が小さく、表示品位の高い液晶表示装置を提供することを課題とする。 The present invention pays attention to the color change of the reflected light as described above which the conventional antireflection film used in the liquid crystal display device has, and when used in a liquid crystal display device with a wide viewing angle, It is an object of the present invention to provide an antireflection film that can reduce the color change of reflected light even when the viewing position changes. In particular, even when applied to a large-sized liquid crystal display device, it is an object to provide an antireflection film that can suppress a change in reflected light color in the entire display screen and display an image with high display quality. To do. Another object of the present invention is to provide a polarizing plate that contributes to the suppression of the color change of reflected light by using it in a liquid crystal display device, and a liquid crystal display device having a small display color change and high display quality. To do.
本発明の目的は、下記反射防止フィルム、該反射防止フィルムを備えた下記偏光板、及び画像表示装置、液晶表示装置により達成される。
1.CIE標準光源D65の、波長380nmから780nmの領域における入射角5°の入射光に対して、出射角−5°〜−80°の範囲における反射光の色味変化が、CIE1976L*a*b*色空間において、Δa*≦1、Δb*≦1を満たすことを特徴とする反射防止フィルム。
(ただしΔa*=a* max−a* min、Δb*=b* max−b* minを表し、a* max及びa* minは、それぞれa*値の最大値及び最小値;b* max及びb* minは、それぞれb*値の最大値及び最小値を表す。)
2.前記反射防止フィルムの内部ヘイズ値が0〜35%であり、かつ表面ヘイズ値が2〜15%であることを特徴とする上記1に記載の反射防止フィルム。
3.フィルムのゴニオフォトメータで測定される散乱光プロファイルの出射角0°の光強度に対する30°の散乱光強度が0.01%〜0.05%であることを特徴とする上記1または2に記載の反射防止フィルム。
4.偏光膜と、該偏光膜の両側に設けられた2枚の保護フィルムとを有する偏光板において、該保護フィルムの少なくとも一方が、上記1〜3のいずれかに記載の反射防止フィルムであることを特徴とする偏光板。
5.前記2枚の保護フィルムの少なくとも一方が、光学異方性層を有する光学補償シートを有することを特徴とする上記4に記載の偏光板。
6.前記光学補償シートが、前記反射防止フィルムとは前記偏光膜の反対側に配置されており、前記光学異方性層が液晶性化合物の配向を固定したものであることを特徴とする上記5に記載の偏光板。
7.前記光学補償シートが、前記偏光膜と貼り合わせる面とは反対側の面に、前記液晶性化合物がディスコティック構造単位を有する化合物からなる前記光学異方性層を有することを特徴とする上記6に記載の偏光板。
8.前記光学異方性層中に、フルオロ脂肪族基含有ポリマーを少なくとも2種含有する上記5〜7のいずれかに記載の偏光板。
9.上記1〜3のいずれかに記載の反射防止フィルムを備えたことを特徴とする画像表示装置。
10.上記4〜8のいずれかに記載の偏光板を少なくとも一枚有することを特徴とする液晶表示装置。
11.正面から上下左右0°〜80°の範囲での色味変化が、CIE1976L*a*b*色空間において、Δa*≦3.5、Δb*≦6.5を満たすことを特徴とする請求項10に記載の液晶表示装置。
(ただしΔa*=a* max−a* min、Δb*=b* max−b* minを表し、a* max及びa* minは、それぞれa*値の最大値及び最小値;b* max及びb* minは、それぞれb*値の最大値及び最小値を表す。)
12.表示画面の対角が19インチ以上であることを特徴とする上記9に記載の画像表示装置又は上記10若しくは11に記載の液晶表示装置。
The object of the present invention is achieved by the following antireflection film, the following polarizing plate provided with the antireflection film, an image display device, and a liquid crystal display device.
1. With respect to incident light having an incident angle of 5 ° in the wavelength region of 380 nm to 780 nm of the CIE standard light source D 65 , the color change of the reflected light in the range of the output angle of −5 ° to −80 ° is CIE 1976 L * a * b. * An antireflection film satisfying Δa * ≦ 1 and Δb * ≦ 1 in a color space.
(Where Δa * = a * max− a * min , Δb * = b * max− b * min , where a * max and a * min are the maximum and minimum values of the a * value, respectively; b * max and (b * min represents the maximum value and the minimum value of the b * values, respectively.)
2. 2. The antireflection film as described in 1 above, wherein the antireflection film has an internal haze value of 0 to 35% and a surface haze value of 2 to 15%.
3. 3. The scattered light intensity measured at 30 ° with respect to the light intensity at an output angle of 0 ° of the scattered light profile measured with a goniophotometer of the film is 0.01% to 0.05%. Antireflection film.
4). In the polarizing plate having a polarizing film and two protective films provided on both sides of the polarizing film, at least one of the protective films is the antireflection film according to any one of 1 to 3 above. A characteristic polarizing plate.
5). 5. The polarizing plate according to 4 above, wherein at least one of the two protective films has an optical compensation sheet having an optically anisotropic layer.
6). The above 5 is characterized in that the optical compensation sheet is disposed on the opposite side of the polarizing film from the antireflection film, and the optically anisotropic layer fixes the orientation of the liquid crystalline compound. The polarizing plate as described.
7). The optical compensation sheet has the optically anisotropic layer made of a compound in which the liquid crystalline compound has a discotic structural unit on a surface opposite to a surface to be bonded to the polarizing film. The polarizing plate as described in.
8). The polarizing plate according to any one of 5 to 7 above, wherein the optically anisotropic layer contains at least two kinds of fluoroaliphatic group-containing polymers.
9. An image display device comprising the antireflection film as described in any one of 1 to 3 above.
10. A liquid crystal display device comprising at least one polarizing plate according to any one of 4 to 8 above.
11. The color change in the range of 0 ° to 80 ° from top to bottom and left and right satisfies Δa * ≦ 3.5 and Δb * ≦ 6.5 in the CIE1976L * a * b * color space. 10. A liquid crystal display device according to 10.
(Where Δa * = a * max− a * min , Δb * = b * max− b * min , where a * max and a * min are the maximum and minimum values of the a * value, respectively; b * max and (b * min represents the maximum value and the minimum value of the b * values, respectively.)
12 12. The image display device as described in 9 above or the liquid crystal display device as described in 10 or 11 above, wherein the diagonal of the display screen is 19 inches or more.
本発明では、上記のように特定された反射防止フィルムを液晶表示装置等の画像表示装置の表面に設けることにより、また、そのような反射防止フィルムを用いた偏光板を液晶表示装置の表面に設けることにより、どの方向から見ても反射光の色味の角度変化を抑えることができ、室内外を問わずユーザー使用環境下での液晶表示装置等の表示品位を高めることができる。 In the present invention, the antireflection film specified as described above is provided on the surface of an image display device such as a liquid crystal display device, and a polarizing plate using such an antireflection film is provided on the surface of the liquid crystal display device. By providing, the angle change of the color of reflected light can be suppressed from any direction, and the display quality of a liquid crystal display device or the like in a user use environment can be enhanced regardless of indoors or outdoors.
以下、本発明について更に詳細に説明する。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。 Hereinafter, the present invention will be described in more detail. In the present specification, when a numerical value represents a physical property value, a characteristic value, etc., the description “(numerical value 1) to (numerical value 2)” means “(numerical value 1) or more and (numerical value 2) or less”. . In the present specification, the description “(meth) acrylate” means “at least one of acrylate and methacrylate”. The same applies to “(meth) acrylic acid” and the like.
本発明は、反射防止フィルムの反射光の色味の角度依存性が小さいことを、CIE標準光源D65の、波長380nmから780nmの領域における入射光に対して、出射角−5°〜−80°の範囲における反射光の色味が、CIE1976L*a*b*色空間において、Δa*≦1、Δb*≦1を満たす(ただしΔa*=a* max−a* min、Δb*=b* max−b* minを表し、a* max及びa* minは、それぞれa*値の最大値及び最小値;b* max及びb* minは、それぞれb*値の最大値及び最小値を表す。)ことで規定したものである。
すなわち、標準的な昼光光源であるCIE標準光源D65からの白色光(波長380nmから780nmの領域)が反射防止フィルム面に垂直から少しずれて(入射角5°)入射したときに、反射防止フィルムにより低減されて反射された光が、広い視野角範囲(出射角−5°〜−80°の範囲)において、その色味a*、b*の変化が小さい(Δa*=a* max−a* min≦1、Δb*=b* max−b* min≦1を満たす)ことを、意味している。
反射防止フィルムの反射光色味としては、正面から見た反射光の色味がニュートラルであること(絶対値としてa*≦1かつb*≦1)も重要ではあるが、人が視認する場合においては、正面の反射光の色味そのものよりも、見る角度を変化させた時の色味変動の方が気になる。従来の反射防止フィルムは、Δa*、Δb*は1.5程度以上あり、見る角度を変化させた時の色味の変化が目立ってしまっていた。Δa*≦1、Δb*≦1であれば、色味変化についての視認性としてほぼ満足できる。Δa*≦0.5、Δb*≦0.5であればより好ましく、Δa*≦0.3、Δb*≦0.3であればさらに好ましい。
The present invention shows that the angle dependency of the color of the reflected light of the antireflection film is small, and the emission angle of −5 ° to −80 with respect to the incident light of the CIE standard light source D 65 in the wavelength region of 380 nm to 780 nm. The color of the reflected light in the range of ° satisfies Δa * ≦ 1, Δb * ≦ 1 in the CIE1976L * a * b * color space (where Δa * = a * max− a * min , Δb * = b * max− b * min , where a * max and a * min are the maximum and minimum values of the a * value, respectively; b * max and b * min are the maximum and minimum values of the b * value, respectively. ).
That is, when white light (region of wavelength 380 nm to 780 nm) from the CIE standard light source D 65, which is a standard daylight light source, is incident on the antireflection film surface with a slight deviation from the vertical (
As the reflected light color of the antireflection film, it is important that the color of the reflected light viewed from the front is neutral (a * ≦ 1 and b * ≦ 1 as absolute values). In, the color variation when the viewing angle is changed is more worrisome than the color of the reflected light of the front itself. The conventional antireflection film has Δa * and Δb * of about 1.5 or more, and the change in color when the viewing angle is changed is conspicuous. If Δa * ≦ 1, Δb * ≦ 1, the visibility with respect to the color change is almost satisfactory. More preferably, Δa * ≦ 0.5 and Δb * ≦ 0.5, and even more preferably Δa * ≦ 0.3 and Δb * ≦ 0.3.
また、反射防止フィルムは、さらに、フィルムの内部散乱に起因する内部ヘイズ値が0〜35%の範囲であり、かつ表面散乱に起因する表面ヘイズ値が2〜15%であることが、好ましい。内部ヘイズ値が35%よりもある程度大きくなると、正面に透過してくる光が大きく散乱されることとなり、コントラスト低下と表示像のぼけが生じる。また、表面ヘイズ値が、2%よりもある程度小さくなると、薄膜干渉による色味変化が目立つこととなり、15%よりもある程度大きくなると、内部ヘイズと同様に、正面コントラスト低下と表示像のぼけ、またギラツキを生じさせることとなってしまう。内部ヘイズ値は5〜30%、であればより好ましく、10〜25%であればさらに好ましい。表面ヘイズ値は3〜12%、であればより好ましく、5〜10%であればさらに好ましい。 The antireflection film preferably further has an internal haze value of 0 to 35% due to internal scattering of the film and a surface haze value of 2 to 15% due to surface scattering. If the internal haze value becomes larger than 35% to some extent, the light transmitted to the front is greatly scattered, resulting in a decrease in contrast and blurring of the display image. When the surface haze value is smaller than 2% to some extent, the color change due to thin film interference becomes conspicuous. When the surface haze value is larger than 15%, the front contrast is lowered and the display image is blurred as in the case of the internal haze. It will cause glare. The internal haze value is more preferably 5 to 30%, and further preferably 10 to 25%. The surface haze value is more preferably 3 to 12%, further preferably 5 to 10%.
また、反射防止フィルムは、さらに、ゴニオフォトメータで測定される散乱光プロファイルの出射角0°の光強度に対する30°の散乱光強度が0.01%〜0.05%であることも、好ましい。強度比が、0.01%よりもある程度小さいと、透過光の色味変化が大きくなり、0.05%よりもある程度大きいと、正面コントラスト低下と表示像のぼけが生じる。
以下、本発明の反射防止フィルムについて、詳細に説明する。
Further, the antireflection film preferably further has a scattered light intensity of 30 ° with respect to the light intensity at an output angle of 0 ° of the scattered light profile measured with a goniophotometer is 0.01% to 0.05%. . If the intensity ratio is somewhat smaller than 0.01%, the color change of the transmitted light is increased. If it is larger than 0.05%, the front contrast is lowered and the display image is blurred.
Hereinafter, the antireflection film of the present invention will be described in detail.
1.反射防止フィルムの層構成
本発明の反射防止フィルムについては、公知の層構成を使用することができる。たとえば、代表的な例としては以下のようなものがある。
a.支持体/ハードコート層/低屈折率層(図1)
b.支持体/ハードコート層/高屈折率層/低屈折率層(図2)
c.支持体/ハードコート層/中屈折率層/高屈折率層/低屈折率層(図3)
1. Layer structure of antireflection film About the antireflection film of this invention, a well-known layer structure can be used. For example, the following are typical examples.
a. Support / hard coat layer / low refractive index layer (FIG. 1)
b. Support / hard coat layer / high refractive index layer / low refractive index layer (FIG. 2)
c. Support / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index layer (FIG. 3)
図1のように、支持体(1)上にハードコート層(2)を塗布した上に、低屈折率層(5)を積層すると、反射防止フィルムとして好適に用いることができる。低屈折率層(5)はハードコート層(2)の上に低屈折率層(5)を光の波長の1/4前後の膜厚で形成することにより、薄膜干渉の原理により表面反射を低減することができる。
また、図2のように支持体(1)上にハードコート層(2)を塗布した上に、高屈折率層(4)、低屈折率層(5)を積層しても反射防止フィルムとして好適に用いることができる。さらに、図3のように支持体(1)、ハードコート層(2)、中屈折率層(3)、高屈折率層(4)、そして低屈折率層(5)の順序の層構成を設置することにより、反射率を1%以下とすることができる。
反射防止フィルムを構成する各層の屈折率は以下の関係を満たすことが好ましい。
ハードコート層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
As shown in FIG. 1, when the hard coat layer (2) is coated on the support (1) and the low refractive index layer (5) is laminated, it can be suitably used as an antireflection film. The low-refractive index layer (5) is formed on the hard coat layer (2) with a low-refractive index layer (5) having a film thickness of about 1/4 of the wavelength of light, thereby reflecting the surface by the principle of thin film interference. Can be reduced.
In addition, as shown in FIG. 2, an antireflection film can be obtained by applying a hard coat layer (2) on a support (1) and laminating a high refractive index layer (4) and a low refractive index layer (5). It can be used suitably. Further, as shown in FIG. 3, the support (1), the hard coat layer (2), the medium refractive index layer (3), the high refractive index layer (4), and the low refractive index layer (5) are arranged in this order. By installing, the reflectance can be reduced to 1% or less.
The refractive index of each layer constituting the antireflection film preferably satisfies the following relationship.
Refractive index of hard coat layer> refractive index of transparent support> refractive index of low refractive index layer
(防眩性の付与)
a.ないしc.の構成において、ハードコート層(2)は防眩性を有する防眩層とすることができる。防眩性は図4に示されるようなマット粒子の分散によるものでも、図5に示されるようなエンボス加工などの方法による表面の賦形によって形成されてもよい。マット粒子の分散によって形成される防眩層は、バインダーとバインダー中に分散された透光性粒子とからなる。防眩性を有する防眩層は、好ましくは防眩性とハードコート性を兼ね備えており、複数層、例えば2層〜4層で構成されていてもよい。
(Give antiglare properties)
a. Or c. In this configuration, the hard coat layer (2) can be an antiglare layer having antiglare properties. The antiglare property may be formed by dispersion of matte particles as shown in FIG. 4 or may be formed by surface shaping by a method such as embossing as shown in FIG. The antiglare layer formed by dispersing the matte particles is composed of a binder and translucent particles dispersed in the binder. The antiglare layer having antiglare properties preferably has both antiglare properties and hard coat properties, and may be composed of a plurality of layers, for example, 2 to 4 layers.
(他の機能層)
また透明支持体(1)とそれよりも表面側の層の間あるいは最表面に設けても良い層として、干渉ムラ(虹ムラ)防止層、帯電防止層(ディスプレイ側からの表面抵抗値を下げる等の要求がある場合、表面等へのゴミつきが問題となる場合)、別のハードコート層(1層のハードコート層ないし防眩層だけで硬度が不足する場合)、ガスバリアー層、水吸収層(防湿層)、密着改良層、防汚層(汚染防止層)、等が挙げられる。
(Other functional layers)
In addition, as a layer that may be provided between the transparent support (1) and the layer on the surface side or the outermost layer, an interference unevenness (rainbow unevenness) prevention layer and an antistatic layer (reducing the surface resistance value from the display side) If there is a demand for such as, if dust on the surface becomes a problem), another hard coat layer (if one hard coat layer or antiglare layer is insufficient in hardness), gas barrier layer, water Examples include an absorption layer (moisture-proof layer), an adhesion improving layer, an antifouling layer (contamination-preventing layer), and the like.
2.支持体
本発明の反射防止フィルムの支持体としては、透明支持体であるのが好ましい。前記支持体は、主に光学的等方性で、光透過率が80%以上であれば、特に材料の制限はないが、ポリマーフィルムが好ましい。ポリマーの具体例として、セルロースエステル類(例、セルロースジアセテート、セルローストリアセテート)、ノルボルネン系ポリマー、ポリ(メタ)アクリレートエステル類のフィルムなどを挙げることができ、多くの市販のポリマーを好適に用いることが可能である。
2. Support The support of the antireflection film of the present invention is preferably a transparent support. The support is not particularly limited as long as it is mainly optically isotropic and has a light transmittance of 80% or more, but a polymer film is preferable. Specific examples of the polymer include cellulose esters (eg, cellulose diacetate, cellulose triacetate), norbornene polymers, poly (meth) acrylate esters, and the like, and many commercially available polymers are preferably used. Is possible.
支持体の厚さは通常25μm〜1000μm程度のものを用いることができるが、好ましくは25μm〜250μmであり、30μm〜90μmであることがより好ましい。
支持体の幅は任意のものを使うことができるが、ハンドリング、得率、生産性の点から通常は100〜5000mmのものが用いられ、800〜3000mmであることが好ましく、1000〜2000mmであることがさらに好ましい。
支持体の表面は平滑であることが好ましく、平均粗さRaの値が1μm以下であることが好ましく、0.0001〜0.5μmであることが好ましく、0.001〜0.1μmであることがさらに好ましい。
Although the thickness of a support body can use the thing of about 25 micrometers-1000 micrometers normally, Preferably it is 25 micrometers-250 micrometers, and it is more preferable that it is 30 micrometers-90 micrometers.
Any width of the support can be used, but from the viewpoint of handling, yield, and productivity, a width of 100 to 5000 mm is usually used, preferably 800 to 3000 mm, and preferably 1000 to 2000 mm. More preferably.
The surface of the support is preferably smooth, and the average roughness Ra is preferably 1 μm or less, preferably 0.0001 to 0.5 μm, and 0.001 to 0.1 μm. Is more preferable.
<セルロースアシレートフィルム>
上記各種フィルムの中でも、透明性が高く、光学的に複屈折が少なく、製造が容易であり、偏光板の保護フィルムとして一般に用いられているセルロースアシレートフィルムが好ましい。
セルロースアシレートフィルムについては力学特性、透明性、平面性などを改良する目的のため、種々の改良技術が知られており、発明協会公開技報公技番号2001−1745号に記載された技術は公知のものとして本発明のフィルムに用いることができる。
<Cellulose acylate film>
Among the various films described above, a cellulose acylate film having high transparency, optically low birefringence, easy production, and generally used as a protective film for polarizing plates is preferable.
For cellulose acylate film, various improvement techniques are known for the purpose of improving mechanical properties, transparency, flatness and the like. It can use for the film of this invention as a well-known thing.
本発明ではセルロースアシレートフィルムの中でもセルローストリアセテートフィルムが特に好ましく、セルロースアシレートフィルムに酢化度が55〜62.5%であるセルロースアセテートを使用することが好ましく、57〜62%であるセルロースアセテートを使用することが更に好ましく、59.0〜61.5%であるセルロースアセテートを使用することが最も好ましい。酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D−817−91(セルロースアセテート等の試験法)におけるアセチル化度の測定および計算に従う。
セルロースアシレートの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。
また、本発明に使用するセルロースアシレートは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の値が1.0に近いこと、換言すれば分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜1.7であることが好ましく、1.3〜1.65であることがさらに好ましく、1.4〜1.6であることが最も好ましい。
In the present invention, among the cellulose acylate films, a cellulose triacetate film is particularly preferable, and cellulose acetate having an acetylation degree of 55 to 62.5% is preferably used for the cellulose acylate film, and the cellulose acetate having 57 to 62% is used. Is more preferable, and it is most preferable to use cellulose acetate which is 59.0 to 61.5%. The degree of acetylation means the amount of bound acetic acid per unit mass of cellulose. The degree of acetylation follows the measurement and calculation of the degree of acetylation in ASTM: D-817-91 (test method for cellulose acetate and the like).
The viscosity average degree of polymerization (DP) of cellulose acylate is preferably 250 or more, and more preferably 290 or more.
In addition, the cellulose acylate used in the present invention has a Mw / Mn (Mw is mass average molecular weight, Mn is number average molecular weight) value by gel permeation chromatography close to 1.0, in other words, a molecular weight distribution. Narrow is preferred. The specific value of Mw / Mn is preferably 1.0 to 1.7, more preferably 1.3 to 1.65, and most preferably 1.4 to 1.6. preferable.
一般に、セルロースアシレートの2,3,6の水酸基は全体の置換度の1/3づつに均等に分配されるわけではなく、6位水酸基の置換度が小さくなる傾向がある。本発明ではセルロースアシレートの6位水酸基の置換度が、2,3位に比べて多いほうが好ましい。
全体の置換度に対して6位の水酸基が30〜40%の範囲でアシル基で置換されていることが好ましく、更に32%以上、特に34%以上であることが好ましい。さらにセルロースアシレートの6位アシル基の置換度が0.88以上であることが好ましい。6位水酸基は、アセチル基以外に炭素数3以上のアシル基であるプロピオニル基、ブチロイル基、バレロイル基、ベンゾイル基、アクリロイル基などで置換されていてもよい。各位置の置換度の測定は、NMRによって求めることができる。
本発明ではセルロースアシレートとして、特開平11−5851号公報の段落[0043]〜[0044][合成例1]、段落[0048]〜[0049][合成例2]、段落[0051]〜[0052][合成例3]に記載の方法で得られたセルロースアセテートを用いることができる。
In general, the 2, 3, and 6 hydroxyl groups of cellulose acylate are not evenly distributed by 1/3 of the total substitution degree, and the substitution degree of the 6-position hydroxyl group tends to be small. In the present invention, it is preferable that the substitution degree of the 6-position hydroxyl group of cellulose acylate is larger than that of the 2- and 3-positions.
The 6-position hydroxyl group is preferably substituted with an acyl group in the range of 30 to 40% with respect to the total substitution degree, more preferably 32% or more, and particularly preferably 34% or more. Furthermore, the substitution degree of the 6-position acyl group of cellulose acylate is preferably 0.88 or more. The 6-position hydroxyl group may be substituted with a propionyl group, butyroyl group, valeroyl group, benzoyl group, acryloyl group or the like, which is an acyl group having 3 or more carbon atoms, in addition to the acetyl group. The degree of substitution at each position can be determined by NMR.
In the present invention, as the cellulose acylate, paragraphs [0043] to [0044] [Synthesis Example 1], paragraphs [0048] to [0049] [Synthesis Example 2], and paragraphs [0051] to [0051] of JP-A No. 11-5851 are disclosed. [0052] Cellulose acetate obtained by the method described in [Synthesis Example 3] can be used.
<セルロースアシレートフィルムの製造>
本発明で用いられるセルロースアシレートフィルムは、溶液製膜法(ソルベントキャスト法)により製造することができる。ソルベントキャスト法では、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造する。
<Manufacture of cellulose acylate film>
The cellulose acylate film used in the present invention can be produced by a solution casting method (solvent casting method). In the solvent cast method, a film is produced using a solution (dope) in which cellulose acylate is dissolved in an organic solvent.
有機溶媒は、炭素原子数が3〜12のエーテル、炭素原子数が3〜12のケトン、炭素原子数が3〜12のエステルおよび炭素原子数が1〜6のハロゲン化炭化水素から選ばれる溶媒を含むことが好ましい。二種類以上の有機溶媒を混合して用いてもよい。 The organic solvent is a solvent selected from ethers having 3 to 12 carbon atoms, ketones having 3 to 12 carbon atoms, esters having 3 to 12 carbon atoms, and halogenated hydrocarbons having 1 to 6 carbon atoms. It is preferable to contain. Two or more organic solvents may be mixed and used.
エーテル、ケトンおよびエステルは、環状構造を有していてもよい。エーテル、ケトンおよびエステルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、有機溶媒として用いることができる。有機溶媒は、アルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する有機溶媒の場合、その好ましい炭素原子数は、いずれかの官能基を有する化合物の上記で特定した好ましい炭素原子数の範囲内であればよい。 The ether, ketone and ester may have a cyclic structure. A compound having two or more functional groups of ether, ketone and ester (that is, —O—, —CO— and —COO—) can also be used as the organic solvent. The organic solvent may have another functional group such as an alcoholic hydroxyl group. In the case of an organic solvent having two or more types of functional groups, the preferred number of carbon atoms may be within the range of the preferred number of carbon atoms specified above for the compound having any functional group.
炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトールが含まれる。
炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロヘキサノンおよびメチルシクロヘキサノンが含まれる。
炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテートが含まれる。
Examples of the ether having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, anisole and phenetole.
Examples of ketones having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, diisobutyl ketone, cyclohexanone and methylcyclohexanone.
Examples of the esters having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate.
二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノールが含まれる。 Examples of the organic solvent having two or more kinds of functional groups include 2-ethoxyethyl acetate, 2-methoxyethanol and 2-butoxyethanol.
ハロゲン化炭化水素の炭素原子数は、1または2であることが好ましく、1であることが最も好ましい。ハロゲン化炭化水素のハロゲンは、塩素であることが好ましい。ハロゲン化炭化水素の水素原子が、ハロゲンに置換されている割合は、25〜75モル%であることが好ましく、30〜70モル%であることがより好ましく、35〜65モル%であることがさらに好ましく、40〜60モル%であることが最も好ましい。メチレンクロリドが、代表的なハロゲン化炭化水素である。 The number of carbon atoms of the halogenated hydrocarbon is preferably 1 or 2, and most preferably 1. The halogen of the halogenated hydrocarbon is preferably chlorine. The proportion of halogenated hydrocarbon hydrogen atoms replaced with halogen is preferably 25 to 75 mol%, more preferably 30 to 70 mol%, and more preferably 35 to 65 mol%. More preferably, it is most preferable that it is 40-60 mol%. Methylene chloride is a representative halogenated hydrocarbon.
セルロースアシレート溶液(ドープ)の調整は一般的な方法で行える。一般的な方法とは、0℃以上の温度(常温または高温)で処理することを意味する。溶液の調製は、通常のソルベントキャスト法におけるドープの調製方法および装置を用いて実施することができる。なお、一般的な方法の場合は、有機溶媒としてハロゲン化炭化水素(特にメチレンクロリド)を用いることが好ましい。非塩素系溶媒を用いることもでき、それについては発明協会公開技報公技番号2001−1745号に記載されているものが挙げられる。
セルロースアシレートの量は、得られる溶液中に10〜40質量%含まれるように調整することが好ましく、10〜35質量%であることが更に好ましく、10〜30質量%であることが最も好ましい。有機溶媒(主溶媒)中には、後述する任意の添加剤を添加しておいてもよい。
溶液は、常温(0〜40℃)でセルロースアシレートと有機溶媒とを攪拌することにより調製することができる。高濃度の溶液は、加圧および加熱条件下で攪拌してもよい。具体的には、セルロースアシレートと有機溶媒とを加圧容器に入れて密閉し、加圧下で溶媒の常温における沸点以上、かつ溶媒が沸騰しない範囲の温度に加熱しながら攪拌する。加熱温度は、通常は40℃以上であり、好ましくは60〜200℃であり、さらに好ましくは80〜110℃である。
The cellulose acylate solution (dope) can be adjusted by a general method. A general method means processing at a temperature of 0 ° C. or higher (room temperature or high temperature). The solution can be prepared by using a dope preparation method and apparatus in a normal solvent cast method. In the case of a general method, it is preferable to use a halogenated hydrocarbon (particularly methylene chloride) as the organic solvent. A non-chlorinated solvent can also be used, and examples thereof include those described in JIII Journal of Technical Disclosure No. 2001-1745.
The amount of cellulose acylate is preferably adjusted so as to be contained in the obtained solution in an amount of 10 to 40% by mass, more preferably 10 to 35% by mass, and most preferably 10 to 30% by mass. . Arbitrary additives described later may be added to the organic solvent (main solvent).
The solution can be prepared by stirring cellulose acylate and an organic solvent at room temperature (0 to 40 ° C.). High concentration solutions may be stirred under pressure and heating conditions. Specifically, cellulose acylate and an organic solvent are placed in a pressure vessel and sealed, and stirred while being heated to a temperature equal to or higher than the boiling point of the solvent at normal temperature and in a range where the solvent does not boil. The heating temperature is usually 40 ° C. or higher, preferably 60 to 200 ° C., more preferably 80 to 110 ° C.
各成分は予め粗混合してから容器に入れてもよい。また、順次容器に投入してもよい。
容器は攪拌できるように構成されている必要がある。窒素ガス等の不活性気体を注入して容器を加圧することができる。また、加熱による溶媒の蒸気圧の上昇を利用してもよい。あるいは、容器を密閉後、各成分を圧力下で添加してもよい。
加熱する場合、容器の外部より加熱することが好ましい。例えば、ジャケットタイプの加熱装置を用いることができる。また、容器の外部にプレートヒーターを設け、配管して液体を循環させることにより容器全体を加熱することもできる。
容器内部に攪拌翼を設けて、これを用いて攪拌することが好ましい。攪拌翼は、容器の壁付近に達する長さのものが好ましい。攪拌翼の末端には、容器の壁の液膜を更新するため、掻取翼を設けることが好ましい。
容器には、圧力計、温度計等の計器類を設置してもよい。容器内で各成分を溶剤中に溶解する。調製したドープは冷却後容器から取り出すか、あるいは、取り出した後、熱交換器等を用いて冷却する。
Each component may be coarsely mixed in advance and then placed in a container. Moreover, you may put into a container sequentially.
The container needs to be configured so that it can be stirred. The container can be pressurized by injecting an inert gas such as nitrogen gas. Moreover, you may utilize the raise of the vapor pressure of the solvent by heating. Or after sealing a container, you may add each component under pressure.
When heating, it is preferable to heat from the outside of the container. For example, a jacket type heating device can be used. The entire container can also be heated by providing a plate heater outside the container and piping to circulate the liquid.
It is preferable to provide a stirring blade inside the container and stir using this. The stirring blade preferably has a length that reaches the vicinity of the wall of the container. A scraping blade is preferably provided at the end of the stirring blade in order to renew the liquid film on the vessel wall.
Instruments such as a pressure gauge and a thermometer may be installed in the container. Each component is dissolved in a solvent in the container. The prepared dope is taken out of the container after cooling, or taken out and then cooled using a heat exchanger or the like.
冷却溶解法により、溶液を調製することもできる。冷却溶解法では、通常の溶解方法では溶解させることが困難な有機溶媒中にもセルロースアシレートを溶解させることができる。なお、通常の溶解方法でセルロースアセテートを溶解できる溶媒であっても、冷却溶解法によると迅速に均一な溶液が得られるとの効果がある。
冷却溶解法では最初に、室温で有機溶媒中にセルロースアシレートを撹拌しながら徐々に添加する。
セルロースアシレートの量は、この混合物中に10〜40質量%含まれるように調整することが好ましい。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。さらに、混合物中には後述する任意の添加剤を添加しておいてもよい。
A solution can also be prepared by a cooling dissolution method. In the cooling dissolution method, cellulose acylate can be dissolved in an organic solvent that is difficult to dissolve by a normal dissolution method. In addition, even if it is a solvent which can melt | dissolve a cellulose acetate with a normal melt | dissolution method, there exists an effect that a uniform solution can be obtained rapidly according to a cooling melt | dissolution method.
In the cooling dissolution method, first, cellulose acylate is gradually added to an organic solvent at room temperature while stirring.
The amount of cellulose acylate is preferably adjusted so as to be contained in the mixture at 10 to 40% by mass. The amount of cellulose acylate is more preferably 10 to 30% by mass. Furthermore, you may add the arbitrary additive mentioned later in a mixture.
次に、混合物を−100〜−10℃(好ましくは−80〜−10℃、さらに好ましくは−50〜−20℃、最も好ましくは−50〜−30℃)に冷却する。冷却は、例えば、ドライアイス・メタノール浴(−75℃)や冷却したジエチレングリコール溶液(−30〜−20℃)中で実施できる。このように冷却すると、セルロースアセテートと有機溶媒の混合物は固化する。
冷却速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。冷却速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、冷却速度は、冷却を開始する時の温度と最終的な冷却温度との差を、冷却を開始してから最終的な冷却温度に達するまでの時間で割った値である。
The mixture is then cooled to -100 to -10 ° C (preferably -80 to -10 ° C, more preferably -50 to -20 ° C, most preferably -50 to -30 ° C). The cooling can be performed, for example, in a dry ice / methanol bath (−75 ° C.) or a cooled diethylene glycol solution (−30 to −20 ° C.). When cooled in this way, the mixture of cellulose acetate and organic solvent solidifies.
The cooling rate is preferably 4 ° C./min or more, more preferably 8 ° C./min or more, and most preferably 12 ° C./min or more. The faster the cooling rate, the better. However, 10,000 ° C./second is the theoretical upper limit, 1000 ° C./second is the technical upper limit, and 100 ° C./second is the practical upper limit. The cooling rate is a value obtained by dividing the difference between the temperature at the start of cooling and the final cooling temperature by the time from the start of cooling to the final cooling temperature.
さらに、これを0〜200℃(好ましくは0〜150℃、さらに好ましくは0〜120℃、最も好ましくは0〜50℃)に加温すると、有機溶媒中にセルロースアセテートが溶解する。昇温は、室温中に放置するだけでもよし、温浴中で加温してもよい。
加温速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。加温速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、加温速度は、加温を開始する時の温度と最終的な加温温度との差を加温を開始してから最終的な加温温度に達するまでの時間で割った値である。
以上のようにして、均一な溶液が得られる。なお、溶解が不充分である場合は冷却、加温の操作を繰り返してもよい。溶解が充分であるかどうかは、目視により溶液の外観を観察するだけで判断することができる。
Further, when this is heated to 0 to 200 ° C. (preferably 0 to 150 ° C., more preferably 0 to 120 ° C., most preferably 0 to 50 ° C.), cellulose acetate is dissolved in the organic solvent. The temperature can be raised by simply leaving it at room temperature or in a warm bath.
The heating rate is preferably 4 ° C./min or more, more preferably 8 ° C./min or more, and most preferably 12 ° C./min or more. The higher the heating rate, the better. However, 10,000 ° C./second is the theoretical upper limit, 1000 ° C./second is the technical upper limit, and 100 ° C./second is the practical upper limit. The heating rate is a value obtained by dividing the difference between the temperature at the start of heating and the final heating temperature by the time from the start of heating until the final heating temperature is reached. .
A uniform solution is obtained as described above. If the dissolution is insufficient, the cooling and heating operations may be repeated. Whether or not the dissolution is sufficient can be determined by merely observing the appearance of the solution with the naked eye.
冷却溶解法においては、冷却時の結露による水分混入を避けるため、密閉容器を用いることが望ましい。また、冷却加温操作において、冷却時に加圧し、加温時に減圧すると、溶解時間を短縮することができる。加圧および減圧を実施するためには、耐圧性容器を用いることが望ましい。
なお、セルロースアセテート(酢化度:60.9%、粘度平均重合度:299)を冷却溶解法によりメチルアセテート中に溶解した20質量%の溶液は、示差走査熱量測定(DSC)によると、33℃近傍にゾル状態とゲル状態との疑似相転移点が存在し、この温度以下では均一なゲル状態となる。従って、この溶液は疑似相転移温度以上、好ましくはゲル相転移温度プラス10℃程度の温度で保持する必要がある。ただし、この疑似相転移温度は、セルロースアセテートの酢化度、粘度平均重合度、溶液濃度や使用する有機溶媒により異なる。
In the cooling dissolution method, it is desirable to use a sealed container in order to avoid moisture mixing due to condensation during cooling. In the cooling and heating operation, when the pressure is applied during cooling and the pressure is reduced during heating, the dissolution time can be shortened. In order to perform pressurization and decompression, it is desirable to use a pressure-resistant container.
In addition, according to differential scanning calorimetry (DSC), a 20 mass% solution obtained by dissolving cellulose acetate (acetylation degree: 60.9%, viscosity average polymerization degree: 299) in methyl acetate by a cooling dissolution method was 33. There exists a quasi-phase transition point between a sol state and a gel state in the vicinity of ° C., and a uniform gel state is obtained below this temperature. Therefore, this solution needs to be maintained at a temperature equal to or higher than the pseudo phase transition temperature, preferably about the gel phase transition temperature plus about 10 ° C. However, this pseudo phase transition temperature varies depending on the degree of acetylation of cellulose acetate, the degree of viscosity average polymerization, the concentration of the solution, and the organic solvent used.
調製したセルロースアシレート溶液(ドープ)から、ソルベントキャスト法によりセルロースアシレートフィルムを製造する。
ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が18〜35%となるように濃度を調整することが好ましい。
ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。ソルベントキャスト法における流延および乾燥方法については、米国特許第2336310号、同2367603号、同2492078号、同2492977号、同2492978号、同2607704号、同2739069号、同2739070号、英国特許第640731号、同736892号の各明細書、特公昭45−4554号、同49−5614号、同62−115035号の各公報に記載がある。
ドープは、表面温度が10℃以下のドラムまたはバンド上に流延することが好ましい。
流延してから2秒以上風に当てて乾燥することが好ましい。得られたフィルムをドラムまたはバンドから剥ぎ取り、さらに100から160℃まで逐次温度を変えた高温風で乾燥して残留溶剤を蒸発させることもできる。以上の方法は、特公平5−17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラムまたはバンドの表面温度においてドープがゲル化することが必要である。
A cellulose acylate film is produced from the prepared cellulose acylate solution (dope) by a solvent cast method.
The dope is cast on a drum or band and the solvent is evaporated to form a film. The concentration of the dope before casting is preferably adjusted so that the solid content is 18 to 35%.
The surface of the drum or band is preferably finished in a mirror state. The casting and drying methods in the solvent casting method are described in U.S. Pat. No. 7,736892, JP-B Nos. 45-4554, 49-5614, and 62-1115035.
The dope is preferably cast on a drum or band having a surface temperature of 10 ° C. or less.
After casting, it is preferable to dry it by applying air for 2 seconds or more. The obtained film can be peeled off from the drum or band, and further dried by high-temperature air whose temperature is successively changed from 100 to 160 ° C. to evaporate the residual solvent. The above method is described in Japanese Patent Publication No. 5-17844. According to this method, it is possible to shorten the time from casting to stripping. In order to carry out this method, it is necessary for the dope to gel at the surface temperature of the drum or band during casting.
複数の調製したセルロースアシレート溶液(ドープ)を用い、ソルベントキャスト法により2層以上を流延してフィルムを作製することもできる。この場合、ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が10〜40質量%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。 A film can also be produced by casting two or more layers by a solvent casting method using a plurality of prepared cellulose acylate solutions (dope). In this case, the dope is cast on a drum or band and the solvent is evaporated to form a film. It is preferable to adjust the concentration of the dope before casting so that the solid content is 10 to 40% by mass. The surface of the drum or band is preferably finished in a mirror state.
2層以上の複数のセルロースアシレート液を流延する場合、複数のセルロースアシレート溶液を流延することが可能で、支持体の進行方向に間隔を置いて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよく、例えば特開昭61−158414号、特開平1−122419号、特開平11−198285号、などの各公報に記載の方法が適応できる。また、2つの流延口からセルロースアシレート溶液を流延することによってもフィルム化することでもよく、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−104813号、特開昭61−158413号、特開平6−134933号、の各公報に記載の方法で実施できる。また、特開昭56−162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高・低粘度のセルロースアシレート溶液を同時に押出すセルロースアシレートフィルム流延方法でもよい。 When casting a plurality of cellulose acylate liquids of two or more layers, it is possible to cast a plurality of cellulose acylate solutions, and cellulose is supplied from a plurality of casting openings provided at intervals in the traveling direction of the support. A film may be produced while casting and laminating a solution containing an acylate. For example, in each publication such as JP-A Nos. 61-158414, 1-122419, 11-198285, etc. The described method is applicable. Further, it may be formed into a film by casting a cellulose acylate solution from two casting ports. For example, JP-B-60-27562, JP-A-61-94724, JP-A-61-104813, It can be carried out by the methods described in JP-A Nos. 61-158413 and 6-134933. Further, a cellulose acylate film in which a flow of a high-viscosity cellulose acylate solution described in JP-A-56-162617 is wrapped with a low-viscosity cellulose acylate solution and the high-low viscosity cellulose acylate solution is simultaneously extruded. A casting method may be used.
あるいは、また2個の流延口を用いて、第一の流延口により支持体に成型したフィルムを剥ぎ取り、支持体面に接していた側に第二の流延を行うことでより、フィルムを作製することでもよく、例えば特公昭44−20235号公報に記載されている方法である。流延するセルロースアシレート溶液は同一の溶液でもよいし、異なるセルロースアシレート溶液でもよく特に限定されない。複数のセルロースアシレート層に機能を持たせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押出せばよい。 Alternatively, by using two casting ports, the film cast on the support by the first casting port is peeled off, and the second casting is performed on the side that is in contact with the support surface, thereby the film. For example, it is a method described in Japanese Patent Publication No. 44-20235. The cellulose acylate solutions to be cast may be the same solution or different cellulose acylate solutions, and are not particularly limited. In order to give a function to a plurality of cellulose acylate layers, a cellulose acylate solution corresponding to the function may be extruded from each casting port.
さらに本発明では、セルロースアシレート溶液を、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層など)形成用溶液と同時に流延し、機能層とフィルム形成を同時形成することも実施しうる。 Furthermore, in the present invention, the cellulose acylate solution is cast simultaneously with a solution for forming other functional layers (for example, an adhesive layer, a dye layer, an antistatic layer, an antihalation layer, a UV absorbing layer, a polarizing layer, etc.) Simultaneous formation of the layer and film formation can also be carried out.
単層液では、必要なフィルム厚さにするためには高濃度で高粘度のセルロースアシレート溶液を押出すことが必要であり、その場合セルロースアシレート溶液の安定性が悪くて固形物が発生し、ブツ故障となったり、平面性が不良であったりして問題となることが多い。この解決法として、複数のセルロースアシレート溶液を流延口から流延する。これにより、高粘度の溶液を同時に支持体上に押出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。 In the case of a single-layer solution, it is necessary to extrude a high-concentration and high-viscosity cellulose acylate solution to obtain the required film thickness. In this case, the stability of the cellulose acylate solution is poor and solids are generated. In many cases, however, it becomes a problem due to a failure or a poor flatness. As this solution, a plurality of cellulose acylate solutions are cast from a casting port. As a result, it is possible to extrude a highly viscous solution onto the support at the same time, not only can the flatness be improved and an excellent planar film can be produced, but also a concentrated cellulose acylate solution can be used to reduce the drying load. Reduction can be achieved and film production speed can be increased.
セルロースアシレートフィルムには、機械的物性を改良するため、またはフィルム製造の際における流延後の乾燥速度を向上するために、可塑剤を添加することができる。可塑剤としては、リン酸エステルまたはカルボン酸エステルが用いられる。リン酸エステルの例には、トリフェニルホスフェート(TPP)、ジフェニルビフェニルホスフェート、およびトリクレジルホスフェート(TCP)が含まれる。カルボン酸エステルとしては、フタル酸エステルおよびクエン酸エステルが代表的である。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)およびジエチルヘキシルフタレート(DEHP)が含まれる。クエン酸エステルの例には、O−アセチルクエン酸トリエチル(OACTE)およびO−アセチルクエン酸トリブチル(OACTB)が含まれる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DPP、DEHP)が好ましく用いられる。DEPおよびDPPが特に好ましい。
可塑剤の添加量は、セルロースアシレートの量の0.1〜25質量%であることが好ましく、1〜20質量%であることがさらに好ましく、3〜15質量%であることが最も好ましい。
A plasticizer can be added to the cellulose acylate film in order to improve the mechanical properties or to improve the drying rate after casting during film production. As the plasticizer, phosphoric acid ester or carboxylic acid ester is used. Examples of phosphate esters include triphenyl phosphate (TPP), diphenyl biphenyl phosphate, and tricresyl phosphate (TCP). Representative examples of the carboxylic acid ester include phthalic acid esters and citric acid esters. Examples of phthalic acid esters include dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), dioctyl phthalate (DOP), diphenyl phthalate (DPP) and diethyl hexyl phthalate (DEHP). Examples of citrate esters include triethyl O-acetylcitrate (OACTE) and tributyl O-acetylcitrate (OACTB). Examples of other carboxylic acid esters include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters. Phthalate plasticizers (DMP, DEP, DBP, DOP, DPP, DEHP) are preferably used. DEP and DPP are particularly preferred.
The addition amount of the plasticizer is preferably 0.1 to 25% by mass of the amount of cellulose acylate, more preferably 1 to 20% by mass, and most preferably 3 to 15% by mass.
セルロースアシレートフィルムには、劣化防止剤(例、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン)を添加してもよい。劣化防止剤については、特開平3−199201号、同5−197073号、同5−194789号、同5−271471号、同6−107854号の各公報に記載がある。劣化防止剤の添加量は、劣化防止剤の効果及びフィルム表面へのブリードアウト(滲み出し)を考慮して、調製する溶液(ドープ)の0.01〜1質量%であることが好ましく、0.01〜0.2質量%であることがさらに好ましい。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)、トリベンジルアミン(TBA)を挙げることができる。 A degradation inhibitor (eg, antioxidant, peroxide decomposer, radical inhibitor, metal deactivator, acid scavenger, amine) may be added to the cellulose acylate film. The deterioration inhibitors are described in JP-A-3-199201, JP-A-597073, JP-A-5-194789, JP-A-5-271471, and JP-A-6-107854. The addition amount of the deterioration preventing agent is preferably 0.01 to 1% by mass of the solution (dope) to be prepared in consideration of the effect of the deterioration preventing agent and bleeding out (bleeding out) to the film surface. More preferably, the content is 0.01 to 0.2% by mass. Examples of particularly preferred deterioration inhibitors include butylated hydroxytoluene (BHT) and tribenzylamine (TBA).
<レターデーション値の調整>
透明支持体として用いるポリマーフィルム、特にセルロースアセテートフィルムは、レターデーション値を調整するために、少なくとも二つの芳香族環を有する芳香族化合物をレターデーション上昇剤として使用することも可能である。このようなレターデーション上昇剤を使用する場合、レターデーション上昇剤は、セルロースアセテート100質量部に対して、0.01〜20質量部の範囲で使用する。レターデーション上昇剤は、セルロースアセテート100質量部に対して、0.05〜15質量部の範囲で使用することが好ましく、0.1〜10質量部の範囲で使用することがさらに好ましい。2種類以上の芳香族化合物を併用してもよい。芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。
<Adjustment of retardation value>
In order to adjust the retardation value of a polymer film used as a transparent support, particularly a cellulose acetate film, an aromatic compound having at least two aromatic rings can be used as a retardation increasing agent. When using such a retardation increasing agent, a retardation increasing agent is used in 0.01-20 mass parts with respect to 100 mass parts of cellulose acetate. The retardation increasing agent is preferably used in a range of 0.05 to 15 parts by mass, and more preferably in a range of 0.1 to 10 parts by mass with respect to 100 parts by mass of cellulose acetate. Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic hetero ring in addition to the aromatic hydrocarbon ring.
芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子および硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環および1,3,5−トリアジン環が含まれる。芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピラジン環および1,3,5−トリアジン環が好ましく、ベンゼン環および1,3,5−トリアジン環がさらに好ましい。芳香族化合物は、少なくとも一つの1,3,5−トリアジン環を有することが特に好ましい。 The aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring). The aromatic heterocycle is generally an unsaturated heterocycle. The aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring. Aromatic heterocycles generally have the most double bonds. As the hetero atom, a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable. Examples of aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring. As the aromatic ring, benzene ring, furan ring, thiophene ring, pyrrole ring, oxazole ring, thiazole ring, imidazole ring, triazole ring, pyridine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring are preferable, More preferred are a benzene ring and a 1,3,5-triazine ring. It is particularly preferred that the aromatic compound has at least one 1,3,5-triazine ring.
芳香族化合物が有する芳香族環の数は、2〜20であることが好ましく、2〜12であることがより好ましく、2〜8であることがさらに好ましく、2〜6であることが最も好ましい。二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合および(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a)〜(c)のいずれでもよい。このようなレターデーション上昇剤については国際公開第01/88574号パンフレット、国際公開第00/2619号パンフレット、特開2000−111914号公報、特開2000−275434号公報、特開2002−363343号公報等に記載されている。 The number of aromatic rings contained in the aromatic compound is preferably 2 to 20, more preferably 2 to 12, further preferably 2 to 8, and most preferably 2 to 6. . The bonding relationship between two aromatic rings can be classified into (a) when a condensed ring is formed, (b) when directly linked by a single bond, and (c) when linked via a linking group (for aromatic rings). , Spiro bonds cannot be formed). The connection relationship may be any of (a) to (c). Such retardation increasing agents are disclosed in WO 01/88574, WO 00/2619, JP 2000-11914, JP 2000-275434, and JP 2002-363343. Etc. are described.
作製されたセルロースアシレートフィルムは、さらに延伸処理により乾燥ムラや乾燥収縮で発生する膜厚ムラ、表面凹凸を改善することができる。セルロースアセテートフィルムは、さらに延伸処理によりレターデーション値を調整することができる。延伸倍率は、0〜100%の範囲にあることが好ましい。
幅方向延伸処理の方法に特に限定はないが、その例としてテンターによる延伸方法が挙げられる。遅相軸を高精度に制御するために、左右のテンタークリップ速度、離脱タイミング等の差をできる限り小さくすることが好ましい。
また、更に好ましくは、ロールの長手方向に縦延伸を行うことであり、ロールフィルムを搬送するパスロール間にて、それぞれのパスロールのドロー比(パスロール同士の回転比)を調節することにより、縦延伸が可能となる。
The produced cellulose acylate film can further improve drying unevenness, film thickness unevenness caused by drying shrinkage, and surface unevenness by stretching treatment. The retardation value of the cellulose acetate film can be further adjusted by a stretching treatment. The draw ratio is preferably in the range of 0 to 100%.
Although there is no limitation in particular in the method of the width direction extending | stretching process, the extending | stretching method by a tenter is mentioned as the example. In order to control the slow axis with high accuracy, it is preferable to make the difference between the left and right tenter clip speeds, the separation timing, etc. as small as possible.
More preferably, the longitudinal stretching is performed in the longitudinal direction of the roll, and the longitudinal stretching is performed by adjusting the draw ratio of each pass roll (rotational ratio between the pass rolls) between the pass rolls that transport the roll film. Is possible.
3.塗設層(機能層)の構成素材
本発明の反射防止フィルムの、支持体以外の塗設層(機能層)に使用することのできる各種素材、化合物について、まとめて記載する。
3. Constituent material of coating layer (functional layer) Various materials and compounds that can be used in the coating layer (functional layer) other than the support of the antireflection film of the present invention will be described collectively.
3−(1)電離放射線硬化性バインダー
本発明の反射防止フィルムの各機能層は、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることができる。すなわち、バインダーとして電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
3- (1) Ionizing radiation curable binder Each functional layer of the antireflection film of the present invention can be formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound. That is, a coating composition containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer as a binder is coated on a transparent support, and the polyfunctional monomer or polyfunctional oligomer is formed by a crosslinking reaction or a polymerization reaction. be able to.
The functional group of the ionizing radiation curable polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.
光重合性官能基を有する光重合性多官能モノマーの具体例としては、
ネオペンチルグリコールアクリレート、1,6−ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン、2−2−ビス{4−(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;
等を挙げることができる。
As a specific example of a photopolymerizable polyfunctional monomer having a photopolymerizable functional group,
(Meth) acrylic acid diesters of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate;
(Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis {4- (acryloxy · diethoxy) phenyl} propane and 2-bis {4- (acryloxy · polypropoxy) phenyl} propane ;
Etc.
さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性多官能モノマーとして、好ましく用いられる。 Furthermore, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the photopolymerizable polyfunctional monomer.
中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーが好ましい。具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4−シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、(ジ)ペンタエリスリトールトリアクリレート、(ジ)ペンタエリスリトールペンタアクリレート、(ジ)ペンタエリスリトールテトラ(メタ)アクリレート、(ジ)ペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサトリアクリレート等が挙げられる。本明細書において、「(メタ)アクリレート」、「(メタ)アクリル酸」、「(メタ)アクリロイル」は、それぞれ「アクリレートまたはメタクリレート」、「アクリル酸またはメタクリル酸」、「アクリロイルまたはメタクリロイル」を表す。 Among these, esters of polyhydric alcohol and (meth) acrylic acid are preferable. More preferably, a polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferable. Specifically, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, penta Erythritol tri (meth) acrylate, (di) pentaerythritol triacrylate, (di) pentaerythritol pentaacrylate, (di) pentaerythritol tetra (meth) acrylate, (di) pentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate , Tripentaerythritol hexatriacrylate and the like. In the present specification, “(meth) acrylate”, “(meth) acrylic acid”, and “(meth) acryloyl” represent “acrylate or methacrylate”, “acrylic acid or methacrylic acid”, and “acryloyl or methacryloyl”, respectively. .
モノマーバインダーとしては、各層の屈折率を制御するために、屈折率の異なるモノマーを用いることができる。特に高屈折率モノマーの例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4’−メトキシフェニルチオエーテル等が含まれる。
また、例えば特開2005−76005号公報、同2005−36105号公報に記載されたデンドリマーや、例えば特開2005−60425号公報記載のようなノルボルネン環含有モノマーを用いることもできる。
As the monomer binder, monomers having different refractive indexes can be used to control the refractive index of each layer. Examples of particularly high refractive index monomers include bis (4-methacryloylthiophenyl) sulfide, vinyl naphthalene, vinyl phenyl sulfide, 4-methacryloxyphenyl-4′-methoxyphenyl thioether, and the like.
Further, for example, dendrimers described in JP-A-2005-76005 and JP-A-2005-36105, and norbornene ring-containing monomers as described in JP-A-2005-60425 can also be used.
多官能モノマーは、二種類以上を併用してもよい。
これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
光重合性多官能モノマーの重合反応には、光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。
Two or more polyfunctional monomers may be used in combination.
Polymerization of these monomers having an ethylenically unsaturated group can be carried out by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
It is preferable to use a photopolymerization initiator for the polymerization reaction of the photopolymerizable polyfunctional monomer. As the photopolymerization initiator, a photoradical polymerization initiator and a photocationic polymerization initiator are preferable, and a photoradical polymerization initiator is particularly preferable.
3−(2)ポリマーバインダー
機能層のバインダーとして、ポリマーあるいは架橋しているポリマーを用いることができる。架橋しているポリマーはアニオン性基を有するのが好ましい。架橋しているアニオン性基を有するポリマーは、アニオン性基を有するポリマーの主鎖が架橋している構造を有する。
3- (2) Polymer binder As the binder of the functional layer, a polymer or a crosslinked polymer can be used. The crosslinked polymer preferably has an anionic group. The polymer having a crosslinked anionic group has a structure in which the main chain of the polymer having an anionic group is crosslinked.
ポリマーの主鎖の例には、ポリオレフィン(飽和炭化水素)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミドおよびメラミン樹脂が含まれる。ポリオレフィン主鎖、ポリエーテル主鎖およびポリウレア主鎖が好ましく、ポリオレフィン主鎖およびポリエーテル主鎖がさらに好ましく、ポリオレフィン主鎖が最も好ましい。
ポリオレフィン主鎖は飽和炭化水素からなる。ポリオレフィン主鎖は、例えば、不飽和重合性基の付加重合反応により得られる。ポリエーテル主鎖は、エーテル結合(−O−)によって繰り返し単位が結合している。ポリエーテル主鎖は、例えば、エポキシ基の開環重合反応により得られる。ポリウレア主鎖は、ウレア結合(−NH−CO−NH−)によって、繰り返し単位が結合している。ポリウレア主鎖は、例えば、イソシアネート基とアミノ基との縮重合反応により得られる。ポリウレタン主鎖はウレタン結合(−NH−CO−O−)によって、繰り返し単位が結合している。ポリウレタン主鎖は、例えば、イソシアネート基と、水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリエステル主鎖は、エステル結合(−CO−O−)によって繰り返し単位が結合している。ポリエステル主鎖は、例えば、カルボキシル基(酸ハライド基を含む)と水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリアミン主鎖はイミノ結合(−NH−)によって、繰り返し単位が結合している。ポリアミン主鎖は、例えば、エチレンイミン基の開環重合反応により得られる。ポリアミド主鎖は、アミド結合(−NH−CO−)によって、繰り返し単位が結合している。ポリアミド主鎖は、例えば、イソシアネート基とカルボキシル基(酸ハライド基を含む)との反応により得られる。メラミン樹脂主鎖は、例えば、トリアジン基(例、メラミン)とアルデヒド(例、ホルムアルデヒド)との縮重合反応により得られる。なお、メラミン樹脂は、主鎖そのものが架橋構造を有する。
Examples of the polymer main chain include polyolefin (saturated hydrocarbon), polyether, polyurea, polyurethane, polyester, polyamine, polyamide and melamine resin. A polyolefin main chain, a polyether main chain and a polyurea main chain are preferable, a polyolefin main chain and a polyether main chain are more preferable, and a polyolefin main chain is most preferable.
The polyolefin main chain consists of saturated hydrocarbons. The polyolefin main chain is obtained, for example, by an addition polymerization reaction of an unsaturated polymerizable group. The polyether main chain has repeating units bonded by an ether bond (—O—). The polyether main chain is obtained, for example, by a ring-opening polymerization reaction of an epoxy group. In the polyurea main chain, repeating units are bonded by a urea bond (—NH—CO—NH—). The polyurea main chain is obtained, for example, by a condensation polymerization reaction between an isocyanate group and an amino group. In the polyurethane main chain, repeating units are bonded by a urethane bond (—NH—CO—O—). The polyurethane main chain is obtained, for example, by a polycondensation reaction between an isocyanate group and a hydroxyl group (including an N-methylol group). The polyester main chain has repeating units bonded by an ester bond (—CO—O—). The polyester main chain is obtained, for example, by a polycondensation reaction between a carboxyl group (including an acid halide group) and a hydroxyl group (including an N-methylol group). The polyamine main chain has repeating units bonded by imino bonds (—NH—). The polyamine main chain is obtained, for example, by a ring-opening polymerization reaction of an ethyleneimine group. The polyamide main chain has repeating units bonded by an amide bond (—NH—CO—). The polyamide main chain is obtained, for example, by a reaction between an isocyanate group and a carboxyl group (including an acid halide group). The melamine resin main chain is obtained, for example, by a polycondensation reaction between a triazine group (eg, melamine) and an aldehyde (eg, formaldehyde). In the melamine resin, the main chain itself has a crosslinked structure.
アニオン性基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アニオン性基は、連結基を介して側鎖として主鎖に結合させることが好ましい。
アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)およびリン酸基(ホスホノ)などが挙げられ、スルホン酸基およびリン酸基が好ましい。
アニオン性基は塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは解離していてもよい。
アニオン性基とポリマーの主鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、およびこれらの組合せから選ばれる二価の基であることが好ましい。
The anionic group is bonded directly to the main chain of the polymer or bonded to the main chain via a linking group. The anionic group is preferably bonded to the main chain as a side chain via a linking group.
Examples of the anionic group include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono), and a sulfonic acid group and a phosphoric acid group are preferable.
The anionic group may be in a salt state. The cation that forms a salt with the anionic group is preferably an alkali metal ion. Moreover, the proton of the anionic group may be dissociated.
The linking group that binds the anionic group and the polymer main chain is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof.
架橋構造は二以上の主鎖を化学的に結合(好ましくは共有結合)するものであるが、三以上の主鎖を共有結合することが好ましい。架橋構造は、−CO−、−O−、−S−、窒素原子、リン原子、脂肪族残基、芳香族残基およびこれらの組合せから選ばれる二価以上の基からなることが好ましい。 The crosslinked structure is a structure in which two or more main chains are chemically bonded (preferably covalent bonds), but it is preferable to covalently bond three or more main chains. The crosslinked structure is preferably composed of a divalent or higher valent group selected from —CO—, —O—, —S—, a nitrogen atom, a phosphorus atom, an aliphatic residue, an aromatic residue, and combinations thereof.
架橋しているアニオン性基を有するポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることがさらに好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、二以上のアニオン性基を有していてもよい。コポリマー中の架橋構造を有する繰り返し単位の割合は、4〜98質量%であることが好ましく、6〜96質量%であることがさらに好ましく、8〜94質量%であることが最も好ましい。 The crosslinked polymer having an anionic group is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked structure. The proportion of the repeating unit having an anionic group in the copolymer is preferably 2 to 96% by mass, more preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. The repeating unit may have two or more anionic groups. The proportion of the repeating unit having a crosslinked structure in the copolymer is preferably 4 to 98% by mass, more preferably 6 to 96% by mass, and most preferably 8 to 94% by mass.
架橋しているアニオン性基を有するポリマーの繰り返し単位は、アニオン性基と架橋構造の双方を有していてもよい。また、その他の繰り返し単位(アニオン性基も架橋構造もない繰り返し単位)が含まれていてもよい。
その他の繰り返し単位としては、アミノ基または四級アンモニウム基を有する繰り返し単位およびベンゼン環を有する繰り返し単位が好ましい。アミノ基または四級アンモニウム基は、アニオン性基と同様に無機粒子の分散状態を維持する機能を有する。なお、アミノ基、四級アンモニウム基およびベンゼン環は、アニオン性基を有する繰り返し単位あるいは架橋構造を有する繰り返し単位に含まれていても同様の効果が得られる。
アミノ基または四級アンモニウム基を有する繰り返し単位では、アミノ基または四級アンモニウム基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アミノ基または四級アンモニウム基は、連結基を介して側鎖として、主鎖に結合させることが好ましい。アミノ基または四級アンモニウム基は、二級アミノ基、三級アミノ基または四級アンモニウム基であることが好ましく、三級アミノ基または四級アンモニウム基であることがさらに好ましい。二級アミノ基、三級アミノ基または四級アンモニウム基の窒素原子に結合する基は、アルキル基であることが好ましく、炭素原子数が1〜12のアルキル基であることが好ましく、炭素原子数が1〜6のアルキル基であることがさらに好ましい。四級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または四級アンモニウム基とポリマーの主鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、およびこれらの組合せから選ばれる二価の基であることが好ましい。架橋しているアニオン性基を有するポリマーが、アミノ基または四級アンモニウム基を有する繰り返し単位を含む場合、その割合は0.06〜32質量%であることが好ましく、0.08〜30質量%であることがさらに好ましく、0.1〜28質量%であることが最も好ましい。
The repeating unit of the polymer having a crosslinked anionic group may have both an anionic group and a crosslinked structure. Further, other repeating units (repeating units having neither an anionic group nor a crosslinked structure) may be contained.
Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring. The amino group or the quaternary ammonium group has a function of maintaining the dispersed state of the inorganic particles, like the anionic group. The same effect can be obtained even when the amino group, quaternary ammonium group and benzene ring are contained in a repeating unit having an anionic group or a repeating unit having a crosslinked structure.
In a repeating unit having an amino group or a quaternary ammonium group, the amino group or quaternary ammonium group is directly bonded to the main chain of the polymer or bonded to the main chain through a linking group. The amino group or quaternary ammonium group is preferably bonded to the main chain as a side chain via a linking group. The amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group, more preferably a tertiary amino group or a quaternary ammonium group. The group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, preferably an alkyl group having 1 to 12 carbon atoms, Is more preferably an alkyl group of 1 to 6. The counter ion of the quaternary ammonium group is preferably a halide ion. The linking group that connects the amino group or quaternary ammonium group to the polymer main chain is a divalent group selected from -CO-, -NH-, -O-, an alkylene group, an arylene group, and combinations thereof. Preferably there is. When the polymer having a crosslinked anionic group contains a repeating unit having an amino group or a quaternary ammonium group, the ratio is preferably 0.06 to 32% by mass, and 0.08 to 30% by mass. It is more preferable that it is 0.1 to 28% by mass.
3−(3)含フッ素ポリマーバインダー
ポリマーのバインダーのうち、特に低屈折率層には含フッ素共重合体化合物を好ましく用いることができる。
含フッ素ビニルモノマーとしてはフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(商品名、大阪有機化学製)やR−2020(商品名、ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。これらの含フッ素ビニルモノマーの組成比を上げれば屈折率を下げることができるが、皮膜強度は低下する。共重合体のフッ素含率が20〜60質量%となるように含フッ素ビニルモノマーを導入することが好ましく、より好ましくは25〜55質量%の場合であり、特に好ましくは30〜50質量%の場合である。
3- (3) Fluorine-containing polymer binder Of the polymer binders, a fluorine-containing copolymer compound can be preferably used particularly for the low refractive index layer.
Examples of the fluorine-containing vinyl monomer include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, etc.), (meth) acrylic acid moieties or fully fluorinated alkyl ester derivatives (for example, biscoat 6FM (trade name) , Osaka Organic Chemical Co., Ltd.) and R-2020 (trade name, manufactured by Daikin Co., Ltd.), fully or partially fluorinated vinyl ethers, and the like. Preferred are perfluoroolefins, refractive index, solubility, and transparency. From the viewpoint of availability, hexafluoropropylene is particularly preferable. Increasing the composition ratio of these fluorinated vinyl monomers can lower the refractive index but lowers the film strength. The fluorine-containing vinyl monomer is preferably introduced so that the fluorine content of the copolymer is 20 to 60% by mass, more preferably 25 to 55% by mass, and particularly preferably 30 to 50% by mass. Is the case.
架橋反応性付与のための構成単位としては主として以下の(A)、(B)、(C)で示される単位が挙げられる。
(A):グリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位、
(B):カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得られる構成単位、
(C):分子内に上記(A)、(B)の官能基と反応する基とそれとは別に架橋性官能基を有する化合物を、上記(A)、(B)の構成単位と反応させて得られる構成単位、(例えばヒドロキシル基に対してアクリル酸クロリドを作用させる等の手法で合成できる構成単位)が挙げられる。
Examples of the structural unit for imparting crosslinking reactivity include units represented by the following (A), (B), and (C).
(A): a structural unit obtained by polymerization of a monomer having a self-crosslinkable functional group in the molecule in advance such as glycidyl (meth) acrylate and glycidyl vinyl ether,
(B): a monomer having a carboxyl group, a hydroxy group, an amino group, a sulfo group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether) , Maleic acid, crotonic acid, etc.)
(C): a group having a crosslinkable functional group separately from a group that reacts with the functional group of (A) or (B) in the molecule and a structural unit of (A) or (B) above. Examples of the structural unit to be obtained include (for example, a structural unit that can be synthesized by a technique such as allowing acrylic acid chloride to act on a hydroxyl group).
上記(C)の構成単位は該架橋性官能基が光重合性基であることが好ましい。ここに、光重合性基としては、例えば(メタ)アクリロイル基、アルケニル基、シンナモイル基、シンナミリデンアセチル基、ベンザルアセトフェノン基、スチリルピリジン基、α−フェニルマレイミド基、フェニルアジド基、スルフォニルアジド基、カルボニルアジド基、ジアゾ基、o−キノンジアジド基、フリルアクリロイル基、クマリン基、ピロン基、アントラセン基、ベンゾフェノン基、スチルベン基、ジチオカルバメート基、キサンテート基、1,2,3−チアジアゾール基、シクロプロペン基、アザジオキサビシクロ基などを挙げることができ、これらは1種のみでなく2種以上であってもよい。これらのうち、(メタ)アクリロイル基およびシンナモイル基が好ましく、特に好ましくは(メタ)アクリロイル基である。 In the structural unit (C), the crosslinkable functional group is preferably a photopolymerizable group. Examples of the photopolymerizable group include (meth) acryloyl group, alkenyl group, cinnamoyl group, cinnamylideneacetyl group, benzalacetophenone group, styrylpyridine group, α-phenylmaleimide group, phenylazide group, sulfonylazide. Group, carbonyl azide group, diazo group, o-quinonediazide group, furylacryloyl group, coumarin group, pyrone group, anthracene group, benzophenone group, stilbene group, dithiocarbamate group, xanthate group, 1,2,3-thiadiazole group, cyclo A propene group, an azadioxabicyclo group, etc. can be mentioned, These may be not only 1 type but 2 or more types. Of these, a (meth) acryloyl group and a cinnamoyl group are preferable, and a (meth) acryloyl group is particularly preferable.
光重合性基含有共重合体を調製するための具体的な方法としては、下記の方法を挙げることができるが、これらに限定されるものではない。
a.水酸基を含有してなる架橋性官能基含有共重合体に、(メタ)アクリル酸クロリドを反応させてエステル化する方法、
b.水酸基を含有してなる架橋性官能基含有共重合体に、イソシアネート基を含有する(メタ)アクリル酸エステルを反応させてウレタン化する方法、
c.エポキシ基を含有してなる架橋性官能基含有共重合体に、(メタ)アクリル酸を反応させてエステル化する方法、
d.カルボキシル基を含有してなる架橋性官能基含有共重合体に、エポキシ基を含有する含有(メタ)アクリル酸エステルを反応させてエステル化する方法。
尚、上記光重合性基の導入量は任意に調節することができ、塗膜面状安定性・無機粒子共存時の面状故障低下・膜強度向上などの点からカルボキシル基やヒドロキシル基等を一定量残すことも好ましい。
Specific methods for preparing the photopolymerizable group-containing copolymer include, but are not limited to, the following methods.
a. A method of esterifying by reacting a (meth) acrylic acid chloride with a crosslinkable functional group-containing copolymer containing a hydroxyl group,
b. A method of urethanization by reacting an isocyanate group-containing (meth) acrylic ester with a crosslinkable functional group-containing copolymer containing a hydroxyl group,
c. A method of reacting (meth) acrylic acid with a crosslinkable functional group-containing copolymer containing an epoxy group,
d. A method in which a crosslinkable functional group-containing copolymer containing a carboxyl group is reacted with a containing (meth) acrylic acid ester containing an epoxy group for esterification.
The amount of the photopolymerizable group introduced can be arbitrarily adjusted. From the viewpoints of surface stability of the coating film, reduction of surface failure when coexisting with inorganic particles, and improvement of film strength, carboxyl groups, hydroxyl groups, etc. It is also preferable to leave a certain amount.
有用な共重合体では上記含フッ素ビニルモノマーから導かれる繰返し単位および側鎖に(メタ)アクリロイル基を有する繰返し単位以外に、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜他のビニルモノマーを共重合することもできる。これらのビニルモノマーは目的に応じて複数を組み合わせてもよく、合計で共重合体中の0〜65モル%の範囲で導入されていることが好ましく、0〜40モル%の範囲であることがより好ましく、0〜30モル%の範囲であることが特に好ましい。 In the useful copolymer, in addition to the repeating unit derived from the fluorine-containing vinyl monomer and the repeating unit having a (meth) acryloyl group in the side chain, adhesion to the substrate, Tg of the polymer (contributes to film hardness), Other vinyl monomers may be appropriately copolymerized from various viewpoints such as solubility in a solvent, transparency, slipperiness, dust resistance and antifouling properties. A plurality of these vinyl monomers may be combined depending on the purpose, and are preferably introduced in the range of 0 to 65 mol% in the copolymer in total, and in the range of 0 to 40 mol%. More preferably, it is particularly preferably in the range of 0 to 30 mol%.
併用可能なビニルモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−ヒドロキシエチル等)、スチレン誘導体(スチレン、p−ヒドロキシメチルスチレン、p−メトキシスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、不飽和カルボン酸類(アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等)、アクリルアミド類(N、N−ジメチルアクリルアミド、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類(N、N−ジメチルメタクリルアミド)、アクリロニトリル等を挙げることができる。 The vinyl monomer unit that can be used in combination is not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid) 2-ethylhexyl, 2-hydroxyethyl acrylate), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-hydroxyethyl methacrylate, etc.), styrene derivatives (styrene, p-hydroxymethylstyrene, p -Methoxystyrene, etc.), vinyl ethers (methyl vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, etc.), vinyl esters (vinyl acetate) Vinyl propionate, vinyl cinnamate, etc.), unsaturated carboxylic acids (acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, etc.), acrylamides (N, N-dimethylacrylamide, N-tert-butylacrylamide, N -Cyclohexyl acrylamide, etc.), methacrylamides (N, N-dimethylmethacrylamide), acrylonitrile and the like.
特に有用な含フッ素ポリマーは、パーフルオロオレフィンとビニルエーテル類またはビニルエステル類のランダム共重合体である。特に単独で架橋反応可能な基((メタ)アクリロイル基等のラジカル反応性基、エポキシ基、オキセタニル基等の開環重合性基等)を有していることが好ましい。これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%の場合である。好ましいポリマーについては、特開2002−243907号公報、特開2002−372601号公報、特開2003−26732号公報、特開2003−222702号公報、特開2003−294911号公報、特開2003−329804号公報、特開2004−4444公報、特開2004−45462号公報に記載のものを挙げることができる。 Particularly useful fluorine-containing polymers are random copolymers of perfluoroolefin and vinyl ethers or vinyl esters. In particular, it preferably has a group capable of undergoing a crosslinking reaction alone (a radical reactive group such as a (meth) acryloyl group, a ring-opening polymerizable group such as an epoxy group or an oxetanyl group). These crosslinkable group-containing polymerized units preferably occupy 5 to 70 mol% of the total polymerized units of the polymer, particularly preferably 30 to 60 mol%. Regarding preferred polymers, JP-A-2002-243907, JP-A-2002-372601, JP-A-2003-26732, JP-A-2003-222702, JP-A-2003-294911, JP-A-2003-329804. And JP-A-2004-4444 and JP-A-2004-45462.
また含フッ素ポリマーには防汚性を付与する目的で、ポリシロキサン構造が導入されていることが好ましい。ポリシロキサン構造の導入方法に制限はないが例えば特開平6−93100号、特開平11−189621号、同11−228631号、特開2000−313709号の各公報に記載のごとく、シリコーンマクロアゾ開始剤を用いてポリシロキサンブロック共重合成分を導入する方法、特開平2−251555号、同2−308806号の各公報に記載のごとくシリコーンマクロマーを用いてポリシロキサングラフト共重合成分を導入する方法が好ましい。特に好ましい化合物としては、特開平11−189621号公報の実施例1、2、及び3のポリマー、又は特開平2−251555号公報の共重合体A−2及びA−3を挙げることができる。これらのポリシロキサン成分はポリマー中の0.5〜10質量%であることが好ましく、特に好ましくは1〜5質量%である。 In addition, a polysiloxane structure is preferably introduced into the fluorine-containing polymer for the purpose of imparting antifouling properties. There is no limitation on the method of introducing the polysiloxane structure, but for example, as described in JP-A-6-93100, JP-A-11-189621, JP-A-11-228631 and JP-A-2000-313709, the initiation of silicone macroazo A method of introducing a polysiloxane block copolymer component using an agent, and a method of introducing a polysiloxane graft copolymer component using a silicone macromer as described in JP-A-2-251555 and JP-A-2-308806. preferable. Particularly preferred compounds include the polymers of Examples 1, 2, and 3 of JP-A-11-189621, and copolymers A-2 and A-3 of JP-A-2-251555. These polysiloxane components are preferably 0.5 to 10% by mass in the polymer, and particularly preferably 1 to 5% by mass.
好ましく用いることのできるポリマーの好ましい分子量は、質量平均分子量が5000以上、好ましくは10000〜500000、最も好ましくは15000〜200000である。平均分子量の異なるポリマーを併用することで塗膜面状の改良や耐傷性の改良を行うこともできる。 A preferred molecular weight of the polymer that can be preferably used is a mass average molecular weight of 5000 or more, preferably 10,000 to 500,000, and most preferably 15,000 to 200,000. By using polymers having different average molecular weights in combination, it is possible to improve the surface state of the coating film and the scratch resistance.
上記のポリマーに対しては特開平10−25388号公報および特開2000−17028号公報に記載のごとく適宜重合性不飽和基を有する硬化剤を併用してもよい。また、特開2002−145952号公報に記載のごとく含フッ素の多官能の重合性不飽和基を有する化合物との併用も好ましい。多官能の重合性不飽和基を有する化合物の例としては、前記ハードコート層で述べた多官能モノマーを挙げることができる。これら化合物は、特にポリマー本体に重合性不飽和基を有する化合物を用いた場合に耐擦傷性改良に対する併用効果が大きく好ましい。 As described in JP-A-10-25388 and JP-A-2000-17028, a curing agent having a polymerizable unsaturated group may be used in combination with the above polymer. Moreover, combined use with a compound having a fluorine-containing polyfunctional polymerizable unsaturated group as described in JP-A No. 2002-145952 is also preferred. Examples of the compound having a polyfunctional polymerizable unsaturated group include the polyfunctional monomers described in the hard coat layer. These compounds are particularly preferred because they have a large combined effect for improving scratch resistance, particularly when a compound having a polymerizable unsaturated group is used in the polymer body.
3−(4)オルガノシラン化合物
本発明の反射防止フィルムを構成する機能層のうちの少なくとも1層は、その層を形成する塗布液中に、オルガノシラン化合物、その加水分解物およびその部分縮合物の少なくとも一種の成分、いわゆるゾル成分(以降このように称する場合もある。)を含有することが耐擦傷性の点で好ましい。このゾル成分は、塗布液を塗布後、乾燥、加熱工程で縮合して硬化物を形成し上記層のバインダーとなる。また、該硬化物が重合性不飽和結合を有する場合、活性光線の照射により3次元構造を有するバインダーが形成される。
オルガノシラン化合物は、下記一般式Aで表されるものが好ましい。
一般式A:(R10)m−Si(X)4-m
上記一般式Aにおいて、R10は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としては、炭素数1〜30のアルキル基か好ましく、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アルキル基の具体例として、メチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
Xは、水酸基または加水分解可能な基を表し、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びR8COO(R8は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C2H5COO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは1〜3の整数を表し、好ましくは1または2であり、特に好ましくは1である。
3- (4) Organosilane compound At least one of the functional layers constituting the antireflection film of the present invention is composed of an organosilane compound, a hydrolyzate thereof, and a partial condensate thereof in a coating solution forming the layer. In view of scratch resistance, it is preferable to contain at least one kind of component, a so-called sol component (hereinafter sometimes referred to as such). This sol component is condensed by a drying and heating process after coating the coating solution to form a cured product, which becomes a binder for the layer. Moreover, when this hardened | cured material has a polymerizable unsaturated bond, the binder which has a three-dimensional structure is formed by irradiation of actinic light.
The organosilane compound is preferably one represented by the following general formula A.
General formula A: (R 10) m -Si (X) 4-m
In the general formula A, R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. As an alkyl group, a C1-C30 alkyl group is preferable, More preferably, it is C1-C16, Most preferably, it is a C1-C6 thing. Specific examples of the alkyl group include methyl, ethyl, propyl, isopropyl, hexyl, decyl, hexadecyl and the like. Examples of the aryl group include phenyl and naphthyl, and a phenyl group is preferable.
X represents a hydroxyl group or a hydrolyzable group, for example, an alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms, such as a methoxy group or an ethoxy group), a halogen atom (for example, Cl, Br, I or the like). ), And R 8 COO (R 8 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Examples include CH 3 COO, C 2 H 5 COO, etc.), preferably An alkoxy group, particularly preferably a methoxy group or an ethoxy group.
m represents an integer of 1 to 3, preferably 1 or 2, and particularly preferably 1.
R10あるいはXが複数存在するとき、複数のR10あるいはXはそれぞれ同じであっても異なっていても良い。
R10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。
When R 10 or X there are a plurality, a plurality of R 10 or X groups may be different, even the same, respectively.
The substituent contained in R 10 is not particularly limited, but a halogen atom (fluorine, chlorine, bromine, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl, ethyl, i-propyl, propyl, t-butyl etc.), aryl groups (phenyl, naphthyl etc.), aromatic heterocyclic groups (furyl, pyrazolyl, pyridyl etc.), alkoxy groups (methoxy, ethoxy, i-propoxy, hexyloxy etc.), aryloxy (phenoxy etc.) ), Alkylthio groups (methylthio, ethylthio, etc.), arylthio groups (phenylthio, etc.), alkenyl groups (vinyl, 1-propenyl, etc.), acyloxy groups (acetoxy, acryloyloxy, methacryloyloxy, etc.), alkoxycarbonyl groups (methoxycarbonyl, ethoxy) Carbonyl, etc.), aryloxy Carbonyl groups (phenoxycarbonyl, etc.), carbamoyl groups (carbamoyl, N-methylcarbamoyl, N, N-dimethylcarbamoyl, N-methyl-N-octylcarbamoyl, etc.), acylamino groups (acetylamino, benzoylamino, acrylicamino, methacrylamino) Etc.), and these substituents may be further substituted.
R10が複数ある場合は、少なくとも一つが置換アルキル基もしくは置換アリール基であることが好ましい。 When there are a plurality of R 10 s , at least one is preferably a substituted alkyl group or a substituted aryl group.
オルガノシラン化合物の加水分解物およびその部分縮合物の少なくとも一種の成分、いわゆるゾル成分としては、下記一般式1で表されるビニル重合性の置換基を有するオルガノシラン化合物が好ましい。
As at least one component of the hydrolyzate of the organosilane compound and its partial condensate, so-called sol component, an organosilane compound having a vinyl polymerizable substituent represented by the following
上記一般式1において、R1は水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
Yは単結合もしくは*−COO−**、*−CONH−**または*−O−**を表し、単結合、*−COO−**および*−CONH−**が好ましく、単結合および*−COO−**が更に好ましく、*−COO−**が特に好ましい。*は=C(R1)−に結合する位置を、**はLに結合する位置を表す。
In the
Y represents a single bond or * -COO-**, * -CONH-** or * -O-**, preferably a single bond, * -COO-** or * -CONH-**, * -COO-** is more preferable, and * -COO-** is particularly preferable. * Represents a position bonded to ═C (R 1 ) —, and ** represents a position bonded to L.
Lは2価の連結鎖を表す。具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていても良い。 L represents a divalent linking chain. Specifically, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having a linking group (for example, ether, ester, amide, etc.) inside, and a linking group inside. A substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, an alkylene group having a linking group therein is preferred, an unsubstituted alkylene group, an unsubstituted arylene group Further, an alkylene group having an ether or ester linking group inside is more preferable, an unsubstituted alkylene group, and an alkylene group having an ether or ester linking group inside is particularly preferable. Examples of the substituent include a halogen, a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, and an aryl group, and these substituents may be further substituted.
lはl=100−mの数式を満たす数を表し、mは0〜50の数を表す。mは0〜40の数がより好ましく、0〜30の数が特に好ましい。
R2〜R4は、ハロゲン原子、水酸基、無置換のアルコキシ基、もしくは無置換のアルキル基が好ましい。R2〜R4は塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基がより好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、水酸基もしくはメトキシ基が特に好ましい。
R5は水素原子、または無置換のアルキル基を表す。R5は水素原子もしくは炭素数1〜3のアルキル基が好ましく、水素原子もしくはメチル基が特に好ましい。
l represents a number satisfying an expression of l = 100−m, and m represents a number from 0 to 50. As for m, the number of 0-40 is more preferable, and the number of 0-30 is especially preferable.
R 2 to R 4 are preferably a halogen atom, a hydroxyl group, an unsubstituted alkoxy group, or an unsubstituted alkyl group. R 2 to R 4 are more preferably a chlorine atom, a hydroxyl group, or an unsubstituted alkoxy group having 1 to 6 carbon atoms, more preferably a hydroxyl group or an alkoxy group having 1 to 3 carbon atoms, and particularly preferably a hydroxyl group or a methoxy group.
R 5 represents a hydrogen atom or an unsubstituted alkyl group. R 5 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, particularly preferably a hydrogen atom or a methyl group.
R6は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としては、炭素数1〜30のアルキル基か好ましく、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アルキル基の具体例として、メチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。R6に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。置換基としてビニル重合性基以外の重合性官能基、例えばエポキシ基、イソシアナート基なども好ましい。R6の置換基としては、水酸基もしくは無置換のアルキル基が更に好ましく、水酸基もしくは炭素数1〜3のアルキル基が更に好ましく、水酸基もしくはメチル基が特に好ましい。 R 6 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. As an alkyl group, a C1-C30 alkyl group is preferable, More preferably, it is C1-C16, Most preferably, it is a C1-C6 thing. Specific examples of the alkyl group include methyl, ethyl, propyl, isopropyl, hexyl, decyl, hexadecyl and the like. Examples of the aryl group include phenyl and naphthyl, and a phenyl group is preferable. The substituent contained in R 6 is not particularly limited, but a halogen atom (fluorine, chlorine, bromine, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl, ethyl, i-propyl, propyl, t-butyl etc.), aryl groups (phenyl, naphthyl etc.), aromatic heterocyclic groups (furyl, pyrazolyl, pyridyl etc.), alkoxy groups (methoxy, ethoxy, i-propoxy, hexyloxy etc.), aryloxy (phenoxy etc.) ), Alkylthio groups (methylthio, ethylthio, etc.), arylthio groups (phenylthio, etc.), alkenyl groups (vinyl, 1-propenyl, etc.), acyloxy groups (acetoxy, acryloyloxy, methacryloyloxy, etc.), alkoxycarbonyl groups (methoxycarbonyl, ethoxy) Carbonyl, etc.), aryloxy Carbonyl groups (phenoxycarbonyl, etc.), carbamoyl groups (carbamoyl, N-methylcarbamoyl, N, N-dimethylcarbamoyl, N-methyl-N-octylcarbamoyl, etc.), acylamino groups (acetylamino, benzoylamino, acrylicamino, methacrylamino) Etc.), and these substituents may be further substituted. A polymerizable functional group other than the vinyl polymerizable group such as an epoxy group or an isocyanate group is also preferable as a substituent. As the substituent for R 6 , a hydroxyl group or an unsubstituted alkyl group is more preferred, a hydroxyl group or an alkyl group having 1 to 3 carbon atoms is more preferred, and a hydroxyl group or a methyl group is particularly preferred.
一般式1の化合物は2種類以上を併用しても良い。特に一般式1の化合物は、ビニル重合性基を含有する一般式Aの化合物とビニル重合性基を含有しない一般式Aの化合物の、2種のシラン化合物を出発原料として合成される。
以下に一般式Aで表されるオルガノシラン化合物の具体例を示すが、これによって限定されるものではない。
Two or more compounds of the
Specific examples of the organosilane compound represented by the general formula A are shown below, but are not limited thereto.
一般式1で表されるオルガノシランの加水分解物及び/又はその部分縮合物における前記ビニル重合性基を含有するオルガノシランの含有量は、30質量%〜100質量%が好ましく、50質量%〜100質量%がより好ましく、70質量%〜95質量%が更に好ましい。前記ビニル重合性基を含有するオルガノシランの含有量が30質量%より少ないと、固形分が生じたり、液が濁ったり、ポットライフが悪化したり、分子量の制御が困難(分子量の増大)であったり、重合性基の含有量が少ないために重合処理を行った場合の性能(例えば反射防止膜の耐傷性)の向上が得られにくいために好ましくない。一般式1で表される化合物を合成する場合は、前記ビニル重合性基を含有するオルガノシランとして(M−1)、(M−2)、ビニル重合性基を有さないオルガノシランとして(M−19)〜(M−21)および(M−48)の中からそれぞれ1種をそれぞれ上記の量を組み合わせて用いると好ましい。
The content of the organosilane containing the vinyl polymerizable group in the hydrolyzate of organosilane represented by the
オルガノシラン化合物の加水分解物および部分縮合物について詳細を説明する。
オルガノシランの加水分解反応、それに引き続く縮合反応は、一般に触媒の存在下で行われる。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、酪酸、マレイン酸、クエン酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム、テトラブチルチタネート、ジブチル錫ジラウレート等の金属アルコキシド類;Zr、TiまたはAlなどの金属を中心金属とする金属キレート化合物等;KF、NH4Fなどの含F化合物が挙げられる。無機酸では塩酸、硫酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸がより好ましく、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が更に好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。
上記触媒は単独で使用しても良く、或いは複数種を併用しても良い。
The hydrolyzate and partial condensate of the organosilane compound will be described in detail.
The hydrolysis reaction of organosilane and the subsequent condensation reaction are generally carried out in the presence of a catalyst. Catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as oxalic acid, acetic acid, butyric acid, maleic acid, citric acid, formic acid, methanesulfonic acid and toluenesulfonic acid; sodium hydroxide, potassium hydroxide and ammonia Inorganic bases such as triethylamine, organic bases such as pyridine; metal alkoxides such as triisopropoxyaluminum, tetrabutoxyzirconium, tetrabutyltitanate, dibutyltin dilaurate; and metals such as Zr, Ti or Al as the central metal Metal chelate compounds and the like; F-containing compounds such as KF and NH 4 F may be mentioned. Among inorganic acids, hydrochloric acid, sulfuric acid, and organic acids preferably have an acid dissociation constant (pKa value (25 ° C.)) of 4.5 or less in water, and an acid dissociation constant in hydrochloric acid, sulfuric acid, or water of 3.0 or less. More preferred is an organic acid, hydrochloric acid, sulfuric acid, an organic acid having an acid dissociation constant of 2.5 or less in water is more preferred, an organic acid having an acid dissociation constant in water of 2.5 or less is more preferred, and methanesulfonic acid Of these, oxalic acid, phthalic acid and malonic acid are more preferred, and oxalic acid is particularly preferred.
The said catalyst may be used independently or may use multiple types together.
オルガノシランの加水分解物およびその部分縮合物の少なくともいずれかは、塗布品性能の安定化のためには揮発性を抑えることが好ましく、具体的には、105℃における1時間当たりの揮発量が5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることが特に好ましい。 At least one of the hydrolyzate of organosilane and its partial condensate is preferably suppressed in terms of volatility in order to stabilize the performance of the coated product. Specifically, the volatilization amount per hour at 105 ° C. It is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less.
オルガノシランの加水分解・縮合反応は、無溶媒でも、溶媒中でも行うことができるが成分を均一に混合するために有機溶媒を用いることが好ましく、例えばアルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などが好適である。
溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒が塗布液あるいは塗布液の一部として用いることが工程上好ましく、含フッ素ポリマーなどのその他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
The organosilane hydrolysis / condensation reaction can be carried out in the absence of a solvent or in a solvent, but an organic solvent is preferably used in order to mix the components uniformly. For example, alcohols, aromatic hydrocarbons, ethers, Ketones and esters are preferred.
The solvent preferably dissolves the organosilane and the catalyst. In addition, it is preferable in the process that an organic solvent is used as a coating liquid or a part of the coating liquid, and those that do not impair solubility or dispersibility when mixed with other materials such as a fluorine-containing polymer are preferable.
このうち、アルコール類としては、例えば1価アルコールまたは2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1〜8の飽和脂肪族アルコールが好ましい。
これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
Among these, examples of the alcohols include monohydric alcohols and dihydric alcohols. Among these, monohydric alcohols are preferably saturated aliphatic alcohols having 1 to 8 carbon atoms.
Specific examples of these alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol. Examples thereof include monobutyl ether and ethylene glycol monoethyl ether acetate.
また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなどを、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレンなどを挙げることができる。
これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。該反応における固形分の濃度は特に限定されるものではないが通常1%〜100%の範囲である。
Specific examples of aromatic hydrocarbons include benzene, toluene and xylene, specific examples of ethers include tetrahydrofuran and dioxane, and specific examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Specific examples of esters such as diisobutylketone and the like include ethyl acetate, propyl acetate, butyl acetate, and propylene carbonate.
These organic solvents can be used alone or in combination of two or more. The concentration of the solid content in the reaction is not particularly limited, but is usually in the range of 1% to 100%.
オルガノシランの加水分解・縮合反応は、オルガノシランの加水分解性基1モルに対して0.05〜2モル、好ましくは0.1〜1モルの水を添加し、上記溶媒の存在下あるいは非存在下に、そして触媒の存在下に、25〜100℃で、撹拌することにより行われる。 In the hydrolysis / condensation reaction of organosilane, 0.05 to 2 mol, preferably 0.1 to 1 mol of water is added to 1 mol of hydrolyzable group of organosilane, and in the presence or absence of the above solvent. It is carried out by stirring at 25-100 ° C. in the presence and in the presence of a catalyst.
ビニル重合性基を含有するオルガノシラン加水分解物およびその部分縮合物の質量平均分子量は、分子量が300未満の成分を除いた場合に、450〜20000が好ましく、500〜10000がより好ましく、550〜5000が更に好ましく、600〜3000が更に好ましい。
オルガノシランの加水分解物およびその部分縮合物における分子量が300以上の成分のうち、分子量が20000より大きい成分は20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。
また、オルガノシランの加水分解物およびその部分縮合物における分子量300以上の成分のうち、分子量1000〜20000の成分は20質量%以上であることが好ましい。20質量%以上であると、そのようなオルガノシランの加水分解物およびその部分縮合物を含有する硬化性組成物を硬化させて得られる硬化皮膜は、透明性や基板との密着性に優れる。
The mass average molecular weight of the organosilane hydrolyzate containing a vinyl polymerizable group and the partial condensate thereof is preferably 450 to 20000, more preferably 500 to 10,000, and more preferably 550, when components having a molecular weight of less than 300 are excluded. 5000 is more preferable, and 600 to 3000 is more preferable.
Of the components having a molecular weight of 300 or more in the hydrolyzate of organosilane and its partial condensate, the component having a molecular weight of more than 20000 is preferably 20% by mass or less, more preferably 10% by mass or less. More preferably, it is at most mass%.
Moreover, it is preferable that the component of molecular weight 1000-20000 is 20 mass% or more among the components of molecular weight 300 or more in the hydrolyzate of organosilane and its partial condensate. When it is 20% by mass or more, a cured film obtained by curing such a curable composition containing a hydrolyzate of organosilane and a partial condensate thereof is excellent in transparency and adhesion to a substrate.
ここで、質量平均分子量及び分子量は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したGPC分析装置により、溶媒THF、示差屈折計検出によるポリスチレン換算で表した分子量であり、含有量は、分子量が300以上の成分のピーク面積を100%とした場合の、前記分子量範囲のピークの面積%である。
分散度(質量平均分子量/数平均分子量)は3.0〜1.1が好ましく、2.5〜1.1がより好ましく、2.0〜1.1が更に好ましく、1.5〜1.1が特に好ましい。
Here, the mass average molecular weight and the molecular weight are converted into polystyrene by GTH analyzer using a column of TSKgel GMHxL, TSKgel G4000HxL, TSKgel G2000HxL (both trade names manufactured by Tosoh Corporation) and solvent THF and differential refractometer detection. The content is the area% of the peak in the molecular weight range when the peak area of the component having a molecular weight of 300 or more is defined as 100%.
The dispersity (mass average molecular weight / number average molecular weight) is preferably 3.0 to 1.1, more preferably 2.5 to 1.1, still more preferably 2.0 to 1.1, and 1.5 to 1. 1 is particularly preferred.
オルガノシランの加水分解物および部分縮合物の29Si−NMR分析により、一般式AのXが−OSiの形で縮合している状態を確認できる。
この時、Siの3つの結合が−OSiの形で縮合している場合(T3)、Siの2つの結合が−OSiの形で縮合している場合(T2)、Siの1つの結合が−OSiの形で縮合している場合(T1)、Siが全く縮合していない場合を(T0)とした場合に縮合率αは
数式:
α=(T3×3+T2×2+T1×1)/3(T3+T2+T1+T0)
で表され、縮合率は0.2〜0.95が好ましく、0.3〜0.93がより好ましく、0.4〜0.9がとくに好ましい。
0.1より小さいと加水分解や縮合が十分でなく、モノマー成分が増えるため硬化が十分でなく、0.95より大きいと加水分解や縮合が進みすぎ、加水分解可能な基が消費されてしまうため、バインダーポリマー、樹脂基板、無機微粒子などの相互作用が低下してしまい、これらを用いても効果が得られにくくなる。
By 29 Si-NMR analysis of the hydrolyzate and partial condensate of organosilane, it can be confirmed that X in the general formula A is condensed in the form of -OSi.
At this time, when three bonds of Si are condensed in the form of -OSi (T 3 ), when two bonds of Si are condensed in the form of -OSi (T 2 ), one bond of Si Is condensed in the form of -OSi (T 1 ), and the case where Si is not condensed at all (T 0 ) is the condensation ratio α:
α = (T 3 × 3 + T 2 × 2 + T 1 × 1) / 3 (T 3 + T 2 + T 1 + T 0 )
The condensation rate is preferably 0.2 to 0.95, more preferably 0.3 to 0.93, and particularly preferably 0.4 to 0.9.
If it is less than 0.1, hydrolysis and condensation are not sufficient, and monomer components increase, so that curing is not sufficient. If it is greater than 0.95, hydrolysis and condensation proceed too much and hydrolyzable groups are consumed. For this reason, the interaction between the binder polymer, the resin substrate, the inorganic fine particles and the like is lowered, and even if these are used, it is difficult to obtain the effect.
本発明においては、一般式R9OH(式中、R9は炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式R10COCH2COR11(式中、R10は炭素数1〜10のアルキル基、R11は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、TiまたはAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物の存在下で、25〜100℃で撹拌することにより加水分解を行うことが好ましい。
もしくは触媒に含F化合物を使用する場合、含F化合物が完全に加水分解・縮合を進行させる能力が有るため、添加する水量を選択することにより重合度が決定でき、任意の分子量の設定が可能となるので好ましい。すなわち、平均重合度Mのオルガノシラン加水分解物/部分縮合物を調整するためには、Mモルの加水分解性オルガノシランに対して(M−1)モルの水を使用すれば良い。
In the present invention, (wherein, R 9 represents an alkyl group having 1 to 10 carbon atoms) Formula R 9 OH in the alcohol of the general formula R 10 COCH 2 COR 11 (wherein represented by, R 10 is a carbon From Zr, Ti, or Al having a ligand of a compound represented by an alkyl group having 1 to 10 carbon atoms, R 11 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms) It is preferable to perform hydrolysis by stirring at 25 to 100 ° C. in the presence of at least one metal chelate compound having a selected metal as a central metal.
Alternatively, when an F-containing compound is used as a catalyst, the F-containing compound has the ability to completely proceed with hydrolysis and condensation, so the degree of polymerization can be determined by selecting the amount of water to be added, and any molecular weight can be set Therefore, it is preferable. That is, in order to adjust the organosilane hydrolyzate / partial condensate having an average degree of polymerization M, (M-1) mol of water may be used with respect to M mol of hydrolyzable organosilane.
金属キレート化合物は、一般式R9OH(式中、R9は炭素数1〜10のアルキル基を示す)で表されるアルコールとR10COCH2COR11(式中、R10は炭素数1〜10のアルキル基、R11は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。本発明に用いられる金属キレート化合物は、一般式Zr(OR9)p1(R10COCHCOR11)p2、Ti(OR9)q1(R10COCHCOR11)q2、およびAl(OR9)r1(R10COCHCOR11)r2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物および部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR9およびR10は、同一または異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、R11は、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基などである。また、 金属キレート化合物中のp1、p2、q1、q2、r1、およびr2は、それぞれp1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
The metal chelate compound includes an alcohol represented by the general formula R 9 OH (wherein R 9 represents an alkyl group having 1 to 10 carbon atoms) and R 10 COCH 2 COR 11 (wherein R 10 is 1 carbon atom). To 10 alkyl groups, R 11 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms), and is selected from Zr, Ti, and Al. Any metal having a metal as a central metal can be suitably used without particular limitation. Within this category, two or more metal chelate compounds may be used in combination. The metal chelate compound used in the present invention has the general formula Zr (OR 9 ) p1 (R 10 COCHCOR 11 ) p2 , Ti (OR 9 ) q1 (R 10 COCHCOR 11 ) q2 , and Al (OR 9 ) r1 (R 10 Those selected from the group of compounds represented by COCHCOR 11 ) r2 are preferred, and they serve to promote the condensation reaction of the hydrolyzate and partial condensate of the organosilane compound.
R 9 and R 10 in the metal chelate compound may be the same or different and each is an alkyl group having 1 to 10 carbon atoms, specifically, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, sec -Butyl group, t-butyl group, n-pentyl group, phenyl group and the like. In addition to the alkyl group having 1 to 10 carbon atoms as described above, R11 is an alkoxy group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and an n-butoxy group. , Sec-butoxy group, t-butoxy group and the like. Moreover, p1, p2, q1, q2, r1, and r2 in the metal chelate compound represent integers determined so as to be p1 + p2 = 4, q1 + q2 = 4, and r1 + r2 = 3, respectively.
これらの金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシビス(エチルアセトアセテート)チタニウム、ジイソプロポキシビス(アセチルアセテート)チタニウム、ジイソプロポキシビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナートビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
Specific examples of these metal chelate compounds include tri-n-butoxyethylacetoacetate zirconium, di-n-butoxybis (ethylacetoacetate) zirconium, n-butoxytris (ethylacetoacetate) zirconium, tetrakis (n-propylacetate). Zirconium chelate compounds such as acetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium; diisopropoxybis (ethylacetoacetate) titanium, diisopropoxybis (acetylacetate) titanium, diisopropoxybis Titanium chelate compounds such as (acetylacetone) titanium; diisopropoxyethyl acetoacetate aluminum, diisopropoxy Acetylacetonate aluminum, isopropoxybis (ethylacetoacetate) aluminum, isopropoxybis (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonate) aluminum, monoacetylacetonatobis (ethylacetoacetate) ) Aluminum chelate compounds such as aluminum.
Among these metal chelate compounds, tri-n-butoxyethyl acetoacetate zirconium, diisopropoxybis (acetylacetonate) titanium, diisopropoxyethyl acetoacetate aluminum, and tris (ethyl acetoacetate) aluminum are preferable. These metal chelate compounds can be used individually by 1 type or in mixture of 2 or more types. Moreover, the partial hydrolyzate of these metal chelate compounds can also be used.
金属キレート化合物は、前記オルガノシラン化合物に対し、好ましくは0.01〜50質量%、より好ましくは0.1〜50質量%、さらに好ましくは0.5〜10質量%の割合で用いられる。金属キレート化合物が上記範囲用いられることにより、オルガノシラン化合物の縮合反応が早く、塗膜の耐久性が良好であり、オルガノシラン化合物の加水分解物および部分縮合物と金属キレート化合物を含有してなる組成物の保存安定性が良好である。 The metal chelate compound is preferably used in a proportion of 0.01 to 50% by mass, more preferably 0.1 to 50% by mass, and still more preferably 0.5 to 10% by mass with respect to the organosilane compound. By using the metal chelate compound in the above range, the condensation reaction of the organosilane compound is fast, the durability of the coating film is good, and the hydrolyzate and partial condensate of the organosilane compound and the metal chelate compound are contained. The storage stability of the composition is good.
機能層の塗布液には、上記ゾル成分および金属キレート化合物を含む組成物に加えて、β−ジケトン化合物およびβ−ケトエステル化合物の少なくともいずれかが添加されることが好ましい。以下にさらに説明する。 In addition to the composition containing the sol component and the metal chelate compound, at least one of a β-diketone compound and a β-ketoester compound is preferably added to the coating liquid for the functional layer. This will be further described below.
本発明で使用されるのは、一般式R10COCH2COR11で表されるβ−ジケトン化合物およびβ−ケトエステル化合物の少なくともいずれかであり、本発明に用いられる組成物の安定性向上剤として作用するものである。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよびアルミニウム化合物の少なくともいずれかの化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の加水分解物および部分縮合物の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。β−ジケトン化合物およびβ−ケトエステル化合物を構成するR10およびR11は、前記金属キレート化合物を構成するR10およびR11と同様である。 In the present invention, at least one of a β-diketone compound and a β-ketoester compound represented by the general formula R 10 COCH 2 COR 11 is used as a stability improver for the composition used in the present invention. It works. That is, by coordinating with a metal atom in the metal chelate compound (a compound of at least one of zirconium, titanium and aluminum compounds), condensation of hydrolyzate and partial condensate of organosilane compound by these metal chelate compounds It is considered that the action of accelerating the reaction is suppressed and the action of improving the storage stability of the resulting composition is achieved. R 10 and R 11 constitute a β- diketone compound and β- ketoester compound are the same as R 10 and R 11 constituting the metal chelate compound.
このβ−ジケトン化合物およびβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec-ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物およびβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明において、β−ジケトン化合物およびβ−ケトエステル化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。2モル未満では得られる組成物の保存安定性に劣るおそれがあり好ましいものではない。 Specific examples of the β-diketone compound and β-ketoester compound include acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetoacetate-n-propyl, acetoacetate-i-propyl, acetoacetate-n-butyl, acetoacetate- sec-butyl, acetoacetate-t-butyl, 2,4-hexane-dione, 2,4-heptane-dione, 3,5-heptane-dione, 2,4-octane-dione, 2,4-nonane-dione , 5-methyl-hexane-dione and the like. Of these, ethyl acetoacetate and acetylacetone are preferred, and acetylacetone is particularly preferred. These β-diketone compounds and β-ketoester compounds can be used alone or in admixture of two or more. In the present invention, the β-diketone compound and β-ketoester compound are preferably used in an amount of 2 mol or more, more preferably 3 to 20 mol, per 1 mol of the metal chelate compound. If it is less than 2 mol, the storage stability of the resulting composition may be inferior, which is not preferable.
上記オルガノシラン化合物の加水分解物および部分縮合物の含有量は、比較的薄膜である反射防止層の場合は少なく、厚膜であるハードコート層や防眩層の場合は多いことが好ましい。含有量は効果の発現、屈折率、膜の形状・面状等を考慮すると、含有層(添加層)の全固形分の0.1〜50質量%が好ましく、0.5〜30質量%がより好ましく、1〜15質量%が最も好ましい。 The content of the hydrolyzate and partial condensate of the organosilane compound is preferably small in the case of a relatively thin antireflection layer and large in the case of a thick hard coat layer or antiglare layer. The content is preferably 0.1 to 50% by mass, and preferably 0.5 to 30% by mass based on the total solid content of the containing layer (added layer), considering the effect, refractive index, film shape / surface shape, and the like. More preferred is 1 to 15% by mass.
3−(5)開始剤
各種のエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
本発明のフィルムを作成するに当り、光開始剤あるいは熱開始剤を併用することができる。
3- (5) Initiator Polymerization of monomers having various ethylenically unsaturated groups can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
In preparing the film of the present invention, a photoinitiator or a thermal initiator can be used in combination.
<光開始剤>
光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001−139663号公報等)、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。
アセトフェノン類の例には、2,2−ジメトキシアセトフェノン、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシ−ジメチルフェニルケトン、1−ヒドロキシ−ジメチル−p−イソプロピルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノン、が含まれる。
<Photoinitiator>
Examples of photo radical polymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides (JP-A-2001-139663, etc.), 2, Examples include 3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
Examples of acetophenones include 2,2-dimethoxyacetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxy-dimethylphenylketone, 1-hydroxy-dimethyl-p-isopropylphenylketone, 1-hydroxy Cyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 4-phenoxydichloroacetophenone, 4-t- Butyl-dichloroacetophenone is included.
ベンゾイン類の例には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。
ベンゾフェノン類の例には、ベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノン、4,4’−ジメチルアミノベンゾフェノン(ミヒラーケトン)、3,3’、4、4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノンなどが含まれる。
Examples of benzoins include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl dimethyl ketal, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether It is.
Examples of benzophenones include benzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone, 4,4'-dimethylaminobenzophenone (Michler's ketone), 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone and the like are included.
ボレート塩としては、例えば、特許第2764769号、特開2002−116539号等の各公報、および、Kunz,Martin“Rad Tech’98.Proceeding April 19〜22頁,1998年,Chicago”等に記載される有機ホウ酸塩記載される化合物があげられる。例えば、前記特開2002−116539号公報の段落[0022]〜[0027]記載の化合物が挙げられる。またその他の有機ホウ素化合物としては、特開平6−348011号公報、特開平7−128785号公報、特開平7−140589号公報、特開平7−306527号公報、特開平7−292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられ、具体例にはカチオン性色素とのイオンコンプレックス類が挙げられる。 Examples of the borate salt are described in Japanese Patent Nos. 2764769 and 2002-116539, and Kunz, Martin “Rad Tech'98. Proceeding April 19-22, 1998, Chicago”. And the organic borate compounds described. Examples thereof include the compounds described in paragraphs [0022] to [0027] of JP-A-2002-116539. Examples of other organic boron compounds include JP-A-6-348011, JP-A-7-128785, JP-A-7-140589, JP-A-7-306527, and JP-A-7-292014. Specific examples include organoboron transition metal coordination complexes and the like, and specific examples include ion complexes with cationic dyes.
ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドが含まれる。
活性エステル類の例には1、2−オクタンジオン、1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、スルホン酸エステル類、環状活性エステル化合物などが含まれる。
具体的には特開2000−80068号公報記載の実施例記載化合物1〜21が特に好ましい。
オニウム塩類の例には、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩が挙げられる。
Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
Examples of active esters include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], sulfonic acid esters, cyclic active ester compounds, and the like.
Specifically, Examples 1 to 21 described in JP-A No. 2000-80068 are particularly preferable.
Examples of the onium salts include aromatic diazonium salts, aromatic iodonium salts, and aromatic sulfonium salts.
活性ハロゲン類としては、具体的には、若林 等の“Bull Chem.Soc Japan゛42巻、2924頁(1969年)、米国特許第3,905,815号明細書、特開平5−27830号公報、M.P.Hutt“Jurnal of Heterocyclic Chemistry”1巻(3号),(1970年)等に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物:s−トリアジン化合物が挙げられる。より好適には、少なくとも一つのモノ、ジまたはトリハロゲン置換メチル基がs−トリアジン環に結合したs−トリアジン誘導体が挙げられる。具体的な例にはS−トリアジンやオキサチアゾール化合物が知られており、2−(p−メトキシフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(p−メトキシフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(p−スチリルフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(3−Br−4−ジ(エチル酢酸エステル)アミノ)フェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−トリハロメチル−5−(p−メトキシフェニル)−1,3,4−オキサジアゾールが含まれる。具体的には特開昭58−15503号公報のp.14〜p.30、特開昭55−77742号公報のp.6〜p.10、特公昭60−27673号公報のp.287記載のNo.1〜No.8、特開昭60−239736号公報のp443〜p444のNo.1〜No.17、US−4701399のNo.1〜19などの化合物が特に好ましい。
無機錯体の例にはビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウムが挙げられる。
クマリン類の例には3−ケトクマリンが挙げられる。
Specific examples of the active halogens include Wakabayashi et al., “Bull Chem. Soc Japan, Vol. 42, 2924 (1969), US Pat. No. 3,905,815, JP-A-5-27830. M. P. Hutt “Jurnal of Heterocyclic Chemistry”, Vol. 1 (No. 3), (1970) More preferred are s-triazine derivatives in which at least one mono-, di- or trihalogen-substituted methyl group is bonded to the s-triazine ring, and specific examples include S-triazine and oxathiazole compounds. 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) s-triazine, 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-styrylphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3-Br-4-di (ethyl acetate) amino) phenyl) -4,6-bis (trichloromethyl) -s-triazine, 2-trihalomethyl-5- (p-methoxyphenyl) -1, 3,4-oxadiazole, specifically, p.14 to p.30 of JP-A-58-15503, p.6 to p.10 of JP-A-55-77742, No. 1 to No. 8 described in p.287 of JP-A-60-27673, Nos. 1 to 17 of p443 to p444 of JP-A-60-239736, Nos. 1 to 19 of US-4701399 Which compounds are particularly preferred.
Examples of inorganic complexes include bis (η 5 -2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium.
Examples of coumarins include 3-ketocoumarin.
これらの開始剤は単独でも混合して用いても良い。
「最新UV硬化技術」,(株)技術情報協会,1991年,p.159、及び、「紫外線硬化システム」 加藤清視著、平成元年、総合技術センター発行、p.65〜148にも種々の例が記載されており本発明に有用である。
These initiators may be used alone or in combination.
“Latest UV Curing Technology”, Technical Information Association, 1991, p. 159, and “UV curing system” written by Kayo Kiyomi, 1989, General Technology Center, p. Various examples are also described in 65-148 and are useful in the present invention.
市販の光ラジカル重合開始剤としては、日本化薬(株)製のKAYACURE(DETX−S,BP−100,BDMK,CTX,BMS,2−EAQ,ABQ,CPTX,EPD,ITX,QTX,BTC,MCAなど)、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,500,819,907,369,1173,1870,2959,4265,4263など)、サートマー社製のEsacure(KIP100F,KB1,EB3,BP,X33,KT046,KT37,KIP150,TZT)等およびそれらの組合せが好ましい例として挙げられる。 Commercially available photo radical polymerization initiators include KAYACURE (DETX-S, BP-100, BDKM, CTX, BMS, 2-EAQ, ABQ, CPTX, EPD, ITX, QTX, BTC, manufactured by Nippon Kayaku Co., Ltd. MCA, etc.), Irgacure (651, 184, 500, 819, 907, 369, 1173, 1870, 2959, 4265, 4263, etc.) manufactured by Ciba Specialty Chemicals, Ltd., Esacure (KIP100F, KB1, manufactured by Sartomer) EB3, BP, X33, KT046, KT37, KIP150, TZT) and the like and combinations thereof are preferred examples.
光重合開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。 It is preferable to use a photoinitiator in the range of 0.1-15 mass parts with respect to 100 mass parts of polyfunctional monomers, More preferably, it is the range of 1-10 mass parts.
<光増感剤>
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーケトンおよびチオキサントン、などを挙げることができる。
更にアジド化合物、チオ尿素化合物、メルカプト化合物などの助剤を1種以上組み合わせて用いてもよい。
市販の光増感剤としては、日本化薬(株)製のKAYACURE(DMBI,EPA)などが挙げられる。
<Photosensitizer>
In addition to the photopolymerization initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.
Further, one or more auxiliary agents such as an azide compound, a thiourea compound, and a mercapto compound may be used in combination.
Examples of commercially available photosensitizers include KAYACURE (DMBI, EPA) manufactured by Nippon Kayaku Co., Ltd.
<熱開始剤>
熱ラジカル開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(プロピオニトリル)、1,1’−アゾビス(シクロヘキサンカルボニトリル)等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等が挙げられる。
<Thermal initiator>
As the thermal radical initiator, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Diazo compounds such as ammonium sulfate, potassium persulfate and the like, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (propionitrile), 1,1′-azobis (cyclohexanecarbonitrile), etc. And diazoaminobenzene, p-nitrobenzenediazonium and the like.
3−(6)架橋性化合物
本発明を構成するモノマーあるいはポリマーバインダ−が単独で十分な硬化性を有しない場合には、架橋性化合物を配合することにより、必要な硬化性を付与することができる。
例えばポリマー本体に水酸基含有する場合には、各種アミノ化合物を硬化剤として用いることが好ましい。架橋性化合物として用いられるアミノ化合物は、例えば、ヒドロキシアルキルアミノ基及びアルコキシアルキルアミノ基のいずれか一方又は両方を合計で2個以上含有する化合物であり、具体的には、例えば、メラミン系化合物、尿素系化合物、ベンゾグアナミン系化合物、グリコールウリル系化合物等を挙げることができる。
3- (6) Crosslinkable compound When the monomer or polymer binder constituting the present invention alone does not have sufficient curability, the necessary curability can be imparted by blending the crosslinkable compound. it can.
For example, when the polymer body contains a hydroxyl group, various amino compounds are preferably used as the curing agent. The amino compound used as the crosslinkable compound is, for example, a compound containing a total of two or more of any one or both of a hydroxyalkylamino group and an alkoxyalkylamino group. Specifically, for example, a melamine compound, Examples include urea compounds, benzoguanamine compounds, glycoluril compounds, and the like.
メラミン系化合物は、一般にトリアジン環に窒素原子が結合した骨格を有する化合物として知られているものであり、具体的には、メラミン、アルキル化メラミン、メチロールメラミン、アルコキシ化メチルメラミン等を挙げることができるが、1分子中にメチロール基及びアルコキシ化メチル基のいずれか一方又は両方を合計で2個以上有するものが好ましい。具体的には、メラミンとホルムアルデヒドとを塩基性条件下で反応させて得られるメチロール化メラミン、アルコキシ化メチルメラミン、又はそれらの誘導体が好ましく、特に硬化性樹脂組成物に良好な保存安定性が得られる点、及び良好な反応性が得られる点で、アルコキシ化メチルメラミンが好ましい。架橋性化合物として用いられるメチロール化メラミン及びアルコシ化メチルメラミンには特に制約はなく、例えば、文献「プラスチック材料講座[8]ユリア・メラミン樹脂」(日刊工業新聞社)に記載されている方法で得られる各種の樹脂状物の使用も可能である。 Melamine compounds are generally known as compounds having a skeleton in which a nitrogen atom is bonded to a triazine ring, and specific examples include melamine, alkylated melamine, methylol melamine, alkoxylated methyl melamine, and the like. However, it is preferable to have one or both of a methylol group and an alkoxylated methyl group in one molecule in total. Specifically, methylolated melamine, alkoxylated methylmelamine, or a derivative thereof obtained by reacting melamine and formaldehyde under basic conditions is preferable, and good storage stability is obtained particularly for the curable resin composition. Alkoxylated methyl melamine is preferable in that it can be obtained and good reactivity can be obtained. There are no particular restrictions on the methylolated melamine and the alkoxylated methylmelamine used as the crosslinkable compound. For example, the methylolated melamine and the alkoxylated methylmelamine can be obtained by the method described in the document “Plastic Materials Course [8] Urea Melamine Resin” (Nikkan Kogyo Shimbun). Various resinous materials can be used.
また、尿素系化合物としては、尿素の他、ポリメチロール化尿素その誘導体であるアルコキシ化メチル尿素、ウロン環を有するメチロール化ウロン及びアルコキシ化メチルウロン等を挙げることができる。そして、尿素誘導体等の化合物についても、上記の文献に記載されている各種樹脂状物の使用が可能である。 In addition to urea, examples of the urea compound include polymethylolated urea, alkoxylated methylurea which is a derivative thereof, methylolated uron having a uron ring, and alkoxylated methyluron. And also about compounds, such as a urea derivative, the use of the various resinous materials described in said literature is possible.
3−(7)硬化触媒
本発明のフィルムには、硬化を促進する硬化触媒として電離放射線または熱の照射により発生したラジカルや酸を使用することができる。
3- (7) Curing Catalyst In the film of the present invention, radicals and acids generated by irradiation with ionizing radiation or heat can be used as a curing catalyst for promoting curing.
<熱酸発生剤>
熱酸発生剤の具体例としては、例えば、各種脂肪族スルホン酸とその塩、クエン酸、酢酸、マレイン酸等の各種脂肪族カルボン酸とその塩、安息香酸、フタル酸等の各種芳香族カルボン酸とその塩、アルキルベンゼンスルホン酸とそのアンモニウム塩、アミン塩、各種金属塩、リン酸や有機酸のリン酸エステル等を挙げることができる。
市販されている材料としては、キャタリスト4040、キャタリスト4050、キャタリスト600、キャタリスト602、キャタリスト500、キャタリスト296−9、以上日本サイテックインダストリーズ(株)製、やNACUREシリーズ155、1051、5076、4054JやそのブロックタイプのNACUREシリーズ2500、5225、X49−110、3525、4167以上キング社製などが挙げられる。
この熱酸発生剤の使用割合は、硬化性樹脂組成物100質量部に対して、好ましくは0.01〜10質量部、さらに好ましくは0.1〜5質量部である。添加量がこの範囲であると、硬化性樹脂組成物の保存安定性が良好で塗膜の耐擦傷性も良好なものとなる。
<Heat acid generator>
Specific examples of the thermal acid generator include various aliphatic sulfonic acids and salts thereof, various aliphatic carboxylic acids and salts thereof such as citric acid, acetic acid and maleic acid, and various aromatic carboxylic acids such as benzoic acid and phthalic acid. Examples thereof include acids and salts thereof, alkylbenzenesulfonic acids and ammonium salts thereof, amine salts, various metal salts, phosphoric acid and phosphoric acid esters of organic acids, and the like.
Examples of commercially available materials include catalyst 4040, catalyst 4050, catalyst 600, catalyst 602, catalyst 500, catalyst 296-9, and more made by Nippon Cytec Industries, Inc., and NACURE series 155, 1051, 5076, 4054J and its block type NACURE series 2500, 5225, X49-110, 3525, 4167 or more manufactured by King Corporation, and the like.
The use ratio of the thermal acid generator is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the curable resin composition. When the addition amount is within this range, the storage stability of the curable resin composition is good and the scratch resistance of the coating film is also good.
<感光性酸発生剤、光酸発生剤>
更に光重合開始剤として用いることができる光酸発生剤について詳述する。
酸発生剤としては、光カチオン重合の光開始剤、色素類の光消色剤、光変色剤、またはマイクロレジスト等に使用されている公知の酸発生剤等、公知の化合物およびそれらの混合物等が挙げられる。また、酸発生剤としては、例えば、有機ハロゲン化化合物、ジスルホン化合物、オニウム化合物等が挙げられ、これらのうち有機ハロゲン化合物、ジスルホン化合物の具体例は、前記ラジカルを発生する化合物の記載と同様のものが挙げられる。
感光性酸発生剤としては、例えば、(1)ヨードニウム塩、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、アンモニウム塩、ピリジニウム塩等の各種オニウム塩;(2)β−ケトエステル、β−スルホニルスルホンとこれらのα−ジアゾ化合物等のスルホン化合物;(3)アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等のスルホン酸エステル類;(4)スルホンイミド化合物類;(5)ジアゾメタン化合物類;を挙げることができる。
オニウム化合物としては、ジアゾニウム塩、アンモニウム塩、イミニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、アルソニウム塩、セレノニウム塩等が挙げられる。中でも、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、イミニウム塩が、光重合開始の光感度、化合物の素材安定性等の点から好ましい。例えば特開2002−29162号公報の段落[0058]〜[0059]に記載の化合物等が挙げられる。
<Photosensitive acid generator, photoacid generator>
Furthermore, the photo-acid generator which can be used as a photoinitiator is explained in full detail.
Examples of the acid generator include a photoinitiator for photocationic polymerization, a photodecolorant for dyes, a photochromic agent, a known acid generator used in a microresist, and the like, a known compound, and a mixture thereof. Is mentioned. Examples of the acid generator include organic halogenated compounds, disulfone compounds, onium compounds, etc. Among these, specific examples of organic halogen compounds and disulfone compounds are the same as those described for the compound that generates radicals. Things.
Examples of the photosensitive acid generator include (1) various onium salts such as iodonium salts, sulfonium salts, phosphonium salts, diazonium salts, ammonium salts, pyridinium salts; (2) β-ketoesters, β-sulfonylsulfones and these. sulfone compounds such as α-diazo compounds; (3) sulfonic acid esters such as alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates; (4) sulfonimide compounds; and (5) diazomethane compounds. Can be mentioned.
Examples of the onium compounds include diazonium salts, ammonium salts, iminium salts, phosphonium salts, iodonium salts, sulfonium salts, arsonium salts, and selenonium salts. Of these, diazonium salts, iodonium salts, sulfonium salts, and iminium salts are preferable from the viewpoint of photosensitivity at the start of photopolymerization, material stability of the compound, and the like. Examples thereof include compounds described in paragraphs [0058] to [0059] of JP-A-2002-29162.
感光性酸発生剤の使用割合は、硬化性樹脂組成物100質量部に対して、好ましくは0.01〜10質量部、さらに好ましくは0.1〜5質量部である。
その他、具体的な化合物や使用法として、例えば特開2005−43876号公報記載の内容などを用いることができる。
The use ratio of the photosensitive acid generator is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the curable resin composition.
In addition, as specific compounds and methods of use, for example, the contents described in JP-A-2005-43876 can be used.
3−(8)透光性粒子
本発明のフィルム、特に防眩層やハードコート層には、防眩性(表面散乱性)や内部散乱性を付与するため、各種の透光性粒子を用いることができる。
3- (8) Translucent Particles Various translucent particles are used for imparting antiglare properties (surface scattering properties) and internal scattering properties to the film of the present invention, particularly the antiglare layer and the hard coat layer. be able to.
透光性粒子は有機粒子であっても、無機粒子であってもよい。粒径にばらつきがないほど、散乱特性にばらつきが少なくなり、ヘイズ値の設計が容易となる。透光性粒子としては、プラスチックビーズが好適であり、特に透明度が高く、バインダーとの屈折率差が前述のような数値になるものが好ましい。
有機粒子としては、ポリメチルメタクリレート粒子(屈折率1.49)、架橋ポリ(アクリル−スチレン)共重合体粒子(屈折率1.54)、メラミン樹脂粒子(屈折率1.57)、ポリカーボネート粒子(屈折率1.57)、ポリスチレン粒子(屈折率1.60)、架橋ポリスチレン粒子(屈折率1.61)、ポリ塩化ビニル粒子(屈折率1.60)、ベンゾグアナミン−メラミンホルムアルデヒド粒子(屈折率1.68)等が用いられる。
無機粒子としては、シリカ粒子(屈折率1.44)、アルミナ粒子(屈折率1.63)、ジルコニア粒子、チタニア粒子、また中空や細孔を有する無機粒子が挙げられる。
The translucent particles may be organic particles or inorganic particles. As the particle size is not varied, the scattering characteristics are less varied, and the design of the haze value is facilitated. As the translucent particles, plastic beads are preferable, and those having particularly high transparency and a difference in refractive index with the binder are preferable.
As organic particles, polymethyl methacrylate particles (refractive index 1.49), crosslinked poly (acryl-styrene) copolymer particles (refractive index 1.54), melamine resin particles (refractive index 1.57), polycarbonate particles ( Refractive index 1.57), polystyrene particles (refractive index 1.60), crosslinked polystyrene particles (refractive index 1.61), polyvinyl chloride particles (refractive index 1.60), benzoguanamine-melamine formaldehyde particles (
Examples of the inorganic particles include silica particles (refractive index: 1.44), alumina particles (refractive index: 1.63), zirconia particles, titania particles, and inorganic particles having hollows and pores.
なかでも架橋ポリスチレン粒子、架橋ポリ((メタ)アクリレート)粒子、架橋ポリ(アクリル−スチレン)粒子が好ましく用いられ、これらの粒子の中から選ばれた各透光性粒子の屈折率にあわせてバインダーの屈折率を調整することにより、内部ヘイズ、表面ヘイズ、中心線平均粗さを調整することができる。
さらに、3官能以上の(メタ)アクリレートモノマーを主成分としたバインダー(硬化後の屈折率が1.50〜1.53)とアクリル含率50〜100質量パーセントである架橋ポリ(メタ)アクリレート重合体からなる透光性粒子を組み合わせて用いることが好ましく、特にバインダーと架橋ポリ(スチレン−アクリル)共重合体からなる透光性粒子(屈折率が1.48〜1.54)との組合せが好ましい。
Of these, cross-linked polystyrene particles, cross-linked poly ((meth) acrylate) particles, and cross-linked poly (acryl-styrene) particles are preferably used. By adjusting the refractive index, the internal haze, surface haze, and centerline average roughness can be adjusted.
Further, a binder (having a refractive index after curing of 1.50 to 1.53) composed mainly of a trifunctional or higher functional (meth) acrylate monomer and a crosslinked poly (meth) acrylate weight having an acrylic content of 50 to 100 mass percent. It is preferable to use a combination of translucent particles composed of a combination, and in particular, a combination of a binder and translucent particles composed of a crosslinked poly (styrene-acrylic) copolymer (with a refractive index of 1.48 to 1.54). preferable.
本発明におけるバインダー(透光性樹脂)と透光性粒子との屈折率は、1.45〜1.70であることが好ましく、より好ましくは1.48〜1.65である。屈折率を前記範囲とするには、バインダー及び透光性粒子の種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
また、本発明においては、バインダーと透光性粒子との屈折率の差(透光性粒子の屈折率−バインダーの屈折率)は、絶対値として好ましくは0.001〜0.030であり、より好ましくは0.001〜0.020、更に好ましくは0.001〜0.015である。この差が0.030を超えると、フィルム文字ボケ、暗室コントラストの低下、表面の白濁等の問題が生じる。
The refractive index of the binder (translucent resin) and translucent particles in the present invention is preferably 1.45 to 1.70, more preferably 1.48 to 1.65. In order to set the refractive index within the above range, the type and amount ratio of the binder and the light-transmitting particles may be appropriately selected. How to select can be easily known experimentally in advance.
In the present invention, the difference in refractive index between the binder and the translucent particles (the refractive index of the translucent particles−the refractive index of the binder) is preferably 0.001 to 0.030 as an absolute value, More preferably, it is 0.001-0.020, More preferably, it is 0.001-0.015. If this difference exceeds 0.030, problems such as film character blur, a decrease in dark room contrast, and surface turbidity occur.
ここで、バインダーの屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。前記透光性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に透光性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定される。 Here, the refractive index of the binder can be quantitatively evaluated by directly measuring it with an Abbe refractometer or by measuring a spectral reflection spectrum or a spectral ellipsometry. The refractive index of the translucent particles is measured by measuring the turbidity by dispersing an equal amount of the translucent particles in the solvent in which the refractive index is changed by changing the mixing ratio of two types of solvents having different refractive indexes. It is measured by measuring the refractive index of the solvent when the turbidity is minimized with an Abbe refractometer.
上記のような透光性粒子の場合には、バインダー中で透光性粒子が沈降し易いので、沈降防止のためにシリカ等の無機フィラーを添加してもよい。なお、無機フィラーは添加量が増す程、透光性粒子の沈降防止に有効であるが、塗膜の透明性に悪影響を与える。従って、好ましくは、粒径0.5μm以下の無機フィラーを、バインダーに対して塗膜の透明性を損なわない程度に、0.1質量%未満程度含有させるとよい。 In the case of the above translucent particles, the translucent particles easily settle in the binder, and therefore an inorganic filler such as silica may be added to prevent sedimentation. As the amount of the inorganic filler added increases, it is more effective in preventing the translucent particles from settling, but adversely affects the transparency of the coating film. Therefore, preferably, an inorganic filler having a particle size of 0.5 μm or less is contained in an amount of less than 0.1% by mass so as not to impair the transparency of the coating film with respect to the binder.
透光性粒子の平均粒径は0.5〜10μmが好ましく、より好ましくは2.0〜6.0μmである。平均粒径が0.5μm未満であると、光の散乱角度分布が広角にまで広がるため、ディスプレイの文字ボケを引き起こしたりするため、好ましくない。一方、10μmを超えると、添加する層の膜厚を厚くする必要が生じ、カールやコスト上昇といった問題が生じる。 The average particle size of the translucent particles is preferably 0.5 to 10 μm, more preferably 2.0 to 6.0 μm. If the average particle size is less than 0.5 μm, the light scattering angle distribution spreads to a wide angle, which may cause blurring of characters on the display. On the other hand, if it exceeds 10 μm, it is necessary to increase the thickness of the layer to be added, which causes problems such as curling and cost increase.
また、粒子径の異なる2種以上の透光性粒子を併用して用いてもよい。より大きな粒子径の透光性粒子で防眩性を付与し、より小さな粒子径の透光性粒子で表面のザラツキ感を低減することが可能である。
Moreover, you may use together and
前記透光性粒子は、添加層全固形分中に3〜30質量%含有されるように配合される。より好ましくは5〜20質量%である。3質量%未満であると、添加効果が不足し、30質量%を超えると、画像ボケや表面の白濁やギラツキ等の問題が生じる。 The said translucent particle | grain is mix | blended so that 3-30 mass% may be contained in the addition layer total solid. More preferably, it is 5-20 mass%. If it is less than 3% by mass, the effect of addition is insufficient, and if it exceeds 30% by mass, problems such as image blur, surface turbidity and glare occur.
また、透光性粒子の密度は、好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2である。 Moreover, the density of the translucent particles is preferably 10 to 1000 mg / m 2 , more preferably 100 to 700 mg / m 2 .
<透光性粒子調製、分級法> <Translucent particle preparation, classification method>
本発明に係る透光性粒子の製造法は、懸濁重合法、乳化重合法、ソープフリー乳化重合法、分散重合法、シード重合法等を挙げることができ、いずれの方法で製造されてもよい。これらの製造法は、例えば「高分子合成の実験法」(大津隆行、木下雅悦共著、化学同人社)130頁及び146頁から147頁の記載、「合成高分子」1巻、p.246〜290、同3巻、p.1〜108等に記載の方法、及び特許第2543503号明細書、同第3508304号明細書、同第2746275号明細書、同第3521560号明細書、同第3580320号明細書、特開平10−1561号公報、特開平7−2908号公報、特開平5−297506号公報、特開2002−145919号公報等に記載の方法を参考にすることができる。 Examples of the method for producing translucent particles according to the present invention include suspension polymerization, emulsion polymerization, soap-free emulsion polymerization, dispersion polymerization, seed polymerization, and the like. Good. These production methods are described in, for example, “Experimental Methods for Polymer Synthesis” (Takayuki Otsu and Masaaki Kinoshita, Chemical Dojinsha), pages 130 and 146 to 147, “Synthetic Polymers”, Vol. 246-290, 3rd volume, p. 1 to 108, etc., and Japanese Patent Nos. 2543503, 3508304, 2746275, 3521560, 3580320, and Japanese Patent Laid-Open No. 10-1561. Reference can be made to methods described in JP-A No. 7-2908, JP-A No. 5-297506, JP-A No. 2002-145919, and the like.
透光性粒子の粒度分布はヘイズ値と拡散性の制御、塗布面状の均質性から単分散性粒子が好ましい。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒度分布を持つ粒子は、調製または合成反応後に、分級することも有力な手段であり、分級の回数を上げることやその程度を強くすることで、望ましい分布の粒子を得ることができる。
分級には風力分級法、遠心分級法、沈降分級法、濾過分級法、静電分級法等の方法を用いることが好ましい。
The particle size distribution of the translucent particles is preferably monodisperse particles in terms of haze value and control of diffusibility, and uniformity of the coated surface. For example, when particles having a particle size of 20% or more than the average particle size are defined as coarse particles, the proportion of the coarse particles is preferably 1% or less of the total number of particles, more preferably 0.1% or less. Yes, more preferably 0.01% or less. Particles having such a particle size distribution are also effective means of classification after preparation or synthesis reaction, and particles having a desired distribution can be obtained by increasing the number of classifications or increasing the degree of classification. .
It is preferable to use a method such as an air classification method, a centrifugal classification method, a sedimentation classification method, a filtration classification method, or an electrostatic classification method for classification.
3−(9)無機粒子
本発明には硬度などの物理特性、反射率、散乱性などの光学特性などの向上のため、各種無機粒子を用いることができる。
無機粒子としては、珪素、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも一つ金属の酸化物、具体例としては、ZrO2、TiO2、Al2O3、In2O3、ZnO、SnO2、Sb2O3、ITO等が挙げられる。その他BaSO4、CaCO3、タルクおよびカオリンなどが含まれる。
3- (9) Inorganic particles Various inorganic particles can be used in the present invention in order to improve physical properties such as hardness, optical properties such as reflectance, and scattering properties.
As the inorganic particles, an oxide of at least one metal selected from silicon, zirconium, titanium, aluminum, indium, zinc, tin, and antimony, specific examples include ZrO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO and the like can be mentioned. Others include BaSO 4 , CaCO 3 , talc and kaolin.
本発明に使用する無機粒子の粒径は、分散媒体中でなるべく微細化されていることが好ましく、質量平均径は1〜200nmである。好ましくは5〜150nmであり、さらに好ましくは10〜100nm、特に好ましくは10〜80nmである。無機粒子を100nm以下に微細化することで透明性を損なわないフィルムを形成できる。無機粒子の粒子径は、光散乱法や電子顕微鏡写真により測定できる。 The particle diameter of the inorganic particles used in the present invention is preferably as fine as possible in the dispersion medium, and the mass average diameter is 1 to 200 nm. Preferably it is 5-150 nm, More preferably, it is 10-100 nm, Most preferably, it is 10-80 nm. A film that does not impair the transparency can be formed by refining the inorganic particles to 100 nm or less. The particle diameter of the inorganic particles can be measured by a light scattering method or an electron micrograph.
無機粒子の比表面積は、10〜400m2/gであることが好ましく、20〜200m2/gであることがさらに好ましく、30〜150m2/gであることが最も好ましい。 The specific surface area of the inorganic particles is preferably from 10 to 400 m 2 / g, more preferably from 20 to 200 m 2 / g, and most preferably from 30 to 150 m 2 / g.
本発明に使用する無機粒子は分散媒体中に分散物として使用する層の塗布液に添加することが好ましい。
無機粒子の分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例には、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が含まれる。トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが特に好ましい。
特に好ましい分散媒体は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。
The inorganic particles used in the present invention are preferably added to a coating solution for a layer used as a dispersion in a dispersion medium.
As the dispersion medium for the inorganic particles, a liquid having a boiling point of 60 to 170 ° C. is preferably used. Examples of dispersion media include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ester (eg, methyl acetate, ethyl acetate, Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methyl) Carboxymethyl-2-propanol) are included. Toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferred.
Particularly preferred dispersion media are methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
無機粒子は、分散機を用いて分散する。分散機の例には、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルが含まれる。サンドグラインダーミルおよび高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが含まれる。 The inorganic particles are dispersed using a disperser. Examples of dispersers include sand grinder mills (eg, pinned bead mills), high speed impeller mills, pebble mills, roller mills, attritors and colloid mills. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.
<高屈折率粒子>
本発明を構成する層を高屈折率化する目的に対しては、屈折率の高い無機粒子をモノマーと開始剤、有機置換されたケイ素化合物中に分散した組成物の硬化物が好ましく用いられる。
この場合の無機粒子としては、屈折率の観点から、特にZrO2、TiO2が好ましく用いられる。ハードコート層の高屈折率化に対してはZrO2が、高屈折率層、中屈折率層用の粒子としてはTiO2の微粒子が最も好ましい。
<High refractive index particles>
For the purpose of increasing the refractive index of the layer constituting the present invention, a cured product of a composition in which inorganic particles having a high refractive index are dispersed in a monomer, an initiator, and an organically substituted silicon compound is preferably used.
In particular, ZrO 2 and TiO 2 are preferably used as the inorganic particles in this case from the viewpoint of refractive index. ZrO 2 is most preferable for increasing the refractive index of the hard coat layer, and TiO 2 fine particles are most preferable as the particles for the high refractive index layer and the medium refractive index layer.
上記TiO2の粒子としては、コバルト、アルミニウム、ジルコニウムから選ばれる少なくとも1つの元素を含有するTiO2を主成分とする無機粒子が特に好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
本発明におけるTiO2を主成分とする粒子は、屈折率が1.90〜2.80であることが好ましく、2.10〜2.80であることがさらに好ましく、2.20〜2.80であることが最も好ましい。
TiO2を主成分とする粒子の一次粒子の質量平均径は1〜200nmであることが好ましく、より好ましくは1〜150nm、さらに好ましくは1〜100nm、特に好ましくは1〜80nmである。
As the TiO 2 particles, inorganic particles mainly containing TiO 2 containing at least one element selected from cobalt, aluminum, and zirconium are particularly preferable. The main component means a component having the largest content (mass%) among the components constituting the particles.
The particles mainly composed of TiO 2 in the present invention preferably have a refractive index of 1.90 to 2.80, more preferably 2.10 to 2.80, and 2.20 to 2.80. Most preferably.
The mass average diameter of primary particles of TiO 2 as a main component is preferably 1 to 200 nm, more preferably 1 to 150 nm, still more preferably 1 to 100 nm, and particularly preferably 1 to 80 nm.
TiO2を主成分とする粒子の結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造が主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。 The crystal structure of the particles containing TiO 2 as a main component is preferably a rutile, rutile / anatase mixed crystal, anatase or amorphous structure, and particularly preferably a rutile structure. The main component means a component having the largest content (mass%) among the components constituting the particles.
TiO2を主成分とする粒子に、Co(コバルト)、Al(アルミニウム)及びZr(ジルコニウム)から選ばれる少なくとも1つの元素を含有することで、TiO2が有する光触媒活性を抑えることができ、本発明のフィルムの耐候性を改良することができる。
特に、好ましい元素はCo(コバルト)である。また、2種類以上を併用することも好ましい。
本発明のTiO2を主成分とする無機粒子は、表面処理により特開2001−166104号公報記載のごとく、コア/シェル構造を有していても良い。
By containing at least one element selected from Co (cobalt), Al (aluminum) and Zr (zirconium) in the particles containing TiO 2 as a main component, the photocatalytic activity of TiO 2 can be suppressed. The weather resistance of the inventive film can be improved.
A particularly preferable element is Co (cobalt). It is also preferable to use two or more types in combination.
The inorganic particles mainly composed of TiO 2 of the present invention may have a core / shell structure by surface treatment as described in JP-A No. 2001-166104.
層中のモノマーや無機粒子の添加量は、バインダーの全質量の10〜90質量%であることが好ましく、20〜80質量%であると更に好ましい。無機粒子は層内で二種類以上用いても良い。 The addition amount of the monomer and inorganic particles in the layer is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the binder. Two or more kinds of inorganic particles may be used in the layer.
<低屈折率粒子>
低屈折率層に含有させる無機粒子は、低屈折率であることが望ましく、フッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点でシリカ微粒子が好ましい。
シリカ微粒子の平均粒径は、低屈折率層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、シリカ微粒子の粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
ここで、無機粒子の平均粒径はコールターカウンターにより測定される。
<Low refractive index particles>
The inorganic particles contained in the low refractive index layer desirably have a low refractive index, and examples thereof include fine particles of magnesium fluoride and silica. In particular, silica fine particles are preferable in terms of refractive index, dispersion stability, and cost.
The average particle diameter of the silica fine particles is preferably 30% to 150% of the thickness of the low refractive index layer, more preferably 35% to 80%, and still more preferably 40% to 60%. That is, when the thickness of the low refractive index layer is 100 nm, the particle diameter of the silica fine particles is preferably 30 nm to 150 nm, more preferably 35 nm to 80 nm, and still more preferably 40 nm to 60 nm.
Here, the average particle diameter of the inorganic particles is measured by a Coulter counter.
シリカ微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。 If the particle size of the silica fine particles is too small, the effect of improving the scratch resistance is reduced. If it is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance are deteriorated. The silica fine particles may be either crystalline or amorphous, and may be monodispersed particles or aggregated particles as long as a predetermined particle size is satisfied. The shape is most preferably a spherical diameter, but there is no problem even if the shape is indefinite.
また、平均粒径が低屈折率層の厚みの25%未満であるシリカ微粒子(「小サイズ粒径のシリカ微粒子」と称す)の少なくとも1種を上記の粒径のシリカ微粒子(「大サイズ粒径のシリカ微粒子」と称す)と併用することが好ましい。
小サイズ粒径のシリカ微粒子は、大サイズ粒径のシリカ微粒子同士の隙間に存在することができるため、大サイズ粒径のシリカ微粒子の保持剤として寄与することができる。
小サイズ粒径のシリカ微粒子の平均粒径は、低屈折率層が100nmの場合、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このようなシリカ微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
Further, at least one kind of silica fine particles having an average particle size of less than 25% of the thickness of the low refractive index layer (referred to as “small size particle size silica particles”) is used as silica fine particles having the above particle size (“large size particles”). It is preferably used in combination with “silica fine particles having a diameter”.
Since the fine silica particles having a small particle size can exist in the gaps between the fine silica particles having a large particle size, they can contribute as a retaining agent for the fine silica particles having a large particle size.
When the low refractive index layer is 100 nm, the average particle size of the silica fine particles having a small size is preferably from 1 nm to 20 nm, more preferably from 5 nm to 15 nm, and particularly preferably from 10 nm to 15 nm. Use of such silica fine particles is preferable in terms of raw material costs and a retaining agent effect.
低屈折率粒子の塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。 The coating amount of the low refractive index particles is preferably 1mg / m 2 ~100mg / m 2 , more preferably 5mg / m 2 ~80mg / m 2 , more preferably from 10mg / m 2 ~60mg / m 2 . If the amount is too small, the effect of improving the scratch resistance is reduced. If the amount is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance are deteriorated.
<中空シリカ粒子>
屈折率をよち低下させる目的のためには、中空のシリカ微粒子を用いることが好ましい。
<Hollow silica particles>
For the purpose of reducing the refractive index, it is preferable to use hollow silica fine particles.
中空のシリカ微粒子は屈折率が1.15〜1.40が好ましく、更に好ましくは1.17〜1.35、最もに好ましくは1.17〜1.30である。ここでの屈折率は粒子全体として屈折率を表し、中空シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式で表される空隙率xは
数式:
x=(4πa3/3)/(4πb3/3)×100
好ましくは10〜60%、更に好ましくは20〜60%、最も好ましくは30〜60%である。中空のシリカ粒子をより低屈折率に、より空隙率を大きくしようとすると、外殻の厚みが薄くなり、粒子の強度としては弱くなるため、耐擦傷性の観点から1.15未満の低屈折率の粒子は好ましくない。
The hollow silica fine particles preferably have a refractive index of 1.15 to 1.40, more preferably 1.17 to 1.35, and most preferably 1.17 to 1.30. The refractive index here represents the refractive index of the entire particle, and does not represent the refractive index of only the outer shell silica forming the hollow silica particles. At this time, when the radius of the cavity in the particle is a and the radius of the particle outer shell is b, the porosity x expressed by the following formula is:
x = (4πa 3/3) / (
Preferably it is 10-60%, More preferably, it is 20-60%, Most preferably, it is 30-60%. If the hollow silica particles are made to have a lower refractive index and a higher porosity, the thickness of the outer shell becomes thinner and the strength of the particles becomes weaker. From the viewpoint of scratch resistance, the low refractive index is less than 1.15. Rate particles are not preferred.
中空シリカの製造方法は、例えば特開2001−233611号公報や特開2002−79616号公報に記載されている。特にシェルの内部に空洞を有している粒子で、そのシェルの細孔が閉塞されている粒子が特に好ましい。なお、これら中空シリカ粒子の屈折率は特開2002−79616号公報に記載の方法で算出することができる。 A method for producing hollow silica is described in, for example, Japanese Patent Application Laid-Open Nos. 2001-233611 and 2002-79616. In particular, particles having cavities inside the shell and having fine pores in the shell are particularly preferred. The refractive index of these hollow silica particles can be calculated by the method described in JP-A No. 2002-79616.
中空シリカの塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、低屈折率化の効果や耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。
中空シリカの平均粒径は、低屈折率層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、中空シリカの粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上100nm以下、更に好ましくは、40nm以上65nm以下である。
シリカ微粒子の粒径が小さすぎると、空腔部の割合が減り屈折率の低下が見込めず、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子が好ましい。形状は、球径が最も好ましいが、不定形であっても問題無い。
また、中空シリカは粒子平均粒子サイズの異なるものを2種以上併用して用いることができる。ここで、中空シリカの平均粒径は電子顕微鏡写真から求めることができる。
本発明において中空シリカの比表面積は、20〜300m2/gが好ましく、更に好ましくは30〜120m2/g、最も好ましくは40〜90m2/gである。表面積は窒素を用いBET法で求めることができる。
The coating amount of the hollow silica is preferably from 1mg / m 2 ~100mg / m 2 , more preferably 5mg / m 2 ~80mg / m 2 , more preferably from 10mg / m 2 ~60mg / m 2 . If the amount is too small, the effect of lowering the refractive index and the effect of improving the scratch resistance will be reduced.
The average particle diameter of the hollow silica is preferably 30% to 150% of the thickness of the low refractive index layer, more preferably 35% to 80%, and still more preferably 40% to 60%. That is, if the thickness of the low refractive index layer is 100 nm, the particle size of the hollow silica is preferably 30 nm to 150 nm, more preferably 35 nm to 100 nm, and still more preferably 40 nm to 65 nm.
If the particle size of the silica particles is too small, the proportion of cavities will decrease and a decrease in refractive index cannot be expected. Getting worse. The silica fine particles may be either crystalline or amorphous, and monodisperse particles are preferred. The shape is most preferably a spherical diameter, but there is no problem even if the shape is indefinite.
Further, two or more kinds of hollow silica having different particle average particle sizes can be used in combination. Here, the average particle diameter of the hollow silica can be determined from an electron micrograph.
The specific surface area of the hollow silica in the present invention is preferably from 20 to 300 m 2 / g, more preferably 30~120m 2 / g, most preferably 40~90m 2 / g. The surface area can be determined by the BET method using nitrogen.
本発明においては、中空シリカと併用して空腔のないシリカ粒子を用いることができる。空腔のないシリカの好ましい粒子サイズは、30nm以上150nm以下、更に好ましくは35nm以上100nm以下、最も好ましくは40nm以上80nm以下である。 In the present invention, silica particles having no voids can be used in combination with hollow silica. The preferred particle size of silica without voids is 30 nm to 150 nm, more preferably 35 nm to 100 nm, and most preferably 40 nm to 80 nm.
3−(10)導電性粒子
本発明のフィルムには導電性を付与するために、各種の導電性粒子を用いることができる。
導電性粒子は、金属の酸化物または窒化物から形成することが好ましい。金属の酸化物または窒化物の例には、酸化錫、酸化インジウム、酸化亜鉛および窒化チタンが含まれる。酸化錫および酸化インジウムが特に好ましい。導電性無機粒子は、これらの金属の酸化物または窒化物を主成分とし、さらに他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例には、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P、S、B、Nb、In、Vおよびハロゲン原子が含まれる。酸化錫および酸化インジウムの導電性を高めるために、Sb、P、B、Nb、In、Vおよびハロゲン原子を添加することが好ましい。Sbを含有する酸化錫(ATO)およびSnを含有する酸化インジウム(ITO)が特に好ましい。ATO中のSbの割合は、3〜20質量%であることが好ましい。ITO中のSnの割合は、5〜20質量%であることが好ましい。
3- (10) Conductive Particles Various conductive particles can be used for imparting conductivity to the film of the present invention.
The conductive particles are preferably formed from a metal oxide or nitride. Examples of metal oxides or nitrides include tin oxide, indium oxide, zinc oxide and titanium nitride. Tin oxide and indium oxide are particularly preferred. The conductive inorganic particles are mainly composed of oxides or nitrides of these metals, and can further contain other elements. The main component means a component having the largest content (mass%) among the components constituting the particles. Examples of other elements include Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, S, B, Nb, In, V and halogen atoms are included. In order to increase the conductivity of tin oxide and indium oxide, it is preferable to add Sb, P, B, Nb, In, V and a halogen atom. Particularly preferred are tin oxide containing Sb (ATO) and indium oxide containing Sn (ITO). The ratio of Sb in ATO is preferably 3 to 20% by mass. The ratio of Sn in ITO is preferably 5 to 20% by mass.
帯電防止層に用いる導電性無機粒子の一次粒子の平均粒子径は、1〜150nmであることが好ましく、5〜100nmであることがさらに好ましく、5〜70nmであることが最も好ましい。形成される帯電防止層中の導電性無機粒子の平均粒子径は、1〜200nmであり、5〜150nmであることが好ましく、10〜100nmであることがさらに好ましく、10〜80nmであることが最も好ましい。導電性無機粒子の平均粒子径は、粒子の質量を重みとした平均径であり、光散乱法や電子顕微鏡写真により測定できる。
導電性無機粒子の比表面積は、10〜400m2/gであることが好ましく、20〜200m2/gであることがさらに好ましく、30〜150m2/gであることが最も好ましい。
The average particle diameter of the primary particles of the conductive inorganic particles used for the antistatic layer is preferably 1 to 150 nm, more preferably 5 to 100 nm, and most preferably 5 to 70 nm. The average particle diameter of the conductive inorganic particles in the antistatic layer to be formed is 1 to 200 nm, preferably 5 to 150 nm, more preferably 10 to 100 nm, and more preferably 10 to 80 nm. Most preferred. The average particle diameter of the conductive inorganic particles is an average diameter weighted by the mass of the particles and can be measured by a light scattering method or an electron micrograph.
The specific surface area of the conductive inorganic particles is preferably from 10 to 400 m 2 / g, more preferably from 20 to 200 m 2 / g, and most preferably from 30 to 150 m 2 / g.
導電性無機粒子を表面処理してもよい。表面処理は、無機化合物または有機化合物を用いて実施する。表面処理に用いる無機化合物の例には、アルミナおよびシリカが含まれる。シリカ処理が特に好ましい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。二種類以上の表面処理を組み合わせて実施してもよい。
導電性無機粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい。
The conductive inorganic particles may be surface treated. The surface treatment is performed using an inorganic compound or an organic compound. Examples of inorganic compounds used for the surface treatment include alumina and silica. Silica treatment is particularly preferred. Examples of organic compounds used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Silane coupling agents are most preferred. Two or more kinds of surface treatments may be performed in combination.
The shape of the conductive inorganic particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape.
二種類以上の導電性粒子を特定の層内あるいはフィルムとして併用してもよい。
帯電防止層中の導電性無機粒子の割合は、20〜90質量%であることが好ましく、25〜85質量%であることが好ましく、30〜80質量%であることがさらに好ましい。
Two or more kinds of conductive particles may be used in a specific layer or as a film.
The proportion of the conductive inorganic particles in the antistatic layer is preferably 20 to 90% by mass, preferably 25 to 85% by mass, and more preferably 30 to 80% by mass.
導電性無機粒子は、分散物の状態で帯電防止層の形成に使用することができる。 The conductive inorganic particles can be used for forming an antistatic layer in the form of a dispersion.
3−(11)表面処理剤
本発明で使用する無機粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。
3- (11) Surface treatment agent The inorganic particles used in the present invention are plasma in order to stabilize dispersion in a dispersion or coating solution, or to increase affinity and binding properties with a binder component. A physical surface treatment such as a discharge treatment or a corona discharge treatment, or a chemical surface treatment with a surfactant or a coupling agent may be performed.
表面処理は、無機化合物または有機化合物の表面処理剤を用いて実施することができる。表面処理に用いる無機化合物の例には、コバルトを含有する無機化合物(CoO2,Co2O3,Co3O4など)、アルミニウムを含有する無機化合物(Al2O3,Al(OH)3など)、ジルコニウムを含有する無機化合物(ZrO2,Zr(OH)4など)、ケイ素を含有する無機化合物(SiO2など)、鉄を含有する無機化合物(Fe2O3など)などが含まれる。
コバルトを含有する無機化合物、アルミニウムを含有する無機化合物、ジルコニウムを含有する無機化合物が特に好ましく、コバルトを含有する無機化合物、Al(OH)3、Zr(OH)4が最も好ましい。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。特にシランカップリング剤(オルガノシラン化合物)、その部分加水分解物、およびその縮合物の少なくとも一種で表面処理されていることが好ましい。
The surface treatment can be performed using a surface treatment agent of an inorganic compound or an organic compound. Examples of inorganic compounds used for the surface treatment include inorganic compounds containing cobalt (CoO 2 , Co 2 O 3 , Co 3 O 4, etc.), inorganic compounds containing aluminum (Al 2 O 3 , Al (OH) 3, etc. Etc.), zirconium-containing inorganic compounds (such as ZrO 2 and Zr (OH) 4 ), silicon-containing inorganic compounds (such as SiO 2 ), and iron-containing inorganic compounds (such as Fe 2 O 3 ). .
Inorganic compounds containing cobalt, inorganic compounds containing aluminum, and inorganic compounds containing zirconium are particularly preferred, and inorganic compounds containing cobalt, Al (OH) 3 , and Zr (OH) 4 are most preferred.
Examples of organic compounds used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Silane coupling agents are most preferred. In particular, the surface treatment is preferably performed with at least one of a silane coupling agent (organosilane compound), a partial hydrolyzate thereof, and a condensate thereof.
チタネートカップリング剤としては、例えば、テトラメトキシチタン、テトラエトキシチタン、のどのテトライソプロポキシチタンなどの金属アルコキシド、プレンアクト(KR−TTS、KR−46B、KR−55、KR−41Bなど;味の素(株)製)などが挙げられる。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、その他アニオン性基を有する有機化合物などが好ましく、特に好ましいのは、カルボキシル基、スルホン酸基、又は、リン酸基を有する有機化合物である。ステアリン酸、ラウリン酸、オレイン酸、リノール酸、リノレイン酸などが好ましく用いることができる。
表面処理に用いる有機化合物は、さらに、架橋又は重合性官能基を有することが好ましい。架橋、又は、重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する基である。
Examples of titanate coupling agents include metal alkoxides such as tetramethoxy titanium, tetraethoxy titanium, and throat tetraisopropoxy titanium, and preneact (KR-TTS, KR-46B, KR-55, KR-41B, etc .; Ajinomoto Co., Inc. ))).
Examples of the organic compound used for the surface treatment include polyols, alkanolamines, and other organic compounds having an anionic group, and particularly preferable are organic compounds having a carboxyl group, a sulfonic acid group, or a phosphoric acid group. is there. Stearic acid, lauric acid, oleic acid, linoleic acid, linolenic acid and the like can be preferably used.
The organic compound used for the surface treatment preferably further has a crosslinked or polymerizable functional group. Crosslinkable or polymerizable functional groups include ethylenically unsaturated groups (for example, (meth) acrylic groups, allyl groups, styryl groups, vinyloxy groups, etc.) that can undergo addition reactions and polymerization reactions with radical species, cationic polymerizable groups (Epoxy groups, oxatanyl groups, vinyloxy groups, etc.), polycondensation reactive groups (hydrolyzable silyl groups, etc., N-methylol groups) and the like can be mentioned, and groups having an ethylenically unsaturated group are preferred.
これらの表面処理は、2種類以上を併用することもでき、アルミニウムを含有する無機化合物とジルコニウムを含有する無機化合物を併用することが、特に好ましい。 Two or more kinds of these surface treatments can be used in combination, and it is particularly preferable to use an inorganic compound containing aluminum and an inorganic compound containing zirconium.
無機粒子がシリカである場合、カップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、シランカップリング処理が特に有効である。
上記カップリング剤は、低屈折率層の無機フィラーの表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
シリカ微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
本発明に好ましく用いることのできる表面処理剤および表面処理用の触媒の具体的化合物は、例えば、国際公開第2004/017105号パンフレットに記載のオルガノシラン化合物および触媒を挙げることができる。
When the inorganic particles are silica, the use of a coupling agent is particularly preferred. As the coupling agent, an alkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. Of these, silane coupling treatment is particularly effective.
The above coupling agent is used as a surface treatment agent for the inorganic filler of the low refractive index layer in advance for surface treatment prior to the preparation of the layer coating solution, and is added as an additive during the preparation of the layer coating solution. It is preferable to make it contain in a layer.
The silica fine particles are preferably dispersed in the medium in advance before the surface treatment in order to reduce the load of the surface treatment.
Specific examples of the surface treatment agent and the surface treatment catalyst that can be preferably used in the present invention include organosilane compounds and catalysts described in International Publication No. 2004/017105 pamphlet.
3−(12)分散剤
本発明に使用する粒子の分散には各種の分散剤を使用することができる。
分散剤は、さらに架橋又は重合性官能基を含有することが好ましい。架橋又は重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリロイル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する官能基である。
3- (12) Dispersant Various dispersants can be used for dispersing the particles used in the present invention.
The dispersant preferably further contains a crosslinkable or polymerizable functional group. Crosslinkable or polymerizable functional groups include ethylenically unsaturated groups (for example, (meth) acryloyl groups, allyl groups, styryl groups, vinyloxy groups, etc.) that can undergo addition reactions and polymerization reactions with radical species, and cationic polymerizable groups (epoxies). Groups, oxatanyl groups, vinyloxy groups, etc.), polycondensation reactive groups (hydrolyzable silyl groups, etc., N-methylol groups) and the like, and functional groups having an ethylenically unsaturated group are preferred.
無機粒子の分散、特にTiO2を主成分とする無機粒子の分散にはアニオン性基を有する分散剤を用いることが好ましく、アニオン性基、及び架橋又は重合性官能基を有することがより好ましく、該架橋又は重合性官能基を側鎖に有する分散剤であることが特に好ましい。 It is preferable to use a dispersant having an anionic group for the dispersion of inorganic particles, particularly for the dispersion of inorganic particles containing TiO2 as a main component, more preferably having an anionic group and a crosslinkable or polymerizable functional group, A dispersant having a cross-linked or polymerizable functional group in the side chain is particularly preferred.
アニオン性基としては、カルボキシル基、スルホン酸基(スルホ)、リン酸基(ホスホノ)、スルホンアミド基等の酸性プロトンを有する基、またはその塩が有効であり、特にカルボキシル基、スルホン酸基、リン酸基またはその塩が好ましく、カルボキシル基、リン酸基が特に好ましい。1分子当たりの分散剤に含有されるアニオン性基の数は、1分子中に複数種類が含有されていてもよいが、平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有されるアニオン性基は、1分子中に複数種類が含有されていてもよい。 As the anionic group, a group having an acidic proton such as a carboxyl group, a sulfonic acid group (sulfo), a phosphoric acid group (phosphono), a sulfonamide group, or a salt thereof is effective, and in particular, a carboxyl group, a sulfonic acid group, A phosphoric acid group or a salt thereof is preferable, and a carboxyl group and a phosphoric acid group are particularly preferable. The number of anionic groups contained in the dispersing agent per molecule may be plural, but is preferably 2 or more on average, more preferably 5 or more, Particularly preferred is 10 or more. Moreover, the anionic group contained in a dispersing agent may contain multiple types in 1 molecule.
側鎖にアニオン性基を有する分散剤において、アニオン性基含有繰返し単位の組成は、全繰返し単位のうちの10-4〜100mol%の範囲であり、好ましくは1〜50mol%、特に好ましくは5〜20mol%である。 In the dispersant having an anionic group in the side chain, the composition of the anionic group-containing repeating unit is in the range of 10 −4 to 100 mol%, preferably 1 to 50 mol%, particularly preferably 5 in the total repeating units. ˜20 mol%.
分散剤は、さらに架橋又は重合性官能基を含有することが好ましい。架橋又は重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリロイル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する官能基である。 The dispersant preferably further contains a crosslinkable or polymerizable functional group. Crosslinkable or polymerizable functional groups include ethylenically unsaturated groups (for example, (meth) acryloyl groups, allyl groups, styryl groups, vinyloxy groups, etc.) that can undergo addition reactions and polymerization reactions with radical species, and cationic polymerizable groups (epoxies). Groups, oxatanyl groups, vinyloxy groups, etc.), polycondensation reactive groups (hydrolyzable silyl groups, etc., N-methylol groups) and the like, and functional groups having an ethylenically unsaturated group are preferred.
1分子当たりの分散剤に含有される架橋又は重合性官能基の数は、平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有される架橋又は重合性官能基は、1分子中に複数種類が含有されていてもよ
い。
The average number of cross-linkable or polymerizable functional groups contained in the dispersant per molecule is preferably 2 or more, more preferably 5 or more, and particularly preferably 10 or more. Moreover, the crosslinking or polymerizable functional group contained in the dispersant may contain a plurality of types in one molecule.
本発明に用いる好ましい分散剤において、側鎖にエチレン性不飽和基を有する繰返し単位の例としては、ポリ−1,2−ブタジエンおよびポリ−1,2−イソプレン構造あるいは、(メタ)アクリル酸のエステルまたはアミドの繰返し単位であって、それに特定の残基(−COORまたは−CONHRのR基)が結合しているものが利用できる。上記特定の残基(R基)の例としては、−(CH2)n−CR21=CR22R23、−(CH2O)n−CH2CR21=CR22R23、−(CH2CH2O)n−CH2CR21=CR22R23、−(CH2)n−NH−CO−O−CH2CR21=CR22R23、−(CH2)n−O−CO−CR21=CR22R23および−(CH2CH2O)2−X(R21〜R23はそれぞれ、水素原子、ハロゲン原子、炭素原子数が1〜20のアルキル基、アリール基、アルコキシ基、アリールオキシ基であり、R21とR22またはR23は互いに結合して環を形成してもよく、nは1〜10の整数であり、そしてXはジシクロペンタジエニル残基である)を挙げることができる。エステル残基のRの具体例には、−CH2CH=CH2(特開昭64−17047号公報記載のアリル(メタ)アクリレートのポリマーに相当)、−CH2CH2O−CH2CH=CH2、−CH2CH2OCOCH=CH2、−CH2CH2OCOC(CH3)=CH2、−CH2C(CH3)=CH2、−CH2CH=CH−C6H5、−CH2CH2OCOCH=CH−C6H5、−CH2CH2−NHCOO−CH2CH=CH2および−CH2CH2O−X(Xはジシクロペンタジエニル残基)が含まれる。アミド残基のRの具体例には、−CH2CH=CH2、−CH2CH2−Y(Yは1−シクロヘキセニル残基)および−CH2CH2−OCO−CH=CH2、−CH2CH2−OCO−C(CH3)=CH2が含まれる。
In the preferred dispersant for use in the present invention, examples of the repeating unit having an ethylenically unsaturated group in the side chain include poly-1,2-butadiene and poly-1,2-isoprene structures or (meth) acrylic acid. An ester or amide repeating unit to which a specific residue (the R group of —COOR or —CONHR) is bonded can be used. Examples of the specific residue (R group), - (CH 2) n -CR 21 = CR 22 R 23, - (CH 2 O) n-
上記のエチレン性不飽和基を有する分散剤においては、その不飽和結合基にフリーラジカル(重合開始ラジカルまたは重合性化合物の重合過程の生長ラジカル)が付加し、分子間で直接、または重合性化合物の重合連鎖を介して付加重合して、分子間に架橋が形成されて硬化する。あるいは、分子中の原子(例えば不飽和結合基に隣接する炭素原子上の水素原子)がフリーラジカルにより引き抜かれてポリマーラジカルが生成し、それが互いに結合することによって、分子間に架橋が形成されて硬化する。 In the dispersant having an ethylenically unsaturated group, a free radical (a polymerization initiation radical or a growth radical of a polymerization process of a polymerizable compound) is added to the unsaturated bond group, and the polymer compound is directly or between molecules. Addition polymerization is carried out through the polymerization chain, and a crosslink is formed between the molecules to cure. Alternatively, atoms in the molecule (for example, hydrogen atoms on carbon atoms adjacent to the unsaturated bond group) are extracted by free radicals to form polymer radicals that are bonded together to form a bridge between the molecules. Harden.
アニオン性基、及び架橋又は重合性官能基を有し、かつ該架橋又は重合性官能基を側鎖に有する分散剤の質量平均分子量(Mw)は、特に限定されないが1000以上であることが好ましい。分散剤のより好ましい質量平均分子量(Mw)は2000〜1000000であり、さらに好ましくは5000〜200000、特に好ましくは10000〜100000である。 The weight average molecular weight (Mw) of the dispersant having an anionic group and a crosslinkable or polymerizable functional group and having the crosslinkable or polymerizable functional group in the side chain is not particularly limited, but is preferably 1000 or more. . The more preferable mass average molecular weight (Mw) of the dispersant is 2000 to 1000000, more preferably 5000 to 200000, and particularly preferably 10000 to 100000.
架橋又は重合性官能基の含有単位は、アニオン性基含有繰返し単位以外の全ての繰返し単位を構成していてもよいが、好ましくは全架橋又は繰返し単位のうちの5〜50mol%であり、特に好ましくは5〜30mol%である。 The cross-linkable or polymerizable functional group-containing unit may constitute all repeating units other than the anionic group-containing repeating unit, preferably 5 to 50 mol% of the total cross-linking or repeating unit, particularly Preferably it is 5-30 mol%.
分散剤は、架橋又は重合性官能基、アニオン性基を有するモノマー以外の適当なモノマーとの共重合体であっても良い。共重合成分に関しては特に限定はされないが、分散安定性、他のモノマー成分との相溶性、形成皮膜の強度等種々の観点から選択される。好ましい例としては、メチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、スチレン等が挙げられる。 The dispersant may be a copolymer with an appropriate monomer other than a monomer having a crosslinking or polymerizable functional group or an anionic group. Although it does not specifically limit regarding a copolymerization component, It selects from various viewpoints, such as dispersion stability, compatibility with another monomer component, and the intensity | strength of a formed film. Preferable examples include methyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene and the like.
分散剤の形態は特に制限はないが、ブロック共重合体またはランダム共重合体であることが好ましくコストおよび合成的な容易さからランダム共重合体であることが特に好ましい。 The form of the dispersant is not particularly limited, but is preferably a block copolymer or a random copolymer, and particularly preferably a random copolymer from the viewpoint of cost and ease of synthesis.
分散剤の無機粒子に対する使用量は、1〜50質量%の範囲であることが好ましく、5〜30質量%の範囲であることがより好ましく、5〜20質量%であることが最も好ましい。また、分散剤は2種類以上を併用してもよい。 The amount of the dispersant used relative to the inorganic particles is preferably in the range of 1 to 50% by mass, more preferably in the range of 5 to 30% by mass, and most preferably 5 to 20% by mass. Two or more dispersants may be used in combination.
本発明に好ましく用いられる分散剤の具体例としては、特開2005−275214号公報の段落[0094]〜[0099]に詳しい記載がある。ただし本発明用の分散剤はこれらに限定されるものではない。 Specific examples of the dispersant preferably used in the present invention are described in detail in paragraphs [0094] to [0099] of JP-A-2005-275214. However, the dispersant for the present invention is not limited thereto.
3−(13)防汚剤
本発明のフィルム、特にフィルムの最上層には防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することが好ましい。
これらの添加剤を添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。
3- (13) Antifouling agent For the purpose of imparting antifouling properties, water resistance, chemical resistance, slipperiness and the like to the film of the present invention, particularly the uppermost layer of the film, known silicone type or fluorine type It is preferable to add an antifouling agent, a slip agent and the like as appropriate.
When these additives are added, it is preferably added in the range of 0.01 to 20% by mass of the total solid content of the low refractive index layer, more preferably in the range of 0.05 to 10% by mass. Particularly preferred is 0.1 to 5% by mass.
シリコーン系化合物の好ましい例としてはジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端及び/又は側鎖に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることがより好ましく、3000〜30000であることが特に好ましく、10000〜20000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X22−164C、X−22−170DX、X−22−176D、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、FM−4421、FM−5521、FM6621、FM−1121やGelest製DMS−U22、RMS−033、RMS−083、UMS−182、DMS−H21、DMS−H31、HMS−301、FMS121、FMS123、FMS131、FMS141、FMS221(以上商品名)などが挙げられるがこれらに限定されるものではない。 Preferable examples of the silicone compound include those having a substituent at the terminal and / or side chain of a compound chain containing a plurality of dimethylsilyloxy units as repeating units. The compound chain containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, fluoroalkyl group, polyoxyalkylene group, carboxyl group, amino group and the like. It is done. Although there is no restriction | limiting in particular in molecular weight, It is preferable that it is 100,000 or less, It is more preferable that it is 50,000 or less, It is especially preferable that it is 3000-30000, It is most preferable that it is 10,000-20000. Although there is no restriction | limiting in particular in silicone atom content of a silicone type compound, it is preferable that it is 18.0 mass% or more, it is especially preferable that it is 25.0-37.8 mass%, and 30.0-37.0. Most preferably, it is mass%. Examples of preferred silicone compounds are X-22-174DX, X-22-2426, X-22-164B, X22-164C, X-22-170DX, X-22-176D, X, manufactured by Shin-Etsu Chemical Co., Ltd. -22-1821 (named above), manufactured by Chisso Corporation, FM-0725, FM-7725, FM-4421, FM-5521, FM6621, FM-1121, Gelest DMS-U22, RMS-033, RMS- 083, UMS-182, DMS-H21, DMS-H31, HMS-301, FMS121, FMS123, FMS131, FMS141, FMS221 (named above) but not limited thereto.
フッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。該フルオロアルキル基は炭素数1〜20であることが好ましく、より好ましくは1〜10であり、直鎖(例えば−CF2CF3,−CH2(CF2)4H,−CH2(CF2)8CF3,−CH2CH2(CF2)4H等)であっても、分岐構造(例えばCH(CF3)2,CH2CF(CF3)2,CH(CH3)CF2CF3,CH(CH3)(CF2)5CF2H等)であっても、脂環式構造(好ましくは5員環または6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基またはこれらで置換されたアルキル基等)であっても良く、エーテル結合を有していても良い(例えばCH2OCH2CF2CF3,CH2CH2OCH2C4F8H,CH2CH2OCH2CH2C8F17,CH2CH2OCF2CF2OCF2CF2H等)。該フルオロアルキル基は同一分子中に複数含まれていてもよい。
As the fluorine compound, a compound having a fluoroalkyl group is preferable. The fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and a straight chain (for example, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , —CH 2 CH 2 (CF 2 ) 4 H, etc.), for example, a branched structure (eg, CH (CF 3 ) 2 , CH 2 CF (CF 3 ) 2 , CH (CH 3 ) CF 2 CF 3 , CH (CH 3 ) (CF 2 ) 5 CF 2 H, etc.) and alicyclic structures (preferably 5-membered or 6-membered rings such as perfluorocyclohexyl group, perfluorocyclopentyl Group or an alkyl group substituted with these, and may have an ether bond (for example, CH 2 OCH 2 CF 2 CF 3 , CH 2 CH 2 OCH 2 C 4 F 8 H, CH 2 CH 2 OCH 2 CH 2 C 8
フッ素系化合物は、さらに低屈折率層皮膜との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。該置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。フッ素系化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限は無いが20質量%以上であることが好ましく、30〜70質量%であることが特に好ましく、40〜70質量%であることが最も好ましい。好ましいフッ素系化合物の例としてはダイキン化学工業(株)製、R−2020、M−2020、R−3833、M−3833(以上商品名)、大日本インキ(株)製、メガファックF−171、F−172、F−179A、ディフェンサMCF−300(以上商品名)などが挙げられるがこれらに限定されるものではない。 It is preferable that the fluorine-based compound further has a substituent that contributes to bond formation or compatibility with the low refractive index layer film. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group, amino group and the like. The fluorine-based compound may be a polymer or an oligomer with a compound not containing a fluorine atom, and the molecular weight is not particularly limited. Although there is no restriction | limiting in particular in fluorine atom content of a fluorine-type compound, It is preferable that it is 20 mass% or more, It is especially preferable that it is 30-70 mass%, It is most preferable that it is 40-70 mass%. Examples of preferred fluorine-based compounds include Daikin Chemical Industries, Ltd., R-2020, M-2020, R-3833, M-3833 (named above), Dainippon Ink Co., Ltd., Megafac F-171. , F-172, F-179A, and defender MCF-300 (named above), but are not limited thereto.
防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。好ましい化合物の例としては大日本インキ(株)製、メガファックF−150(商品名)、東レダウコーニング(株)製、SH−3748(商品名)などが挙げられるが、これらに限定されるわけではない。 For the purpose of imparting properties such as dust resistance and antistatic properties, a known cationic surfactant or a dustproof agent such as a polyoxyalkylene compound, an antistatic agent, or the like can be appropriately added. These dustproofing agent and antistatic agent may contain the structural unit as a part of the function in the above-mentioned silicone compound or fluorine compound. When these are added as additives, it is preferably added in the range of 0.01 to 20% by mass of the total solid content of the low refractive index layer, more preferably in the range of 0.05 to 10% by mass. Particularly preferred is 0.1 to 5% by mass. Examples of preferred compounds include, but are not limited to, Dainippon Ink Co., Ltd., MegaFace F-150 (trade name), Toray Dow Corning Co., Ltd., SH-3748 (trade name), and the like. Do not mean.
3−(14)界面活性剤
本発明のフィルムには、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を光拡散層形成用の塗布組成物中に含有することが好ましい。特にフッ素系の界面活性剤は、より少ない添加量において、塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いることができる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることができる。
3- (14) Surfactant For the film of the present invention, in order to ensure surface uniformity such as coating unevenness, drying unevenness, point defects, etc., any fluorine-based or silicone-based surfactant, or Both of them are preferably contained in the coating composition for forming the light diffusion layer. In particular, a fluorine-based surfactant can be preferably used because an effect of improving surface defects such as coating unevenness, drying unevenness, and point defects appears at a smaller addition amount. Productivity can be improved by giving high-speed coating suitability while improving surface uniformity.
フッ素系の界面活性剤の好ましい例としては、フルオロ脂肪族基含有共重合体(以下、「フッ素系ポリマー」と略記することもある。)が挙げられ、該フッ素系ポリマーは、下記(i)のモノマー(一般式イ)に相当する繰り返し単位を含むことを特徴とする、あるいは下記(ii)のモノマー(一般式ロ)に相当する繰り返し単位を含むことを特徴とする、アクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体が有用である。 Preferable examples of the fluorosurfactant include a fluoroaliphatic group-containing copolymer (hereinafter sometimes abbreviated as “fluorine polymer”), and the fluoropolymer includes the following (i): Acrylic resin, methacrylic, characterized in that it contains a repeating unit corresponding to the monomer (general formula (b)), or contains a repeating unit corresponding to the monomer (general formula (b)) below (ii) Resins and copolymers with vinyl monomers copolymerizable therewith are useful.
(i)下記一般式イで表されるフルオロ脂肪族基含有モノマー (I) Fluoroaliphatic group-containing monomer represented by the following general formula
一般式イ
一般式イにおいてR11は水素原子またはメチル基を表し、Xは酸素原子、イオウ原子または−N(R12)−を表し、mは1以上6以下の整数、nは2〜4の整数を表す。R12は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Xは酸素原子が好ましい。 In the general formula A, R 11 represents a hydrogen atom or a methyl group, X represents an oxygen atom, a sulfur atom or —N (R 12 ) —, m is an integer of 1 to 6, and n is an integer of 2 to 4. To express. R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. X is preferably an oxygen atom.
(ii)前記(i)と共重合可能な下記一般式ロで示されるモノマー (Ii) a monomer represented by the following general formula (b) copolymerizable with (i) above
一般式ロ
一般式ロにおいて、R13は水素原子またはメチル基を表し、Yは酸素原子、イオウ原子または−N(R15)−を表し、R15は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Yは酸素原子、−N(H)−、および−N(CH3)−が好ましい。
R14は置換基を有しても良い炭素数4以上20以下の直鎖、分岐または環状のアルキル基を表す。R14のアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。炭素数4以上20以下の直鎖、分岐または環状のアルキル基としては、直鎖及び分岐してもよいブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基、等の多環シクロアルキル基が好適に用いられる。
In the general formula B, R 13 represents a hydrogen atom or a methyl group, Y represents an oxygen atom, a sulfur atom or —N (R 15 ) —, R 15 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically Specifically, it represents a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. Y is an oxygen atom, -N (H) -, and -N (CH 3) - are preferred.
R 14 represents a linear, branched or cyclic alkyl group having 4 to 20 carbon atoms which may have a substituent. Examples of the substituent for the alkyl group of R 14 include a hydroxyl group, an alkylcarbonyl group, an arylcarbonyl group, a carboxyl group, an alkyl ether group, an aryl ether group, a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom, a nitro group, and a cyano group. , Amino groups and the like, but not limited thereto. Examples of the linear, branched or cyclic alkyl group having 4 to 20 carbon atoms include a butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and undecyl group which may be linear or branched. , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group, eicosanyl group, etc., and monocyclic cycloalkyl groups such as cyclohexyl group, cycloheptyl group and bicycloheptyl group, bicyclodecyl group, tricycloundecyl group, A polycyclic cycloalkyl group such as a tetracyclododecyl group, an adamantyl group, a norbornyl group, a tetracyclodecyl group, or the like is preferably used.
本発明で用いられるフッ素系ポリマー中に用いられるこれらの一般式イで示されるフルオロ脂肪族基含有モノマーの量は、該フッ素系ポリマーの各単量体に基づいて10モル%以上であり、好ましくは15〜70モル%であり、より好ましくは20〜60モル%の範囲である。 The amount of the fluoroaliphatic group-containing monomer represented by the general formula (a) used in the fluoropolymer used in the present invention is 10 mol% or more based on each monomer of the fluoropolymer, preferably Is 15 to 70 mol%, more preferably in the range of 20 to 60 mol%.
本発明で用いられるフッ素系ポリマーの好ましい質量平均分子量は、3000〜100,000が好ましく、5,000〜80,000がより好ましい。
更に、本発明で用いられるフッ素系ポリマーの好ましい添加量は、塗布液に対して0.001〜5質量%の範囲であり、好ましくは0.005〜3質量%の範囲であり、更に好ましくは0.01〜1質量%の範囲である。フッ素系ポリマーの添加量が0.001質量%未満では効果が不十分であり、また5質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、塗膜としての性能(例えば反射率、耐擦傷性)に悪影響を及ぼす。
The preferred weight average molecular weight of the fluoropolymer used in the present invention is preferably 3000 to 100,000, more preferably 5,000 to 80,000.
Furthermore, the preferable addition amount of the fluoropolymer used in the present invention is in the range of 0.001 to 5% by mass, preferably in the range of 0.005 to 3% by mass, and more preferably, with respect to the coating solution. It is the range of 0.01-1 mass%. If the addition amount of the fluorine-based polymer is less than 0.001% by mass, the effect is insufficient, and if it exceeds 5% by mass, the coating film may not be sufficiently dried or the performance as a coating film (for example, reflectance) Adversely affect the scratch resistance).
一般式イで表されるフルオロ脂肪族基含有モノマーに相当する繰り返し単位を含むフッ素系ポリマーの具体的な構造の例は特開2004−163610号公報の段落[0054]〜[0063]に詳しく記載がある。ただし本発明用のフッ素系ポリマーはこれらに限定されるものではない。 An example of a specific structure of a fluoropolymer containing a repeating unit corresponding to the fluoroaliphatic group-containing monomer represented by the general formula A is described in detail in paragraphs [0054] to [0063] of JP-A No. 2004-163610. There is. However, the fluoropolymer for use in the present invention is not limited to these.
しかしながら、前記のようなフッ素系ポリマーを使用することにより、防眩層表面にF原子を含有する官能基が偏析することにより防眩層の表面エネルギーが低下し、前記防眩層上に低屈折率層をオーバーコートしたときに反射防止性能が悪化する問題が生じる。これは低屈折率層を形成するために用いられる硬化性組成物の濡れ性が悪化するために低屈折率層に目視では検知できない微小なムラが悪化するためと推定される。このような問題を解決するためには、フッ素系ポリマーの構造と添加量を調整することにより、防眩層の表面エネルギーを好ましくは20mN・m-1〜50mN・m-1に、より好ましくは30mN・m-1〜40mN・m-1に制御することが効果的であることを見出した。前記のような表面エネルギーを実現するためには、X線光電子分光法で測定したフッ素原子由来のピークと炭素原子由来のピークの比であるF/Cが0.1〜1.5であることが必要である。 However, the use of such a fluoropolymer reduces the surface energy of the antiglare layer due to segregation of functional groups containing F atoms on the surface of the antiglare layer, resulting in low refraction on the antiglare layer. When the rate layer is overcoated, there arises a problem that the antireflection performance deteriorates. This is presumably because minute unevenness that cannot be visually detected in the low refractive index layer deteriorates because the wettability of the curable composition used for forming the low refractive index layer deteriorates. To solve such problems, by adjusting the structure and amount of the fluorine-based polymer, the surface energy of the antiglare layer preferably in 20mN · m -1 ~50mN · m -1 , more preferably it was found that it is effective to control the 30mN · m -1 ~40mN · m -1 . In order to realize the surface energy as described above, F / C, which is a ratio of a peak derived from a fluorine atom and a peak derived from a carbon atom, measured by X-ray photoelectron spectroscopy is 0.1 to 1.5. is required.
或いは、上層を塗布する時には上層を形成する溶媒に抽出されるようなフッ素系ポリマーを選択することで、下層表面(=界面)に偏在することがなくなり上層と下層の密着性を持たせることで、高速塗布においても面状の均一性を保ち、かつ耐擦傷性の強い反射防止フィルムを提供できる表面自由エネルギーの低下を防ぐことにより、低屈折率層塗布前の防眩層の表面エネルギーを前記範囲に制御することでも目的を達成することができる。そのような素材の例は下記一般式ハで表されるフルオロ脂肪族基含有モノマーに相当する繰り返し単位を含むことを特徴とするアクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体である。 Alternatively, by selecting a fluorine-based polymer that is extracted by the solvent that forms the upper layer when the upper layer is applied, it is not unevenly distributed on the lower layer surface (= interface), so that the adhesion between the upper layer and the lower layer is provided. The surface energy of the antiglare layer before coating the low refractive index layer can be reduced by maintaining the surface uniformity even at high speed coating and preventing the decrease in surface free energy that can provide an antireflection film with high scratch resistance. The purpose can also be achieved by controlling the range. Examples of such materials include an acrylic resin, a methacrylic resin, and a vinyl monomer copolymerizable therewith, containing a repeating unit corresponding to a fluoroaliphatic group-containing monomer represented by the following general formula C And a copolymer.
(iii)下記一般式ハで表されるフルオロ脂肪族基含有モノマー (Iii) A fluoroaliphatic group-containing monomer represented by the following general formula C
一般式ハ
一般式ハにおいてR21は水素原子またはハロゲン原子またはメチル基を表し、水素原子、メチル基がより好ましい。X2は酸素原子、イオウ原子または−N(R22)−を表し、酸素原子または−N(R22)−がより好ましく、酸素原子が更に好ましい。mは1以上6以下の整数(1〜3がより好ましく、1であることが更に好ましい。)、nは1以上18以下の整数(4〜12がより好ましく、6〜8が更に好ましい。)を表す。R22は水素原子または置換基を有しても良い炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。Xは酸素原子が好ましい。
またフッ素系ポリマー中に一般式ハで表されるフルオロ脂肪族基含有モノマーが2種類以上構成成分として含まれていても良い。
In the general formula C, R 21 represents a hydrogen atom, a halogen atom or a methyl group, and more preferably a hydrogen atom or a methyl group. X 2 represents an oxygen atom, a sulfur atom or —N (R 22 ) —, more preferably an oxygen atom or —N (R 22 ) —, and still more preferably an oxygen atom. m is an integer from 1 to 6 (more preferably from 1 to 3, more preferably 1), and n is an integer from 1 to 18 (more preferably from 4 to 12, and even more preferably from 6 to 8). Represents. R 22 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms which may have a substituent, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and further preferably a hydrogen atom or a methyl group. X is preferably an oxygen atom.
In addition, two or more kinds of fluoroaliphatic group-containing monomers represented by the general formula C may be contained in the fluorine-based polymer as constituent components.
(iv)前記(iii)と共重合可能な下記一般式ニで示されるモノマー (Iv) a monomer represented by the following general formula D copolymerizable with the above (iii)
一般式ニ
一般式ニにおいて、R23は水素原子、ハロゲン原子またはメチル基を表し、水素原子、メチル基がより好ましい。Y2は酸素原子、イオウ原子または−N(R25)−を表し、酸素原子または−N(R25)−がより好ましく、酸素原子が更に好ましい。R25は水素原子または炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。
R24は置換基を有しても良い炭素数1〜20の直鎖、分岐または環状のアルキル基、ポリ(アルキレンオキシ)基を含むアルキル基、置換基を有していても良い芳香族基(例えば、フェニル基またはナフチル基)を表す。炭素数1〜12の直鎖、分岐、または環状のアルキル基、または総炭素数6〜18の芳香族がより好ましく、炭素数1〜8の直鎖、分岐、または環状のアルキル基が更に好ましい。
In the general formula D, R 23 represents a hydrogen atom, a halogen atom or a methyl group, more preferably a hydrogen atom or a methyl group. Y 2 represents an oxygen atom, a sulfur atom or —N (R 25 ) —, more preferably an oxygen atom or —N (R 25 ) —, and still more preferably an oxygen atom. R 25 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and still more preferably a hydrogen atom or a methyl group.
R 24 is an optionally substituted linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkyl group containing a poly (alkyleneoxy) group, and an optionally substituted aromatic group. (For example, a phenyl group or a naphthyl group). A linear, branched or cyclic alkyl group having 1 to 12 carbon atoms or an aromatic group having 6 to 18 carbon atoms is more preferable, and a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is more preferable. .
一般式ハで表されるフルオロ脂肪族基含有モノマーに相当する繰り返し単位を含むフッ素系ポリマーの具体的な構造の例は、特開2005−115359号公報の段落[0037]〜[0045]に詳しく記載がある。ただし本発明用のフッ素系ポリマーはこれらに限定されるものではない。 Examples of the specific structure of the fluoropolymer containing a repeating unit corresponding to the fluoroaliphatic group-containing monomer represented by the general formula C are described in detail in paragraphs [0037] to [0045] of JP-A-2005-115359. There is a description. However, the fluoropolymer for use in the present invention is not limited to these.
3−(15)増粘剤 3- (15) Thickener
本発明のフィルムは、塗布液の粘度を調整するために増粘剤を用いてもよい。
ここでいう増粘剤とは、それを添加することにより液の粘度が増大するものを意味し、添加することにより塗布液の粘度が上昇する大きさとして好ましくは0.05〜50cPであり、さらに好ましくは0.10〜20cPであり、最も好ましくは0.10〜10cPである。
The film of the present invention may use a thickener to adjust the viscosity of the coating solution.
The term “thickener” as used herein means that the viscosity of the liquid is increased by adding it, and is preferably 0.05 to 50 cP as the magnitude of increase in the viscosity of the coating liquid by adding it. More preferably, it is 0.10-20 cP, Most preferably, it is 0.10-10 cP.
このような増粘剤としては以下のものが挙げられるが、これに限定されない。
ポリ−ε−カプロラクトン
ポリ−ε−カプロラクトンジオール
ポリ−ε−カプロラクトントリオール
ポリビニルアセテート
ポリ(エチレンアジペート)
ポリ(1,4−ブチレンアジペート)
ポリ(1,4−ブチレングルタレート)
ポリ(1,4−ブチレンスクシネート)
ポリ(1,4−ブチレンテレフタレート)
ポリ(エチレンテレフタレート)
ポリ(2−メチル−1,3−プロピレンアジペート)
ポリ(2−メチル−1,3−プロピレングルタレート)
ポリ(ネオペンチルグリコールアジペート)
ポリ(ネオペンチルグリコールセバケート)
ポリ(1,3−プロピレンアジペート)
ポリ(1,3−プロピレングルタレート)
ポリビニルブチラール
ポリビニルホルマール
ポリビニルアセタール
ポリビニルプロパナール
ポリビニルヘキサナール
ポリビニルピロリドン
ポリアクリル酸エステル
ポリメタクリル酸エステル
セルロースアセテート
セルロースプロピオネート
セルロースアセテートブチレート
Examples of such thickeners include, but are not limited to:
Poly-ε-caprolactone poly-ε-caprolactone diol poly-ε-caprolactone triol polyvinyl acetate poly (ethylene adipate)
Poly (1,4-butylene adipate)
Poly (1,4-butylene glutarate)
Poly (1,4-butylene succinate)
Poly (1,4-butylene terephthalate)
polyethylene terephthalate)
Poly (2-methyl-1,3-propylene adipate)
Poly (2-methyl-1,3-propylene glutarate)
Poly (neopentyl glycol adipate)
Poly (neopentyl glycol sebacate)
Poly (1,3-propylene adipate)
Poly (1,3-propylene glutarate)
Polyvinyl butyral polyvinyl formal polyvinyl acetal polyvinyl propanal polyvinyl hexanal polyvinyl pyrrolidone polyacrylic ester polymethacrylic acid ester cellulose acetate cellulose propionate cellulose acetate butyrate
この他にも特開平8−325491号公報記載のスメクタイト、フッ素四珪素雲母、ベントナイト、シリカ、モンモリロナイト及びポリアクリル酸ソーダ、特開平10−219136号公報記載のエチルセルロース、ポリアクリル酸、有機粘土など、公知の粘度調整剤やチキソトロピー性付与剤を使用することができる。 In addition, smectite, fluorine tetrasilicon mica, bentonite, silica, montmorillonite and sodium polyacrylate described in JP-A-8-325491, ethylcellulose, polyacrylic acid, organic clay described in JP-A-10-219136, Known viscosity modifiers and thixotropic agents can be used.
3−(16)塗布溶剤
本発明の各層を形成するための塗布組成物に用いられる溶剤としては、各成分を溶解または分散可能であること、塗布工程、乾燥工程において均一な面状となり易いこと、液保存性が確保できること、適度な飽和蒸気圧を有すること、等の観点で選ばれる各種の溶剤が使用できる。
溶媒は2種類以上のものを混合して用いることができる。特に、乾燥負荷の観点から、常圧室温における沸点が100℃以下の溶剤を主成分とし、乾燥速度の調整のために沸点が100℃以上の溶剤を少量含有することが好ましい。
3- (16) Coating solvent As a solvent used in the coating composition for forming each layer of the present invention, each component can be dissolved or dispersed, and a uniform surface is likely to be formed in the coating process and the drying process. Various solvents selected from the viewpoints of ensuring liquid storage stability and having an appropriate saturated vapor pressure can be used.
Two or more kinds of solvents can be mixed and used. In particular, from the viewpoint of drying load, it is preferable that a solvent having a boiling point of 100 ° C. or lower at normal pressure and room temperature as a main component and a small amount of solvent having a boiling point of 100 ° C. or higher for adjusting the drying speed.
沸点が100℃以下の溶剤としては、例えば、ヘキサン(沸点68.7℃)、ヘプタン(98.4℃)、シクロヘキサン(80.7℃)、ベンゼン(80.1℃)などの炭化水素類、ジクロロメタン(39.8℃)、クロロホルム(61.2℃)、四塩化炭素(76.8℃)、1,2−ジクロロエタン(83.5℃)、トリクロロエチレン(87.2℃)などのハロゲン化炭化水素類、ジエチルエーテル(34.6℃)、ジイソプロピルエーテル(68.5℃)、ジプロピルエーテル(90.5℃)、テトラヒドロフラン(66℃)などのエーテル類、ギ酸エチル(54.2℃)、酢酸メチル(57.8℃)、酢酸エチル(77.1℃)、酢酸イソプロピル(89℃)などのエステル類、アセトン(56.1℃)、2−ブタノン(メチルエチルケトンと同じ、79.6℃)などのケトン類、メタノール(64.5℃)、エタノール(78.3℃)、2−プロパノール(82.4℃)、1−プロパノール(97.2℃)などのアルコール類、アセトニトリル(81.6℃)、プロピオニトリル(97.4℃)などのシアノ化合物類、二硫化炭素(46.2℃)などがある。このうちケトン類、エステル類が好ましく、特に好ましくはケトン類である。ケトン類の中では2−ブタノンが特に好ましい。 Examples of the solvent having a boiling point of 100 ° C. or lower include hydrocarbons such as hexane (boiling point 68.7 ° C.), heptane (98.4 ° C.), cyclohexane (80.7 ° C.), benzene (80.1 ° C.), Halogenated carbonization such as dichloromethane (39.8 ° C), chloroform (61.2 ° C), carbon tetrachloride (76.8 ° C), 1,2-dichloroethane (83.5 ° C), trichloroethylene (87.2 ° C) Hydrogens, diethyl ether (34.6 ° C), diisopropyl ether (68.5 ° C), dipropyl ether (90.5 ° C), tetrahydrofuran (66 ° C) and other ethers, ethyl formate (54.2 ° C), Esters such as methyl acetate (57.8 ° C.), ethyl acetate (77.1 ° C.), isopropyl acetate (89 ° C.), acetone (56.1 ° C.), 2-butanone (methyl ethyl) Ketones such as 79.6 ° C, the same as ketone, methanol (64.5 ° C), ethanol (78.3 ° C), 2-propanol (82.4 ° C), 1-propanol (97.2 ° C), etc. Alcohols, cyano compounds such as acetonitrile (81.6 ° C.), propionitrile (97.4 ° C.), carbon disulfide (46.2 ° C.), and the like. Of these, ketones and esters are preferable, and ketones are particularly preferable. Among the ketones, 2-butanone is particularly preferable.
沸点が100℃以上の溶剤としては、例えば、オクタン(125.7℃)、トルエン(110.6℃)、キシレン(138℃)、テトラクロロエチレン(121.2℃)、クロロベンゼン(131.7℃)、ジオキサン(101.3℃)、ジブチルエーテル(142.4℃)、酢酸イソブチル(118℃)、シクロヘキサノン(155.7℃)、2−メチル−4−ペンタノン(MIBKと同じ、115.9℃)、1−ブタノール(117.7℃)、N,N−ジメチルホルムアミド(153℃)、N,N−ジメチルアセトアミド(166℃)、ジメチルスルホキシド(189℃)などがある。好ましくは、シクロヘキサノン、2−メチル−4−ペンタノンである。 Examples of the solvent having a boiling point of 100 ° C or higher include, for example, octane (125.7 ° C), toluene (110.6 ° C), xylene (138 ° C), tetrachloroethylene (121.2 ° C), chlorobenzene (131.7 ° C), Dioxane (101.3 ° C.), dibutyl ether (142.4 ° C.), isobutyl acetate (118 ° C.), cyclohexanone (155.7 ° C.), 2-methyl-4-pentanone (same as MIBK, 115.9 ° C.), Examples thereof include 1-butanol (117.7 ° C.), N, N-dimethylformamide (153 ° C.), N, N-dimethylacetamide (166 ° C.), dimethyl sulfoxide (189 ° C.) and the like. Cyclohexanone and 2-methyl-4-pentanone are preferable.
3−(17)その他
本発明のフィルムには、前記の成分以外に、樹脂、カップリング剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤などを添加することもできる。
3- (17) Others In addition to the components described above, the film of the present invention includes a resin, a coupling agent, a coloring inhibitor, a coloring agent (pigment, dye), an antifoaming agent, a leveling agent, a flame retardant, and an ultraviolet absorber. , Infrared absorbers, adhesion-imparting agents, polymerization inhibitors, antioxidants, surface modifiers, and the like can also be added.
4.各塗設層(機能層)について
本発明の防眩性反射防止フィルムは、上記の各種素材、化合物を混合し、支持体上に塗設することによって得られるものであるが、次に、本発明のフィルムを構成する各塗設層(機能層)について記載する。
4). About each coating layer (functional layer) The antiglare antireflection film of the present invention is obtained by mixing the above-mentioned various materials and compounds and coating on a support. It describes about each coating layer (functional layer) which comprises the film of invention.
4−(1)ハードコート層
本発明のフィルムには、フィルムの物理的強度を付与するために、透明支持体の一方の面にハードコート層が設けられる。
その上に低屈折率層が設けられ、更に好ましくはハードコート層と低屈折率層の間に中屈折率層、高屈折率層が設けられ、反射防止フィルムを構成する。
ハードコート層は、二層以上の積層から構成されてもよい。
4- (1) Hard Coat Layer The film of the present invention is provided with a hard coat layer on one surface of the transparent support in order to impart the physical strength of the film.
A low refractive index layer is provided thereon, and more preferably, an intermediate refractive index layer and a high refractive index layer are provided between the hard coat layer and the low refractive index layer to constitute an antireflection film.
The hard coat layer may be composed of two or more layers.
本発明におけるハードコート層の屈折率は、反射防止性のフィルムを得るための光学設計から、屈折率が1.48〜2.00の範囲にあることが好ましく、より好ましくは1.52〜1.90であり、更に好ましくは1.55〜1.80である。本発明では、ハードコート層の上に低屈折率層が少なくとも1層あるので、屈折率がこの範囲より小さ過ぎると反射防止性が低下し、大き過ぎると反射光の色味が強くなる傾向がある。 The refractive index of the hard coat layer in the present invention is preferably in the range of 1.48 to 2.00, more preferably 1.52 to 1, from the optical design for obtaining an antireflection film. .90, more preferably 1.55 to 1.80. In the present invention, since there is at least one low refractive index layer on the hard coat layer, if the refractive index is too small, the antireflection property is lowered, and if it is too large, the color of the reflected light tends to be strong. is there.
ハードコート層の膜厚は、フィルムに充分な耐久性、耐衝撃性を付与する観点から、ハードコート層の厚さは通常0.5μm〜50μm程度とし、好ましくは1μm〜20μm、さらに好ましくは2μm〜10μm、最も好ましくは3μm〜7μmである。
また、ハードコート層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
さらに、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
From the viewpoint of imparting sufficient durability and impact resistance to the film, the thickness of the hard coat layer is usually about 0.5 μm to 50 μm, preferably 1 μm to 20 μm, more preferably 2 μm. 10 μm, most preferably 3 μm to 7 μm.
Further, the strength of the hard coat layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test.
Furthermore, in the Taber test according to JIS K5400, the smaller the wear amount of the test piece before and after the test, the better.
ハードコート層は、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。例えば、電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
The hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound. For example, it may be formed by coating a coating composition containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer on a transparent support and subjecting the polyfunctional monomer or polyfunctional oligomer to a crosslinking reaction or a polymerization reaction. it can.
The functional group of the ionizing radiation curable polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.
ハードコート層には、内部散乱性付与の目的で、平均粒径が1.0〜10.0μm、好ましくは1.5〜7.0μmのマット粒子、例えば無機化合物の粒子または樹脂粒子を含有してもよい。 The hard coat layer contains matte particles having an average particle diameter of 1.0 to 10.0 μm, preferably 1.5 to 7.0 μm, such as inorganic compound particles or resin particles, for the purpose of imparting internal scattering properties. May be.
ハードコート層のバインダーには、ハードコート層の屈折率を制御する目的で、高屈折率モノマーまたは無機粒子、或いは両者を加えることができる。無機粒子には屈折率を制御する効果に加えて、架橋反応による硬化収縮を抑える効果もある。本発明では、ハードコート層形成後において、前記多官能モノマーおよび/又は高屈折率モノマー等が重合して生成した重合体、その中に分散された無機粒子を含んでバインダーと称する。 For the purpose of controlling the refractive index of the hard coat layer, a high refractive index monomer, inorganic particles, or both can be added to the binder of the hard coat layer. In addition to the effect of controlling the refractive index, the inorganic particles also have the effect of suppressing cure shrinkage due to the crosslinking reaction. In the present invention, a polymer formed by polymerizing the polyfunctional monomer and / or the high refractive index monomer after the hard coat layer is formed, and the inorganic particles dispersed therein are referred to as a binder.
また、ハードコート層の表面凹凸形状については、画像の鮮明性を維持する目的で、クリアな表面を得る為には、表面粗さを示す特性のうち、例えば中心線平均粗さ(Ra)を0.10μm以下とすることが好ましい。Raは、より好ましくは0.09μm以下であり、更に好ましくは0.08μm以下である。本発明のフィルムにおいては、フィルムの表面凹凸にはハードコート層の表面凹凸が支配的であり、ハードコート層の中心線平均粗さを調節することにより、反射防止フィルムの中心線平均粗さを上記範囲とすることができる。 In addition, for the surface irregularity shape of the hard coat layer, in order to obtain a clear surface for the purpose of maintaining the sharpness of the image, among the characteristics indicating the surface roughness, for example, the centerline average roughness (Ra) is set. The thickness is preferably 0.10 μm or less. Ra is more preferably 0.09 μm or less, and still more preferably 0.08 μm or less. In the film of the present invention, the surface unevenness of the hard coat layer is dominant to the surface unevenness of the film, and the center line average roughness of the antireflection film is adjusted by adjusting the center line average roughness of the hard coat layer. It can be set as the said range.
画像の鮮明性を維持する目的では、表面の凹凸形状を調整することに加えて、透過画像鮮明度を調整することが好ましい。クリアな反射防止フィルムの透過画像鮮明度は60%以上が好ましい。透過画像鮮明度は、一般にフィルムを透過して映す画像の呆け具合を示す指標であり、この値が大きい程、フィルムを通して見る画像が鮮明で良好であることを示す。透過画像鮮明度は好ましくは70%以上であり、更に好ましくは80%以上である。 In order to maintain the sharpness of the image, it is preferable to adjust the clarity of the transmitted image in addition to adjusting the uneven shape of the surface. The clearness of the transmitted image of the clear antireflection film is preferably 60% or more. The transmitted image clarity is generally an index indicating the degree of blurring of an image reflected through a film, and the larger this value, the clearer and better the image viewed through the film. The transmitted image definition is preferably 70% or more, and more preferably 80% or more.
4−(2)防眩層
防眩層は、表面散乱による防眩性と、好ましくはフィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。
4- (2) Antiglare layer The antiglare layer is formed for the purpose of contributing to the film an antiglare property due to surface scattering and preferably a hard coat property for improving the scratch resistance of the film.
防眩性を形成する方法としては、特開平6−16851号公報記載のような表面に微細な凹凸を有するマット状の賦型フィルムをラミネートして形成する方法、特開2000−206317号公報記載のように電離放射線照射量の差による電離放射線硬化型樹脂の硬化収縮により形成する方法、特開2000−338310号公報記載のように乾燥にて透光性樹脂に対する良溶媒の質量比が減少することにより透光性微粒子および透光性樹脂とをゲル化させつつ固化させて塗膜表面に凹凸を形成する方法、特開2000−275404号公報記載のように外部からの圧力により表面凹凸を付与する方法などが知られており、これら公知の方法を利用することができる。
本発明で用いることができる防眩層は好ましくはハードコート性を付与することのできるバインダー、防眩性を付与するための透光性粒子、および溶媒を必須成分として含有し、透光性粒子自体の突起あるいは複数の粒子の集合体で形成される突起によって表面の凹凸を形成されるものであることが好ましい。
マット粒子の分散によって形成される防眩層は、バインダーとバインダー中に分散された透光性粒子とからなる。防眩性を有する防眩層は、防眩性とハードコート性を兼ね備えていることが好ましい。
As a method of forming the antiglare property, a method of laminating and forming a mat-shaped shaping film having fine irregularities on the surface as described in JP-A-6-16851, described in JP-A-2000-206317. The method of forming by curing shrinkage of ionizing radiation curable resin due to the difference in ionizing radiation dose, as described in JP 2000-338310 A, the mass ratio of good solvent to translucent resin is reduced by drying A method of forming unevenness on the coating film surface by solidifying the light-transmitting fine particles and the light-transmitting resin while gelling, and providing surface unevenness by external pressure as described in JP-A-2000-275404 There are known methods, and these known methods can be used.
The antiglare layer that can be used in the present invention preferably contains a binder capable of imparting hard coat properties, translucent particles for imparting antiglare properties, and a solvent as essential components. It is preferable that irregularities on the surface be formed by the protrusions of the protrusions themselves or protrusions formed by an aggregate of a plurality of particles.
The antiglare layer formed by dispersing the matte particles is composed of a binder and translucent particles dispersed in the binder. The antiglare layer having antiglare properties preferably has both antiglare properties and hard coat properties.
上記マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の
粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、シリカ粒子が好ましい。
マット粒子の形状は、球形あるいは不定形のいずれも使用できる。
As specific examples of the mat particles, inorganic particles such as silica particles and TiO 2 particles; resin particles such as acrylic particles, crosslinked acrylic particles, polystyrene particles, crosslinked styrene particles, melamine resin particles, and benzoguanamine resin particles are preferable. Can be mentioned. Of these, crosslinked styrene particles, crosslinked acrylic particles, and silica particles are preferred.
The shape of the mat particles can be either spherical or irregular.
また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。例えば、133ppi以上の高精細ディスプレイに防眩性反射防止フィルムを貼り付けた場合に、「ギラツキ」と呼ばれる表示画像品位上の不具合が発生する場合がある。「ギラツキ」は、防眩性反射防止防止フィルム表面に存在する凹凸により、画素が拡大もしくは縮小され、輝度の均一性を失うことに由来するが、防眩性を付与するマット粒子よりも小さな粒子径で、バインダーの屈折率と異なるマット粒子を併用することにより大きく改善することができる。 Two or more kinds of mat particles having different particle diameters may be used in combination. It is possible to impart anti-glare properties with mat particles having a larger particle size and to impart other optical characteristics with mat particles having a smaller particle size. For example, when an anti-glare antireflection film is attached to a high-definition display of 133 ppi or higher, a problem in display image quality called “glare” may occur. “Glitter” is derived from the fact that pixels are enlarged or reduced due to unevenness present on the surface of the antiglare and antireflection antireflection film, resulting in loss of luminance uniformity, but particles smaller than mat particles that impart antiglare properties. It can be greatly improved by using mat particles having a diameter different from that of the binder.
上記マット粒子は、形成された防眩性ハードコート層中のマット粒子量が好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2となるように防眩層に含有される。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
The mat particles are contained in the antiglare layer so that the amount of mat particles in the formed antiglare hard coat layer is preferably 10 to 1000 mg / m 2 , more preferably 100 to 700 mg / m 2 .
The particle size distribution of the mat particles is measured by a Coulter counter method, and the measured distribution is converted into a particle number distribution.
防眩層の膜厚は、1〜10μmが好ましく、1.2〜8μmがより好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が低下する場合があるので、前記範囲内とするのが好ましい。 The film thickness of the antiglare layer is preferably 1 to 10 μm, and more preferably 1.2 to 8 μm. If it is too thin, the hard property is insufficient, and if it is too thick, curling and brittleness may be deteriorated and workability may be lowered.
一方、防眩層の中心線平均粗さ(Ra)を0.10〜0.40μmの範囲が好ましい。0.40μmを超えると、ギラツキや外光が反射した際の表面の白化等の問題が発生する。また、透過画像鮮明度の値は、5〜60%とするのが好ましい。 On the other hand, the center line average roughness (Ra) of the antiglare layer is preferably in the range of 0.10 to 0.40 μm. If it exceeds 0.40 μm, problems such as glare and whitening of the surface when external light is reflected occur. Further, it is preferable that the value of the transmitted image definition is 5 to 60%.
防眩層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。 The strength of the antiglare layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test.
4−(3)高屈折率層、中屈折率層
本発明のフィルムには、高屈折率層、中屈折率層を設け、反射防止性を高めることができる。
以下の本明細書では、この高屈折率層と中屈折率層を高屈折率層と総称して呼ぶことがある。なお、本発明において、高屈折率層、中屈折率層、低屈折率層の「高」、「中」、「低」とは層相互の相対的な屈折率の大小関係を表す。また、透明支持体との関係で言えば屈性率は、透明支持体>低屈折率層、高屈折率層>透明支持体の関係を満たすことが好ましい。
また、本明細書では高屈折率層、中屈折率層、低屈折率層を総称して反射防止層と総称して呼ぶことがある。
4- (3) High Refractive Index Layer, Medium Refractive Index Layer The film of the present invention can be provided with a high refractive index layer and a medium refractive index layer to enhance antireflection properties.
In the following specification, the high refractive index layer and the medium refractive index layer may be collectively referred to as a high refractive index layer. In the present invention, “high”, “medium”, and “low” in the high refractive index layer, the medium refractive index layer, and the low refractive index layer represent the relative refractive index relationship between the layers. In terms of the relationship with the transparent support, the refractive index preferably satisfies the relationship of transparent support> low refractive index layer, high refractive index layer> transparent support.
In the present specification, the high refractive index layer, the middle refractive index layer, and the low refractive index layer may be collectively referred to as an antireflection layer.
高屈折率層の上に低屈折率層を構築して、反射防止フィルムを作製するためには、高屈折率層の屈折率は1.55〜2.40であることが好ましく、より好ましくは1.60〜2.20、更に好ましくは、1.65〜2.10、最も好ましくは1.80〜2.00である。 In order to construct an antireflection film by constructing a low refractive index layer on a high refractive index layer, the refractive index of the high refractive index layer is preferably 1.55 to 2.40, more preferably 1.60 to 2.20, more preferably 1.65 to 2.10, and most preferably 1.80 to 2.00.
支持体から近い順に中屈折率層、高屈折率層、低屈折率層を塗設し、反射防止フィルムを作成する場合、高屈折率層の屈折率は、1.65乃至2.40であることが好ましく、1.70乃至2.20であることがさらに好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.55乃至1.80であることが好ましい。 When an antireflective film is prepared by coating a medium refractive index layer, a high refractive index layer, and a low refractive index layer in order from the support, the refractive index of the high refractive index layer is 1.65 to 2.40. Preferably, it is 1.70 to 2.20. The refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.55 to 1.80.
高屈折率層および中屈折率層に用いるTiO2を主成分とする無機粒子は、分散物の状態で高屈折率層および中屈折率層の形成に使用する。
無機粒子の分散において、分散剤の存在下で分散媒体中に分散する。
The inorganic particles mainly composed of TiO 2 used for the high refractive index layer and the medium refractive index layer are used for forming the high refractive index layer and the medium refractive index layer in the state of dispersion.
In the dispersion of the inorganic particles, the inorganic particles are dispersed in a dispersion medium in the presence of a dispersant.
本発明に用いる高屈折率層および中屈折率層は、分散媒体中に無機粒子を分散した分散液に、好ましくは、さらにマトリックス形成に必要なバインダー前駆体(例えば、後述する電離放射線硬化性の多官能モノマーや多官能オリゴマーなど)、光重合開始剤等を加えて高屈折率層および中屈折率層形成用の塗布組成物とし、透明支持体上に高屈折率層および中屈折率層形成用の塗布組成物を塗布して、電離放射線硬化性化合物(例えば、多官能モノマーや多官能オリゴマーなど)の架橋反応又は重合反応により硬化させて形成することが好ましい。 The high refractive index layer and the medium refractive index layer used in the present invention are preferably used in a dispersion liquid in which inorganic particles are dispersed in a dispersion medium, preferably a binder precursor necessary for matrix formation (for example, an ionizing radiation curable composition described later). Polyfunctional monomer, polyfunctional oligomer, etc.), photopolymerization initiator, etc. are added to form a coating composition for forming a high refractive index layer and a medium refractive index layer, and a high refractive index layer and a medium refractive index layer are formed on a transparent support. It is preferable that the coating composition is applied and cured by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound (for example, a polyfunctional monomer or a polyfunctional oligomer).
さらに、高屈折率層および中屈折率層のバインダーを層の塗布と同時または塗布後に、分散剤と架橋反応又は重合反応させることが好ましい。
このようにして作製した高屈折率層および中屈折率層のバインダーは、例えば、上記の好ましい分散剤と電離放射線硬化性の多官能モノマーや多官能オリゴマーとが、架橋又は重合反応し、バインダーに分散剤のアニオン性基が取りこまれた形となる。さらに高屈折率層および中屈折率層のバインダーは、アニオン性基が無機粒子の分散状態を維持する機能を有し、架橋又は重合構造がバインダーに皮膜形成能を付与して、無機粒子を含有する高屈折率層および中屈折率層の物理強度、耐薬品性、耐候性を改良する。
Furthermore, it is preferable to cause the binder of the high refractive index layer and the medium refractive index layer to undergo a crosslinking reaction or a polymerization reaction with the dispersant simultaneously with or after the coating of the layer.
The binder of the high refractive index layer and the medium refractive index layer produced in this way is, for example, the above-mentioned preferred dispersant and ionizing radiation curable polyfunctional monomer or polyfunctional oligomer are crosslinked or polymerized to form a binder. The anionic group of the dispersant is incorporated. Furthermore, the binder of the high refractive index layer and the medium refractive index layer has a function in which the anionic group maintains the dispersion state of the inorganic particles, and the crosslinked or polymerized structure imparts a film forming ability to the binder and contains inorganic particles. To improve the physical strength, chemical resistance and weather resistance of the high refractive index layer and medium refractive index layer.
高屈折率層のバインダーは、該層の塗布組成物の固形分量に対して、5〜80質量%添
加する。
The binder of the high refractive index layer is added in an amount of 5 to 80% by mass based on the solid content of the coating composition of the layer.
高屈折率層における無機粒子の含有量は、高屈折率層の質量に対し10〜90質量%であることが好ましく、より好ましくは15〜80質量%、特に好ましくは15〜75質量%である。無機粒子は高屈折率層内で二種類以上を併用してもよい。
高屈折率層の上に低屈折率層を有する場合、高屈折率層の屈折率は透明支持体の屈折率より高いことが好ましい。
高屈折率層に、芳香環を含む電離放射線硬化性化合物、フッ素以外のハロゲン化元素(例えば、Br,I,Cl等)を含む電離放射線硬化性化合物、S,N,P等の原子を含む電離放射線硬化性化合物などの架橋又は重合反応で得られるバインダーも好ましく用いることができる。
The content of the inorganic particles in the high refractive index layer is preferably 10 to 90% by mass, more preferably 15 to 80% by mass, and particularly preferably 15 to 75% by mass with respect to the mass of the high refractive index layer. . Two or more inorganic particles may be used in combination in the high refractive index layer.
When the low refractive index layer is provided on the high refractive index layer, the refractive index of the high refractive index layer is preferably higher than the refractive index of the transparent support.
The high refractive index layer contains an ionizing radiation curable compound containing an aromatic ring, an ionizing radiation curable compound containing a halogenated element other than fluorine (for example, Br, I, Cl, etc.), and atoms such as S, N, P, etc. A binder obtained by a crosslinking or polymerization reaction such as an ionizing radiation curable compound can also be preferably used.
高屈折率層の膜厚は用途により適切に設計することができる。高屈折率層を後述する光学干渉層として用いる場合、30〜200nmが好ましく、より好ましくは50〜170nm、特に好ましくは60〜150nmである。 The film thickness of the high refractive index layer can be appropriately designed depending on the application. When using a high refractive index layer as an optical interference layer described later, the thickness is preferably 30 to 200 nm, more preferably 50 to 170 nm, and particularly preferably 60 to 150 nm.
高屈折率層ののヘイズは、防眩機能を付与する粒子を含有しない場合、低いほど好ましい。5%以下であることが好ましく、さらに好ましくは3%以下、特に好ましくは1%以下である。
高屈折率層は、前記透明支持体上に直接、又は、他の層を介して構築することが好ましい。
The haze of the high refractive index layer is preferably as low as possible when it does not contain particles that impart an antiglare function. It is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
The high refractive index layer is preferably constructed directly on the transparent support or via another layer.
4−(4)低屈折率層
本発明のフィルムの反射率を低減するため、低屈折率層を用いる必要がある。
4- (4) Low refractive index layer In order to reduce the reflectance of the film of the present invention, it is necessary to use a low refractive index layer.
低屈折率層の屈折率は、1.20〜1.46であることが好ましく、1.25〜1.46であることがより好ましく、1.30〜1.46であることが特に好ましい。
低屈折率層の厚さは、50〜200nmであることが好ましく、70〜100nmであることがさらに好ましい。低屈折率層のヘイズは、3%以下であることが好ましく、2%以下であることがさらに好ましく、1%以下であることが最も好ましい。具体的な低屈折率層の強度は、500g荷重の鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
また、光学フィルムの防汚性能を改良するために、表面の水に対する接触角が90度以上であることが好ましい。更に好ましくは95度以上であり、特に好ましくは100度以上である。
The refractive index of the low refractive index layer is preferably 1.20 to 1.46, more preferably 1.25 to 1.46, and particularly preferably 1.30 to 1.46.
The thickness of the low refractive index layer is preferably 50 to 200 nm, and more preferably 70 to 100 nm. The haze of the low refractive index layer is preferably 3% or less, more preferably 2% or less, and most preferably 1% or less. The specific strength of the low refractive index layer is preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher in a pencil hardness test under a 500 g load.
In order to improve the antifouling performance of the optical film, it is preferable that the contact angle of the surface with respect to water is 90 degrees or more. More preferably, it is 95 degrees or more, and particularly preferably 100 degrees or more.
前記硬化性組成物は、(A)前記含フッ素ポリマー、(B)無機粒子、(C)オルガノシラン化合物を含有してなるのが好ましい。 The curable composition preferably contains (A) the fluoropolymer, (B) inorganic particles, and (C) an organosilane compound.
低屈折率層には、本発明の微粒子を分散・固定するためにバインダーが用いられる。バインダーとしては、前記ハードコート層で述べたバインダーを用いることができるが、バインダー自身の屈折率の低い含フッ素ポリマー、あるいは含フッ素ゾルゲル素材などを用いることが好ましい。含フッ素ポリマーあるいは含フッ素ゾルゲルとしては、熱または電離放射線により架橋し、形成される低屈折率層表面の動摩擦係数0.03〜0.30であり、水に対する接触角85〜120°となる素材が好ましい。 In the low refractive index layer, a binder is used for dispersing and fixing the fine particles of the present invention. As the binder, the binder described in the hard coat layer can be used, but it is preferable to use a fluorine-containing polymer having a low refractive index or a fluorine-containing sol-gel material. The fluorine-containing polymer or fluorine-containing sol-gel is a material that has a dynamic friction coefficient of 0.03 to 0.30 on the surface of the low refractive index layer formed by crosslinking by heat or ionizing radiation and a contact angle of 85 to 120 ° with water. Is preferred.
4−(5)帯電防止層、導電性層
本発明においては、帯電防止層を設けることがフィルム表面での静電気防止の点で好ましい。帯電防止層を形成する方法は、例えば、導電性微粒子と反応性硬化樹脂を含む導電性塗工液を塗工する方法、或いは透明膜を形成する金属や金属酸化物等を蒸着やスパッタリングして導電性薄膜を形成する方法等の従来公知の方法を挙げることができる。導電性層は、支持体に直接又は支持体との接着を強固にするプライマー層を介して形成することができる。また、帯電防止層を反射防止膜の一部として使用することもできる。この場合、最表層から近い層で使用する場合には、膜の厚さが薄くても十分に帯電防止性を得ることができる
4- (5) Antistatic Layer, Conductive Layer In the present invention, it is preferable to provide an antistatic layer from the viewpoint of preventing static electricity on the film surface. The antistatic layer can be formed by, for example, applying a conductive coating solution containing conductive fine particles and a reactive curable resin, or depositing or sputtering a metal or metal oxide that forms a transparent film. Conventionally known methods such as a method of forming a conductive thin film can be listed. The conductive layer can be formed directly on the support or via a primer layer that strengthens adhesion to the support. Further, the antistatic layer can be used as a part of the antireflection film. In this case, when used in a layer close to the outermost layer, sufficient antistatic properties can be obtained even if the film is thin.
帯電防止層の厚さは、0.01〜10μmが好ましく、0.03〜7μmであることがより好ましく、0.05〜5μmであることがさらに好ましい。帯電防止層の表面抵抗は、105〜1012Ω/sqであることが好ましく、105〜109Ω/sqであることがさらに好ましく、105〜108Ω/sqであることが最も好ましい。帯電防止層の表面抵抗は、四探針法により測定することができる。 The thickness of the antistatic layer is preferably from 0.01 to 10 μm, more preferably from 0.03 to 7 μm, and even more preferably from 0.05 to 5 μm. The surface resistance of the antistatic layer is preferably 105 to 1012 Ω / sq, more preferably 105 to 109 Ω / sq, and most preferably 105 to 108 Ω / sq. The surface resistance of the antistatic layer can be measured by a four probe method.
帯電防止層は、実質的に透明であることが好ましい。具体的には、帯電防止層のヘイズが、10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましく、1%以下であることが最も好ましい。波長550nmの光の透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましく、70%以上であることが最も好ましい。
本発明の帯電防止層は、強度が優れており、具体的な帯電防止層の強度は、1kg荷重の鉛筆硬度で、H以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがさらに好ましく、4H以上であることが最も好ましい。
The antistatic layer is preferably substantially transparent. Specifically, the haze of the antistatic layer is preferably 10% or less, more preferably 5% or less, further preferably 3% or less, and most preferably 1% or less. . The transmittance of light having a wavelength of 550 nm is preferably 50% or more, more preferably 60% or more, further preferably 65% or more, and most preferably 70% or more.
The antistatic layer of the present invention has excellent strength, and the specific antistatic layer has a pencil hardness of 1 kg, preferably H or higher, more preferably 2H or higher, more preferably 3H or higher. Is more preferable, and 4H or more is most preferable.
5.塗設層の形成方法
本発明のフィルムの塗設層は以下の方法で形成することができるが、この方法に制限されない。
5−(1)塗布液の調整
5). Formation method of coating layer Although the coating layer of the film of this invention can be formed with the following method, it is not restrict | limited to this method.
5- (1) Adjustment of coating solution
<調製>
まず、各層を形成するための成分を含有した塗布液が調製される。その際、溶剤の揮発量を最小限に抑制することにより、塗布液中の含水率の上昇を抑制できる。塗布液中の含水率は5%以下が好ましく、2%以下がより好ましい。溶剤の揮発量の抑制は、各素材をタンクに投入後の攪拌時の密閉性を向上すること、移液作業時の塗布液の空気接触面積を最小化すること等で達成される。また、塗布中、或いはその前後に塗布液中の含水率を低減する手段を設けてもよい。
<Preparation>
First, a coating solution containing components for forming each layer is prepared. In that case, the raise of the moisture content in a coating liquid can be suppressed by suppressing the volatilization amount of a solvent to the minimum. The moisture content in the coating solution is preferably 5% or less, more preferably 2% or less. The suppression of the volatilization amount of the solvent is achieved by improving the sealing property at the time of stirring after putting each material into the tank, minimizing the air contact area of the coating liquid at the time of liquid transfer operation, and the like. Moreover, you may provide the means to reduce the moisture content in a coating liquid during application | coating, or before and behind that.
<塗布液物性>
低屈折率層・中屈折率層・高屈折率層・防汚層などの200nm以下の乾燥膜厚となる塗布液については、液物性により塗布可能な上限の速度が大きく影響を受けるため、塗布する瞬間の液物性、特に粘度及び表面張力を制御する必要がある。
粘度については2.0[mPa・sec]以下であることが好ましく、更に好ましくは1.5[mPa・sec]以下、最も好ましくは1.0[mPa・sec]以下である。塗布液によってはせん断速度により粘度が変化するものもあるため、上記の値は塗布される瞬間のせん断速度における粘度を示している。塗布液にチキソトロピー剤を添加して、高せん断のかかる塗布時は粘度が低く、塗布液にせん断が殆どかからない乾燥時は粘度が高くなると乾燥時のムラが発生しにくくなり、好ましい。
また、液物性ではないが、透明支持体に塗り付けられる塗布液の量も塗布可能な上限の速度に影響を与える。透明支持体に塗り付けられる塗布液の量は2.0〜5.0[cc/m2]であることが好ましい。透明支持体に塗り付けられる塗布液の量を増やすと塗布可能な上限の速度が上がるため好ましいが、透明支持体に塗り付けられる塗布液の量を増やしすぎると乾燥にかかる負荷が大きくなるため、液処方・工程条件によって最適な透明支持体に塗り付けられる塗布液の量を決めることが好ましい。
表面張力については、15〜36[mN/m]の範囲にあることが好ましい。レベリング剤を添加するなどして表面張力を低下させることは乾燥時のムラが抑止されるため好ましい。一方、表面張力が下がりすぎると塗布可能な上限の速度が低下してしまうため、17[mN/m]から32[mN/m]の範囲がより好まく、19[mN/m]から26[mN/m]の範囲が更に好ましい。
透光性粒子を含む防眩層においては、粒子の沈降防止の観点で4cp以上の粘度に調製することが好ましく、6cp以上の粘度に調製することが更に好ましい。
<Physical properties of coating solution>
For coating liquids with a dry film thickness of 200 nm or less such as low refractive index layer, medium refractive index layer, high refractive index layer, antifouling layer, etc., the upper limit speed that can be applied is greatly affected by the liquid properties. It is necessary to control the liquid physical properties, particularly the viscosity and the surface tension, at the moment.
The viscosity is preferably 2.0 [mPa · sec] or less, more preferably 1.5 [mPa · sec] or less, and most preferably 1.0 [mPa · sec] or less. Since there are some coating solutions whose viscosity changes depending on the shear rate, the above value indicates the viscosity at the shear rate at the moment of coating. When a thixotropic agent is added to the coating solution and the coating solution is subjected to high shear, the viscosity is low, and when the coating solution is hardly sheared, if the viscosity is high, unevenness during drying is less likely to occur.
Moreover, although it is not a liquid physical property, the quantity of the coating liquid apply | coated to a transparent support body also affects the upper limit speed | rate which can be apply | coated. The amount of the coating solution applied to the transparent support is preferably 2.0 to 5.0 [cc / m 2 ]. Increasing the amount of the coating liquid applied to the transparent support is preferable because the upper limit of the application rate can be increased, but if the amount of the coating liquid applied to the transparent support is increased too much, the load on drying increases. It is preferable to determine the optimal amount of coating liquid to be applied to the transparent support depending on the liquid formulation and process conditions.
The surface tension is preferably in the range of 15 to 36 [mN / m]. It is preferable to reduce the surface tension by adding a leveling agent or the like because unevenness during drying is suppressed. On the other hand, if the surface tension is too low, the upper limit speed at which coating can be performed is reduced. Therefore, a range of 17 [mN / m] to 32 [mN / m] is more preferable, and 19 [mN / m] to 26 [mN / m]. mN / m] is more preferable.
In the antiglare layer containing translucent particles, the viscosity is preferably adjusted to 4 cp or more, and more preferably 6 cp or more, from the viewpoint of preventing sedimentation of the particles.
<濾過>
塗布に用いる塗布液は、塗布前に濾過することが好ましい。濾過のフィルタは、塗布液中の成分が除去されない範囲でできるだけ孔径の小さいものを使うことが好ましい。濾過には絶対濾過精度が0.1〜50μmのフィルタが用いられ、さらには絶対濾過精度が0.1〜40μmであるフィルタを用いることが好ましく用いられる。フィルタの厚さは、0.1〜10mmが好ましく、更には0.2〜2mmが好ましい。その場合、濾過圧力は1.5MPa以下、より好ましくは1.0MPa以下、更には0.2MPa以下で濾過することが好ましい。
濾過フィルタ部材は、塗布液に影響を及ぼさなければ特に限定されない。具体的には、前記した無機化合物の湿式分散物の濾過部材と同様のものが挙げられる。
また、濾過した塗布液を、塗布直前に超音波分散して、脱泡、分散物の分散保持を補助することも好ましい。
<Filtration>
The coating solution used for coating is preferably filtered before coating. As the filter for filtration, it is preferable to use a filter having a pore diameter as small as possible within the range in which the components in the coating solution are not removed. For filtration, a filter having an absolute filtration accuracy of 0.1 to 50 μm is used, and a filter having an absolute filtration accuracy of 0.1 to 40 μm is preferably used. The thickness of the filter is preferably 0.1 to 10 mm, and more preferably 0.2 to 2 mm. In that case, the filtration pressure is preferably 1.5 MPa or less, more preferably 1.0 MPa or less, and further preferably 0.2 MPa or less.
The filtration filter member is not particularly limited as long as it does not affect the coating solution. Specifically, the same thing as the filter member of the wet dispersion of an inorganic compound mentioned above is mentioned.
It is also preferable to ultrasonically disperse the filtered coating solution immediately before coating to assist defoaming and dispersion holding of the dispersion.
5−(2)塗布前の処理
本発明で使用する支持体は、塗布前に表面処理を施すことが好ましい。具体的方法としては、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理または紫外線照射処理が挙げられる。また、特開平7−333433号公報に記載のように、下塗り層を設けることも好ましく利用される。
5- (2) Treatment before coating The support used in the present invention is preferably subjected to a surface treatment before coating. Specific examples include corona discharge treatment, glow discharge treatment, flame treatment, acid treatment, alkali treatment, and ultraviolet irradiation treatment. In addition, as described in JP-A-7-333433, it is preferable to provide an undercoat layer.
さらに、塗布が行われる前工程としての除塵工程に用いられる除塵方法として、特開昭59−150571号公報に記載のフィルム表面に不織布や、ブレード等を押しつける方法、特開平10−309553号公報に記載の清浄度の高い空気を高速で吹き付けて付着物をフィルム表面から剥離させ、近接した吸い込み口で吸引する方法、特開平7−333613号公報に記載される超音波振動する圧縮空気を吹き付けて付着物を剥離させ、吸引する方法(伸興社製、ニューウルトラクリーナー等)等の乾式除塵法が挙げられる。
また、洗浄槽中にフィルムを導入し、超音波振動子により付着物を剥離させる方法、特公昭49−13020号公報に記載されているフィルムに洗浄液を供給したあと、高速空気の吹き付け、吸い込みを行う方法、特開2001−38306号公報に記載のように、ウェブを液体でぬらしたロールで連続的に擦った後、擦った面に液体を噴射して洗浄する方法等の湿式除塵法を用いることができる。このような除塵方法の内、超音波除塵による方法もしくは湿式除塵による方法が、除塵効果の点で特に好ましい。
また、このような除塵工程を行う前に、フィルム支持体上の静電気を除電しておくことは、除塵効率を上げ、ゴミの付着を抑える点で特に好ましい。このような除電方法としては、コロナ放電式のイオナイザ、UV、軟X線等の光照射式のイオナイザ等を用いることができる。除塵、塗布前後のフィルム支持体の帯電圧は、1000V以下が望ましく、好ましくは300V以下、特に好ましくは、100V以下である。
Furthermore, as a dust removing method used in the dust removing step as a pre-process for application, a method of pressing a nonwoven fabric, a blade or the like on the film surface described in JP-A-59-150571, JP-A-10-309553 A method of blowing the air with high cleanliness described at a high speed to peel off the deposits from the film surface and sucking it with a suction port close to it, blowing compressed air that is ultrasonically vibrated as described in JP-A-7-333613 Examples thereof include a dry dust removing method such as a method for peeling and sucking adhered substances (manufactured by Shinkosha, New Ultra Cleaner, etc.).
In addition, a method of introducing a film into a cleaning tank and peeling off deposits with an ultrasonic vibrator, supplying a cleaning liquid to the film described in Japanese Patent Publication No. 49-13020, and then blowing and sucking high-speed air As described in JP-A-2001-38306, a wet dust removal method such as a method in which a web is continuously rubbed with a roll wetted with a liquid and then the liquid is sprayed onto the rubbed surface for cleaning. be able to. Among such dust removal methods, a method using ultrasonic dust removal or a method using wet dust removal is particularly preferable in terms of dust removal effect.
In addition, it is particularly preferable to remove static electricity on the film support before performing such a dust removal step from the viewpoint of increasing dust removal efficiency and suppressing adhesion of dust. As such a static elimination method, a corona discharge ionizer, a light irradiation ionizer such as UV or soft X-ray, or the like can be used. The charged voltage of the film support before and after dust removal and coating is desirably 1000 V or less, preferably 300 V or less, and particularly preferably 100 V or less.
フィルムの平面性を保持する観点から、これら処理においてセルロースアシレートフィルムの温度をTg以下、具体的には150℃以下とすることが好ましい。
本発明のフィルムを偏光板の保護フィルムとして使用する場合のようにセルロースアシレートフィルムを偏光膜と接着させる場合には、偏光膜との接着性の観点から、酸処理またはアルカリ処理、すなわちセルロースアシレートに対するケン化処理を実施することが特に好ましい。
接着性などの観点から、セルロースアシレートフィルムの表面エネルギーは、55mN/m以上であることが好ましく、60mN/m以上75mN/m以下であることが更に好ましく、上記表面処理により調整することができる。
From the viewpoint of maintaining the flatness of the film, the temperature of the cellulose acylate film in these treatments is preferably Tg or less, specifically 150 ° C. or less.
When the cellulose acylate film is adhered to the polarizing film as in the case of using the film of the present invention as a protective film for a polarizing plate, from the viewpoint of adhesiveness to the polarizing film, acid treatment or alkali treatment, that is, cellulose acylate. It is particularly preferred to carry out a saponification treatment on the rate.
From the viewpoint of adhesiveness and the like, the surface energy of the cellulose acylate film is preferably 55 mN / m or more, more preferably 60 mN / m or more and 75 mN / m or less, and it can be adjusted by the surface treatment. .
5−(3)塗布
本発明のフィルムの各層は以下の塗布方法により形成することができるが、この方法に制限されない。
ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(ダイコート法)(米国特許2681294号明細書参照)、マイクログラビアコート法等の公知の方法が用いられ、その中でもマイクログラビアコート法、ダイコート法が好ましい。
5- (3) Coating Each layer of the film of the present invention can be formed by the following coating method, but is not limited to this method.
Dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure coating method and extrusion coating method (die coating method) (see US Pat. No. 2,681,294), micro gravure coating method, etc. Known methods are used, and among them, the micro gravure coating method and the die coating method are preferable.
本発明で用いられるマイクログラビアコート法とは、直径が約10〜100mm、好ましくは約20〜50mmで全周にグラビアパターンが刻印されたグラビアロールを支持体の下方に、かつ支持体の搬送方向に対してグラビアロールを逆回転させると共に、該グラビアロールの表面からドクターブレードによって余剰の塗布液を掻き落として、定量の塗布液を前記支持体の上面が自由状態にある位置におけるその支持体の下面に塗布液を転写させて塗工することを特徴とするコート法である。ロール形態の透明支持体を連続的に巻き出し、該巻き出された支持体の一方の側に、少なくともハードコート層乃至フッ素含有オレフィン系重合体を含む低屈折率層の内の少なくとも一層をマイクログラビアコート法によって塗工することができる。 The micro gravure coating method used in the present invention is a gravure roll having a diameter of about 10 to 100 mm, preferably about 20 to 50 mm and engraved with a gravure pattern on the entire circumference, below the support and in the transport direction of the support. The gravure roll is rotated in reverse with respect to the gravure roll, the excess coating liquid is scraped off from the surface of the gravure roll by a doctor blade, and a fixed amount of the coating liquid is removed from the support in a position where the upper surface of the support is in a free state. The coating method is characterized in that the coating liquid is transferred onto the lower surface for coating. A roll-shaped transparent support is continuously unwound, and at least one layer of at least one of a hard coat layer or a low refractive index layer containing a fluorine-containing olefin-based polymer is formed on one side of the unwound support. It can be applied by a gravure coating method.
マイクログラビアコート法による塗工条件としては、グラビアロールに刻印されたグラビアパターンの線数は50〜800本/インチが好ましく、100〜300本/インチがより好ましく、グラビアパターンの深度は1〜600μmが好ましく、5〜200μmがより好ましく、グラビアロールの回転数は3〜800rpmであることが好ましく、5〜200rpmであることがより好ましく、支持体の搬送速度は0.5〜100m/分であることが好ましく、1〜50m/分がより好ましい。 As coating conditions by the micro gravure coating method, the number of gravure patterns imprinted on the gravure roll is preferably 50 to 800 lines / inch, more preferably 100 to 300 lines / inch, and the depth of the gravure pattern is 1 to 600 μm. Is preferable, 5 to 200 μm is more preferable, the rotation speed of the gravure roll is preferably 3 to 800 rpm, more preferably 5 to 200 rpm, and the conveyance speed of the support is 0.5 to 100 m / min. It is preferably 1 to 50 m / min.
本発明のフィルムを高い生産性で供給するために、エクストルージョン法(ダイコート法)が好ましく用いられる。特に、ハードコート層や反射防止層のような、ウエット塗布量の少ない領域(20cc/m2以下)で好ましく用いることができるダイコーターについて、以下に説明する。
<ダイコーターの構成>
In order to supply the film of the present invention with high productivity, an extrusion method (die coating method) is preferably used. In particular, a die coater that can be preferably used in a region with a small amount of wet coating (20 cc / m 2 or less) such as a hard coat layer or an antireflection layer will be described below.
<Die coater configuration>
図6は本発明を実施したスロットダイを用いたコーターの断面図である。コーター10はバックアップロール11に支持されて連続走行するウェブWに対して、スロットダイ13から塗布液14をビード14aにして塗布することにより、ウェブW上に塗膜14bを形成する。
FIG. 6 is a sectional view of a coater using a slot die embodying the present invention. The
スロットダイ13の内部にはポケット15、スロット16が形成されている。ポケット15は、その断面が曲線及び直線で構成されており、例えば図5に示すような略円形でもよいし、あるいは半円形でもよい。ポケット15は、スロットダイ13の幅方向にその断面形状をもって延長された塗布液の液溜め空間で、その有効延長の長さは、塗布幅と同等か若干長めにするのが一般的である。ポケット15への塗布液14の供給は、スロットダイ13の側面から、あるいはスロット開口部16aとは反対側の面中央から行う。また、ポケット15には塗布液14が漏れ出ることを防止する栓が設けられている。
Inside the slot die 13, a
スロット16は、ポケット15からウェブWへの塗布液14の流路であり、ポケット15と同様にスロットダイ13の幅方向にその断面形状をもち、ウェブ側に位置する開口部16aは、一般に、図示しない幅規制板のようなものを用いて、概ね塗布幅と同じ長さの幅になるように調整する。このスロット16のスロット先端における、バックアップロール11のウェブ走行方向の接線とのなす角は、30°以上90°以下が好ましい。
The
スロット16の開口部16aが位置するスロットダイ13の先端リップ17は先細り状に形成されており、その先端はランドと呼ばれる平坦部18とされている。このランド18であって、スロット16に対してウェブWの進行方向の上流側を上流側リップランド18a、下流側を下流側リップランド18bと称する。
The
図7は、スロットダイ13の断面形状を従来のものと比較して示すもので、(A)は本発明のスロットダイ13を示し、(B)は従来のスロットダイ30を示している。従来のスロットダイ30では、上流側リップランド31aと下流側リップランド31bのウェブとの距離は等しい。なお、符号32はポケット、33はスロットを示している。これに対して、本発明のスロットダイ13では、下流側リップランド長さILOが短くされており、これによって、湿潤膜厚が20μm以下の塗布を精度良くおこなうことができる。
FIG. 7 shows a cross-sectional shape of the slot die 13 in comparison with a conventional one, (A) shows the slot die 13 of the present invention, and (B) shows a conventional slot die 30. In the conventional slot die 30, the distance between the
上流側リップランド18aのランド長さIUPは特に限定はされないが、500μm〜1mmの範囲で好ましく用いられる。下流側リップランド18bのランド長さILOは30μm以上100μm以下であり、好ましくは30μm以上80μm以下、さらに好ましくは30μm以上60μm以下である。下流側リップのランド長さILOが30μmよりも短い場合は、先端リップのエッジあるいはランドが欠けやすく、塗膜にスジが発生しやすくなり、結果的には塗布が不可能になる。また、下流側の濡れ線位置の設定が困難になり、塗布液が下流側で広がりやすくなるという問題も発生する。この下流側での塗布液の濡れ広がりは、濡れ線の不均一化を意味し、塗布面上にスジなどの不良形状を招くという問題につながることが従来より知られている。一方、下流側リップのランド長さILOが100μmよりも長い場合は、ビードそのものを形成することができないために、薄層塗布を行うことは不可能である。
The land length I UP of the
さらに、下流側リップランド18bは、上流側リップランド18aよりもウェブWに近接したオーバーバイト形状であり、このため減圧度を下げることができて薄膜塗布に適したビード形成が可能となる。下流側リップランド18bと上流側リップランド18aのウェブWとの距離の差(以下、オーバーバイト長さLOと称する)は30μm以上120μm以下が好ましく、さらに好ましくは30μm以上100μm以下、もっとも好ましくは30μm以上80μm以下である。スロットダイ13がオーバーバイト形状のとき、先端リップ17とウェブWの隙間GLとは、下流側リップランド18bとウェブWの隙間を示す。
Further, the
図8は、本発明を実施した塗布工程のスロットダイ及びその周辺を示す斜視図である。
ウェブWの進行方向側とは反対側に、ビード14aに対して十分な減圧調整を行えるよう、接触しない位置に減圧チャンバー40を設置する。減圧チャンバー40は、その作動効率を保持するためのバックプレート40aとサイドプレート40bを備えており、バックプレート40aとウェブWの間、サイドプレート40bとウェブWの間にはそれぞれ隙間GB、GSが存在する。
図9は、近接している減圧チャンバー40とウェブWを示す断面図である。サイドプレートとバックプレートは図9のようにチャンバー本体と一体のものであってもよいし、適宜隙間を変えられるようにチャンバーにネジなどで留められている構造でもよい。いかなる構造でも、バックプレート40aとウェブWの間、サイドプレート40bとウェブWの間に実際にあいている部分を、それぞれ隙間GB、GSと定義する。減圧チャンバー40のバックプレート40aとウェブWとの隙間GBとは、減圧チャンバー40を図8のようにウェブW及びスロットダイ13の下方に設置した場合、バックプレート40aの最上端からウェブWまでの隙間を示す。
FIG. 8 is a perspective view showing a slot die and its periphery in a coating process in which the present invention is implemented.
On the opposite side of the web W in the direction of travel, a
FIG. 9 is a cross-sectional view showing the
バックプレート40aとウェブWとの隙間GBをスロットダイ13の先端リップ17とウェブWとの隙間GLよりも大きくして設置するのが好ましく、これによりバックアップロール11の偏心に起因するビード近傍の減圧度変化を抑制することができる。例えば、スロットダイ13の先端リップ17とウェブWとの隙間GLが30μm以上100μm以下のとき、バックプレート40aとウェブWの間の隙間GBは100μm以上500μm以下が好ましい。
Is preferably placed in the gap G B between the
<材質、精度>
前記ウェブの進行方向側の先端リップのウェブ走行方向における長さは、長いほどビード形成に不利であり、この長さがスロットダイ幅方向における任意の個所間でばらつくと、かすかな外乱によりビードが不安定になる。したがって、この長さをスロットダイ幅方向における変動幅が20μm以内とすることが好ましい。
また、スロットダイの先端リップの材質については、ステンレス鋼などのような材質を用いるとダイ加工の段階でだれてしまい、前記のようにスロットダイ先端リップのウェブ走行方向における長さを30〜100μmの範囲にしても、先端リップの精度を満足できない。したがって、高い加工精度を維持するためには、特許第2817053号公報に記載されているような超硬材質のものを用いることが重要である。具体的には、スロットダイの少なくとも先端リップを、平均粒径5μm以下の炭化物結晶を結合してなる超硬合金にすることが好ましい。超硬合金としては、タングステンカーバイド(以下、WCと称す)などの炭化物結晶粒子をコバルトなどの結合金属によって結合したものなどがあり、結合金属としては他にチタン、タンタル、ニオブ及びこれらの混合金属を用いることもできる。WC結晶の平均粒径としては、粒径3μm以下がさらに好ましい。
高精度な塗布を実現するためには、先端リップのウェブ進行方向側のランドの前記長さ及びウェブとの隙間のスロットダイ幅方向のばらつきも重要な因子となる。この二つの因子の組合せ、つまり隙間の変動幅をある程度抑えられる範囲内の真直度を達成することが望ましい。好ましくは、前記隙間のスロットダイ幅方向における変動幅が5μm以下になるように先端リップとバックアップロールの真直度を出す。
<Material and accuracy>
The longer the length of the tip lip on the traveling direction side of the web in the web traveling direction, the more disadvantageous it is for bead formation.If this length varies between arbitrary locations in the slot die width direction, It becomes unstable. Therefore, it is preferable that the fluctuation width in the slot die width direction is within 20 μm.
Further, regarding the material of the tip lip of the slot die, if a material such as stainless steel is used, the length of the slot die tip lip in the web running direction is set to 30 to 100 μm as described above. Even within this range, the accuracy of the tip lip cannot be satisfied. Therefore, in order to maintain high processing accuracy, it is important to use a cemented carbide material as described in Japanese Patent No. 2817053. Specifically, at least the tip lip of the slot die is preferably made of a cemented carbide formed by bonding carbide crystals having an average particle size of 5 μm or less. Cemented carbides include carbide crystal particles such as tungsten carbide (hereinafter referred to as WC) bonded by a bonding metal such as cobalt, and other bonding metals include titanium, tantalum, niobium, and mixed metals thereof. Can also be used. The average particle size of the WC crystal is more preferably 3 μm or less.
In order to realize high-precision coating, the length of the land on the web traveling direction side of the tip lip and the variation in the slot die width direction of the gap with the web are also important factors. It is desirable to achieve a combination of these two factors, that is, straightness within a range in which the fluctuation range of the gap can be suppressed to some extent. Preferably, the straightness of the tip lip and the backup roll is set so that the fluctuation width of the gap in the slot die width direction is 5 μm or less.
<塗布速度>
上記の様なバックアップロール及び先端リップの精度を達成することにより、本発明で好ましく用いられる塗布方式は高速塗布時における膜厚の安定性が高い。さらに、前記塗布方式は前計量方式であるために高速塗布時でも安定した膜厚の確保が容易である。低塗布量の塗布液に対して、該塗布方式は高速で膜厚安定性良く塗布が可能である。他の塗布方式でも塗布は可能であるが、ディップコート法は液受け槽中の塗布液振動が不可避であり、段状のムラが発生しやすい。リバースロールコート法では、塗布に関連するロールの偏芯やたわみにより段状のムラが発生しやすい。また、これらの塗布方式は後計量方式であるため、安定した膜厚の確保が困難である。前記ダイコート法を用い、25m/分以上で塗布することが生産性の面から好ましい。
<Application speed>
By achieving the accuracy of the backup roll and the tip lip as described above, the coating method preferably used in the present invention has high film thickness stability during high-speed coating. Furthermore, since the coating method is a pre-weighing method, it is easy to ensure a stable film thickness even during high-speed coating. With respect to a coating solution of a low coating amount, the coating method can be applied at high speed with good film thickness stability. Although application is possible by other application methods, the dip coating method inevitably causes vibration of the application liquid in the liquid receiving tank, and stepped unevenness is likely to occur. In the reverse roll coating method, stepped unevenness is likely to occur due to eccentricity and deflection of the roll related to coating. Moreover, since these coating methods are post-measuring methods, it is difficult to ensure a stable film thickness. From the viewpoint of productivity, it is preferable to apply the die coating method at 25 m / min or more.
5−(4)乾燥
本発明のフィルムは、支持体上に直接又は他の層を介して塗布された後、溶剤を乾燥するために加熱されたゾーンにウェブで搬送されることが好ましい。
溶剤を乾燥する方法としては、各種の知見を利用することができる。具体的な知見としては特開2001−286817号、同2001−314798号、同2003−126768号、同2003−315505号、同2004−34002号などの各公報が挙げられる。
乾燥ゾーンの温度は25℃〜140℃が好ましく、乾燥ゾーンの前半は比較的低温であり、後半は比較的高温であることが好ましい。但し、各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。例えば、紫外線硬化樹脂と併用される市販の光ラジカル発生剤のなかには120℃の温風中で数分以内にその数10%前後が揮発してしまうものもあり、また、単官能、2官能のアクリレートモノマー等は100℃の温風中で揮発が進行するものもある。そのような場合には、前記のように各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。
5- (4) Drying The film of the present invention is preferably applied directly on the support or via another layer and then conveyed by a web to a heated zone to dry the solvent.
Various knowledges can be used as a method for drying the solvent. Specific examples include Japanese Patent Laid-Open Nos. 2001-286817, 2001-314798, 2003-126768, 2003-315505, and 2004-34002.
The temperature of the drying zone is preferably 25 ° C. to 140 ° C., the first half of the drying zone is preferably a relatively low temperature, and the latter half is preferably a relatively high temperature. However, it is preferably below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize. For example, some of the commercially available photo radical generators used in combination with ultraviolet curable resins volatilize around several tens of percent within a few minutes in warm air at 120 ° C. Some acrylate monomers and the like undergo volatilization in warm air at 100 ° C. In such a case, it is preferable that it is below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize as described above.
また、各層の塗布組成物を支持体上に塗布した後の乾燥風は、前記塗布組成物の固形分濃度が1〜50%の間は塗膜表面の風速が0.1〜2m/秒の範囲にあることが、乾燥ムラを防止するために好ましい。
また、各層の塗布組成物を支持体上に塗布した後、乾燥ゾーン内で支持体の塗布面とは反対の面に接触する搬送ロールと支持体との温度差が0℃〜20℃以内とすると、搬送ロール上での伝熱ムラによる乾燥ムラが防止でき、好ましい。
Moreover, the dry wind after apply | coating the coating composition of each layer on a support body has the wind speed of the coating-film surface of 0.1-2 m / sec while the solid content concentration of the said coating composition is 1-50%. It is preferable to be in the range in order to prevent drying unevenness.
Moreover, after apply | coating the coating composition of each layer on a support body, the temperature difference of the conveyance roll which contacts the surface opposite to the coating surface of a support body in a drying zone, and a support body is 0 to 20 degreeC or less. Then, the drying nonuniformity by the heat transfer nonuniformity on a conveyance roll can be prevented, and it is preferable.
5−(5)硬化
本発明のフィルムは溶剤の乾燥の後に、ウェブで電離放射線及び/又は熱により各塗膜を硬化させるゾーンを通過させ、塗膜を硬化することができる。
5- (5) Curing After drying the solvent, the film of the present invention can be passed through a zone where the coating film is cured by ionizing radiation and / or heat on the web to cure the coating film.
本発明における電離放射線種は特に制限されるものではなく、皮膜を形成する硬化性組成物の種類に応じて、紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線などから適宜選択することができが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。
紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプまたはシンクロトロン放射光等も用いることができる。このうち、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプを好ましく利用できる。
The ionizing radiation species in the present invention is not particularly limited, and is appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays and the like according to the type of curable composition forming the film. Although it can be selected, ultraviolet rays and electron beams are preferred, and ultraviolet rays are particularly preferred because they are easy to handle and high energy can be easily obtained.
As the ultraviolet light source for photopolymerizing the ultraviolet reactive compound, any light source that generates ultraviolet light can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp can be preferably used.
また、電子線も同様に使用できる。電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50〜1000keV、好ましくは100〜300keVのエネルギーを有する電子線を挙げることができる。 Moreover, an electron beam can be used similarly. As an electron beam, 50 to 1000 keV, preferably 100 to 100, emitted from various electron beam accelerators such as a cockroft Walton type, a bandegraph type, a resonance transformation type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. An electron beam having an energy of 300 keV can be given.
照射条件はそれぞれのランプによって異なるが、照射光量は10mJ/cm2以上が好ましく、更に好ましくは、50mJ/cm2〜10000mJ/cm2であり、特に好ましくは、50mJ/cm2〜2000mJ/cm2である。その際、ウェブの幅方向の照射量分布は中央の最大照射量に対して両端まで含めて50〜100%の分布が好ましく、80〜100%の分布がより好ましい。 Irradiation conditions vary depending on each lamp, but the irradiation light quantity is preferably 10 mJ / cm 2 or more, more preferably 50 mJ / cm 2 to 10000 mJ / cm 2 , and particularly preferably 50 mJ / cm 2 to 2000 mJ / cm 2. It is. At that time, the irradiation distribution in the width direction of the web is preferably 50 to 100%, more preferably 80 to 100%, including both ends with respect to the central maximum irradiation.
本発明では、支持体上に積層された少なくとも一層を、電離放射線を照射しかつ電離放射線照射開始から0.5秒以上の間、膜面温度60℃以上に加熱した状態で、酸素濃度10体積%以下の雰囲気で電離放射線を照射する工程によって硬化することが好ましい。
また電離放射線照射と同時及び/又は連続して酸素濃度3体積%以下の雰囲気で加熱されることも好ましい。
特に最外層であり、かつ膜厚が薄い低屈折率層がこの方法で硬化されることが好ましい。硬化反応が熱で加速され、物理強度、耐薬品性に優れた皮膜を形成することができる。
In the present invention, at least one layer laminated on the support is irradiated with ionizing radiation and heated to a film surface temperature of 60 ° C. or more for 0.5 seconds or more from the start of irradiation with ionizing radiation, with an oxygen concentration of 10 volumes. It is preferable to cure by the step of irradiating ionizing radiation in an atmosphere of less than or equal to%.
It is also preferable that heating is performed in an atmosphere having an oxygen concentration of 3% by volume or less simultaneously and / or continuously with ionizing radiation irradiation.
In particular, it is preferable that the low refractive index layer which is the outermost layer and has a small film thickness is cured by this method. The curing reaction is accelerated by heat, and a film having excellent physical strength and chemical resistance can be formed.
電離放射線を照射する時間については0.7秒以上60秒以下が好ましく、0.7秒以上10秒以下がより好ましい。0.5秒以下では、硬化反応が完了することができず、十分な硬化を行うことができない。また長時間低酸素条件を維持することは、設備が大型化し、多量の不活性ガスが必要であり好ましくない。 The time for irradiating with ionizing radiation is preferably 0.7 seconds or longer and 60 seconds or shorter, and more preferably 0.7 seconds or longer and 10 seconds or shorter. If it is 0.5 seconds or less, the curing reaction cannot be completed, and sufficient curing cannot be performed. Also, maintaining low oxygen conditions for a long time is not preferable because the equipment becomes large and a large amount of inert gas is required.
酸素濃度は6体積%以下の雰囲気で電離放射線硬化性化合物の架橋反応、又は、重合反応により形成することが好ましく、更に好ましくは酸素濃度が4体積%以下、特に好ましくは酸素濃度が2体積%以下、最も好ましくは1体積%以下である。必要以上に酸素濃度を低減するためには、窒素などの不活性ガスの多量の使用量が必要であり、製造コストの観点から好ましくない。 The oxygen concentration is preferably formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound in an atmosphere of 6% by volume or less, more preferably 4% by volume or less, particularly preferably 2% by volume of oxygen. Hereinafter, it is most preferably 1% by volume or less. In order to reduce the oxygen concentration more than necessary, a large amount of inert gas such as nitrogen is required, which is not preferable from the viewpoint of production cost.
酸素濃度を10体積%以下にする手法としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。 As a method of reducing the oxygen concentration to 10% by volume or less, it is preferable to replace the atmosphere (nitrogen concentration of about 79% by volume, oxygen concentration of about 21% by volume) with another gas, particularly preferably replacement with nitrogen (nitrogen purge). It is to be.
不活性ガスを電離放射線照射室に供給し、かつ照射室のウェッブ入口側にやや吹き出す条件にすることで、ウェッブ搬送にともなう導搬エアーを排除し反応室の酸素濃度を有効に下げられるとともに、酸素による硬化阻害の大きい極表面の実質の酸素濃度を効率よく低減することができる。照射室のウェッブ入口側での不活性ガスの流れの方向は、照射室の給気、排気のバランスを調整することなどで制御できる。
不活性ガスをウェッブ表面に直接吹き付けることも、導搬エアーを除去する方法として好ましく用いられる。
By supplying inert gas to the ionizing radiation irradiation chamber and making it slightly blown out to the web entrance side of the irradiation chamber, it is possible to effectively reduce the oxygen concentration in the reaction chamber by eliminating the carry air accompanying the web transfer, It is possible to efficiently reduce the substantial oxygen concentration on the pole surface where the inhibition of curing by oxygen is large. The direction of the inert gas flow on the web entrance side of the irradiation chamber can be controlled by adjusting the balance between the supply and exhaust of the irradiation chamber.
Direct blowing of an inert gas onto the web surface is also preferably used as a method for removing the carried air.
また前記反応室の前に前室を設け、事前にウェッブ表面の酸素を排除することで、より硬化を効率よく進めることができる。また電離放射線反応室または前室のウェッブ入口側を構成する側面は、不活性ガスを効率的に使用するために、ウェッブ表面とのギャップは0.2〜15mmが好ましく、より好ましくは、0.2〜10mmとするのがよく、0.2〜5mmとするのがもっとも好ましい。しかし、ウェッブを連続製造するには、ウェッブを接合して繋げていく必要があり、接合には接合テープなどで貼る方法が広く用いられている。このため、電離放射線反応室または前室の入口面とウェッブのギャップをあまり狭くすると、接合テープなど接合部材が引っかかる問題が生じる。このためギャップを狭くするためには、電離放射線反応室または前室の入口面の少なくとも一部を可動とし、接合部が入るときは接合厚み分ギャップを広げるのが好ましい。この実現のためには、電離放射線反応室または前室の入口面を進行方向前後に可動にしておき、接合部が通過する際に前後に動いてギャップを広げるやり方や、電離放射線反応室または前室の入口面をウェッブ面に対し、垂直方向に可動にし、接合部が通過する際に上下に動いてギャップを広げるやり方を取ることができる。 Further, by providing a front chamber in front of the reaction chamber and excluding oxygen on the web surface in advance, the curing can proceed more efficiently. Further, the side surface constituting the web entrance side of the ionizing radiation reaction chamber or the front chamber is preferably 0.2 to 15 mm in gap with the web surface in order to use the inert gas efficiently, more preferably, 0.1%. The thickness is preferably 2 to 10 mm, and most preferably 0.2 to 5 mm. However, in order to continuously manufacture the web, it is necessary to join and connect the webs, and a method of sticking with a joining tape or the like is widely used for joining. For this reason, if the gap between the entrance surface of the ionizing radiation reaction chamber or the front chamber and the web is too narrow, there arises a problem that the joining member such as the joining tape is caught. For this reason, in order to narrow the gap, it is preferable to make at least a part of the entrance surface of the ionizing radiation reaction chamber or the front chamber movable, and to widen the gap by the junction thickness when the junction enters. In order to realize this, the entrance surface of the ionizing radiation reaction chamber or the front chamber is made movable in the forward and backward direction, and when the joint passes, the gap is moved back and forth to widen the gap, It is possible to move the chamber entrance surface vertically with respect to the web surface and move up and down to widen the gap as the joint passes.
硬化の際、フィルム面が60℃以上170℃以下で加熱されることが好ましい。60℃以下では加熱の硬化は少なく、170℃以上では基材の変形などの問題が生じる。更にこの好ましい温度は60℃〜100℃である。フィルム面とは硬化しようとする層の膜面温度を指す。またフィルムが前記温度になる時間は、UV照射開始から0.1秒以上、300秒以下が好ましく、更に10秒以下が好ましい。フィルム面の温度を上記の温度範囲に保つ時間が短すぎると、皮膜を形成する硬化性組成物の反応を促進できず、逆に長すぎてもフィルムの光学性能が低下し、また設備が大きくなるなどの製造上の問題も生じる。 In curing, the film surface is preferably heated at 60 ° C. or higher and 170 ° C. or lower. Below 60 ° C., there is little curing by heating, and at 170 ° C. or higher, problems such as deformation of the substrate occur. Furthermore, this preferable temperature is 60 degreeC-100 degreeC. The film surface refers to the film surface temperature of the layer to be cured. The time for the film to reach the temperature is preferably 0.1 second or more and 300 seconds or less from the start of UV irradiation, and more preferably 10 seconds or less. If the time for maintaining the temperature of the film surface in the above temperature range is too short, the reaction of the curable composition that forms the film cannot be accelerated, and conversely, if it is too long, the optical performance of the film deteriorates and the equipment is large. Manufacturing problems such as
加熱する方法に特に限定はないが、ロールを加熱してフィルムに接触させる方法、加熱した窒素を吹き付ける方法、遠赤外線あるいは赤外線の照射などが好ましい。特許2523574号に記載の回転金属ロールに温水や蒸気・オイルなどの媒体を流して加熱する方法も利用できる。加熱の手段としては誘電加熱ロールなどを使用しても良い。 There is no particular limitation on the heating method, but a method of heating a roll to contact the film, a method of spraying heated nitrogen, irradiation with far infrared rays or infrared rays is preferable. A method of heating a rotating metal roll described in Japanese Patent No. 2523574 by flowing a medium such as hot water, steam or oil can also be used. As a heating means, a dielectric heating roll or the like may be used.
紫外線照射は、構成する複数の層それぞれに対して1層設ける毎に照射してもよいし、積層後照射してもよい。あるいはこれらを組み合わせて照射してもよい。生産性の点から、多層を積層後、紫外線を照射することが好ましい。 The ultraviolet irradiation may be performed every time one layer is provided for each of a plurality of constituent layers, or may be performed after lamination. Or you may irradiate combining these. From the viewpoint of productivity, it is preferable to irradiate ultraviolet rays after laminating multiple layers.
本発明では、支持体上に積層された少なくとも一層を複数回の電離放射線により硬化することができる。この場合、少なくとも2回の電離放射線が酸素濃度3体積%を超えることのない連続した反応室で行われることが好ましい。複数回の電離放射線照射を同一の低酸素濃度の反応室で行うことにより、硬化に必要な反応時間を有効に確保することができる。
特に高生産性のため製造速度をあげた場合には、硬化反応に必要な電離放射線のエネルギーを確保するために複数回の電離放射線照射が必要となる。
In the present invention, at least one layer laminated on the support can be cured by multiple times of ionizing radiation. In this case, it is preferable that at least two ionizing radiations are performed in a continuous reaction chamber in which the oxygen concentration does not exceed 3% by volume. By performing multiple times of ionizing radiation irradiation in the same low oxygen concentration reaction chamber, the reaction time required for curing can be effectively ensured.
In particular, when the production rate is increased for high productivity, ionizing radiation irradiation is required multiple times to ensure the energy of ionizing radiation necessary for the curing reaction.
また、硬化率(100−残存官能基含率)が100%未満のある値となった場合、その上に層を設けて電離放射線及び/又は熱により硬化した際に下層の硬化率が上層を設ける前よりも高くなると、下層と上層との間の密着性が改良され、好ましい。 In addition, when the curing rate (100-residual functional group content) is a certain value of less than 100%, when the layer is provided thereon and cured by ionizing radiation and / or heat, the lower layer has a curing rate of the upper layer. When the height is higher than before, the adhesion between the lower layer and the upper layer is improved, which is preferable.
5−(6)ハンドリング
本発明のフィルムを連続的に製造するために、ロール状の支持体フィルムを連続的に送り出す工程、塗布液を塗布・乾燥する工程、塗膜を硬化する工程、硬化した層を有する支持体フィルムを巻き取る工程が行われる。
ロール状のフィルム支持体からフィルム支持体がクリーン室に連続的に送り出され、クリーン室内で、フィルム支持体に帯電している静電気を静電除電装置により除電し、引き続きフィルム支持体上に付着している異物を、除塵装置により除去する。引き続きクリーン室内に設置されている塗布部で塗布液がフィルム支持体上に塗布され、塗布されたフィルム支持体は乾燥室に送られて乾燥される。
乾燥した塗布層を有するフィルム支持体は乾燥室から硬化室へ送り出され、塗布層に含有されるモノマーが重合して硬化する。さらに、硬化した層を有するフィルム支持体は硬化部へ送られ硬化を完結させ、硬化が完結した層を有するフィルム支持体は巻き取られてロール状となる。
5- (6) Handling In order to continuously produce the film of the present invention, a process of continuously feeding a roll-shaped support film, a process of applying and drying a coating liquid, a process of curing a coating film, and curing The process of winding up the support film which has a layer is performed.
The film support is continuously sent out from the roll-shaped film support to the clean room. In the clean room, the static electricity charged on the film support is removed by an electrostatic charge-off device, and then the film support adheres on the film support. Remove the foreign material that has been removed with a dust remover. Subsequently, the coating liquid is applied onto the film support in the application section installed in the clean room, and the applied film support is sent to the drying chamber and dried.
The film support having the dried coating layer is fed from the drying chamber to the curing chamber, and the monomer contained in the coating layer is polymerized and cured. Further, the film support having the cured layer is sent to the curing unit to complete the curing, and the film support having the layer having been completely cured is wound up into a roll shape.
上記工程は、各層の形成毎に行ってもよいし、塗布部−乾燥室−硬化部を複数設けて、各層の形成を連続的に行うことも可能である。
本発明のフィルムを作成するためには、前記したように塗布液の精密濾過操作と同時に、塗布部における塗布工程および乾燥室で行われる乾燥工程が高い清浄度の空気雰囲気下で行われ、かつ塗布が行われる前に、フィルム上のゴミ、ほこりが充分に除かれていることが好ましい。塗布工程および乾燥工程の空気清浄度は、米国連邦規格209Eにおける空気清浄度の規格に基づき、クラス10(0.5μm以上の粒子が353個/(立方メートル)以下)以上であることが望ましく、更に好ましくはクラス1(0.5μm以上の粒子が35.5個/(立方メートル)以下)以上であることが望ましい。また、空気清浄度は、塗布−乾燥工程以外の送り出し、巻き取り部等においても高いことがより好ましい。
The above steps may be performed every time each layer is formed, or a plurality of coating parts-drying chambers-curing parts may be provided to continuously form each layer.
In order to create the film of the present invention, as described above, the coating step in the coating unit and the drying step performed in the drying chamber are performed in a highly clean air atmosphere simultaneously with the microfiltration operation of the coating solution, and It is preferable that dust and dust on the film are sufficiently removed before application. The air cleanliness of the coating process and the drying process is desirably class 10 (353 particles / 0.5 m or more / (cubic meter) or less) based on the standard of air cleanliness in the US Federal Standard 209E. Preferably it is class 1 (35.5 particles / (cubic meter) or less) having a particle size of 0.5 μm or more. Moreover, it is more preferable that the degree of air cleanliness is high also in the feeding and winding parts other than the coating-drying process.
5−(7)鹸化処理
本発明のフィルムを2枚の偏光膜の表面保護フィルムの内の一方として用いて偏光板を作成する際には、偏光膜と貼り合わせる側の表面を親水化することで、接着面における接着性を改良することが好ましい。
5- (7) Saponification Treatment When making a polarizing plate using the film of the present invention as one of two polarizing film surface protective films, the surface on the side to be bonded to the polarizing film should be hydrophilized. Thus, it is preferable to improve the adhesion on the bonding surface.
a.アルカリ液に浸漬する法
アルカリ液の中にフィルムを適切な条件で浸漬して、フィルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/Lであり、特に好ましくは1〜2mol/Lである。好ましいアルカリ液の液温は30〜75℃、特に好ましくは40〜60℃である。
前記の鹸化条件の組合せは比較的穏和な条件同士の組合せであることが好ましいが、フィルムの素材や構成、目標とする接触角によって設定することができる。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
a. Method of immersing in alkaline solution This is a method of saponifying all surfaces that are reactive with alkali on the entire surface of the film by immersing the film in an alkaline solution under appropriate conditions, and no special equipment is required. From the viewpoint of cost. The alkaline liquid is preferably a sodium hydroxide aqueous solution. A preferred concentration is 0.5 to 3 mol / L, particularly preferably 1 to 2 mol / L. The liquid temperature of a preferable alkali liquid is 30-75 degreeC, Most preferably, it is 40-60 degreeC.
The combination of the saponification conditions is preferably a combination of relatively mild conditions, but can be set according to the material and composition of the film and the target contact angle.
After being immersed in the alkaline solution, it is preferable to sufficiently wash with water or neutralize the alkaline component by immersing in a dilute acid so that the alkaline component does not remain in the film.
鹸化処理することにより、塗布層を有する表面と反対の表面が親水化される。偏光板用保護フィルムは、透明支持体の親水化された表面を偏光膜と接着させて使用する。
親水化された表面は、ポリビニルアルコールを主成分とする接着層との接着性を改良するのに有効である。
鹸化処理は、塗布層を有する側とは反対側の透明支持体の表面の水に対する接触角が低いほど、偏光膜との接着性の観点では好ましいが、一方、浸漬法では同時に塗布層を有する表面から内部までアルカリによるダメージを受ける為、必要最小限の反応条件とすることが重要となる。アルカリによる各層の受けるダメージの指標として、反対側の表面の透明支持体の水に対する接触角を用いた場合、特に透明支持体がトリアセチルセルロースであれば、好ましくは10度〜50度、より好ましくは30度〜50度、さらに好ましくは40度〜50度となる。50度以上では、偏光膜との接着性に問題が生じる為、好ましくない。一方、10度未満では、フィルムが受けるダメージが大きすぎる為、物理強度を損ない、好ましくない。
By saponification treatment, the surface opposite to the surface having the coating layer is hydrophilized. The protective film for polarizing plate is used by adhering the hydrophilic surface of the transparent support to the polarizing film.
The hydrophilized surface is effective for improving the adhesiveness with the adhesive layer mainly composed of polyvinyl alcohol.
In the saponification treatment, the lower the contact angle with respect to the surface of the transparent support opposite to the side having the coating layer, the better from the viewpoint of adhesion to the polarizing film, while the dipping method simultaneously has the coating layer. Since it is damaged by alkali from the surface to the inside, it is important to set the minimum reaction conditions. When the contact angle to water of the transparent support on the opposite surface is used as an index of damage to each layer due to alkali, particularly when the transparent support is triacetylcellulose, preferably 10 to 50 degrees, more preferably Is 30 to 50 degrees, more preferably 40 to 50 degrees. If it is 50 degrees or more, there is a problem in the adhesion to the polarizing film, which is not preferable. On the other hand, if it is less than 10 degrees, the film suffers too much damage, which impairs physical strength and is not preferable.
b.アルカリ液を塗布する方法
上述の浸漬法における各膜へのダメージを回避する手段として、適切な条件でアルカリ液を塗布層を有する表面と反対側の表面のみに塗布、加熱、水洗、乾燥するアルカリ液塗布法が好ましく用いられる。なお、この場合の塗布とは、鹸化を行う面に対してのみアルカリ液などを接触させることを意味し、塗布以外にも噴霧、液を含んだベルト等に接触させる、などによって行われることも含む。これらの方法を採ることにより、別途、アルカリ液を塗布する設備、工程が必要となるため、コストの観点では(1)の浸漬法に劣る。一方で、鹸化処理を施す面にのみアルカリ液が接触するため、反対側の面にはアルカリ液に弱い素材を用いた層を有することができる。例えば、蒸着膜やゾル−ゲル膜では、アルカリ液によって、腐食、溶解、剥離など様々な影響が起こるため、浸漬法では設けることが望ましくないが、この塗布法では液と接触しないため問題なく使用することが可能である。
b. Method of applying alkaline solution As a means of avoiding damage to each film in the above-mentioned immersion method, an alkali solution is applied, heated, washed with water, and dried only on the surface opposite to the surface having the coating layer under appropriate conditions. A liquid coating method is preferably used. The application in this case means that an alkaline solution or the like is brought into contact only with the surface to be saponified, and in addition to the application, it may be carried out by spraying or contacting a belt containing the solution. Including. By adopting these methods, a separate facility and process for applying an alkaline solution are required, which is inferior to the immersion method (1) from the viewpoint of cost. On the other hand, since the alkali solution contacts only the surface to be saponified, the opposite surface can have a layer using a material that is weak against the alkali solution. For example, vapor deposition films and sol-gel films have various effects such as corrosion, dissolution, and peeling due to alkali solution, so it is not desirable to use the immersion method. Is possible.
前記(1)、(2)のどちらの鹸化方法においても、ロール状の支持体から巻き出して各層を形成後に行うことができるため、フィルム製造工程の後に加えて一連の操作で行っても良い。さらに、同様に巻き出した支持体からなる偏光板との張り合わせ工程もあわせて連続で行うことにより、枚葉で同様の操作をするよりもより効率良く偏光板を作成することができる。 In any of the saponification methods (1) and (2), since each layer can be formed by unwinding from a roll-shaped support, it may be performed by a series of operations in addition to the film manufacturing process. . Furthermore, the polarizing plate can be produced more efficiently than the same operation with a single wafer by continuously performing the pasting step with the polarizing plate made of the unwound support.
c.ラミネートフィルムで保護して鹸化する方法
前記(2)と同様に、塗布層がアルカリ液に対する耐性が不足している場合に、最終層まで形成した後に該最終層を形成した面にラミネートフィルムを貼り合せてからアルカリ液に浸漬することで最終層を形成した面とは反対側のトリアセチルセルロース面だけを親水化し、然る後にラミネートフィルムを剥離することができる。この方法でも、塗布層へのダメージなしに偏光板保護フィルムとして必要なだけの親水化処理をトリアセチルセルロースフィルムの最終層を形成した面とは反対の面だけに施すことができる。前記(2)の方法と比較して、ラミネートフィルムが廃棄物として発生する半面、特別なアルカリ液を塗布する装置が不要である利点がある。
c. Method of protecting and saponifying with a laminate film As in (2) above, when the coating layer is insufficient in resistance to an alkaline solution, a laminate film is pasted on the surface on which the final layer is formed after forming the final layer. By immersing them in an alkaline solution after combining them, only the triacetyl cellulose surface opposite to the surface on which the final layer is formed can be hydrophilized, and then the laminate film can be peeled off. Even in this method, the hydrophilic treatment necessary for the polarizing plate protective film can be applied only to the surface opposite to the surface on which the final layer of the triacetyl cellulose film is formed without damaging the coating layer. Compared with the method (2), there is an advantage that a laminate film is generated as waste, but a device for applying a special alkaline solution is unnecessary.
d.中途層まで形成後にアルカリ液に浸漬する方法
下層層まではアルカリ液に対する耐性があるが、上層のアルカリ液に対する耐性不足である場合には、下層まで形成後にアルカリ液に浸漬して両面を親水化処理し、然る後に上層を形成することもできる。製造工程が煩雑になるが、たとえば防眩層とフッ素含有ゾルーゲル膜の低屈折率層とからなるフィルムにおいて、親水基を有する場合には防眩層と低屈折率層との層間密着性が向上する利点がある。
d. Method of immersing in alkaline solution after forming up to middle layer Although resistant to alkaline solution up to lower layer, but insufficient resistance to alkaline solution of upper layer, dip into alkaline solution after forming up to lower layer to make both sides hydrophilic The upper layer can also be formed after processing. Although the manufacturing process is complicated, for example, in a film composed of an antiglare layer and a low refractive index layer of a fluorine-containing sol-gel film, when there is a hydrophilic group, the interlayer adhesion between the antiglare layer and the low refractive index layer is improved. There are advantages to doing.
e.予め鹸化済のトリアセチルセルロースフィルムに塗布層層を形成する方法
トリアセチルセルロースフィルムを予めアルカリ液に浸漬するなどして鹸化し、何れか一方の面に直接または他の層を介して塗布層を形成してもよい。アルカリ液に浸漬して鹸化する場合には、鹸化により親水化されたトリアセチルセルロース面との層間密着性が悪化することがある。そのような場合には、鹸化後、塗布層を形成する面だけにコロナ放電、グロー放電等の処理をすることで親水化面を除去してから塗布層を形成することで対処できる。また、塗布層が親水性基を有する場合には層間密着が良好なこともある。
e. Method of forming a coating layer on a saponified triacetyl cellulose film A saponification of a triacetyl cellulose film by immersing it in an alkaline solution in advance and applying the coating layer directly on one side or via another layer It may be formed. In the case of saponification by dipping in an alkaline solution, the interlayer adhesion with the triacetyl cellulose surface hydrophilized by saponification may deteriorate. In such a case, after saponification, only the surface on which the coating layer is to be formed is treated by corona discharge, glow discharge or the like to remove the hydrophilic surface and then form the coating layer. Further, when the coating layer has a hydrophilic group, the interlayer adhesion may be good.
6.偏光板及び光学補償シート
本発明の反射防止フィルムは、偏光膜およびその片側ないし両側に配置された保護フィルムとして使用し、偏光板として使用することができる。
一方の保護フィルムとして、本発明のフィルムを用いる場合、他方の保護フィルムは、通常のセルロースアセテートフィルムを用いてもよいが、上述の溶液製膜法で製造され、且つ10〜100%の延伸倍率でロールフィルム形態における幅方向に延伸したセルロースアセテートフィルムを用いることが好ましい。
更には、本発明の偏光板において、片面が本発明の反射防止フィルムであるのに対して他方の保護フィルムが液晶性化合物からなる光学異方性層を有する光学補償シートであることが好ましい。
6). Polarizing plate and optical compensation sheet The antireflection film of the present invention can be used as a polarizing film and a protective film disposed on one side or both sides thereof, and can be used as a polarizing plate.
When the film of the present invention is used as one protective film, the other protective film may be a normal cellulose acetate film, but is produced by the above-mentioned solution casting method and has a stretch ratio of 10 to 100%. It is preferable to use a cellulose acetate film stretched in the width direction in the form of a roll film.
Furthermore, in the polarizing plate of the present invention, it is preferable that one side is the antireflection film of the present invention, whereas the other protective film is an optical compensation sheet having an optically anisotropic layer made of a liquid crystalline compound.
6−(1)偏光板
偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜および染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。
反射防止フィルムの透明支持体やセルロースアセテートフィルムの遅相軸と偏光膜の透過軸とは、実質的に平行になるように配置する。
6- (1) Polarizing plate The polarizing film includes an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film. The iodine polarizing film and the dye polarizing film are generally produced using a polyvinyl alcohol film.
The transparent support of the antireflection film and the slow axis of the cellulose acetate film and the transmission axis of the polarizing film are arranged so as to be substantially parallel.
偏光板の生産性には保護フィルムの透湿性が重要である。偏光膜と保護フィルムは水系接着剤で貼り合わせられており、この接着剤溶剤は保護フィルム中を拡散することで、乾燥される。保護フィルムの透湿性が高ければ、高いほど乾燥は早くなり、生産性は向上するが、高くなりすぎると、液晶表示装置の使用環境(高湿下)により、水分が偏光膜中に入ることで偏光能が低下する。
保護フィルムの透湿性は、透明支持体やポリマーフィルム(および重合性液晶性化合物)の厚み、自由体積、親疎水性、等により決定される。
本発明のフィルムを偏光板の保護フィルムとして用いる場合、透湿性は100〜1000g/m2・24hrsであることが好ましく、300〜700g/m2・24hrsであることが更に好ましい。
透明支持体の厚みは、製膜の場合、リップ流量とラインスピード、あるいは、延伸、圧縮により調整することができる。使用する主素材により透湿性が異なるので、厚み調整により好ましい範囲にすることが可能である。
透明支持体の自由体積は、製膜の場合、乾燥温度と時間により調整することができる。
この場合もまた、使用する主素材により透湿性が異なるので、自由体積調整により好ましい範囲にすることが可能である。
透明支持体の親疎水性は、添加剤により調整することができる。上記自由体積中に親水的添加剤を添加することで透湿性は高くなり、逆に疎水性添加剤を添加することで透湿性を低くすることができる。
上記透湿性を独立に制御することにより、光学補償能を有する偏光板を安価に高い生産性で製造することが可能となる。
The moisture permeability of the protective film is important for the productivity of the polarizing plate. The polarizing film and the protective film are bonded together with an aqueous adhesive, and the adhesive solvent is dried by diffusing in the protective film. The higher the moisture permeability of the protective film, the faster the drying and the higher the productivity. However, if the protective film is too high, moisture will enter the polarizing film depending on the usage environment (high humidity) of the liquid crystal display device. Polarization ability decreases.
The moisture permeability of the protective film is determined by the thickness, free volume, hydrophilicity / hydrophobicity, etc. of the transparent support or polymer film (and polymerizable liquid crystal compound).
When using the film of the present invention as a protective film of a polarizing plate, the moisture permeability is preferably from 100~1000g / m 2 · 24hrs, and more preferably a 300~700g / m 2 · 24hrs.
In the case of film formation, the thickness of the transparent support can be adjusted by lip flow rate and line speed, or stretching and compression. Since the moisture permeability varies depending on the main material to be used, it is possible to make a preferable range by adjusting the thickness.
In the case of film formation, the free volume of the transparent support can be adjusted by the drying temperature and time.
Also in this case, moisture permeability varies depending on the main material to be used, so that a preferable range can be obtained by adjusting the free volume.
The hydrophilicity / hydrophobicity of the transparent support can be adjusted by an additive. The moisture permeability can be increased by adding a hydrophilic additive to the free volume, and conversely, the moisture permeability can be lowered by adding a hydrophobic additive.
By independently controlling the moisture permeability, a polarizing plate having an optical compensation ability can be manufactured at low cost with high productivity.
偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成される。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45°傾斜させたものが生産性の観点から好ましく用いられる。
As the polarizing film, a known polarizing film or a polarizing film cut out from a long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction may be used. A long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction is produced by the following method.
That is, a polarizing film stretched by applying tension while holding both ends of a continuously supplied polymer film by a holding means, stretched at least 1.1 to 20.0 times in the film width direction, The progress of the film is such that the difference between the moving speeds in the longitudinal direction of the holding device is within 3%, and the angle formed by the film moving direction at the exit of the step of holding both ends of the film and the substantial stretching direction of the film is inclined by 20 to 70 °. The film can be produced by a stretching method in which the direction is bent while holding both ends of the film. In particular, those inclined by 45 ° are preferably used from the viewpoint of productivity.
ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落[0020]〜[0030]に詳しい記載がある。
偏光子の2枚の保護フィルムのうち、反射防止フィルム以外のフィルムが、光学異方層を含んでなる光学補償層を有する光学補償シートであることも好ましい。
The method for stretching the polymer film is described in detail in paragraphs [0020] to [0030] of JP-A-2002-86554.
Of the two protective films of the polarizer, the film other than the antireflection film is also preferably an optical compensation sheet having an optical compensation layer comprising an optically anisotropic layer.
6−(2)光学補償シート
光学補償シートは、後記一般式[1]または[2]で表されるフルオロ脂肪族基含有モノマーから導かれる繰り返し単位を含有する重合体(「フッ素系ポリマー」と略記することもある)の少なくとも1種と、シクロプロピルカルボニル基を有する円盤状化合物の少なくとも1種とを含有する光学異方性層を有することが好ましい。
6- (2) Optical Compensation Sheet An optical compensation sheet is a polymer containing a repeating unit derived from a fluoroaliphatic group-containing monomer represented by the following general formula [1] or [2] (“fluorine polymer” and It is preferable to have an optically anisotropic layer containing at least one of (which may be abbreviated) and at least one discotic compound having a cyclopropylcarbonyl group.
(フッ素系ポリマー)
前記一般式[1]または[2]で表されるフルオロ脂肪族基含有モノマーから導かれる繰り返し単位を含有するフッ素系ポリマーの少なくとも1種を用いる。前記フッ素系ポリマーは、下記一般式[1]または[2]で表されるモノマーから導かれる繰り返し単位と、後述する一般式[3]で表されるモノマーから導かれる繰り返し単位のいずれをも含むアクリル樹脂又はメタアクリル樹脂であるのが好ましく、さらにはこれらモノマーと共重合可能なビニル系モノマーが共重合体したアクリル樹脂またはメタアクリル樹脂も好ましい。
(Fluoropolymer)
At least one fluorine-based polymer containing a repeating unit derived from the fluoroaliphatic group-containing monomer represented by the general formula [1] or [2] is used. The fluoropolymer includes both a repeating unit derived from a monomer represented by the following general formula [1] or [2] and a repeating unit derived from a monomer represented by the general formula [3] described later. An acrylic resin or a methacrylic resin is preferable, and an acrylic resin or a methacrylic resin obtained by copolymerizing a vinyl monomer copolymerizable with these monomers is also preferable.
フッ素系ポリマーにおけるフルオロ脂肪族基の一つは、テロメリゼーション法(テロマー法ともいわれる)又はオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物から導かれるものである。これらのフルオロ脂肪族化合物の製造法に関しては、例えば、「フッ素化合物の合成と機能」(監修:石川延男、発行:株式会社シーエムシー、1987)の117〜118ページや、「Chemistry of Organic Fluorine Compounds II」(Monograph 187,Ed by Milos Hudlicky and Attila E.Pavlath,American Chemical Society 1995)の747−752ページに記載されている。テロメリゼーション法とは、ヨウ化物等の連鎖移動常数の大きいアルキルハライドをテローゲンとして、テトラフルオロエチレン等のフッ素含有ビニル化合物のラジカル重合を行い、テロマーを合成する方法である(Scheme−1に例を示した)。 One of the fluoroaliphatic groups in the fluorine-based polymer is derived from a fluoroaliphatic compound produced by a telomerization method (also referred to as a telomer method) or an oligomerization method (also referred to as an oligomer method). Regarding the production method of these fluoroaliphatic compounds, for example, “Synthesis and Function of Fluorine Compounds” (Supervision: Nobuo Ishikawa, Issue: CMC Co., 1987), “Chemistry of Organic Fluorines Compounds”. II "(Monograph 187, Ed by Milos Hudricky and Attila E. Pavlath, American Chemical Society 1995). The telomerization method is a method of synthesizing a telomer by radical polymerization of a fluorine-containing vinyl compound such as tetrafluoroethylene using an alkyl halide having a large chain transfer constant such as iodide as a telogen (example in Scheme-1). showed that).
得られた、末端ヨウ素化テロマーは通常、例えば[Scheme2]のごとき適切な末端化学修飾を施され、フルオロ脂肪族化合物へと導かれる。これらの化合物は必要に応じ、さらに所望のモノマー構造へと変換され、フルオロ脂肪族基含有ポリマーの製造に使用される。[Scheme2]中のnは自然数を表す。 The obtained terminal iodinated telomer is usually subjected to appropriate terminal chemical modification such as [Scheme 2], and led to a fluoroaliphatic compound. These compounds are further converted into a desired monomer structure as necessary, and used for the production of a fluoroaliphatic group-containing polymer. N in [Scheme2] represents a natural number.
前記フッ素系ポリマーは、下記一般式[1]または[2]で表されるフルオロ脂肪族基含有モノマーから導かれる繰り返し単位を有する。 The fluoropolymer has a repeating unit derived from a fluoroaliphatic group-containing monomer represented by the following general formula [1] or [2].
上記一般式[1]において、R1は水素原子またはメチル基を表し、Xは酸素原子、イオウ原子または−N(R2)−を表し(R2は水素原子または炭素数1〜4のアルキル基を表し、好ましくは水素原子またはメチル基である。)、Zは水素原子またはフッ素原子を表し、mは1以上6以下の整数、nは2〜4の整数を表す。 In the general formula [1], R 1 represents a hydrogen atom or a methyl group, X represents an oxygen atom, a sulfur atom, or —N (R 2 ) — (R 2 represents a hydrogen atom or an alkyl having 1 to 4 carbon atoms). Represents a group, preferably a hydrogen atom or a methyl group.), Z represents a hydrogen atom or a fluorine atom, m represents an integer of 1 to 6, and n represents an integer of 2 to 4.
Xは好ましくは酸素原子であり、Zは好ましくは水素原子であり、mは好ましくは1または2であり、nは好ましくは3または4であり、これらの混合物を用いてもよい。 X is preferably an oxygen atom, Z is preferably a hydrogen atom, m is preferably 1 or 2, n is preferably 3 or 4, and a mixture thereof may be used.
上記一般式[2]において、Aは下記の連結基群Aから選ばれる2価(q=1)もしくは3価(q=2)の連結基、または、下記の連結基群Aから選ばれる2つ以上を組み合わせて形成される2価(q=1)もしくは3価(q=2)の連結基を表し、また、連結基同士は酸素原子を介して結合してもよい。 In the general formula [2], A is a divalent (q = 1) or trivalent (q = 2) linking group selected from the following linking group group A, or 2 selected from the linking group group A below. It represents a divalent (q = 1) or trivalent (q = 2) linking group formed by combining two or more, and the linking groups may be bonded via an oxygen atom.
(連結基群A)
−CH2−、−CH2CH2−、−CH2CH2CH2−、−C6H4−および−C6H3<:ただし、ベンゼン環上の置換位置は任意の位置でよい。
(Linking group A)
-CH 2 -, - CH 2 CH 2 -, -
上記一般式[2]中、Zは水素原子またはフッ素原子を表し、pは3〜8の整数、qは1または2を表す。 In the general formula [2], Z represents a hydrogen atom or a fluorine atom, p represents an integer of 3 to 8, and q represents 1 or 2.
Aは好ましくは下記に示す構造である。 A preferably has the structure shown below.
Zは好ましくはフッ素原子であり、pは好ましくは4または6であり、これらの混合物を用いてもよい。 Z is preferably a fluorine atom, and p is preferably 4 or 6, and a mixture thereof may be used.
フッ素系ポリマーの製造に利用可能なモノマーの具体例を以下に挙げるが、以下の具体例によってなんら制限されるものではない Specific examples of monomers that can be used in the production of fluoropolymers are listed below, but are not limited by the following specific examples.
フッ素系ポリマーの一態様は、フルオロ脂肪族基含有モノマーより誘導される繰り返し単位と、下記一般式[3]で表される親水性基を含有するモノマーより誘導される繰り返し単位とを有する共重合体である。 One aspect of the fluoropolymer is a copolymer having a repeating unit derived from a fluoroaliphatic group-containing monomer and a repeating unit derived from a monomer containing a hydrophilic group represented by the following general formula [3] It is a coalescence.
上記一般式[3]において、R11、R12およびR13はそれぞれ独立に、水素原子または置換基を表す。Q1はカルボキシル基(−COOH)またはその塩、スルホ基(−SO3H)またはその塩、ホスホノキシ基{−OP(=O)(OH)2}またはその塩、アルキル基、もしくは、末端が水素原子もしくはアルキル基であるポリ(アルキレンオキシ)基を表す。L1は下記の連結基群から選ばれる任意の基、またはそれらの2つ以上を組み合わせて形成される2価の連結基を表す。 In the general formula [3], R 11 , R 12 and R 13 each independently represents a hydrogen atom or a substituent. Q 1 is a carboxyl group (—COOH) or a salt thereof, a sulfo group (—SO 3 H) or a salt thereof, a phosphonoxy group {—OP (═O) (OH) 2 } or a salt thereof, an alkyl group, or an end thereof. A poly (alkyleneoxy) group which is a hydrogen atom or an alkyl group is represented. L 1 represents an arbitrary group selected from the following linking group group, or a divalent linking group formed by combining two or more thereof.
(連結基群)
単結合、−O−、−CO−、−NR4−(R4は水素原子、アルキル基、アリール基、またはアラルキル基を表す)、−S−、−SO2−、−P(=O)(OR5)−(R5はアルキル基、アリール基、またはアラルキル基を表す)、アルキレン基およびアリーレン基。
(Linked group group)
Single bond, —O—, —CO—, —NR 4 — (R 4 represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group), —S—, —SO 2 —, —P (═O) (OR 5 ) — (R 5 represents an alkyl group, an aryl group, or an aralkyl group), an alkylene group, and an arylene group.
一般式[3]中、R11、R12およびR13は、それぞれ独立に、水素原子または下記に例示した置換基群から選ばれる置換基を表す。 In general formula [3], R 11 , R 12 and R 13 each independently represent a hydrogen atom or a substituent selected from the substituent group exemplified below.
(置換基群)
アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリール基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、アラルキル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12のアラルキル基であり、例えば、ベンジル基、フェネチル基、3−フェニルプロピル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
(Substituent group)
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like, alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, Particularly preferred are alkenyl groups having 2 to 8 carbon atoms, such as vinyl group, aryl group, 2-butenyl group and 3-pentenyl group), alkynyl groups (preferably having 2 to 20 carbon atoms, more preferred). Is an alkynyl group having 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as propargyl group and 3-pentynyl group. An aryl group (preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as a phenyl group, a p-methylphenyl group, and a naphthyl group. Aralkyl groups (preferably 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as benzyl group, phenethyl group, 3- Phenylpropyl group and the like), a substituted or unsubstituted amino group (preferably an amino group having 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, Unsubstituted amino group, methylamino group, dimethylamino group, diethylamino group, anilino group, etc.),
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜10のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは2〜10のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、 An alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 10 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a butoxy group). An alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms such as a methoxycarbonyl group and an ethoxycarbonyl group), acyloxy A group (preferably an acyloxy group having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms such as an acetoxy group and a benzoyloxy group), an acylamino group (preferably 2-20 carbon atoms, more preferably 2-16 carbon atoms, particularly preferably 2-10 carbon atoms. A silamino group, for example, an acetylamino group, a benzoylamino group, and the like, an alkoxycarbonylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 12 carbon atoms). An alkoxycarbonylamino group, for example, a methoxycarbonylamino group), an aryloxycarbonylamino group (preferably having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, and particularly preferably 7 to 12 carbon atoms). Aryloxycarbonylamino group, for example, phenyloxycarbonylamino group and the like, sulfonylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 1 carbon atoms). 12 sulfonylamino groups such as methanesulfonyl And sulfamoyl groups (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms, such as sulfamoyl group). Group, methylsulfamoyl group, dimethylsulfamoyl group, phenylsulfamoyl group and the like), carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably carbon number). 1 to 12 carbamoyl groups, for example, unsubstituted carbamoyl group, methylcarbamoyl group, diethylcarbamoyl group, phenylcarbamoyl group and the like),
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。 An alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, more preferably an alkylthio group having 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as a methylthio group and an ethylthio group), an arylthio group ( Preferably it is C6-C20, More preferably, it is C6-C16, Most preferably, it is C6-C12 arylthio group, for example, a phenylthio group etc. are mentioned, A sulfonyl group (preferably C1-C1). 20, more preferably a sulfonyl group having 1 to 16 carbon atoms, particularly preferably a sulfonyl group having 1 to 12 carbon atoms, such as a mesyl group and a tosyl group, and a sulfinyl group (preferably having a carbon number of 1 to 20, more A sulfinyl group having 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms is preferable. Zensulfinyl group and the like), ureido group (preferably a ureido group having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, for example, an unsubstituted ureido group , Methylureido group, phenylureido group, etc.), phosphoric acid amide group (preferably having 1 to 20 carbon atoms, more preferably having 1 to 16 carbon atoms, particularly preferably having 1 to 12 carbon atoms). Yes, for example, diethyl phosphoric acid amide group, phenyl phosphoric acid amide group, etc.), hydroxy group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, Carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (preferably having a carbon number of 1 to 0, more preferably a heterocyclic group of 1 to 12, for example, a heterocyclic group having a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, such as an imidazolyl group, a pyridyl group, a quinolyl group, a furyl group , Piperidyl group, morpholino group, benzoxazolyl group, benzimidazolyl group, benzthiazolyl group and the like), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably A silyl group having 3 to 24 carbon atoms, and examples thereof include a trimethylsilyl group and a triphenylsilyl group). These substituents may be further substituted with these substituents. Moreover, when it has two or more substituents, they may be the same or different. If possible, they may be bonded to each other to form a ring.
R11、R12およびR13はそれぞれ独立に、水素原子、アルキル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、または後述する−L1−Q1で表される基であることが好ましく、水素原子、炭素数1〜6のアルキル基、塩素原子、−L1−Q1で表される基であることがより好ましく、水素原子、炭素数1〜4のアルキル基であることがさらに好ましく、水素原子、炭素数1〜2のアルキル基であることが特に好ましく、R2およびR3が水素原子で、R1が水素原子またはメチル基であることが最も好ましい。該アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、sec−ブチル基等が挙げられる。該アルキル基は、適当な置換基を有していても良い。該置換基としては、ハロゲン原子、アリール基、ヘテロ環基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシル基、ヒドロキシル基、アシルオキシ基、アミノ基、アルコキシカルボニル基、アシルアミノ基、オキシカルボニル基、カルバモイル基、スルホニル基、スルファモイル基、スルホンアミド基、スルホリル基、カルボキシル基などが挙げられる。なお、アルキル基の炭素数は、置換基の炭素原子を含まない。以下、他の基の炭素数についても同様である。 R 11 , R 12 and R 13 are each independently represented by a hydrogen atom, an alkyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), or -L 1 -Q 1 described later. it is preferably that group, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a chlorine atom, more preferably a group represented by -L 1 -Q 1, hydrogen atom, 1 to 4 carbon atoms It is more preferably an alkyl group, particularly preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, most preferably R 2 and R 3 are a hydrogen atom, and R 1 is a hydrogen atom or a methyl group. preferable. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, sec-butyl group and the like. The alkyl group may have a suitable substituent. Examples of the substituent include a halogen atom, aryl group, heterocyclic group, alkoxyl group, aryloxy group, alkylthio group, arylthio group, acyl group, hydroxyl group, acyloxy group, amino group, alkoxycarbonyl group, acylamino group, oxycarbonyl Group, carbamoyl group, sulfonyl group, sulfamoyl group, sulfonamido group, sulfolyl group, carboxyl group and the like. The carbon number of the alkyl group does not include the carbon atom of the substituent. The same applies to the carbon number of other groups.
L1は、上記連結基群から選ばれる2価の連結基、またはそれらの2つ以上を組み合わせて形成される2価の連結基を表す。上記連結基群中、−NR4−のR4は、水素原子、アルキル基、アリール基又はアラルキル基を表し、好ましくは水素原子又はアルキル基である。また、−PO(OR5)−のR5はアルキル基、アリール基又はアラルキル基を表し、好ましくはアルキル基である。R4およびR5がアルキル基、アリール基又はアラルキル基を表す場合の炭素数は「置換基群」で説明したものと同じである。Lとしては、単結合、−O−、−CO−、−NR4−、−S−、−SO2−、アルキレン基またはアリーレン基を含むことが好ましく、単結合、−CO−、−O−、−NR4−、アルキレン基又はアリーレン基を含んでいることが特に好ましく、単結合であることが最も好ましい。Lがアルキレン基を含む場合、アルキレン基の炭素数は好ましくは1〜12、より好ましくは1〜8、特に好ましくは1〜6である。特に好ましいアルキレン基の具体例として、メチレン、エチレン、トリメチレン、テトラブチレン、ヘキサメチレン基等が挙げられる。Lが、アリーレン基を含む場合、アリーレン基の炭素数は、好ましくは6〜24、より好ましくは6〜18、特に好ましくは6〜12である。特に好ましいアリーレン基の具体例として、フェニレン、ナフタレン基等が挙げられる。Lが、アルキレン基とアリーレン基を組み合わせて得られる2価の連結基(即ちアラルキレン基)を含む場合、アラルキレン基の炭素数は、好ましくは7〜36、より好ましくは7〜26、特に好ましくは7〜16である。特に好ましいアラルキレン基の具体例として、フェニレンメチレン基、フェニレンエチレン基、メチレンフェニレン基等が挙げられる。L1として挙げられた基は、適当な置換基を有していてもよい。このような置換基としては先にR11〜R13における置換基として挙げた置換基と同様なものを挙げることができる。
以下にLの具体的構造を例示するが、これらの具体例に限定されるものではない。
L 1 represents a divalent linking group selected from the above linking group group, or a divalent linking group formed by combining two or more thereof. In the linking group group, R 4 in —NR 4 — represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, preferably a hydrogen atom or an alkyl group. R 5 in —PO (OR 5 ) — represents an alkyl group, an aryl group or an aralkyl group, and preferably an alkyl group. When R 4 and R 5 represent an alkyl group, an aryl group or an aralkyl group, the number of carbon atoms is the same as that described in the “Substituent group”. L preferably contains a single bond, —O—, —CO—, —NR 4 —, —S—, —SO 2 —, an alkylene group or an arylene group, and is a single bond, —CO—, —O—. , —NR 4 —, an alkylene group or an arylene group is particularly preferable, and a single bond is most preferable. When L contains an alkylene group, the carbon number of the alkylene group is preferably 1 to 12, more preferably 1 to 8, and particularly preferably 1 to 6. Specific examples of particularly preferred alkylene groups include methylene, ethylene, trimethylene, tetrabutylene, hexamethylene groups and the like. When L contains an arylene group, the carbon number of the arylene group is preferably 6 to 24, more preferably 6 to 18, and particularly preferably 6 to 12. Specific examples of particularly preferred arylene groups include phenylene and naphthalene groups. When L contains a divalent linking group (that is, an aralkylene group) obtained by combining an alkylene group and an arylene group, the carbon number of the aralkylene group is preferably 7 to 36, more preferably 7 to 26, and particularly preferably. 7-16. Specific examples of particularly preferred aralkylene groups include a phenylenemethylene group, a phenyleneethylene group, and a methylenephenylene group. The group listed as L 1 may have an appropriate substituent. Examples of such a substituent include the same substituents as those described above as the substituents for R 11 to R 13 .
Although the specific structure of L is illustrated below, it is not limited to these specific examples.
前記式[3]中、Q1はカルボキシル基、カルボキシル基の塩(例えばリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩(例えばアンモニウム、テトラメチルアンモニウム、トリメチル−2−ヒドロキシエチルアンモニウム、テトラブチルアンモニウム、トリメチルベンジルアンモニウム、ジメチルフェニルアンモニウムなど)、ピリジニウム塩など)、スルホ基、スルホ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、ホスホノキシ基、ホスホノキシ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、アルキル基(炭素数1〜18)、もしくは、末端が水素原子もしくはアルキル基であるポリ(アルキレンオキシ)基を表す。ポリ(アルキレンオキシ)基は(OR)x−Gで表すことができ、Rは2〜4個の炭素原子を有するアルキレン基、例えば−CH2CH2−、−CH2CH2CH2−、−CH(CH3)CH2−、または−CH(CH3)CH(CH3)−であることが好ましい。Gは水素原子または炭素数1〜12のアルキル基であり、水素原子またはメチル基であるのが好ましい。
xは自然数をあらわすが、前記のポリ(オキシアルキレン)基中のオキシアルキレン単位はポリ(オキシプロピレン)におけるように同一であってもよく、また互いに異なる2種以上のオキシアルキレンが不規則に分布されたものであっても良く、直鎖または分岐状のオキシプロピレンまたはオキシエチレン単位であったり、または直鎖または分岐状のオキシプロピレン単位のブロック及びオキシエチレン単位のブロックのように存在するものであっても良い。
このポリ(オキシアルキレン)鎖は1つまたはそれ以上の連結基(例えば−CONH−Ph−NHCO−、−S−など:Phはフェニレン基を表す)で連結されたものも含むことができる。連結基が3価以上の原子価を有する場合には、分岐状のオキシアルキレン単位が得られる。
また、ポリ(オキシアルキレン)基を有する重合単位を含む共重合体を用いる場合には、ポリ(オキシアルキレン)基の分子量は80〜3000が適当であり、250〜3000がより好ましい。
ポリ(オキシアルキレン)アクリレート及びメタクリレートは、市販のヒドロキシポリ(オキシアルキレン)材料、例えば商品名“プルロニック”[Pluronic(旭電化工業(株)製)]、“アデカポリエーテル”(旭電化工業(株)製)、“カルボワックス”[Carbowax(グリコ・プロダクス)]、“トリトン”[Toriton(ローム・アンド・ハース(Rohm and Haas)製)]およびP.E.G(第一工業製薬(株)製)として販売されているものを公知の方法でアクリル酸、メタクリル酸、アクリルクロリド、メタクリルクロリドまたは無水アクリル酸等と反応させることによって製造できる。別に、公知の方法で製造したポリ(オキシアルキレン)ジアクリレート等を用いることもできる。
In the formula [3], Q 1 is a carboxyl group, a carboxyl group salt (for example, lithium salt, sodium salt, potassium salt, ammonium salt (for example, ammonium, tetramethylammonium, trimethyl-2-hydroxyethylammonium, tetrabutylammonium, Trimethylbenzylammonium, dimethylphenylammonium, etc.), pyridinium salts, etc.), sulfo groups, salts of sulfo groups (examples of cations forming the salts are the same as those described above for carboxyl groups), phosphonoxy groups, salts of phosphonoxy groups ( Examples of the cation forming the salt are the same as those described for the above carboxyl group), an alkyl group (having 1 to 18 carbon atoms), or a poly (alkyleneoxy) group whose terminal is a hydrogen atom or an alkyl group. Poly (alkyleneoxy) groups can be represented by (OR) x -G, R is an alkylene group having 2 to 4 carbon atoms, such as -CH 2 CH 2 -, - CH 2
x represents a natural number, but the oxyalkylene units in the poly (oxyalkylene) group may be the same as in poly (oxypropylene), and two or more different oxyalkylenes are randomly distributed. It may be a linear or branched oxypropylene or oxyethylene unit, or a linear or branched oxypropylene unit block and an oxyethylene unit block. There may be.
The poly (oxyalkylene) chain may include those linked by one or more linking groups (for example, -CONH-Ph-NHCO-, -S-, etc .: Ph represents a phenylene group). When the linking group has a valence of 3 or more, a branched oxyalkylene unit is obtained.
Moreover, when using the copolymer containing the polymer unit which has a poly (oxyalkylene) group, 80-3000 are suitable for the molecular weight of a poly (oxyalkylene) group, and 250-3000 are more preferable.
Poly (oxyalkylene) acrylates and methacrylates are commercially available hydroxy poly (oxyalkylene) materials such as “Pluronic” (Pluronic (manufactured by Asahi Denka Kogyo Co., Ltd.)), “Adeka Polyether” (Asahi Denka Kogyo Co., Ltd.). )), “Carbowax” [Carbowax (Glyco Products)], “Triton” [Toriton (from Rohm and Haas)] and P.M. E. What is marketed as G (made by Daiichi Kogyo Seiyaku Co., Ltd.) can be manufactured by making it react with acrylic acid, methacrylic acid, acrylic chloride, methacrylic chloride, acrylic anhydride, etc. by a well-known method. Separately, poly (oxyalkylene) diacrylate produced by a known method can also be used.
フッ素系ポリマーの製造に利用可能な前記式[3]に対応するモノマーの具体例を以下に挙げるが、以下の具体例によってなんら制限されるものではない。ポリ(アルキレンオキシ)基は重合度xが異なるものの混合物であることが多く、具体例として示す化合物においても重合度の平均に近い整数で重合度を表している。 Specific examples of the monomer corresponding to the formula [3] that can be used for the production of the fluorine-based polymer are listed below, but are not limited by the following specific examples. The poly (alkyleneoxy) group is often a mixture of those having different degrees of polymerization x, and even in the compounds shown as specific examples, the degree of polymerization is expressed by an integer close to the average of the degrees of polymerization.
前記フッ素系ポリマーは、前記一般式[3]で表される繰り返し単位を1種含んでいてもよいし、2種以上含んでいてもよい。また、前記フッ素系ポリマーは、上記各繰り返し単位以外の他の繰り返し単位を1種または2種以上有していてもよい。前記他の繰り返し単位については特に制限されず、通常のラジカル重合反応可能なモノマーから誘導される繰り返し単位が好ましい例として挙げられる。以下、他の繰り返し単位を誘導するモノマーの具体例を挙げる。前記フッ素系ポリマーは、下記モノマー群から選ばれる1種または2種以上のモノマーから誘導される繰り返し単位を含有していてもよい。 The fluoropolymer may contain one type of repeating unit represented by the general formula [3], or may contain two or more types. Moreover, the said fluorine-type polymer may have 1 type (s) or 2 or more types of repeating units other than said each repeating unit. The other repeating units are not particularly limited, and preferred examples thereof include repeating units derived from ordinary radical polymerizable monomers. Hereinafter, specific examples of monomers for deriving other repeating units will be given. The fluoropolymer may contain a repeating unit derived from one or two or more monomers selected from the following monomer group.
モノマー群
(1)アルケン類
エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン、1−ドデセン、1−オクタデセン、1−エイコセン、ヘキサフルオロプロペン、フッ化ビニリデン、クロロトリフルオロエチレン、3,3,3−トリフルオロプロピレン、テトラフルオロエチレン、塩化ビニル、塩化ビニリデンなど;
(2)ジエン類
1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2−エチル−1,3−ブタジエン、2−n−プロピル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−メチル−1,3−ペンタジエン、1−フェニル−1,3−ブタジエン、1−α−ナフチル−1,3−ブタジエン、1−β−ナフチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、1−クロロブタジエン、2−フルオロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエン、1,1,2−トリクロロ−1,3−ブタジエン及び2−シアノ−1,3−ブタジエン、1,4−ジビニルシクロヘキサンなど;
Monomer group (1) Alkenes ethylene, propylene, 1-butene, isobutene, 1-hexene, 1-dodecene, 1-octadecene, 1-eicosene, hexafluoropropene, vinylidene fluoride, chlorotrifluoroethylene, 3, 3, 3-trifluoropropylene, tetrafluoroethylene, vinyl chloride, vinylidene chloride, etc .;
(2)
(3)α,β−不飽和カルボン酸の誘導体
(3a)アルキルアクリレート類
メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、sec−ブチルアクリレート、tert−ブチルアクリレート、アミルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、2−エチルへキシルアクリレート、n−オクチルアクリレート、tert−オクチルアクリレート、ドデシルアクリレート、フェニルアクリレート、ベンジルアクリレート、2−クロロエチルアクリレート、2−ブロモエチルアクリレート、4−クロロブチルアクリレート、2−シアノエチルアクリレート、2−アセトキシエチルアクリレート、メトキシベンジルアクリレート、2−クロロシクロヘキシルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、2−メトキシエチルアクリレート、ω−メトキシポリエチレングリコールアクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、3−メトキシブチルアクリレート、2−エトキシエチルアクリレート、2−ブトキシエチルアクリレート、2−(2−ブトキシエトキシ)エチルアクリレート、1−ブロモ−2−メトキシエチルアクリレート、1,1−ジクロロ−2−エトキシエチルアクリレート、グリシジルアクリレートなど);
(3) Derivatives of α, β-unsaturated carboxylic acid (3a) Alkyl acrylates Methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate , Amyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, tert-octyl acrylate, dodecyl acrylate, phenyl acrylate, benzyl acrylate, 2-chloroethyl acrylate, 2-bromoethyl acrylate, 4-chlorobutyl acrylate, 2-cyanoethyl acrylate, 2-acetoxyethyl acrylate, methoxybenzyl Chryrate, 2-chlorocyclohexyl acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, 2-methoxyethyl acrylate, ω-methoxypolyethylene glycol acrylate (number of added polyoxyethylene: n = 2 to 100), 3-methoxy Butyl acrylate, 2-ethoxyethyl acrylate, 2-butoxyethyl acrylate, 2- (2-butoxyethoxy) ethyl acrylate, 1-bromo-2-methoxyethyl acrylate, 1,1-dichloro-2-ethoxyethyl acrylate, glycidyl acrylate Such);
(3b)アルキルメタクリレート類
メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、sec−ブチルメタクリレート、tert−ブチルメタクリレート、アミルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、2−エチルヘキシルメタクリレート、n−オクチルメタクリレート、ステアリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート、アリルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、クレジルメタクリレート、ナフチルメタクリレート、2−メトキシエチルメタクリレート、3−メトキシブチルメタクリレート、ω−メトキシポリエチレングリコールメタクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、2−アセトキシエチルメタクリレート、2−エトキシエチルメタクリレート、2−ブトキシエチルメタクリレート、2−(2−ブトキシエトキシ)エチルメタクリレート、グリシジルメタクリレート、3−トリメトキシシリルプロピルメタクリレート、アリルメタクリレート、2−イソシアナトエチルメタクリレートなど;
(3b) Alkyl methacrylates Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, amyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2 -Ethylhexyl methacrylate, n-octyl methacrylate, stearyl methacrylate, benzyl methacrylate, phenyl methacrylate, allyl methacrylate, furfuryl methacrylate, tetrahydrofurfuryl methacrylate, cresyl methacrylate, naphthyl methacrylate, 2-methoxyethyl methacrylate, 3-methoxybutyl methacrylate, ω Methoxypolyethylene glycol methacrylate (number of added polyoxyethylene: n = 2 to 100), 2-acetoxyethyl methacrylate, 2-ethoxyethyl methacrylate, 2-butoxyethyl methacrylate, 2- (2-butoxyethoxy) ethyl methacrylate Glycidyl methacrylate, 3-trimethoxysilylpropyl methacrylate, allyl methacrylate, 2-isocyanatoethyl methacrylate, etc .;
(3c)不飽和多価カルボン酸のジエステル類
マレイン酸ジメチル、マレイン酸ジブチル、イタコン酸ジメチル、タコン酸ジブチル、クロトン酸ジブチル、クロトン酸ジヘキシル、フマル酸ジエチル、フマル酸ジメチルなど;
(3c) Diesters of unsaturated polycarboxylic acids Dimethyl maleate, dibutyl maleate, dimethyl itaconate, dibutyl taconate, dibutyl crotonate, dihexyl crotonate, diethyl fumarate, dimethyl fumarate, etc .;
(3e)α,β−不飽和カルボン酸のアミド類
N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−n−プロピルアクリルアミド、N−tert−ブチルアクリルアミド、N−tert−オクチルメタクリルアミド、N−シクロヘキシルアクリルアミド、N−フェニルアクリルアミド、N−(2−アセトアセトキシエチル)アクリルアミド、N−ベンジルアクリルアミド、N−アクリロイルモルフォリン、ジアセトンアクリルアミド、N−メチルマレイミドなど;
(3e) Amides of α, β-unsaturated carboxylic acid N, N-dimethylacrylamide, N, N-diethylacrylamide, Nn-propylacrylamide, N-tert-butylacrylamide, N-tert-octylmethacrylamide, N-cyclohexylacrylamide, N-phenylacrylamide, N- (2-acetoacetoxyethyl) acrylamide, N-benzylacrylamide, N-acryloylmorpholine, diacetone acrylamide, N-methylmaleimide and the like;
(4)不飽和ニトリル類
アクリロニトリル、メタクリロニトリルなど;
(5)スチレンおよびその誘導体
スチレン、ビニルトルエン、エチルスチレン、p−tert−ブチルスチレン、p−ビニル安息香酸メチル、α−メチルスチレン、p−クロロメチルスチレン、ビニルナフタレン、p−メトキシスチレン、p−ヒドロキシメチルスチレン、p−アセトキシスチレンなど;
(6)ビニルエステル類
酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、安息香酸ビニル、サリチル酸ビニル、クロロ酢酸ビニル、メトキシ酢酸ビニル、フェニル酢酸ビニルなど;
(4) Unsaturated nitriles Acrylonitrile, methacrylonitrile, etc .;
(5) Styrene and its derivatives Styrene, vinyltoluene, ethylstyrene, p-tert-butylstyrene, methyl p-vinylbenzoate, α-methylstyrene, p-chloromethylstyrene, vinylnaphthalene, p-methoxystyrene, p- Hydroxymethylstyrene, p-acetoxystyrene, etc .;
(6) Vinyl esters Vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl benzoate, vinyl salicylate, vinyl chloroacetate, vinyl methoxyacetate, vinyl vinyl acetate, etc .;
(7)ビニルエーテル類
メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、n−ペンチルビニルエーテル、n−ヘキシルビニルエーテル、n−オクチルビニルエーテル、n−ドデシルビニルエーテル、n−エイコシルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、フルオロブチルビニルエーテル、フルオロブトキシエチルビニルエーテルなど;および
(8)その他の重合性単量体
N−ビニルピロリドン、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン、2−ビニルオキサゾリン、2−イソプロペニルオキサゾリンなど。
(7) Vinyl ethers Methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, tert-butyl vinyl ether, n-pentyl vinyl ether, n-hexyl vinyl ether, n-octyl vinyl ether, n-dodecyl Vinyl ether, n-eicosyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl vinyl ether, fluorobutyl vinyl ether, fluorobutoxyethyl vinyl ether, etc .; and (8) other polymerizable monomers N-vinyl pyrrolidone, methyl vinyl ketone, phenyl vinyl ketone, Methoxyethyl vinyl ketone, 2-vinyl oxazoline, 2-isopropenyl oxazoline .
他の繰り返し単位を誘導するモノマーとしては下記一般式[4]で表されるモノマーが好適に用いられる。 As the monomer for deriving other repeating units, a monomer represented by the following general formula [4] is preferably used.
上記一般式[4]において、R16は水素原子またはメチル基を表し、L2は2価の連結基を表し、R17は置換基を有しても良い炭素数1以上20以下の直鎖、分岐鎖または環状のアルキル基を表す。L2で表される2価の連結基としては、酸素原子、イオウ原子、または−N(R5)−が好ましい。ここで、R5は、水素原子、炭素数1〜4のアルキル基、例えばメチル、エチル、プロピル、ブチルが好ましい。R5はより好ましくは、水素原子またはメチルである。Zは、酸素原子、−NH−、または−N(CH3)−であることが特に好ましい。 In the general formula [4], R 16 represents a hydrogen atom or a methyl group, L 2 represents a divalent linking group, and R 17 is a straight chain having 1 to 20 carbon atoms which may have a substituent. Represents a branched or cyclic alkyl group. The divalent linking group represented by L 2 is preferably an oxygen atom, a sulfur atom, or —N (R 5 ) —. Here, R 5 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, such as methyl, ethyl, propyl, or butyl. R 5 is more preferably a hydrogen atom or methyl. Z is particularly preferably an oxygen atom, —NH—, or —N (CH 3 ) —.
R17で表される炭素数1以上20以下の直鎖、分岐または環状のアルキル基としては、直鎖及び分岐してもよいメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロノニル基、ビシクロデシル基、トリシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基等の多環シクロアルキル基が好適に用いられる。 Examples of the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms represented by R 17 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, which may be linear or branched. , Heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group, eicosanyl group, etc., and monocycles such as cyclopentyl group, cyclohexyl group, cycloheptyl group, etc. Polycyclic cycloalkyl groups such as cycloalkyl groups and bicycloheptyl groups, bicyclononyl groups, bicyclodecyl groups, tricyclodecyl groups, tricycloundecyl groups, tetracyclododecyl groups, adamantyl groups, norbornyl groups, tetracyclodecyl groups, etc. Preferably used.
R17で表されるアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、アルキルカルボニルオキシ基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。 Examples of the substituent for the alkyl group represented by R 17 include a hydroxyl group, an alkylcarbonyl group, an arylcarbonyl group, an alkylcarbonyloxy group, a carboxyl group, an alkyl ether group, an aryl ether group, a fluorine atom, a chlorine atom, and a bromine atom. Examples include, but are not limited to, a halogen atom, a nitro group, a cyano group, and an amino group.
上記一般式[4]で表されるモノマーは、アルキル(メタ)アクリレートまたはポリ(アルキレンオキシ)(メタ)アクリレートであることが特に好ましい。 The monomer represented by the general formula [4] is particularly preferably alkyl (meth) acrylate or poly (alkyleneoxy) (meth) acrylate.
上記一般式[4]で示されるモノマーの具体例を次に示すが、以下の具体例によってなんら制限されるものではない Specific examples of the monomer represented by the general formula [4] are shown below, but are not limited by the following specific examples.
前記フッ素系ポリマーは、光学異方性層中に少なくとも2種類含有されることが好ましい。少なくとも2種類含有することによって、ムラ改良と液晶性化合物の制御を独立にできるようになり、面状と視野角特性を両立することが可能となる。 The fluorine-based polymer is preferably contained in at least two types in the optically anisotropic layer. By containing at least two kinds, it becomes possible to independently improve the unevenness and control the liquid crystalline compound, and it is possible to achieve both planarity and viewing angle characteristics.
前記フッ素系ポリマー中、フルオロ脂肪族基含有モノマーの量は、該ポリマーの構成モノマー総量の5質量%以上であるのが好ましく、10質量%以上であるのがより好ましく、30質量%以上であるのがさらに好ましい。 In the fluoropolymer, the amount of the fluoroaliphatic group-containing monomer is preferably 5% by mass or more, more preferably 10% by mass or more, and more preferably 30% by mass or more of the total amount of constituent monomers of the polymer. Is more preferable.
前記フッ素系ポリマーの質量平均分子量は1000以上1,000,000以下であるのが好ましく、1000以上500,000以下であるのがより好ましく、1000以上100,000以下であるのがさらに好ましい。質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン(PS)換算の値として測定可能である。 The fluorine-based polymer preferably has a mass average molecular weight of 1000 or more and 1,000,000 or less, more preferably 1000 or more and 500,000 or less, and still more preferably 1000 or more and 100,000 or less. The mass average molecular weight can be measured as a value in terms of polystyrene (PS) using gel permeation chromatography (GPC).
前記フッ素系ポリマーの重合方法は、特に限定されるものではないが、例えば、ビニル基を利用したカチオン重合やラジカル重合、あるいは、アニオン重合等の重合方法を採ることができ、これらの中ではラジカル重合が汎用に利用できる点で特に好ましい。ラジカル重合の重合開始剤としては、ラジカル熱重合開始剤や、ラジカル光重合開始剤等の公知の化合物を使用することができるが、特に、ラジカル熱重合開始剤を使用することが好ましい。ここで、ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ジアシルパーオキサイド(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ケトンパーオキサイド(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ハイドロパーオキサイド(過酸化水素、tert−ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド(ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシエステル類(tert−ブチルパーオキシアセテート、tert−ブチルパーオキシピバレート等)、アゾ系化合物(アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等)、過硫酸塩類(過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。 The polymerization method of the fluorine-based polymer is not particularly limited, and for example, a polymerization method using a vinyl group such as cationic polymerization, radical polymerization, or anionic polymerization can be employed. Polymerization is particularly preferred in that it can be used for general purposes. As the polymerization initiator for radical polymerization, known compounds such as radical thermal polymerization initiators and radical photopolymerization initiators can be used, and it is particularly preferable to use radical thermal polymerization initiators. Here, the radical thermal polymerization initiator is a compound that generates radicals by heating to a decomposition temperature or higher. Examples of such radical thermal polymerization initiators include diacyl peroxide (acetyl peroxide, benzoyl peroxide, etc.), ketone peroxide (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), hydroperoxide (hydrogen peroxide, tert. -Butyl hydroxide, cumene hydroperoxide, etc.), dialkyl peroxide (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyesters (tert-butyl peroxyacetate, tert) -Butyl peroxypivalate, etc.), azo compounds (azobisisobutyronitrile, azobisisovaleronitrile, etc.), persulfates (ammonium persulfate, sodium persulfate) And potassium persulfate) and the like. Such radical thermal polymerization initiators can be used singly or in combination of two or more.
ラジカル重合方法は、特に制限されるものでなく、乳化重合法、懸濁重合法、塊状重合法、溶液重合法等を採ることが可能である。典型的なラジカル重合方法である溶液重合についてさらに具体的に説明する。他の重合方法についても概要は同等であり、その詳細は例えば高分子学会編「高分子科学実験法」高分子学会編(東京化学同人、1981年)等に記載されている。 The radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, a solution polymerization method, and the like can be adopted. The solution polymerization, which is a typical radical polymerization method, will be described more specifically. The outlines of the other polymerization methods are the same, and details thereof are described in, for example, “Polymer Science Experimental Method” edited by Polymer Society of Japan, edited by Polymer Society of Japan (Tokyo Kagaku Dojin, 1981).
溶液重合を行うためには有機溶媒を使用する。これらの有機溶媒は発明の目的、効果を損なわない範囲で任意に選択可能である。これらの有機溶媒は通常、大気圧下での沸点が50〜200℃の範囲内の値を有する有機化合物であり、各構成成分を均一に溶解させる有機化合物が好ましい。好ましい有機溶媒の例を示すと、イソプロパノール、ブタノール等のアルコール類;ジブチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸アミル、γ−ブチロラクトン等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;が挙げられる。なお、これらの有機溶媒は、1種単独または2種以上を組み合わせて用いることが可能である。さらに、モノマーや生成するポリマーの溶解性の観点から上記有機溶媒に水を併用した水混合有機溶媒も適用可能である。 An organic solvent is used for solution polymerization. These organic solvents can be arbitrarily selected as long as the object and effect of the invention are not impaired. These organic solvents are usually organic compounds having boiling points under atmospheric pressure in the range of 50 to 200 ° C., and organic compounds that uniformly dissolve each component are preferred. Examples of preferred organic solvents are: alcohols such as isopropanol and butanol; ethers such as dibutyl ether, ethylene glycol dimethyl ether, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate and acetic acid And esters such as butyl, amyl acetate, and γ-butyrolactone; and aromatic hydrocarbons such as benzene, toluene, and xylene. These organic solvents can be used alone or in combination of two or more. Furthermore, a water-mixed organic solvent in which water is used in combination with the above organic solvent is also applicable from the viewpoint of the solubility of the monomer and the polymer to be produced.
また、溶液重合条件も特に制限されるものではないが、例えば、50〜200℃の温度範囲内で、10分〜30時間加熱することが好ましい。さらに、発生したラジカルが失活しないように、溶液重合中はもちろんのこと、溶液重合開始前にも、不活性ガスパージを行うことが好ましい。不活性ガスとしては通常窒素ガスが好適に用いられる。 Also, the solution polymerization conditions are not particularly limited, but for example, it is preferable to heat within a temperature range of 50 to 200 ° C. for 10 minutes to 30 hours. Furthermore, in order not to deactivate the generated radicals, it is preferable to perform an inert gas purge not only during solution polymerization but also before the start of solution polymerization. Usually, nitrogen gas is suitably used as the inert gas.
前記フッ素系ポリマーを好ましい分子量範囲で得るためには、連鎖移動剤を用いたラジカル重合法が特に有効である。連鎖移動剤としてはメルカプタン類(例えば、オクチルメルカプタン、デシルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン、オクタデシルメルカプタン、チオフェノール、p−ノニルチオフェノール等)、ポリハロゲン化アルキル(例えば、四塩化炭素、クロロホルム、1,1,1−トリクロロエタン、1,1,1−トリブロモオクタンなど)、低活性モノマー類(α−メチルスチレン、α−メチルスチレンダイマー等)のいずれも用いることができるが、好ましくは炭素数4〜16のメルカプタン類である。これらの連鎖移動剤の使用量は、連鎖移動剤の活性やモノマーの組み合わせ、重合条件などにより著しく影響され精密な制御が必要であるが、通常は使用するモノマーの全モル数に対して0.01モル%〜50モル%程度であり、好ましくは0.05モル%〜30モル%、特に好ましくは0.08モル%〜25モル%である。これらの連鎖移動剤は、重合過程において重合度を制御するべき対象のモノマーと同時に系内に存在させればよく、その添加方法については特に問わない。モノマーに溶解して添加してもよいし、モノマーと別途に添加することも可能である。 In order to obtain the fluoropolymer in a preferable molecular weight range, a radical polymerization method using a chain transfer agent is particularly effective. As chain transfer agents, mercaptans (for example, octyl mercaptan, decyl mercaptan, dodecyl mercaptan, tert-dodecyl mercaptan, octadecyl mercaptan, thiophenol, p-nonylthiophenol, etc.), polyhalogenated alkyls (for example, carbon tetrachloride, chloroform, etc.) , 1,1,1-trichloroethane, 1,1,1-tribromooctane, etc.) and low-activity monomers (α-methylstyrene, α-methylstyrene dimer, etc.) can be used, preferably carbon These are mercaptans of 4-16. The amount of these chain transfer agents used is remarkably influenced by the activity of the chain transfer agent, the combination of the monomers, the polymerization conditions and the like, and must be precisely controlled. It is about 01 mol% to 50 mol%, preferably 0.05 mol% to 30 mol%, particularly preferably 0.08 mol% to 25 mol%. These chain transfer agents may be present in the system simultaneously with the target monomer whose degree of polymerization is to be controlled in the polymerization process, and the addition method is not particularly limited. It may be added after being dissolved in the monomer, or may be added separately from the monomer.
以下に、フッ素系ポリマーとして好ましく用いられるフルオロ脂肪族基含有共重合体の具体例を示すが、これらの具体例によってなんら限定されるものではない。ここで式中の数値は、それぞれ各モノマーの組成比を示す質量百分率であり、MwはGPCにより測定されたPS換算の質量平均分子量である。a、b、c、d等の数値は質量比を表す。 Specific examples of the fluoroaliphatic group-containing copolymer preferably used as the fluorine-based polymer are shown below, but are not limited by these specific examples. The numerical value in a formula here is a mass percentage which shows the composition ratio of each monomer, respectively, and Mw is the mass mean molecular weight of PS conversion measured by GPC. Numerical values such as a, b, c, and d represent mass ratios.
フッ素系ポリマーは、公知慣用の方法で製造することができる。例えば先にあげたフルオロ脂肪族基を有するモノマー、水素結合性基を有するモノマー等を含む有機溶媒中に、汎用のラジカル重合開始剤を添加し、重合させることにより製造できる。また、場合によりその他の付加重合性不飽和化合物を、さらに添加して上記と同じ方法にて製造することができる。各モノマーの重合性に応じ、反応容器にモノマーと開始剤を滴下しながら重合する滴下重合法なども、均一な組成のポリマーを得るために有効である。 A fluorine-type polymer can be manufactured by a well-known and usual method. For example, it can be produced by adding a general-purpose radical polymerization initiator to an organic solvent containing the above-described monomer having a fluoroaliphatic group, a monomer having a hydrogen bonding group, and the like, and polymerizing the mixture. Further, in some cases, other addition-polymerizable unsaturated compounds can be further added and produced by the same method as described above. Depending on the polymerizability of each monomer, a dropping polymerization method in which a monomer and an initiator are added dropwise to a reaction vessel is also effective for obtaining a polymer having a uniform composition.
組成物中における前記フッ素系ポリマーの含有量の好ましい範囲は、その用途によって異なるが、一般的には、組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜2.5質量%であるのがさらに好ましい。前記フッ素系ポリマーの添加量が上記範囲であると、その効果が十分に発揮でき、また、塗膜の乾燥が十分でき、光学補償シートとしての性能(例えばレターデーションの均一性等)が良好である。 The preferred range of the content of the fluoropolymer in the composition varies depending on the use, but generally 0.005 to 8 in the composition (a composition excluding the solvent in the case of a coating solution). It is preferable that it is mass%, it is more preferable that it is 0.01-5 mass%, and it is more preferable that it is 0.05-2.5 mass%. When the addition amount of the fluoropolymer is in the above range, the effect can be sufficiently exerted, the coating film can be sufficiently dried, and the performance as an optical compensation sheet (for example, uniformity of retardation, etc.) is good. is there.
(シクロプロピルカルボニル基を有する円盤状化合物)
シクロプロピルカルボニル基を有する円盤状化合物の少なくとも1種を用いることが好ましい。前記円盤状化合物は、下記一般式(I)で表される化合物であるのが好ましい。
(A discotic compound having a cyclopropylcarbonyl group)
It is preferable to use at least one discotic compound having a cyclopropylcarbonyl group. The discotic compound is preferably a compound represented by the following general formula (I).
一般式(I)において、Dは円盤状コアである。円盤状コアは、該円盤状化合物の中心に位置し、その円盤面を構成する。円盤状コアは、円盤状液晶性分子の分子構造において、よく知られている概念である。円盤状液晶(Discotic Liquid Crystal)は、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page2655(1994)等に記載されている。
In general formula (I), D is a disk-shaped core. The discotic core is located at the center of the discotic compound and constitutes the disc surface. The discotic core is a well-known concept in the molecular structure of discotic liquid crystalline molecules. Discotic liquid crystals are disclosed in various documents (C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); 22, Chemistry of Liquid Crystal,
以下に、円盤状コアの例を示す。各化合物中のYは下記一般式(VI)を意味する。下記一般式(VI)中のR1、R2、R3、R4およびR5は、前記一般式(I)のものと同義であり、好ましい範囲も同義である。 Below, the example of a disk shaped core is shown. Y in each compound means the following general formula (VI). R 1 , R 2 , R 3 , R 4 and R 5 in the following general formula (VI) have the same meanings as those in the general formula (I), and preferred ranges are also the same.
円盤状コア(D)は、トリフェニレン(Z4)であることが特に好ましい。
円盤状コア(D)は、Y(前記一般式(VI))以外の置換基を有していてもよい。円盤状コアが有していてもよい置換基の例は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ヒドロキシル基、アミノ基、カルバモイル基、スルファモイル基、メルカプト基、ウレイド基、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基、置換アリール基、複素環基、アルコキシ基、置換アルコキシ基、アリールオキシ基、置換アリールオキシ基、アシル基、アシルオキシ基、アルコキシカルボニル基、置換アルコキシカルボニル基、アリールオキシカルボニル基、置換アリールオキシカルボニル基、置換アミノ基、アミド基、イミド基、アルコキシカルボニルアミノ基、置換アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、置換アリールオキシカルボニルアミノ基、置換カルバモイル基、スルホンアミド基、置換スルファモイル基、アルキルチオ基、置換アルキルチオ基、アリールチオ基、置換アリールチオ基、アルキルスルホニル基、置換アルキルスルホニル基、アリールスルホニル基、置換アリールスルホニル基、アルキルスルフィニル基、置換アルキルスルフィニル基、アリールスルフィニル基、置換アリールスルフィニル基、置換ウレイド基、リン酸アミド基、置換シリル基、アルコキシカルボニルオキシ基、置換アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基ならびに置換アリールオキシカルボニルオキシ基を含む。
The disk-shaped core (D) is particularly preferably triphenylene (Z4).
The discotic core (D) may have a substituent other than Y (the general formula (VI)). Examples of the substituent that the discotic core may have are a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, hydroxyl group, amino group, carbamoyl group, sulfamoyl group, mercapto group, Ureido group, alkyl group, substituted alkyl group, alkenyl group, substituted alkenyl group, alkynyl group, substituted alkynyl group, aryl group, substituted aryl group, heterocyclic group, alkoxy group, substituted alkoxy group, aryloxy group, substituted aryloxy group , Acyl group, acyloxy group, alkoxycarbonyl group, substituted alkoxycarbonyl group, aryloxycarbonyl group, substituted aryloxycarbonyl group, substituted amino group, amide group, imide group, alkoxycarbonylamino group, substituted alkoxycarbonylamino group, aryloxy Carbonylamino , Substituted aryloxycarbonylamino group, substituted carbamoyl group, sulfonamido group, substituted sulfamoyl group, alkylthio group, substituted alkylthio group, arylthio group, substituted arylthio group, alkylsulfonyl group, substituted alkylsulfonyl group, arylsulfonyl group, substituted arylsulfonyl Group, alkylsulfinyl group, substituted alkylsulfinyl group, arylsulfinyl group, substituted arylsulfinyl group, substituted ureido group, phosphoramido group, substituted silyl group, alkoxycarbonyloxy group, substituted alkoxycarbonyloxy group, aryloxycarbonyloxy group and Contains a substituted aryloxycarbonyloxy group.
アルキル基は、環状構造または分岐構造を有していてもよい。アルキル基の炭素原子数は1〜30であることが好ましい。置換アルキル基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルキル基の置換基の例は、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基および置換アルキニル基が除外される以外は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。 The alkyl group may have a cyclic structure or a branched structure. The alkyl group preferably has 1 to 30 carbon atoms. The alkyl part of the substituted alkyl group has the same meaning as the alkyl group, and the preferred range is also the same. Examples of the substituent of the substituted alkyl group are the same as the examples of the substituent of the discotic core except that the alkyl group, the substituted alkyl group, the alkenyl group, the substituted alkenyl group, the alkynyl group and the substituted alkynyl group are excluded. The preferred range is also synonymous.
アルケニル基は、環状構造または分岐構造を有していてもよい。アルケニル基の炭素原子数は2〜30であることが好ましい。置換アルケニル基のアルケニル部分は、アルケニル基と同義であり、好ましい範囲も同義である。置換アルケニル基の置換基の例は、置換アルキル基の置換基の例と同様である。アルキニル基は、環状構造または分岐構造を有していてもよい。アルキニル基の炭素原子数は2〜30であることが好ましい。置換アルキニル基のアルキニル部分は、アルキニル基と同様である。置換アルキニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。 The alkenyl group may have a cyclic structure or a branched structure. The alkenyl group preferably has 2 to 30 carbon atoms. The alkenyl part of the substituted alkenyl group has the same meaning as the alkenyl group, and the preferred range is also the same. Examples of the substituent of the substituted alkenyl group are the same as the examples of the substituent of the substituted alkyl group. The alkynyl group may have a cyclic structure or a branched structure. The alkynyl group preferably has 2 to 30 carbon atoms. The alkynyl part of the substituted alkynyl group is the same as the alkynyl group. The example of the substituent of a substituted alkynyl group is synonymous with the example of the substituent of a substituted alkyl group, and its preferable range is also synonymous.
アリール基の炭素原子数は、6〜30であることが好ましい。置換アリール基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリール基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。 The number of carbon atoms in the aryl group is preferably 6-30. The aryl part of the substituted aryl group has the same meaning as the aryl group, and the preferred range is also the same. The example of the substituent of a substituted aryl group is synonymous with the example of the substituent of a discotic core, and its preferable range is also synonymous.
複素環基は、5員または6員の複素環を有することが好ましい。複素環に、他の複素環、脂肪族環または芳香族環が縮合していてもよい。複素環の複素原子は、窒素原子、酸素原子または硫黄原子であることが好ましい。複素環基は置換基を有していてもよい。複素環基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。 The heterocyclic group preferably has a 5-membered or 6-membered heterocyclic ring. Another heterocyclic ring, an aliphatic ring or an aromatic ring may be condensed with the heterocyclic ring. The hetero atom of the heterocyclic ring is preferably a nitrogen atom, an oxygen atom or a sulfur atom. The heterocyclic group may have a substituent. The example of the substituent of a heterocyclic group is synonymous with the example of the substituent of a discotic core, and its preferable range is also synonymous.
アルコキシ基および置換アルコキシ基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルコキシ基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。アリールオキシ基および置換アリールオキシ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシ基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。 The alkyl part of an alkoxy group and a substituted alkoxy group is synonymous with an alkyl group, and its preferable range is also synonymous. The example of the substituent of a substituted alkoxy group is synonymous with the example of the substituent of a substituted alkyl group, and its preferable range is also synonymous. The aryl part of the aryloxy group and the substituted aryloxy group has the same meaning as the aryl group, and the preferred range is also the same. The example of the substituent of a substituted aryloxy group is synonymous with the example of the substituent of a disk shaped core, and its preferable range is also synonymous.
アシル基はホルミルまたは−CO−Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
アシルオキシ基はホルミルオキシまたは−O−CO−Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
The acyl group is represented by formyl or —CO—R, and R is an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, an aryl group or a substituted aryl group.
The acyloxy group is represented by formyloxy or —O—CO—R, where R is an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, an aryl group or a substituted aryl group.
アルコキシカルボニル基および置換アルコキシカルボニル基のアルキル部分は、アルキル基と同様である。置換アルコキシカルボニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。
アリールオキシカルボニル基および置換アリールオキシカルボニル基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシカルボニル基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
The alkyl moiety of the alkoxycarbonyl group and the substituted alkoxycarbonyl group is the same as the alkyl group. The example of the substituent of a substituted alkoxycarbonyl group is synonymous with the example of the substituent of a substituted alkyl group, and its preferable range is also synonymous.
The aryl part of the aryloxycarbonyl group and the substituted aryloxycarbonyl group has the same meaning as the aryl group, and the preferred range is also the same. Examples of the substituent of the substituted aryloxycarbonyl group are synonymous with the examples of the substituent of the discotic core, and the preferred range is also synonymous.
置換アミノ基は、−NH−Rまたは−N(−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
アミド基は、−NH−CO−Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
イミド基は、−N(−CO−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
The substituted amino group is represented by —NH—R or —N (—R) 2 , where R is an alkyl group, substituted alkyl group, alkenyl group, substituted alkenyl group, alkynyl group, substituted alkynyl group, aryl group or substituted aryl group. It is.
The amide group is represented by —NH—CO—R, and R is an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, an aryl group, or a substituted aryl group.
The imide group is represented by —N (—CO—R) 2 , and R is an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, an aryl group or a substituted aryl group.
アルコキシカルボニルアミノ基および置換アルコキシカルボニルアミノ基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルコキシカルボニルアミノ基の置換基の例は、置換アルキル基の置換基の例と同様である。
アリールオキシカルボニルアミノ基および置換アリールオキシカルボニルアミノ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシカルボニルアミノ基の置換基の例は、円盤状コアの置換基の例と同様である。
The alkyl moiety of the alkoxycarbonylamino group and the substituted alkoxycarbonylamino group has the same meaning as the alkyl group, and the preferred range is also the same. Examples of the substituent of the substituted alkoxycarbonylamino group are the same as the examples of the substituent of the substituted alkyl group.
The aryl moiety of the aryloxycarbonylamino group and the substituted aryloxycarbonylamino group has the same meaning as the aryl group, and the preferred range is also the same. Examples of the substituent of the substituted aryloxycarbonylamino group are the same as the examples of the substituent of the discotic core.
置換カルバモイル基は、−CO−NH−Rまたは−CO−N(−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
スルホンアミド基は、−NH−SO2−Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。置換スルファモイル基は、−SO2−NH−Rまたは−SO2−N(−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
The substituted carbamoyl group is represented by —CO—NH—R or —CO—N (—R) 2 , where R is an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, an aryl group. Or it is a substituted aryl group.
The sulfonamide group is represented by —NH—SO 2 —R, and R is an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, an aryl group or a substituted aryl group. The substituted sulfamoyl group is represented by —SO 2 —NH—R or —SO 2 —N (—R) 2 , wherein R is an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, An aryl group or a substituted aryl group.
アルキルチオ基および置換アルキルチオ基のアルキル部分は、アルキル基と同様である。置換アルキルチオ基の置換基の例は、置換アルキル基の置換基の例と同様である。
アリールチオ基および置換アリールチオ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールチオ基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
アルキルスルホニル基および置換アルキルスルホニル基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルキルスルホニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。
The alkyl part of the alkylthio group and the substituted alkylthio group is the same as the alkyl group. The example of the substituent of a substituted alkylthio group is the same as the example of the substituent of a substituted alkyl group.
The aryl part of the arylthio group and the substituted arylthio group has the same meaning as the aryl group, and the preferred range is also the same. The example of the substituent of a substituted arylthio group is synonymous with the example of the substituent of a disk shaped core, and its preferable range is also synonymous.
The alkyl moiety of the alkylsulfonyl group and the substituted alkylsulfonyl group has the same meaning as the alkyl group, and the preferred range is also the same. The example of the substituent of a substituted alkylsulfonyl group is synonymous with the example of the substituent of a substituted alkyl group, and its preferable range is also synonymous.
アリールスルホニル基および置換アリールスルホニル基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールスルホニル基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
アルキルスルフィニル基および置換アルキルスルフィニル基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルキルスルフィニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。
アルキルスルフィニル基および置換アルキルスルフィニル基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アルキルスルフィニル基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
The aryl moiety of the arylsulfonyl group and the substituted arylsulfonyl group has the same meaning as the aryl group, and the preferred range is also the same. The example of the substituent of a substituted arylsulfonyl group is synonymous with the example of the substituent of a disk shaped core, and its preferable range is also synonymous.
The alkyl part of the alkylsulfinyl group and the substituted alkylsulfinyl group has the same meaning as the alkyl group, and the preferred range is also the same. The example of the substituent of a substituted alkylsulfinyl group is synonymous with the example of the substituent of a substituted alkyl group, and its preferable range is also synonymous.
The aryl part of the alkylsulfinyl group and the substituted alkylsulfinyl group has the same meaning as the aryl group, and the preferred range is also the same. Examples of the substituent of the substituted alkylsulfinyl group are synonymous with the examples of the substituent of the discotic core, and the preferred range is also synonymous.
置換ウレイド基は、−NH−CO−NH−Rまたは−NH−CO−N(−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
リン酸アミド基は、−NH−O−P(=O)(−OH)−O−Rまたは−NH−O−P(=O)(−O−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
置換シリル基は、−SiH2−R、−SiH(−R)2または−Si(−R)3で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基または置換アリール基である。
The substituted ureido group is represented by —NH—CO—NH—R or —NH—CO—N (—R) 2 , where R is an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group. Group, aryl group or substituted aryl group.
The phosphoric acid amide group is represented by —NH—O—P (═O) (— OH) —O—R or —NH—O—P (═O) (— O—R) 2 , where R is an alkyl group A substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, an aryl group or a substituted aryl group.
The substituted silyl group is represented by —SiH 2 —R, —SiH (—R) 2 or —Si (—R) 3 , where R is an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted group An alkynyl group, an aryl group or a substituted aryl group;
アルコキシカルボニルオキシ基および置換アルコキシカルボニルオキシ基のアルキル部分は、アルキル基と同様である。置換アルコキシカルボニルオキシ基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。
アリールオキシカルボニルオキシ基および置換アリールオキシカルボニルオキシ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシカルボニルオキシ基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
The alkyl moiety of the alkoxycarbonyloxy group and the substituted alkoxycarbonyloxy group is the same as the alkyl group. The example of the substituent of a substituted alkoxycarbonyloxy group is synonymous with the example of the substituent of a substituted alkyl group, and its preferable range is also synonymous.
The aryl moiety of the aryloxycarbonyloxy group and the substituted aryloxycarbonyloxy group has the same meaning as the aryl group, and the preferred range is also the same. Examples of the substituent of the substituted aryloxycarbonyloxy group are the same as the examples of the substituent of the discotic core, and the preferred range is also the same.
一般式(I)において、n1は3〜20の整数であって、3〜15の整数であることが好ましく、3〜12の整数であることがより好ましく、3〜10の整数であることがさらに好ましく、4〜8の整数であることがさらにまた好ましく、6であることが最も好ましい。 In the general formula (I), n1 is an integer of 3 to 20, preferably an integer of 3 to 15, more preferably an integer of 3 to 12, and an integer of 3 to 10. More preferably, it is further preferably an integer of 4 to 8, and most preferably 6.
一般式(I)において、R1、R2、R3、R4およびR5は水素原子または置換基を表し、これらの例は円盤状コアの置換基の例と同様なものが挙げられる。また、R1、R2、R3、R4およびR5のいずれか二つが結合して環を形成していてもよく、例えば、脂肪族または芳香族環があげられる。好ましくはR1、R2、R3およびR5は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、シアノ基、置換もしくは無置換のアルコキシカルボニル基またはハロゲン原子である。 In the general formula (I), R 1 , R 2 , R 3 , R 4 and R 5 represent a hydrogen atom or a substituent, and examples thereof are the same as the examples of the substituent of the discotic core. Further, any two of R 1 , R 2 , R 3 , R 4 and R 5 may be bonded to form a ring, and examples thereof include an aliphatic or aromatic ring. Preferably, R 1 , R 2 , R 3 and R 5 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a cyano group, a substituted or unsubstituted alkoxycarbonyl group or a halogen atom.
カルボニルオキシ基に対し、R2およびR3、R4およびR5は、シス・トランスの位置関係が存在する。シスとはシクロプロパン環面に対してカルボニルオキシ基と同方向に置換基が存在する状態であり、トランスとはシクロプロパン環面に対してカルボニルオキシ基と逆方向に置換基が存在する状態である。この位置関係は指定のない限り特には制限しない。 R 2 and R 3 , R 4 and R 5 have a cis-trans positional relationship with respect to the carbonyloxy group. Cis is a state where a substituent exists in the same direction as the carbonyloxy group with respect to the cyclopropane ring surface, and trans is a state where a substituent exists in the opposite direction to the carbonyloxy group with respect to the cyclopropane ring surface. is there. This positional relationship is not particularly limited unless otherwise specified.
一般式(I)において、R1、R2、R3、R4およびR5の置換基の組み合わせにより、エナンチオマーおよびジアステレオマー立体異性体が存在するが、これらは指定のない限り特には制限しない。 In general formula (I), depending on the combination of substituents R 1 , R 2 , R 3 , R 4 and R 5 , enantiomers and diastereomeric stereoisomers exist, but these are particularly limited unless otherwise specified. do not do.
一般式(I)で表される円盤状化合物は、下記一般式(II)で表されることが好ましい。 The discotic compound represented by the general formula (I) is preferably represented by the following general formula (II).
一般式(II)において、Dは円盤状コアである。n1は3〜20の整数である。R1、R2、R3およびR5は水素原子または置換基を表し、互いに結合して環を形成していてもよい。mは1〜5の整数を表す。R6は置換基を表し、複数のR6が存在する時、それぞれ同じでも異なっていてもよく、互いに結合して環を形成していてもよい。 In general formula (II), D is a disk-shaped core. n1 is an integer of 3-20. R 1 , R 2 , R 3 and R 5 represent a hydrogen atom or a substituent, and may be bonded to each other to form a ring. m represents an integer of 1 to 5. R 6 represents a substituent, and when a plurality of R 6 are present, they may be the same or different from each other, and may be bonded to each other to form a ring.
上記D、n1、R1、R2、R3およびR5は、一般式(I)で定義したD、n1、R1、R2、R3およびR5と同様であり、好ましい範囲も同義である。
The D, n1, R 1, R 2,
一般式(II)において、R6は置換基を表し、これらの例は円盤状コアの置換基の例と同様なものが挙げられる。好ましいR6の例は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のアリール基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアルコキシカルボニルオキシ基、置換もしくは無置換のアリールオキシカルボニルオキシ基または置換もしくは無置換のアシルオキシ基である。さらに好ましくは、少なくとも1つのR6が置換アルキル基、置換アルコキシ基、置換アルコキシカルボニル基、置換アリール基、置換アリールオキシ基、置換アルコキシカルボニルオキシ基、置換アリールオキシカルボニルオキシ基または置換アシルオキシ基であり、置換基の末端に重合性基を有する。 In the general formula (II), R 6 represents a substituent, and examples thereof are the same as the examples of the substituent of the discotic core. Preferred examples of R 6 include halogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted aryl group, substituted or unsubstituted aryloxy A group, a substituted or unsubstituted alkoxycarbonyloxy group, a substituted or unsubstituted aryloxycarbonyloxy group, or a substituted or unsubstituted acyloxy group. More preferably, at least one R 6 is a substituted alkyl group, a substituted alkoxy group, a substituted alkoxycarbonyl group, a substituted aryl group, a substituted aryloxy group, a substituted alkoxycarbonyloxy group, a substituted aryloxycarbonyloxy group or a substituted acyloxy group. Have a polymerizable group at the terminal of the substituent.
一般式(II)において、R6の置換位置は指定のない限り特に制限しない。好ましくは少なくとも1つのR6がパラ位に存在する。
一般式(II)において、カルボニルオキシ基に対して、R5には、シス・トランスの位置関係が存在する。この位置関係は指定のない限り特には制限しない。好ましくはシスである。
In general formula (II), the substitution position of R 6 is not particularly limited unless otherwise specified. Preferably at least one R 6 is in the para position.
In the general formula (II), R 5 has a cis-trans positional relationship with respect to the carbonyloxy group. This positional relationship is not particularly limited unless otherwise specified. Preferably it is cis.
円盤状化合物、例えば、一般式(I)で表される円盤状化合物は、重合性基を有することができる。重合性基を有する円盤状化合物(重合性円盤状化合物)は、重合反応により円盤状化合物の円盤面が配向している状態を固定することができる。
一般式(I)で表される化合物が重合性基を有する場合、R4は置換アルキル基、置換アルコキシ基、置換アリール基または置換アリールオキシ基であって、各置換基の末端に重合性基を有することが好ましい。
重合性円盤状化合物は、さらに、下記一般式(III)で表されることが好ましい。
The discotic compound, for example, the discotic compound represented by the general formula (I) can have a polymerizable group. The discotic compound having a polymerizable group (polymerizable discotic compound) can fix the state in which the disc surface of the discotic compound is oriented by a polymerization reaction.
When the compound represented by the general formula (I) has a polymerizable group, R 4 is a substituted alkyl group, a substituted alkoxy group, a substituted aryl group or a substituted aryloxy group, and a polymerizable group at the end of each substituent group It is preferable to have.
The polymerizable discotic compound is further preferably represented by the following general formula (III).
一般式(III)において、Dは円盤状コアである。n1は3〜20の整数を表す。R1、R2、R3およびR5は、それぞれ、水素原子または置換基をあらわし、互いに結合して環を形成していてもよい。
D、n1、R1、R2、R3およびR5は、一般式(I)で定義したD、n1、R1、R2、R3およびR5と同様であり、好ましい範囲も同義である。
In general formula (III), D is a disk-shaped core. n1 represents the integer of 3-20. R 1 , R 2 , R 3 and R 5 each represents a hydrogen atom or a substituent, and may be bonded to each other to form a ring.
D, n1, R 1, R 2, R 3 and R 5 of the general formula (I) as defined in D, n1, are the same as R 1, R 2, R 3 and R 5, the preferred range is also interchangeably is there.
一般式(III)において、Lは酸素原子、硫黄原子、カルボニル基、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、およびそれらの組み合わせから選ばれる2価の連結基である。
アルキレン基は、環状構造または分岐構造を有していてもよい。アルキレン基の炭素原子数は1〜30であることが好ましい。
置換アルキレン基のアルキレン部分は、アルキレン基と同様である。置換アルキレン基の置換基の例は、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基および置換アルキニル基が除外される以外は、一般式(I)で説明した円盤状コアの置換基の例と同様である。
アリーレン基の炭素原子数は、1〜30であることが好ましい。アリーレン基は、フェニレンまたはナフチレンであることが好ましく、フェニレンであることがさらに好ましく、p−フェニレンであることが最も好ましい。
置換アリーレン基のアリーレン部分は、アリーレン基と同様である。置換アリーレン基の置換基の例は、一般式(I)で説明した円盤状コアの置換基の例と同様である。
一般式(III)において、Qは重合性基である。重合性基は、エポキシ基またはエチレン性不飽和基であることがさらに好ましく、エチレン性不飽和基(例、ビニル、1−プロペニル、イソプロペニル)であることが最も好ましい。
In the general formula (III), L is a divalent linking group selected from an oxygen atom, a sulfur atom, a carbonyl group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and combinations thereof.
The alkylene group may have a cyclic structure or a branched structure. The alkylene group preferably has 1 to 30 carbon atoms.
The alkylene part of the substituted alkylene group is the same as the alkylene group. Examples of substituents of substituted alkylene groups include the substitution of the discotic core described in general formula (I) except that alkyl groups, substituted alkyl groups, alkenyl groups, substituted alkenyl groups, alkynyl groups and substituted alkynyl groups are excluded. The same as the group example.
The number of carbon atoms in the arylene group is preferably 1-30. The arylene group is preferably phenylene or naphthylene, more preferably phenylene, and most preferably p-phenylene.
The arylene part of the substituted arylene group is the same as the arylene group. Examples of the substituent of the substituted arylene group are the same as the examples of the substituent of the discotic core described in the general formula (I).
In the general formula (III), Q is a polymerizable group. The polymerizable group is more preferably an epoxy group or an ethylenically unsaturated group, and most preferably an ethylenically unsaturated group (eg, vinyl, 1-propenyl, isopropenyl).
特に、好ましい円盤状化合物は、下記一般式(IV)で表されるトリフェニレン化合物である。 A particularly preferred discotic compound is a triphenylene compound represented by the following general formula (IV).
一般式(IV)において、D1はトリフェニレンを表し、n1は3〜6の整数を表し、R1、R2、R3、R4およびR5は、それぞれ、水素原子、炭素原子数が1〜20の置換もしくは無置換のアルキル基、炭素原子数が3〜20の置換もしくは無置換のアルケニル基、炭素原子数が1〜20の置換もしくは無置換のアルコキシ基、炭素原子数が3〜20の置換もしくは無置換のアルケニルオキシ基、炭素原子数が6〜20の置換もしくは無置換のアリール基または炭素原子数が6〜20の置換もしくは無置換のアリールオキシ基、炭素原子数が1〜20の置換もしくは無置換のアルコキシカルボニル基である。各基の定義および例は、一般式(I)と同様であり、好ましい範囲も同義である。 In the general formula (IV), D 1 represents triphenylene, n1 represents an integer of 3 to 6, and R 1 , R 2 , R 3 , R 4 and R 5 each have 1 hydrogen atom and 1 carbon atom. -20 substituted or unsubstituted alkyl groups, substituted or unsubstituted alkenyl groups having 3 to 20 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, 3 to 20 carbon atoms A substituted or unsubstituted alkenyloxy group having 6 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, having 1 to 20 carbon atoms A substituted or unsubstituted alkoxycarbonyl group. The definition and examples of each group are the same as those in formula (I), and the preferred ranges are also the same.
一般式(IV)において、R1、R2、R3およびR5は、それぞれ、水素原子、メチル基、エチル基、メチルオキシ基、エチルオキシ基、シアノ基、ハロゲン原子または置換もしくは無置換のアルコキシカルボニル基であるのが好ましい。
一般式(IV)において、好ましくはR4が、炭素原子数が6〜20の置換もしくは無置換のアリール基である。一般式(IV)において、好ましくはR4が、カルボニルオキシ基に対して、トランスである。
In the general formula (IV), R 1 , R 2 , R 3 and R 5 are each a hydrogen atom, methyl group, ethyl group, methyloxy group, ethyloxy group, cyano group, halogen atom or substituted or unsubstituted alkoxy A carbonyl group is preferred.
In the general formula (IV), R 4 is preferably a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. In the general formula (IV), R 4 is preferably trans to the carbonyloxy group.
一般式(IV)で表されるトリフェニレン化合物は、重合性基を有することができる。重合性基を有するトリフェニレン化合物(重合性トリフェニレン化合物)は、重合反応によりトリフェニレンからなる円盤面が配向している状態を固定することができる。
一般式(IV)で表されるトリフェニレン化合物が重合性基を有する場合、R4は炭素原子数が2〜20の置換アルキル基、炭素原子数が2〜20の置換アルコキシ基、炭素原子数が6〜20の置換アリール基または炭素原子数が6〜20の置換アリールオキシ基であって、置換基の末端に重合性基を有することが好ましい。
上記一般式(IV)には、不斉炭素原子が存在するため、ジアステレオマーやエナンチオマーが存在するが、本明細書においてはこれらを区別せず、すべて含まれるものとする。つまり、構造の記述方法により立体異性体を区別しないこととする。
The triphenylene compound represented by the general formula (IV) can have a polymerizable group. The triphenylene compound having a polymerizable group (polymerizable triphenylene compound) can fix the state in which the disc surface made of triphenylene is oriented by a polymerization reaction.
When the triphenylene compound represented by the general formula (IV) has a polymerizable group, R 4 is a substituted alkyl group having 2 to 20 carbon atoms, a substituted alkoxy group having 2 to 20 carbon atoms, and having a carbon atom number. A substituted aryl group having 6 to 20 carbon atoms or a substituted aryloxy group having 6 to 20 carbon atoms, preferably having a polymerizable group at the terminal of the substituent.
In the general formula (IV), since there are asymmetric carbon atoms, diastereomers and enantiomers exist, but in the present specification, these are not distinguished and are all included. That is, stereoisomers are not distinguished by the structure description method.
以下に、一般式(I)で表される円盤状化合物の例を示す。なお、それぞれの例示化合物を表すとき、該例示化合物の横に記載されている数値(x)をもって、例示化合物(x)と示す。 Below, the example of the discotic compound represented by general formula (I) is shown. In addition, when each exemplary compound is represented, the numerical value (x) described beside the exemplary compound is referred to as exemplary compound (x).
本明細書で開示する円盤状化合物は、単独もしくは他の液晶と混合することより液晶性を示してもよい。他の円盤状液晶性化合物と混合して用いる場合、本明細書記載の円盤状化合物の液晶性分子全体に対する割合は、1〜100質量%が好ましく、10〜98質量%がさらに好ましく、30〜95質量%が最も好ましい。 The discotic compound disclosed in the present specification may exhibit liquid crystallinity either alone or by mixing with other liquid crystals. When used by mixing with other discotic liquid crystalline compounds, the ratio of the discotic compounds described in the present specification to the entire liquid crystalline molecules is preferably 1 to 100 mass%, more preferably 10 to 98 mass%, and more preferably 30 to 30 mass%. 95% by mass is most preferred.
[光学異方性層]
光学補償シートは、前記フッ素系ポリマーの少なくとも1種と前記所定の円盤状化合物の少なくとも1種とを含有する光学異方性層を有することが好ましい。該光学異方性層は、前記円盤状化合物の配向に基づく光学異方性を示す。
光学異方性層は、前記所定の円盤状化合物および前記フッ素系ポリマー、および所望によりその配向を制御するのに寄与する材料、配向状態を固定するのに寄与する材料等、他の材料を含有する組成物から形成してもよい。前記円盤状化合物は一度液晶相形成温度まで加熱し、次にその配向状態を維持したまま冷却することによりその液晶状態における配向形態を損なうことなく固定化することができる。また、前記円盤状化合物は、重合開始剤を添加した組成物を液晶相形成温度まで加熱した後、重合させ冷却することによっても固定化することができる。本明細書で配向状態が固定化された状態とは、その配向が保持された状態が最も典型的、且つ好ましい態様ではあるが、それだけには限定されず、具体的には、通常0℃〜50℃、より過酷な条件下では−30℃〜70℃の温度範囲において、該層に流動性がなく、且つ外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を指すものである。
なお、配向状態が最終的に固定化された際に、液晶組成物はもはや液晶性を示す必要はない。例えば、液晶性化合物として重合性化合物を用いた場合、結果的に熱、光等での反応により重合または架橋反応が進行し、高分子量化して、液晶性を失ってもよい。
[Optically anisotropic layer]
The optical compensation sheet preferably has an optically anisotropic layer containing at least one of the fluoropolymers and at least one of the predetermined discotic compounds. The optically anisotropic layer exhibits optical anisotropy based on the orientation of the discotic compound.
The optically anisotropic layer contains other materials such as the predetermined discotic compound and the fluorine-based polymer, and a material that contributes to controlling the orientation, and a material that contributes to fixing the orientation state, if desired. You may form from the composition to do. The discotic compound can be fixed without impairing the alignment form in the liquid crystal state by once heating to the liquid crystal phase formation temperature and then cooling while maintaining the alignment state. The discotic compound can also be fixed by heating the composition to which the polymerization initiator has been added to the liquid crystal phase formation temperature, followed by polymerization and cooling. In the present specification, the state in which the alignment state is fixed is the most typical and preferred embodiment in which the alignment state is maintained, but is not limited thereto, and specifically, usually 0 ° C. to 50 ° C. In a temperature range of −30 ° C. to 70 ° C. under severer conditions, the layer has no fluidity and does not cause a change in the orientation form due to an external field or an external force. It refers to a state where it can be kept stable.
Note that when the alignment state is finally fixed, the liquid crystal composition no longer needs to exhibit liquid crystallinity. For example, when a polymerizable compound is used as the liquid crystal compound, as a result, a polymerization or crosslinking reaction proceeds by a reaction with heat, light, etc., and the liquid crystallinity may be lost by increasing the molecular weight.
重合性基を有する前記円盤状化合物を用いて光学異方性層を作製する場合は、作製の過程で、該化合物が単独でまたは他の化合物と重合し、最終的には本明細書記載の化合物を重合単位とする高分子を含有する光学異方性層が作製される。 In the case of producing an optically anisotropic layer using the discotic compound having a polymerizable group, the compound is polymerized alone or with another compound in the production process, and finally described in the present specification. An optically anisotropic layer containing a polymer having a compound as a polymerization unit is produced.
光学補償シートの一態様は、透明支持体と、前記光学異方性層とを有する。ここで、光学異方性層は、前記円盤状化合物および前記フッ素系ポリマーをそれぞれ少なくとも1種と、必要に応じて他の添加剤とを含有する組成物を配向膜上に塗布した後、液晶状態の配向状態で固定化することで作製することができる。なお、配向膜上で液晶性分子を配向状態に固定した後は、他の支持体上に転写可能である。配向状態で固定化された液晶性化合物は、配向膜がなくても配向状態を維持することができる。従って、光学補償シートは、、配向膜を有していなくてもよい。前記光学異方性層の厚さは、0.1〜20μmであることが好ましく、0.2〜15μmであることがさらに好ましく、0.5〜10μmであることが最も好ましい。 One aspect of the optical compensation sheet has a transparent support and the optically anisotropic layer. Here, the optically anisotropic layer is formed by applying a composition containing at least one of the discotic compound and the fluorine-based polymer and, if necessary, another additive on the alignment film, It can be produced by fixing in the orientation state. In addition, after fixing a liquid crystalline molecule to an orientation state on an orientation film | membrane, it can transfer on another support body. The liquid crystalline compound fixed in the alignment state can maintain the alignment state even without the alignment film. Therefore, the optical compensation sheet may not have an alignment film. The thickness of the optically anisotropic layer is preferably 0.1 to 20 μm, more preferably 0.2 to 15 μm, and most preferably 0.5 to 10 μm.
[光学異方性層の添加剤]
光学異方性層の形成にあたり前記円盤状化合物および前記フッ素系ポリマーに加えることのできる添加剤の例としては、空気界面配向制御剤、ハジキ防止剤、重合開始剤、重合性モノマー等が挙げられる。
[Additive for optically anisotropic layer]
Examples of additives that can be added to the discotic compound and the fluoropolymer in the formation of the optically anisotropic layer include air interface orientation control agents, repellency inhibitors, polymerization initiators, polymerizable monomers, and the like. .
[空気界面配向制御剤]
液晶性化合物は、空気界面においては空気界面のプレチルト角で配向する。このプレチルト角は、nx屈折率方向と空気界面がなすプレチルト角とny屈折率方向と空気界面がなすプレチルト角とnz屈折率方向と空気界面がなすプレチルト角の3種類がある。このプレチルト角は、化合物の種類によりその程度が異なるために、目的に応じて、空気界面のプレチルト角を任意に制御する必要がある。
このプレチルト角の制御には、例えば、電場や磁場のような外場を用いることや添加剤を用いることができるが、添加剤を用いることが好ましい。
このような添加剤としては、炭素原子数が6〜40の置換または無置換脂肪族基もしくは炭素原子数が6〜40の置換または無置換脂肪族置換オリゴシロキサノキシ基を、分子内に1本以上有する化合物が好ましく、分子内に2本以上有する化合物がさらに好ましい。例えば、空気界面配向制御剤としては、特開2002−20363号公報に記載の疎水性排除体積効果化合物を用いることができる。
[Air interface alignment control agent]
The liquid crystal compound is aligned at the air interface at the pretilt angle of the air interface. There are three types of pretilt angles: a pretilt angle formed by the nx refractive index direction and the air interface, a pretilt angle formed by the ny refractive index direction and the air interface, and a pretilt angle formed by the nz refractive index direction and the air interface. Since the degree of this pretilt angle varies depending on the type of compound, it is necessary to arbitrarily control the pretilt angle at the air interface according to the purpose.
For controlling the pretilt angle, for example, an external field such as an electric field or a magnetic field or an additive can be used, but an additive is preferably used.
Examples of such an additive include a substituted or unsubstituted aliphatic group having 6 to 40 carbon atoms, or a substituted or unsubstituted aliphatic substituted oligosiloxanoxy group having 6 to 40 carbon atoms in the molecule. A compound having at least two is preferred, and a compound having at least two in the molecule is more preferred. For example, a hydrophobic excluded volume effect compound described in JP-A No. 2002-20363 can be used as the air interface alignment control agent.
空気界面側の配向制御用添加剤の添加量としては、円盤状化合物に対して、0.001質量%〜20質量%が好ましく、0.01質量%〜10質量%がさらに好ましく、0.1質量%〜5質量%が最も好ましい。 The addition amount of the orientation control additive on the air interface side is preferably 0.001% by mass to 20% by mass, more preferably 0.01% by mass to 10% by mass with respect to the discotic compound. A mass% to 5 mass% is most preferred.
[ハジキ防止剤]
円盤状化合物に添加し、該組成物の塗布時のハジキを防止するための材料としては、一般に高分子化合物を好適に用いることができる。使用するポリマーとしては、円盤状化合物の傾斜角変化や配向を著しく阻害しない限り、特に制限はない。
ポリマーの例としては、特開平8−95030号公報に記載があり、特に好ましい具体的ポリマー例としてはセルロースエステル類を挙げることができる。セルロースエステルの例としては、セルロースアセテート、セルロースアセテートプロピオネート、ヒドロキシプロピルセルロースおよびセルロースアセテートブチレートを挙げることができる。円盤状化合物の配向を阻害しないように、ハジキ防止目的で使用されるポリマーの添加量は、円盤状化合物に対して一般に0.1〜10質量%の範囲にあり、0.1〜8質量%の範囲にあることがより好ましく、0.1〜5質量%の範囲にあることがさらに好ましい。
[Anti-repellent agent]
In general, a polymer compound can be suitably used as a material to be added to the discotic compound to prevent repellency during application of the composition. The polymer to be used is not particularly limited as long as the tilt angle change and orientation of the discotic compound are not significantly inhibited.
Examples of the polymer are described in JP-A-8-95030, and particularly preferred specific polymer examples include cellulose esters. Examples of cellulose esters include cellulose acetate, cellulose acetate propionate, hydroxypropyl cellulose, and cellulose acetate butyrate. In order not to inhibit the orientation of the discotic compound, the amount of the polymer used for the purpose of preventing repellency is generally in the range of 0.1 to 10 mass% with respect to the discotic compound, and 0.1 to 8 mass%. More preferably, it is in the range of 0.1 to 5% by mass.
[重合開始剤]
液晶性化合物はモノドメイン配向、つまり実質的に均一に配向している状態で固定されていることが好ましく、そのため重合性の円盤状化合物を用いている場合には重合反応により円盤状化合物を固定することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応と電子線照射による重合反応が含まれるが、熱により支持体等が変形、変質するのを防ぐためにも、光重合反応と電子線照射による重合反応が好ましい。光重合開始剤の例としては前述したものが挙げられる。光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。円盤状化合物の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、10mJ〜50J/cm2であることが好ましく、50mJ〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。また、雰囲気の酸素濃度は重合度に関与するため、空気中で所望の重合度に達しない場合には、窒素置換等の方法により酸素濃度を低下させることが好ましい。好ましい酸素濃度としては、10%以下が好ましく、7%以下がさらに好ましく、3%以下が最も好ましい。
[Polymerization initiator]
The liquid crystal compound is preferably fixed in a monodomain alignment, that is, in a substantially uniform alignment state. Therefore, when a polymerizable discotic compound is used, the discotic compound is fixed by a polymerization reaction. It is preferable to do. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator, a photopolymerization reaction using a photopolymerization initiator, and a polymerization reaction by electron beam irradiation. In order to prevent the support and the like from being deformed or altered by heat. Also, a photopolymerization reaction and a polymerization reaction by electron beam irradiation are preferable. Examples of the photopolymerization initiator include those described above. It is preferable that the usage-amount of a photoinitiator is 0.01-20 mass% of solid content of a coating liquid, and it is more preferable that it is 0.5-5 mass%. The light irradiation for the polymerization of the discotic compound preferably uses ultraviolet rays. The irradiation energy is preferably 10mJ~50J / cm 2, further preferably 50mJ~800mJ / cm 2. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions. Further, since the oxygen concentration in the atmosphere is related to the degree of polymerization, when the desired degree of polymerization is not reached in the air, it is preferable to reduce the oxygen concentration by a method such as nitrogen substitution. A preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less.
[重合性モノマー]
光学異方性層を形成するために用いられる液晶組成物には、重合性のモノマーを添加してもよい。液晶性化合物とともに使用する重合性モノマーとしては、液晶性化合物と相溶性を有し、液晶性化合物の傾斜角変化や配向阻害を著しく引き起こさない限り、特に限定はない。これらの中では重合活性なエチレン性不飽和基、例えばビニル基、ビニルオキシ基、アクリロイル基およびメタクリロイル基などを有する化合物が好ましく用いられる。上記重合性モノマーの添加量は、液晶性化合物に対して一般に0.5〜50質量%の範囲にあり、1〜30質量%の範囲にあることが好ましい。また反応性官能基数が2以上のモノマーを用いると、配向膜と光学異方性層間の密着性を高める効果が期待できるため、特に好ましい。
[Polymerizable monomer]
A polymerizable monomer may be added to the liquid crystal composition used for forming the optically anisotropic layer. The polymerizable monomer used together with the liquid crystal compound is not particularly limited as long as it has compatibility with the liquid crystal compound and does not significantly change the tilt angle or inhibit the alignment of the liquid crystal compound. Among these, compounds having a polymerization active ethylenically unsaturated group such as a vinyl group, a vinyloxy group, an acryloyl group, and a methacryloyl group are preferably used. The addition amount of the polymerizable monomer is generally in the range of 0.5 to 50% by mass and preferably in the range of 1 to 30% by mass with respect to the liquid crystal compound. In addition, it is particularly preferable to use a monomer having two or more reactive functional groups because an effect of improving the adhesion between the alignment film and the optically anisotropic layer can be expected.
[塗布溶剤]
液晶組成物の調製に使用する溶媒としては、前述の有機溶媒が好ましく用いられる。
[Coating solvent]
As the solvent used for preparing the liquid crystal composition, the above-mentioned organic solvents are preferably used.
[配向膜]
配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
配向膜上に設けられる光学異方性層の円盤状化合物に所望の配向を付与できるのであれば、配向膜としてはどのような層でもよいが、ラビング処理もしくは、光照射により形成される配向膜が好ましい。特にポリマーのラビング処理により形成する配向膜が特に好ましい。ラビング処理は、一般にはポリマー層の表面を、紙や布で一定方向に数回擦ることにより実施することができるが、特に液晶便覧(丸善(株))に記載されている方法により行うことが好ましい。配向膜の厚さは、0.01〜10μmであることが好ましく、0.05〜3μmであることがさらに好ましい。
好ましい配向膜の例としては、特開平8−338913号公報に記載の、架橋されたポリマー、より好ましくは架橋されたポリビニルアルコールからなる配向膜が挙げられる。配向膜は、従来公知の塗布方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)を利用して形成することができるが、前記光学異方性層と同様、スロットダイコート法により塗布して形成するのが(膜厚の均一性、特に端部の膜厚の均一性)の点で好ましい。
なお、配向膜を用いて棒状液晶性化合物を配向させてから、その配向状態のまま棒状液晶性化合物を固定して光学異方性層を形成し、光学異方性層のみをポリマーフィルム(または透明支持体)上に転写しても良い。配向状態の固定された棒状液晶性化合物は、配向膜がなくても配向状態を維持することができる。そのため、位相差板では、配向膜は(位相差板の製造において必須であるが)必須ではない。
円盤状化合物を配向させるためには、配向膜の表面エネルギーを調節するポリマー(通常の配向用ポリマー)を用いる。具体的なポリマーの種類については液晶セルまたは光学補償シートについて種々の文献に記載がある。いずれの配向膜においても、円盤状化合物と透明支持体の密着性を改善する目的で、重合性基を有することが好ましい。重合性基は、側鎖に重合性基を有する繰り返し単位を導入するか、あるいは、環状基の置換基として導入することができる。界面で液晶性化合物と化学結合を形成する配向膜を用いることが好ましく、かかる配向膜としては特開平9−152509号公報に記載されている。
[Alignment film]
The alignment film is an organic compound (eg, ω-tricosanoic acid) formed by rubbing treatment of an organic compound (preferably polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodgett method (LB film). , Methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.
As long as a desired orientation can be imparted to the discotic compound of the optically anisotropic layer provided on the orientation film, any orientation film may be used, but the orientation film formed by rubbing treatment or light irradiation. Is preferred. In particular, an alignment film formed by a rubbing treatment of a polymer is particularly preferable. The rubbing treatment can be generally carried out by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth, and in particular, it can be carried out by the method described in the liquid crystal manual (Maruzen Co., Ltd.). preferable. The thickness of the alignment film is preferably 0.01 to 10 μm, and more preferably 0.05 to 3 μm.
As an example of a preferable alignment film, an alignment film made of a crosslinked polymer, more preferably a crosslinked polyvinyl alcohol described in JP-A-8-338913 can be mentioned. The alignment film can be formed using a conventionally known coating method (eg, wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method). Like the conductive layer, it is preferably formed by application by a slot die coating method in view of the uniformity of the film thickness (particularly the uniformity of the film thickness of the end portion).
In addition, after aligning a rod-shaped liquid crystalline compound using an alignment film, the rod-shaped liquid crystalline compound is fixed in the alignment state to form an optically anisotropic layer, and only the optically anisotropic layer is formed as a polymer film (or It may be transferred onto a transparent support. The rod-like liquid crystalline compound in which the alignment state is fixed can maintain the alignment state even without the alignment film. Therefore, in the retardation plate, the alignment film is not essential (although essential in the production of the retardation plate).
In order to align the discotic compound, a polymer that adjusts the surface energy of the alignment film (ordinary alignment polymer) is used. Specific types of polymers are described in various documents about liquid crystal cells or optical compensation sheets. Any of the alignment films preferably has a polymerizable group for the purpose of improving the adhesion between the discotic compound and the transparent support. The polymerizable group can be introduced by introducing a repeating unit having a polymerizable group in the side chain or as a substituent of a cyclic group. It is preferable to use an alignment film that forms a chemical bond with the liquid crystalline compound at the interface. Such an alignment film is described in JP-A-9-152509.
[配向膜のラビング密度]
配向膜のラビング密度と配向膜界面での円盤状化合物のプレチルト角との間には、ラビング密度を高くするとプレチルト角は小さくなり、ラビング密度を低くするとプレチルト角は大きくなる関係があるので、配向膜のラビング密度を変えることで、プレチルト角の調整をすることができる。配向膜のラビング密度を変える方法としては、「液晶便覧」液晶便覧編集委員会編(丸善(株)、2000年)に記載されている方法を用いることができる。ラビング密度(L)は式(A)で定量化されている。
[Rubbing density of alignment film]
Since there is a relationship between the rubbing density of the alignment film and the pretilt angle of the discotic compound at the interface of the alignment film, the pretilt angle decreases as the rubbing density increases, and the pretilt angle increases as the rubbing density decreases. By changing the rubbing density of the film, the pretilt angle can be adjusted. As a method for changing the rubbing density of the alignment film, a method described in “Liquid Crystal Handbook” edited by the Liquid Crystal Handbook Editorial Committee (Maruzen Co., Ltd., 2000) can be used. The rubbing density (L) is quantified by the formula (A).
式(A) L=Nl{1+(2πrn/60v)}
式(A)中、Nはラビング回数、lはラビングローラーの接触長、rはローラーの半径、nはローラーの回転数(rpm)、vはステージ移動速度(秒速)である。ラビング密度を高くするためには、ラビング回数を増やす、ラビングローラーの接触長を長く、ローラーの半径を大きく、ローラーの回転数を大きく、ステージ移動速度を遅くすればよく、一方、ラビング密度を低くするためには、この逆にすればよい。
Formula (A) L = Nl {1+ (2πrn / 60v)}
In the formula (A), N is the number of rubbing, l is the contact length of the rubbing roller, r is the radius of the roller, n is the number of rotations (rpm) of the roller, and v is the stage moving speed (second speed). In order to increase the rubbing density, the rubbing frequency should be increased, the contact length of the rubbing roller should be increased, the radius of the roller should be increased, the rotation speed of the roller should be increased, and the stage moving speed should be decreased, while the rubbing density should be decreased. To do this, you can reverse this.
7.液晶表示装置の各モードと光学異方性層の好ましい形態
本発明のフィルム、偏光板は、液晶表示装置等の画像表示装置に有利に用いることができ、ディスプレイの最表層に用いることが好ましい。
液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光板を有し、液晶セルは、二枚の電極基板の間に液晶を担持している。さらに、光学異方性層が、液晶セルと一方の偏光板との間に一枚配置されるか、あるいは液晶セルと双方の偏光板との間に二枚配置されることもある。
7). Preferred modes of each mode of liquid crystal display device and optically anisotropic layer The film and polarizing plate of the present invention can be advantageously used in an image display device such as a liquid crystal display device, and are preferably used as the outermost layer of the display.
The liquid crystal display device has a liquid crystal cell and two polarizing plates arranged on both sides thereof, and the liquid crystal cell carries a liquid crystal between two electrode substrates. Furthermore, one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or two optically anisotropic layers may be disposed between the liquid crystal cell and both polarizing plates.
液晶セルは、TNモード、OCBモード、VAモード、IPSモードまたはECBモードであることが好ましい。
各液晶モードにおける光学異方性層の好ましい形態について説明する。
The liquid crystal cell is preferably in TN mode, OCB mode, VA mode, IPS mode or ECB mode.
A preferred form of the optically anisotropic layer in each liquid crystal mode will be described.
(TNモード液晶表示装置)
TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
TNモードの黒表示における液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性化合物が寝た配向状態にある。
(TN mode liquid crystal display)
The TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and is described in many documents.
The alignment state in the liquid crystal cell in the TN mode black display is an alignment state in which a rod-like liquid crystalline molecule rises at the center of the cell and the rod-like liquid crystalline compound lies in the vicinity of the cell substrate.
セル中央部分の棒状液晶性化合物に対しては、ホメオトロピック配向(円盤面が寝ている水平配向)のディスコティック液晶性化合物もしくは(透明)支持体で補償し、セルの基板近傍の棒状液晶性化合物に対しては、ハイブリット配向(長軸の傾きが偏光膜との距離に伴って変化している配向)のディスコティック液晶性化合物で補償することができる。
また、セル中央部分の棒状液晶性化合物に対しては、ホモジニアス配向(長軸が寝ている水平配向)の棒状液晶性化合物もしくは(透明)支持体で補償し、セルの基板近傍の棒状液晶性化合物に対しては、ハイブリット配向のディスコティック液晶性化合物で補償することもできる。
The rod-like liquid crystalline compound in the center of the cell is compensated with a discotic liquid crystalline compound of the homeotropic orientation (horizontal orientation in which the disk surface is lying) or a (transparent) support, and the rod-like liquid crystalline property in the vicinity of the cell substrate The compound can be compensated with a discotic liquid crystalline compound having a hybrid orientation (an orientation in which the inclination of the major axis changes with the distance from the polarizing film).
In addition, the rod-like liquid crystalline compound at the center of the cell is compensated with a rod-like liquid crystalline compound having a homogeneous orientation (horizontal orientation in which the major axis lies) or a (transparent) support, and the rod-like liquid crystalline property in the vicinity of the cell substrate The compound can be compensated with a discotic liquid crystalline compound having a hybrid alignment.
ホメオトロピック配向の液晶性化合物は、液晶性化合物の長軸の平均配向方向と偏光膜の面との角度が85〜95度の状態で配向している。
ホモジニアス配向の液晶性化合物は、液晶性化合物の長軸の平均配向方向と偏光膜の面との角度が5度未満の状態で配向している。
ハイブリット配向の液晶性化合物は、液晶性化合物の長軸の平均配向方向と偏光膜の面との角度が15度以上であることが好ましく、15度〜85度であることがさらに好ましい。
The homeotropic alignment liquid crystal compound is aligned in a state where the angle between the average alignment direction of the major axis of the liquid crystal compound and the plane of the polarizing film is 85 to 95 degrees.
The liquid crystal compound of homogeneous alignment is aligned with the angle between the average alignment direction of the major axis of the liquid crystal compound and the plane of the polarizing film being less than 5 degrees.
In the hybrid alignment liquid crystalline compound, the angle between the long axis average alignment direction of the liquid crystalline compound and the plane of the polarizing film is preferably 15 degrees or more, and more preferably 15 degrees to 85 degrees.
本態様の液晶表示装置に本明細書記載の光学補償シートを用いる場合は、ディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層、さらにはホメオトロピック配向したディスコティック液晶性化合物とホモジニアス配向した棒状液晶性化合物の混合体からなる光学異方性層を有する光学補償シートを用い、該光学異方性層のRthレターデーション値は40nm〜200nmであるのが好ましく、Reレターデーション値は0〜70nmであることが好ましい。 When the optical compensation sheet described in the present specification is used for the liquid crystal display device of this embodiment, the optically anisotropic layer in which the discotic liquid crystalline compound is homeotropically aligned, or the rod-like liquid crystalline compound is homogeneously aligned. An optically anisotropic layer and an optical compensation sheet having an optically anisotropic layer made of a mixture of a homeotropically oriented discotic liquid crystalline compound and a homogeneously oriented rod-like liquid crystalline compound are used. The Rth retardation value is preferably 40 nm to 200 nm, and the Re retardation value is preferably 0 to 70 nm.
明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。 In the specification, Re (λ) and Rth (λ) respectively represent in-plane retardation and retardation in the thickness direction at a wavelength λ. Re (λ) is measured by making light having a wavelength of λ nm incident in the normal direction of the film in KOBRA 21ADH (manufactured by Oji Scientific Instruments). Rth (λ) is 10 ° from −50 ° to + 50 ° with respect to the normal direction of the film, with Re (λ) being the in-plane slow axis (determined by KOBRA 21ADH) and the tilt axis (rotating axis). In each step, light of wavelength λ nm is incident from each inclined direction and measured at 11 points, and KOBRA 21ADH calculates based on the measured retardation value, the assumed average refractive index, and the input film thickness value. . Here, as the assumed value of the average refractive index, values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. Those whose average refractive index is not known can be measured with an Abbe refractometer. The average refractive index values of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59). The KOBRA 21ADH calculates nx, ny, and nz by inputting the assumed value of the average refractive index and the film thickness.
ホメオトロピック配向(水平配向)しているディスコティック液晶性化合物層及びホモジニアス配向(水平配向)している棒状液晶性化合物層に関しては、特開平12−304931号及び同12−304932号の各公報に記載されている。ハイブリット配向しているディスコティック液晶性化合物層に関しては、特開平8−50206号公報に記載がある。 Regarding the discotic liquid crystal compound layer having homeotropic alignment (horizontal alignment) and the rod-like liquid crystal compound layer having homogeneous alignment (horizontal alignment), Japanese Patent Laid-Open Nos. 12-304931 and 12-304932 describe them. Are listed. The discotic liquid crystal compound layer having a hybrid orientation is described in JP-A-8-50206.
(OCBモード液晶表示装置)
OCBモードの液晶セルは、棒状液晶性化合物を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配向モードの液晶セルを用いた液晶表示装置は、米国特許第4583825号、同5410422号の各明細書に開示されている。棒状液晶性化合物が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードと呼ばれる。
OCBモードの液晶セルもTNモード同様、黒表示においては、液晶セル中の配向状態は、セル中央部で棒状液晶性化合物が立ち上がり、セルの基板近傍では棒状液晶性化合物が寝た配向状態にある。
(OCB mode liquid crystal display)
The OCB mode liquid crystal cell is a bend alignment mode liquid crystal cell in which a rod-like liquid crystal compound is aligned in a substantially opposite direction (symmetrically) between an upper portion and a lower portion of the liquid crystal cell. Liquid crystal display devices using a bend alignment mode liquid crystal cell are disclosed in US Pat. Nos. 4,583,825 and 5,410,422. Since the rod-like liquid crystal compounds are symmetrically aligned at the upper and lower portions of the liquid crystal cell, the bend alignment mode liquid crystal cell has a self-optical compensation function. Therefore, this liquid crystal mode is called an OCB (Optically Compensatory Bend) liquid crystal mode.
Similarly to the TN mode, the liquid crystal cell in the OCB mode is in a black display, and the alignment state in the liquid crystal cell is such that the rod-like liquid crystal compound rises at the center of the cell and the rod-like liquid crystal compound lies in the vicinity of the cell substrate. .
黒表示にTNモードと液晶の配向は同じ状態であるため、好ましい態様もTNモード対応を同じである。ただし、TNモードに比べ、OCBモードの方がセル中央部で液晶性化合物が立ち上がった範囲が大きいために、ディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層について、若干のレターデーション値の調整が必要である。具体的には、(透明)支持体上のディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層を有する光学補償シートを用い、は、Rthレターデーション値が150nm〜500nmであり、Reレターデーション値が20〜70nmであることが好ましい。 Since the TN mode and the alignment of the liquid crystal are the same in black display, the preferred mode is the same for the TN mode. However, since the OCB mode has a larger range in which the liquid crystal compound has risen at the center of the cell than the TN mode, an optically anisotropic layer in which the discotic liquid crystal compound is homeotropically aligned or a rod-like liquid crystal It is necessary to slightly adjust the retardation value of the optically anisotropic layer in which the functional compound is homogeneously oriented. Specifically, an optically anisotropic layer in which a discotic liquid crystalline compound on a (transparent) support is homeotropically aligned, or an optically anisotropic layer in which a rod-like liquid crystalline compound is homogeneously aligned. When a compensation sheet is used, the Rth retardation value is preferably 150 nm to 500 nm, and the Re retardation value is preferably 20 to 70 nm.
(VAモード液晶表示装置)
VAモードの液晶セルでは、電圧無印加時に棒状液晶性化合物が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性化合物を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性化合物を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)及び(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
(VA mode liquid crystal display device)
In the VA mode liquid crystal cell, the rod-like liquid crystalline compound is aligned substantially vertically when no voltage is applied.
The VA mode liquid crystal cell includes (1) a narrowly defined VA mode liquid crystal cell in which a rod-like liquid crystal compound is aligned substantially vertically when no voltage is applied, and is substantially horizontally aligned when a voltage is applied (Japanese Patent Laid-Open No. 2). 176625 (in Japanese Patent Publication No. 176625), and (2) a liquid crystal cell (SID97, Digest of tech. Papers (Proceedings) 28 (1997) 845 in which the VA mode is converted into a multi-domain (for MVA mode) in order to enlarge the viewing angle. ), (3) A liquid crystal cell in a mode (n-ASM mode) in which a rod-like liquid crystalline compound is substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied (Preliminary Collection 58-59 of the Japan Liquid Crystal Society) (1998)) and (4) SURVAVAL mode liquid crystal cells (announced at LCD International 98).
VAモードの液晶表示装置の黒表示において、液晶セル中の棒状液晶性化合物は、そのほとんどが、立ち上がった状態であるため、ディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層で液晶性化合物を補償し、別に、棒状液晶性化合物がホモジニアス配向し、棒状液晶性化合物の長軸の平均配向方向と偏光膜の透過軸方向との角度が5度未満である光学異方性層で偏光板の視角依存性を補償することが好ましい。 In the black display of the VA mode liquid crystal display device, most of the rod-like liquid crystalline compounds in the liquid crystal cell are in a standing state, so that the optically anisotropic layer in which the discotic liquid crystalline compounds are homeotropically aligned, Alternatively, the liquid crystalline compound is compensated by an optically anisotropic layer in which the rod-like liquid crystalline compound is homogeneously oriented, and separately, the rod-like liquid crystalline compound is homogeneously oriented, and the average orientation direction of the major axis of the rod-like liquid crystalline compound and the polarizing film It is preferable to compensate the viewing angle dependency of the polarizing plate with an optically anisotropic layer having an angle with respect to the transmission axis direction of less than 5 degrees.
支持体もしくはディスコティック液晶性化合物がホメオトロピック配向している光学異方性層、もしくは、棒状液晶性化合物がホモジニアス配向している光学異方性層は、Rthレターデーション値が150nm〜500nmであるのが好ましく、Reレターデーション値が20〜70nmであることがより好ましい。 The optically anisotropic layer in which the support or the discotic liquid crystalline compound is homeotropically aligned, or the optically anisotropic layer in which the rod-like liquid crystalline compound is homogeneously aligned has an Rth retardation value of 150 nm to 500 nm. It is preferable that the Re retardation value is 20 to 70 nm.
<IPSモード液晶表示装置>
IPSモードの液晶セルは、ネマチック液晶に横電界をかけてスイッチングする方式であり、詳しくはProc.IDRC(Asia Display ’95),p.577−580及び同p.707−710に記載されている。
<IPS mode liquid crystal display device>
The IPS mode liquid crystal cell is a type in which a nematic liquid crystal is switched by applying a lateral electric field. IDRC (Asia Display '95), p. 577-580 and p. 707-710.
<ECBモード液晶表示装置>
ECBモードの液晶セルは、電圧無印加時に棒状液晶性分子が実質的に水平配向している。ECBモードは、最も単純な構造を有する液晶表示モードの一つであって、例えば特開平5−203946号公報に詳細が記載されている。
<ECB mode liquid crystal display>
In the ECB mode liquid crystal cell, rod-like liquid crystalline molecules are substantially horizontally aligned when no voltage is applied. The ECB mode is one of the liquid crystal display modes having the simplest structure, and is described in detail in, for example, Japanese Patent Application Laid-Open No. 5-203946.
本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。 In order to describe the present invention in detail, examples will be described below, but the present invention is not limited thereto. Unless otherwise specified, “part” and “%” are based on mass.
(ゾル液aの調製)
攪拌機、還流冷却器を備えた反応器に、メチルエチルケトン120部、アクリロキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製;前記化合物M−1)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。
質量平均分子量は1800であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。29Si−NMR測定による縮合率αは0.88であった。また、ガスクロマトグラフィー分析から、原料のアクリロキシプロピルトリメトキシシランは全く残存していなかった。
(Preparation of sol solution a)
In a reactor equipped with a stirrer and a reflux condenser, methyl ethyl ketone 120 parts, acryloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd .; compound M-1) 100 parts, diisopropoxyaluminum ethylacetate After adding 3 parts of acetate and mixing, 30 parts of ion-exchanged water was added and reacted at 60 ° C. for 4 hours, and then cooled to room temperature to obtain sol solution a.
The mass average molecular weight was 1800, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 100%. The condensation rate α as determined by 29 Si-NMR measurement was 0.88. Further, from the gas chromatography analysis, no acryloxypropyltrimethoxysilane as a raw material remained.
(ゾル液bの調製)
温度計、窒素導入管、滴下ロートを備えた1,000mlの反応容器に、アクリロキシプロピルトリメトキシシラン187g(0.80mol)、メチルトリメトキシシラン(前記化合物M−48)27.2g(0.20mol)、メタノール320g(10mol)とKF0.06g(0.001mol)を仕込み、攪拌下室温で水15.1g(0.86mol)をゆっくり滴下した。滴下終了後室温で3時間攪拌した後、メタノール還溜下2時間加熱攪拌した。この後、低沸分を減圧留去し、更にろ過することによりゾル液bを120g得た。このようにして得た物質をGPC測定した結果、質量平均分子量は1500であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は30%であった。
また1H−NMRの測定結果から、得られた物質の構造は、以下の一般式で表される構造であった。
(Preparation of sol liquid b)
In a 1,000 ml reaction vessel equipped with a thermometer, a nitrogen introduction tube, and a dropping funnel, 187 g (0.80 mol) of acryloxypropyltrimethoxysilane and 27.2 g (0.002 mol) of methyltrimethoxysilane (the compound M-48). 20 mol), 320 g (10 mol) of methanol and 0.06 g (0.001 mol) of KF were charged, and 15.1 g (0.86 mol) of water was slowly added dropwise at room temperature with stirring. After completion of the dropwise addition, the mixture was stirred at room temperature for 3 hours, and then heated and stirred for 2 hours under methanol reflux. Then, 120 g of sol liquid b was obtained by distilling off the low boiling point under reduced pressure and further filtering. As a result of GPC measurement of the substance thus obtained, the mass average molecular weight was 1500, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 30%.
Moreover, from the measurement result of 1 H-NMR, the structure of the obtained substance was a structure represented by the following general formula.
更に、29Si−NMR測定による縮合率αは0.56であった。この分析結果から、本シランカップリング剤ゾルは直鎖状構造部分が大部分であることも分かった。
また、ガスクロマトグラフィー分析から、原料のアクリロキシプロピルトリメトキシシランは5%以下の残存率であった。
Furthermore, the condensation rate α as determined by 29 Si-NMR was 0.56. From this analysis result, it was also found that the silane coupling agent sol was mostly composed of a linear structure.
From the gas chromatography analysis, the raw material acryloxypropyltrimethoxysilane had a residual rate of 5% or less.
(フルオロ脂肪族基含有ポリマー(P−33)の合成)
攪拌機、還流冷却器を備えた反応器に、1H,1H,7H−ドデカフルオロヘプチルアクリレート39.13g、アクリル酸0.80g、ジメチル2,2’−アゾビスイソブチレート1.1g、2−ブタノン30gを加え窒素雰囲気下で6時間78℃に加熱して反応を完結させた。質量平均分子量は1.0×104であった。
(Synthesis of fluoroaliphatic group-containing polymer (P-33))
In a reactor equipped with a stirrer and a reflux condenser, 39.13 g of 1H, 1H, 7H-dodecafluoroheptyl acrylate, 0.80 g of acrylic acid, 1.1 g of
(フルオロ脂肪族基含有ポリマー(P−136)の合成)
フルオロ脂肪族基含有ポリマー(P−33)の合成と類似の方法で、フルオロ脂肪族基含有ポリマー(P−136)を合成した。
(Synthesis of fluoroaliphatic group-containing polymer (P-136))
A fluoroaliphatic group-containing polymer (P-136) was synthesized by a method similar to the synthesis of the fluoroaliphatic group-containing polymer (P-33).
(1)セルロースアセテート溶液の調整
─────────────────────────────────────
セルロースアセテート溶液A−1の組成
─────────────────────────────────────
セルローストリアセテート 100質量部
メチレンクロライド(第1溶媒) 320質量部
メタノール(第2溶媒) 83質量部
1−ブタノール(第3溶媒) 3質量部
可塑剤A(トリフェニルホスフェート) 7.6質量部
可塑剤B(ビフェニルジフェニルホスフェート) 3.8質量部
UV剤a:2(2'−ヒドロキシ−3',5'−ジ−tert−
ブチルフェニル)ベンゾトリアゾール 0.7質量部
UV剤b:2(2'−ヒドロキシ−3',5'−ジ−tert−
アミルフェニル)−5−クロルベンゾトリアゾール 0.3質量部
クエン酸エステル混合物(クエン酸、モノエチルエステル、ジエチルエステル、
トリエチルエステル混合物) 0.006質量部
微粒子(二酸化ケイ素(粒径15nm)、モース硬度 約7) 0.05質量部
─────────────────────────────────────
(1) Preparation of cellulose acetate solution ─────────────────────────────────────
Composition of cellulose acetate solution A-1 ─────────────────────────────────────
Cellulose triacetate 100 parts by mass Methylene chloride (first solvent) 320 parts by mass Methanol (second solvent) 83 parts by mass 1-butanol (third solvent) 3 parts by mass plasticizer A (triphenyl phosphate) 7.6 parts by mass plasticizer B (biphenyldiphenyl phosphate) 3.8 parts by mass UV agent a: 2 (2′-hydroxy-3 ′, 5′-di-tert-
Butylphenyl) benzotriazole 0.7 parts by mass UV agent b: 2 (2′-hydroxy-3 ′, 5′-di-tert-
(Amylphenyl) -5-chlorobenzotriazole 0.3 parts by mass of citric acid ester mixture (citric acid, monoethyl ester, diethyl ester,
Triethyl ester mixture) 0.006 parts by mass fine particles (silicon dioxide (
上記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液A−1を調製した。 The above composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution A-1.
(2)塗布液の調製
─────────────────────────────────
防眩性ハードコート層用塗布液B−1の組成
─────────────────────────────────
PET−30 50.0g
イルガキュア184 1.0g
SX−350(30%) 1.5g
架橋アクリル−スチレン粒子(30%) 13.0g
FP−1 0.75g
ゾル液b 9.5g
トルエン 38.5g
─────────────────────────────────
(2) Preparation of coating solution ──────────────────────────────────
Composition of coating solution B-1 for anti-glare hard coat layer─────────────────────────────────
PET-30 50.0g
Irgacure 184 1.0g
SX-350 (30%) 1.5g
Cross-linked acrylic-styrene particles (30%) 13.0 g
FP-1 0.75g
Sol liquid b 9.5g
Toluene 38.5g
─────────────────────────────────
─────────────────────────────────
光拡散性ハードコート層用塗布液B−2の組成
─────────────────────────────────
デソライトZ7404 100g
DPHA 30g
ゾル液b 9.5g
KE−P150 9.0g
MXS−300 3.5g
MEK(メチルエチルケトン) 30g
MIBK(メチルイソブチルケトン) 15g
─────────────────────────────────
─────────────────────────────────
Composition of coating solution B-2 for light diffusing hard coat layer ─────────────────────────────────
Desolite Z7404 100g
DPHA 30g
Sol liquid b 9.5g
KE-P150 9.0g
MXS-300 3.5g
MEK (methyl ethyl ketone) 30g
MIBK (methyl isobutyl ketone) 15g
─────────────────────────────────
上記塗布液を孔径30μmのポリプロピレン製フィルタでろ過して防眩性ハードコート液B−1、光拡散性ハードコート液B−2を調製した。 The coating solution was filtered through a polypropylene filter having a pore size of 30 μm to prepare antiglare hard coat solution B-1 and light diffusing hard coat solution B-2.
─────────────────────────────────
低屈折率層用塗布液C−1の組成
─────────────────────────────────
含フッ素ポリマーB(6%) 13.0g
MEK−ST−L(30%) 1.0g
ゾル液a 0.5g
MEK 5.0g
シクロヘキサノン 0.5g
─────────────────────────────────
─────────────────────────────────
Composition of coating liquid C-1 for low refractive index layer ─────────────────────────────────
Fluoropolymer B (6%) 13.0g
MEK-ST-L (30%) 1.0 g
Sol liquid a 0.5g
MEK 5.0g
Cyclohexanone 0.5g
─────────────────────────────────
─────────────────────────────────
低屈折率層用塗布液C−2の組成
─────────────────────────────────
含フッ素ポリマーA(6%) 10g
MEK−ST(30%) 0.5g
MEK−ST−L(30%) 0.5g
ゾル液a 0.2g
MEK 1.5g
シクロヘキサノン 0.4g
─────────────────────────────────
─────────────────────────────────
Composition of coating liquid C-2 for low refractive index layer ─────────────────────────────────
Fluoropolymer A (6%) 10g
MEK-ST (30%) 0.5g
MEK-ST-L (30%) 0.5g
Sol liquid a 0.2g
MEK 1.5g
Cyclohexanone 0.4g
─────────────────────────────────
─────────────────────────────────
低屈折率層用塗布液C−3の組成
─────────────────────────────────
含フッ素ポリマーB(6%) 78.3g
中空シリカ(18.2%) 21.4g
MEK−ST−L 3.0g
ゾル液a 1.7g
MEK 4.8g
シクロヘキサノン 5.8g
─────────────────────────────────
─────────────────────────────────
Composition of coating liquid C-3 for low refractive index layer ─────────────────────────────────
Fluoropolymer B (6%) 78.3g
Hollow silica (18.2%) 21.4g
MEK-ST-L 3.0g
Sol liquid a 1.7 g
MEK 4.8g
5.8 g of cyclohexanone
─────────────────────────────────
─────────────────────────────────
低屈折率層用塗布液C−4の組成
─────────────────────────────────
DPHA 3.0g
中空シリカ(18.2%) 40.0g
RMS−033 0.7g
イルガキュア907 0.2g
ゾル液a 6.0g
MEK 290.0g
シクロヘキサノン 9.0g
─────────────────────────────────
─────────────────────────────────
Composition of coating solution C-4 for low refractive index layer ─────────────────────────────────
DPHA 3.0g
Hollow silica (18.2%) 40.0g
RMS-033 0.7g
Irgacure 907 0.2g
Sol liquid a 6.0 g
MEK 290.0g
Cyclohexanone 9.0g
─────────────────────────────────
─────────────────────────────────
低屈折率層用塗布液C−5の組成
─────────────────────────────────
DPHA 1.5g
P−3 5.5g
中空シリカ(18.2%) 20.0g
RMS−033 0.7g
イルガキュア907 0.2g
ゾル液a 6.0g
MEK 305.0g
シクロヘキサノン 9.0g
─────────────────────────────────
─────────────────────────────────
Composition of coating solution C-5 for low refractive index layer ─────────────────────────────────
DPHA 1.5g
P-3 5.5g
Hollow silica (18.2%) 20.0g
RMS-033 0.7g
Irgacure 907 0.2g
Sol liquid a 6.0 g
MEK 305.0g
Cyclohexanone 9.0g
─────────────────────────────────
上記溶液を攪拌後、孔径1μmのポリプロピレン製フィルタでろ過して、低屈折率層用塗布液C−1〜C−5を調製した。 The above solution was stirred and then filtered through a polypropylene filter having a pore size of 1 μm to prepare coating solutions C-1 to C-5 for a low refractive index layer.
それぞれ使用した化合物を以下に示す。 The compounds used are shown below.
・セルローストリアセテート:置換度2.84、粘度平均重合度306、含水率0.2質量%、ジクロロメタン溶液中6質量%の粘度 315mPa・s、平均粒子径1.5mmであって標準偏差0.5mmである粉体
・PET−30:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[日本化薬(株)製]
・DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物[日本化薬(株)製]
・イルガキュア184:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・SX−350:平均粒径3.5μm架橋ポリスチレン粒子[屈折率1.60、綜研化学(株)製、30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
・架橋アクリル−スチレン粒子:平均粒径3.5μm[屈折率1.55、綜研化学(株)製、30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
・FP−1:フッ素系表面改質剤
Cellulose triacetate: substitution degree 2.84, viscosity average polymerization degree 306, water content 0.2 mass%, viscosity 6 mass% in dichloromethane solution 315 mPa · s, average particle diameter 1.5 mm with standard deviation 0.5 mm And PET-30: a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate [manufactured by Nippon Kayaku Co., Ltd.]
DPHA: Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd.]
・ Irgacure 184: Polymerization initiator [Ciba Specialty Chemicals Co., Ltd.]
SX-350: average particle size 3.5 μm cross-linked polystyrene particles [refractive index 1.60, manufactured by Soken Chemical Co., Ltd., 30% toluene dispersion, used after dispersion for 20 minutes at 10,000 rpm in a polytron disperser]
Crosslinked acrylic-styrene particles: average particle size 3.5 μm [refractive index 1.55, manufactured by Soken Chemical Co., Ltd., 30% toluene dispersion, used after dispersion for 20 minutes at 10,000 rpm with a Polytron disperser]
・ FP-1: Fluorine-based surface modifier
・デソライトZ7404:ZrO2微粒子含有ハードコート剤[屈折率1.62、固形分濃度60.4%、JSR(株)製]
・KEP−150:平均粒径1.5μmシリカ粒子[屈折率1.46、日本触媒(株)製、30%MEK分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
・MXS−300:平均粒径3μmPMMA粒子[屈折率1.49、綜研化学(株)製、30%MIBK分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
Desolite Z7404: Hard coating agent containing ZrO 2 fine particles [refractive index 1.62, solid content concentration 60.4%, manufactured by JSR Corporation]
KEP-150: Silica particles having an average particle size of 1.5 μm [refractive index: 1.46, manufactured by Nippon Shokubai Co., Ltd., 30% MEK dispersion, used after dispersion at 10,000 rpm for 20 minutes with a Polytron disperser]
MXS-300: PMMA particles having an average particle diameter of 3 μm [refractive index: 1.49, manufactured by Soken Chemical Co., Ltd., 30% MIBK dispersion, used after dispersion at 10,000 rpm for 20 minutes in a Polytron disperser]
・含フッ素ポリマーA:特開平11−189621号公報の実施例1に記載の含フッ素ポリマー80g、硬化剤として サイメル303 15g(日本サイテックインダストリーズ(株)、硬化触媒として キャタリスト4050 2.0g(日本サイテックインダストリーズ(株)をMEKに溶解して6%にしたもの[屈折率1.42、固形分濃度6%]
・含フッ素ポリマーB:特開平11−189621号公報の実施例1に記載の含フッ素ポリマー 80g、硬化剤として サイメル303 20g(日本サイテックインダストリーズ(株)、硬化触媒として キャタリスト4050 2.0g(日本サイテックインダストリーズ(株)をMEKに溶解して6%にしたもの[屈折率1.44、固形分濃度6%]
Fluoropolymer A: 80 g of the fluoropolymer described in Example 1 of JP-A-11-189621, 15 g of Cymel 303 as a curing agent (Nippon Cytec Industries, Ltd., 2.0 g of Catalyst 4050 as a curing catalyst (Japan) Cytec Industries Co., Ltd. dissolved in MEK to 6% [refractive index 1.42, solid content concentration 6%]
Fluoropolymer B: 80 g of the fluoropolymer described in Example 1 of JP-A-11-189621, 20 g of Cymel 303 as a curing agent (Nippon Cytec Industries, Ltd., 2.0 g of Catalyst 4050 as a curing catalyst (Japan) Cytec Industries Co., Ltd. dissolved in MEK to 6% [refractive index 1.44, solid content concentration 6%]
・P−3:特開平2004−45462号公報に記載の含フッ素共重合体P−3(質量平均分子量約50000)
・MEK−ST:コロイダルシリカ分散物[平均粒径10〜20nm、固形分濃度30%、日産化学(株)製]
・MEK−ST−L:コロイダルシリカ分散物[MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製]
・中空シリカ:中空シリカゾル[CS−60 IPA、屈折率1.31、平均粒径60nm、シェル厚み10nm、固形分濃度18.2%、触媒化成工業(株)製]をKBM−5103表面修飾したもの表面修飾率対シリカ30質量%
・KBM−5103:シランカップリング剤(アクリロキシプロピルトリメトキシシラン)[信越化学工業(株)製]
・RMS−033:反応性シリコーン[Gelest(株)製]
・イルガキュア907:光重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
P-3: fluorine-containing copolymer P-3 (mass average molecular weight of about 50000) described in JP-A No. 2004-45462
MEK-ST: Colloidal silica dispersion [average particle size 10-20 nm, solid content concentration 30%, manufactured by Nissan Chemical Co., Ltd.]
MEK-ST-L: Colloidal silica dispersion [MEK-ST particle size difference, average particle size 45 nm, solid content concentration 30%, manufactured by Nissan Chemical Co., Ltd.]
Hollow silica: Hollow silica sol [CS-60 IPA, refractive index 1.31, average particle size 60 nm,
KBM-5103: Silane coupling agent (acryloxypropyltrimethoxysilane) [manufactured by Shin-Etsu Chemical Co., Ltd.]
RMS-033: Reactive silicone [manufactured by Gelest Co., Ltd.]
・ Irgacure 907: Photopolymerization initiator [Ciba Specialty Chemicals Co., Ltd.]
[実施例1:反射防止フィルム試料の作成と評価] [Example 1: Preparation and evaluation of antireflection film sample]
(1)透明支持体の製膜
セルロースアセテート溶液A−1を充分に攪拌して、ドープを調製した。流延口から3層のドープを、表面の平均粗さが0.01μm以下で、−5℃に冷却されたドラム上に共流延した。流延後、溶媒含有率70質量%の場外で剥ぎ取り、フィルムの幅方向の両端をピンテンター(特開平4−1009号公報の図3に記載のピンテンター)で固定し、溶媒含有率が3〜5質量%の状態で、横方向(機械方向に垂直な方向)の延伸率が3%となる間隔を保ちつつ90℃〜110℃の温度で乾燥した。その後、130℃に設定した熱処理装置のロール間を搬送することにより、溶媒含有率が0.3質量%以下になるまで乾燥し、厚み80μmの透明支持体を作製した。
(1) Film formation of transparent support Cellulose acetate solution A-1 was sufficiently stirred to prepare a dope. Three layers of the dope were co-cast from the casting port onto a drum having an average surface roughness of 0.01 μm or less and cooled to −5 ° C. After casting, the film is peeled off at a solvent content of 70% by mass, and both ends in the width direction of the film are fixed with a pin tenter (the pin tenter described in FIG. 3 of JP-A-4-1009), and the solvent content is 3 to 3. In a state of 5% by mass, the film was dried at a temperature of 90 ° C. to 110 ° C. while maintaining an interval at which the stretching ratio in the transverse direction (direction perpendicular to the machine direction) was 3%. Then, it dried until the solvent content rate became 0.3 mass% or less by conveying between the rolls of the heat processing apparatus set to 130 degreeC, and produced the 80-micrometer-thick transparent support body.
(2)防眩性ハードコート層の塗設
上記記載の80μmの厚さのトリアセチルセルロースフィルムをロール形態で巻き出して直接、防眩性ハードコート層用塗布液B−1を線数135本/インチ、深度60μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度10m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、巻き取った。
(2) Coating of anti-glare hard coat layer The triacetyl cellulose film having a thickness of 80 μm described above is unrolled directly in a roll form, and the coating liquid B-1 for anti-glare hard coat layer has 135 lines. / Inch, using a microgravure roll with a diameter of 50 mm having a gravure pattern with a depth of 60 μm and a doctor blade, the coating speed was 10 m / min, the coating was dried at 60 ° C. for 150 seconds, and further under a nitrogen purge, 160 W / Using an air-cooled metal halide lamp of cm (made by Eye Graphics Co., Ltd.), the coating layer was cured by irradiating with ultraviolet rays having an illuminance of 400 mW / cm 2 and an irradiation amount of 250 mJ / cm 2 , and wound up.
(3)低屈折率層の塗設
防眩性ハードコート層を塗設したトリアセチルセルロースフィルムを再び巻き出して、上記低屈折率層用塗布液C−1を線数200本/インチ、深度30μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度20m/分の条件で塗布し、120℃で75秒乾燥の後、更に10分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量240mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取った。
(3) Coating of low refractive index layer The triacetyl cellulose film coated with the antiglare hard coat layer is unwound again, and the coating liquid C-1 for the low refractive index layer has a line number of 200 lines / inch and a depth. Using a micro gravure roll with a diameter of 50 mm having a 30 μm gravure pattern and a doctor blade, it was applied at a transfer speed of 20 m / min, dried at 120 ° C. for 75 seconds, further dried for 10 minutes, and then purged with nitrogen. Using a 240 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.), an ultraviolet ray with an illuminance of 400 mW / cm 2 and an irradiation amount of 240 mJ / cm 2 is irradiated to form a low refractive index layer with a thickness of 100 nm. Winded up.
(反射防止フィルム試料LR−1〜LR−5の作成)
上記塗設方法にて、透明支持体上に、ハードコート層用塗布液B−1,B−2、低屈折率層用塗布液C−1〜C−5を表1に示すような組み合わせにして反射防止フィルム試料LR−1〜LR−5を作成した。
(Preparation of antireflection film samples LR-1 to LR-5)
In the above coating method, the hard coat layer coating liquids B-1 and B-2 and the low refractive index layer coating liquids C-1 to C-5 are combined as shown in Table 1 on the transparent support. Antireflection film samples LR-1 to LR-5 were prepared.
(4)反射防止フィルムの鹸化処理
製膜後、前記試料について、以下の処理を行った。1.5mol/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/Lの希硫酸水溶液を調製し、35℃に保温した。作製した反射防止フィルムを上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
このようにして、鹸化処理済み反射防止フィルムLR−1〜LR−5を作製した。
(4) Saponification treatment of antireflection film After film formation, the sample was subjected to the following treatment. A 1.5 mol / L aqueous sodium hydroxide solution was prepared and kept at 55 ° C. A 0.01 mol / L dilute sulfuric acid aqueous solution was prepared and kept at 35 ° C. The prepared antireflection film was immersed in the aqueous sodium hydroxide solution for 2 minutes, and then immersed in water to sufficiently wash away the aqueous sodium hydroxide solution. Subsequently, after being immersed in the above-mentioned dilute sulfuric acid aqueous solution for 1 minute, it was immersed in water to sufficiently wash away the dilute sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
In this way, saponified antireflection films LR-1 to LR-5 were produced.
(反射防止フィルムの評価)
得られた反射防止フィルムLR−1〜LR−5について、以下の項目の評価を行った。結果を表1に示す。
(Evaluation of antireflection film)
The obtained antireflection films LR-1 to LR-5 were evaluated for the following items. The results are shown in Table 1.
(1)反射率
鏡面反射率の測定は、分光光度計“V−550”[日本分光(株)製]にアダプター“ARV−474”を装着して、380〜780nmの波長領域において、入射角5°における出射角−5゜の鏡面反射率を測定し、450〜650nmの平均反射率を算出し、反射防止性を評価することができる。
(1) Reflectance Specular reflectance is measured by attaching an adapter “ARV-474” to a spectrophotometer “V-550” [manufactured by JASCO Corporation], and in the wavelength region of 380 to 780 nm, the incident angle The specular reflectance at an outgoing angle of −5 ° at 5 ° is measured, the average reflectance at 450 to 650 nm is calculated, and the antireflection property can be evaluated.
(2)色味変動
色味の測定も、分光光度計“V−550”[日本分光(株)製]にアダプター“ARV−474"を装着して行う。CIE標準光源D65の、波長380nmから780nmの領域における入射角5゜の入射光に対して、出射角−5°〜−80°(5°間隔)の反射光の分光スペクトルから、各出射角の色味、すなわちCIE1976L*a*b*色空間のL*、a*、b*値を求め、a*値のうちの最大値a* max、最小値a* minからΔa*を算出し、b*値のうちの最大値b* max、最小値b* minからΔb*を算出することで色味変動を評価することができる。
Δa*=a* max−a* min (1)
Δb*=b* max−b* min (2)
(2) Color Variation The color is also measured by attaching the adapter “ARV-474” to the spectrophotometer “V-550” (manufactured by JASCO Corporation). For each incident light with an incident angle of 5 ° in the wavelength region of 380 nm to 780 nm of the CIE standard light source D 65 , each emission angle is determined from the spectrum of the reflected light having an emission angle of −5 ° to −80 ° (5 ° interval). tint, i.e. CIE 1976 L * a * b * color space L *, a *, b * calculated values, calculates the .DELTA.a * maximum value a * max of the a * value, the minimum value a * min, Color variation can be evaluated by calculating Δb * from the maximum value b * max and the minimum value b * min among the b * values.
Δa * = a * max− a * min (1)
Δb * = b * max− b * min (2)
(3)ヘイズ値および内部ヘイズ値、表面ヘイズ値
フィルムのヘイズとはJIS−K7105に規定されたヘイズ値のことであり、JIS−K7361−1で規定された測定法に基づき、日本電色工業(株)製の濁度計「NDH−1001DP」を用いて測定したヘイズ=(拡散光/全透過光)×100(%)として自動計測される値を用いた。
また各ハードコート層塗布液中の透光性微粒子分散液を除去した以外は全く同様に調整した塗布液を、反射防止フィルム上に塗布、乾燥、硬化して得られた表面凹凸のない光学フィルムに対してもヘイズ測定し、これを各反射防止フィルムの内部ヘイズ値とした。表面ヘイズ値は上記のヘイズ値と内部ヘイズ値の差を、表面ヘイズ値とした。
(3) Haze value, internal haze value, surface haze value The haze of the film is the haze value specified in JIS-K7105, and based on the measurement method specified in JIS-K7361-1, Nippon Denshoku Industries Co., Ltd. A value automatically measured as haze = (diffuse light / total transmitted light) × 100 (%) measured using a turbidimeter “NDH-1001DP” manufactured by Co., Ltd. was used.
Also, an optical film without surface irregularities obtained by coating, drying and curing a coating solution prepared in the same manner except that the light-transmitting fine particle dispersion in each hard coat layer coating solution is removed. Also, the haze measurement was performed, and this was defined as the internal haze value of each antireflection film. The surface haze value was defined as the difference between the above haze value and the internal haze value.
(4)ゴニオフォトメータ散乱強度比
自動変角光度計GP−5型((株)村上色彩技術研究所製)を用いて、入射光に対して反射防止フィルムを垂直に配置し、全方位に渡って散乱光プロファイルを測定した。出射角0°の光強度に対する出射角30°の散乱光強度から求めることができる。
(4) Goniophotometer scattering intensity ratio Using an automatic goniophotometer GP-5 (manufactured by Murakami Color Research Laboratory Co., Ltd.), an antireflection film is arranged perpendicular to the incident light, and in all directions The scattered light profile was measured across. It can be determined from the scattered light intensity at an exit angle of 30 ° with respect to the light intensity at an exit angle of 0 °.
表1に示される結果より、ハードコート層塗布液B−2を使用した従来技術による反射防止フィルムLR−5は、反射光の色味変動が、Δa*が1.4、Δb*が1.5と共に大きく、反射光の角度による色味の変化が大きいことを示している。これに対し、ハードコート層塗布液にB−1を使用した反射防止フィルムLR−1〜LR−4は、反射光の色味変動がΔa*、Δb*共に1以下と小さく、反射光の角度による色味の変化が小さいことを示しており、画像表示装置の表面に用いた場合に色味変動の少ない反射防止フィルムである。
反射防止フィルムLR−1〜LR−4は、内部ヘイズ値も35%以内であって大きすぎず、表面ヘイズ値も2〜15%の間に収まっている。また、反射防止フィルムLR−1〜LR−4は、散乱強度比も0.05%以内であり、これらの点でも画像表示装置の表面に用いた場合の視認性が高いフィルムを実現している。
一方、従来技術(特開2003−270409号公報参照)による反射防止フィルムLR−5は、内部ヘイズ値も50以上と大きく、散乱強度比も0.05%をはるかに越えるものであった。
From the results shown in Table 1, in the antireflection film LR-5 according to the prior art using the hard coat layer coating liquid B-2, the color variation of the reflected light is Δa * is 1.4 and Δb * is 1. 5 is large, indicating that the change in color depending on the angle of the reflected light is large. On the other hand, the antireflection films LR-1 to LR-4 using B-1 as the hard coat layer coating liquid have small variations in the hue of the reflected light, both Δa * and
The antireflection films LR-1 to LR-4 have an internal haze value of 35% or less and are not too large, and the surface haze value is within 2 to 15%. In addition, the antireflection films LR-1 to LR-4 have a scattering intensity ratio of 0.05% or less, and in these respects, a film having high visibility when used on the surface of an image display device is realized. .
On the other hand, the antireflection film LR-5 according to the prior art (see Japanese Patent Application Laid-Open No. 2003-270409) has an internal haze value as large as 50 or more and a scattering intensity ratio far exceeding 0.05%.
なお、ハードコート層用塗布液に用いたゾル液bの代わりに、X−40−2671G(シランカップリング剤、信越化学工業(株)製)を用いても同様な防眩性反射防止フィルムが得られ、高い性能が得られた。
また、セルロースアセテート溶液A−1中のUV剤bの代わりに、UV剤c:2(2’−ヒドロキシ−3’−tert-ブチルフェニル−5’−メチル)−5−クロルベンゾトリアゾール、を用いても同様な高い性能を持つ反射防止フィルムが得られた。
Note that the same antiglare antireflection film can be obtained by using X-40-2671G (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) instead of the sol solution b used in the hard coat layer coating solution. And high performance was obtained.
Further, instead of UV agent b in cellulose acetate solution A-1, UV agent c: 2 (2′-hydroxy-3′-tert-butylphenyl-5′-methyl) -5-chlorobenzotriazole was used. However, an antireflection film having the same high performance was obtained.
[実施例2]
1.5mol/L、55℃のNaOH水溶液中に2分間浸漬したあと中和、水洗した、80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フイルム(株)製)と、実施例1の本発明の防眩性反射防止フィルム試料LR1〜4(鹸化処理済み)に、ポリビニルアルコールにヨウ素を吸着させ、延伸して作製した偏光膜の両面を接着、保護して偏光板1〜4を作製した。このようにして作製した偏光板を、反射防止膜側が最表面となるように透過型TN液晶表示装置搭載のノートパソコンの液晶表示装置(偏光選択層を有する偏光分離フィルムである住友3M(株)製のD−BEFをバックライトと液晶セルとの間に有する)の視認側の偏光板と貼り代えた。
色味変動が少なく、また防眩性と反射防止により外光の映り込みがないため優れたコントラストが得られ、反射像も目立たず優れた視認性を有していた。
[Example 2]
80 μm-thick triacetyl cellulose film (TAC-TD80U, manufactured by Fuji Photo Film Co., Ltd.), which was immersed in an aqueous 1.5 mol / L, 55 ° C. NaOH solution for 2 minutes, then neutralized and washed with water, and Examples 1. Polarizing
There was little variation in color, and no anti-glare and antireflection caused no reflection of external light, so an excellent contrast was obtained, and the reflected image was not noticeable and had excellent visibility.
[実施例3]
PVAフィルムをヨウ素2.0g/l、ヨウ化カリウム4.0g/lの水溶液に25℃にて240秒浸漬し、さらにホウ酸10g/lの水溶液に25℃にて60秒浸漬後、特開2002−86554号公報に記載の図2の形態のテンター延伸機に導入し、5.3倍に延伸し、テンターを延伸方向に対し図2の如く屈曲させ、以降幅を一定に保った。80℃雰囲気で乾燥させた後テンターから離脱した。左右のテンタークリップの搬送速度差は、0.05%未満であり、導入されるフィルムの中心線と次工程に送られるフィルムの中心線のなす角は、46゜であった。ここで|L1−L2|は0.7m、Wは0.7mであり、|L1−L2|=Wの関係にあった。テンター出口における実質延伸方向Ax−Cxは、次工程へ送られるフィルムの中心線22に対し45゜傾斜していた。テンター出口におけるシワ、フィルム変形は観察されなかった。
さらに、PVA((株)クラレ製PVA−117H)3%水溶液を接着剤としてケン化処理した富士写真フイルム(株)製フジタック(セルローストリアセテート、レターデーション値3.0nm)と貼り合わせ、さらに80℃で乾燥して有効幅650mmの偏光板を得た。得られた偏光板の吸収軸方向は、長手方向に対し45゜傾斜していた。この偏光板の550nmにおける透過率は43.7%、偏光度は99.97%であった。さらに310×233mmサイズに裁断したところ、91.5%の面積効率で辺に対し45゜吸収軸が傾斜した偏光板を得た。
次に、実施例1の本発明の防眩性反射防止フィルム試料LR−1〜LR−4(鹸化処理済み)の各々のフィルムを上記偏光板と貼り合わせて反射防止付き偏光板を作製した。この偏光板を用いて反射防止層を最表層に配置した液晶表示装置を作製した。
色味変動が少なく、また、外光の映り込みがないために優れたコントラストが得られ、反射像が目立たず優れた視認性を有していた。
[Example 3]
The PVA film was immersed in an aqueous solution of 2.0 g / l iodine and 4.0 g / l potassium iodide at 25 ° C. for 240 seconds, and further immersed in an aqueous solution of boric acid 10 g / l at 25 ° C. for 60 seconds. It introduced into the tenter drawing machine of the form of FIG. 2 described in 2002-86554, it extended | stretched 5.3 time, the tenter was bent like FIG. 2 with respect to the extending | stretching direction, and the width | variety was kept constant hereafter. After drying in an atmosphere of 80 ° C., it was detached from the tenter. The difference in transport speed between the left and right tenter clips was less than 0.05%, and the angle formed by the center line of the introduced film and the center line of the film sent to the next process was 46 °. Here, | L1-L2 | is 0.7 m, W is 0.7 m, and | L1-L2 | = W. The substantial stretching direction Ax-Cx at the tenter outlet was inclined by 45 ° with respect to the center line 22 of the film sent to the next process. Wrinkles and film deformation at the tenter exit were not observed.
Furthermore, it was bonded to Fuji Photo Film Co., Ltd. Fujitac (cellulose triacetate, retardation value 3.0 nm), which was saponified with an aqueous solution of PVA (Pura-117H, Kuraray Co., Ltd.) 3%, and further 80 ° C. And dried to obtain a polarizing plate having an effective width of 650 mm. The absorption axis direction of the obtained polarizing plate was inclined 45 ° with respect to the longitudinal direction. The polarizing plate had a transmittance at 550 nm of 43.7% and a polarization degree of 99.97%. Further, when the substrate was cut into a size of 310 × 233 mm, a polarizing plate having a 45 ° absorption axis inclined with respect to the side with an area efficiency of 91.5% was obtained.
Next, each of the antiglare antireflection film samples LR-1 to LR-4 (saponified) of Example 1 of the present invention was bonded to the above polarizing plate to prepare a polarizing plate with antireflection. Using this polarizing plate, a liquid crystal display device having an antireflection layer disposed on the outermost layer was produced.
There was little variation in color, and there was no reflection of external light, so an excellent contrast was obtained, and the reflected image was inconspicuous and had excellent visibility.
[実施例4]
(ポリマー基材の作製)
下記の組成物をミキシングタンクに投入し、30℃に加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
────────────────────────────────────
セルロースアセテート溶液組成(質量部) 内層 外層
────────────────────────────────────
酢化度60.9%のセルロースアセテート 100 100
トリフェニルホスフェート(可塑剤) 7.8 7.8
ビフェニルジフェニルホスフェート(可塑剤) 3.9 3.9
メチレンクロライド(第1溶媒) 293 314
メタノール(第2溶媒) 71 76
1−ブタノール(第3溶媒) 1.5 1.6
シリカ微粒子(AEROSIL R972、日本アエロジル(株)製)
0 0.8
下記レターデーション上昇剤(1) 1.7 0
────────────────────────────────────
[Example 4]
(Production of polymer substrate)
The following composition was put into a mixing tank and stirred while heating to 30 ° C. to dissolve each component to prepare a cellulose acetate solution.
────────────────────────────────────
Cellulose acetate solution composition (parts by mass) Inner layer Outer layer ────────────────────────────────────
Cellulose acetate with an acetylation degree of 60.9% 100 100
Triphenyl phosphate (plasticizer) 7.8 7.8
Biphenyl diphenyl phosphate (plasticizer) 3.9 3.9
Methylene chloride (first solvent) 293 314
Methanol (second solvent) 71 76
1-butanol (third solvent) 1.5 1.6
Silica fine particles (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.)
0 0.8
The following retardation increasing agent (1) 1.7 0
────────────────────────────────────
得られた内層用ドープ及び外層用ドープを、三層共流延ダイを用いて、0℃に冷却したドラム上に流延した。残留溶剤量が70質量%のフィルムをドラムから剥ぎ取り、両端をピンテンターにて固定して搬送方向のドロー比を110%として搬送しながら80℃で乾燥させ、残留溶剤量が10%となったところで、110℃で乾燥させた。その後、140℃の温度で30分乾燥し、残留溶剤が0.3質量%のセルロースアセテートフィルム(外層:3μm、内層:74μm、外層:3μm)を製造した。作製したセルロースアセテートフィルム(CF−02)について、光学特性を測定した。 The obtained inner layer dope and outer layer dope were cast on a drum cooled to 0 ° C. using a three-layer co-casting die. The film having a residual solvent amount of 70% by mass was peeled off from the drum, both ends were fixed with a pin tenter, and the film was dried at 80 ° C. while transporting at a draw ratio of 110% in the transport direction, resulting in a residual solvent amount of 10%. By the way, it was dried at 110 ° C. Thereafter, it was dried at 140 ° C. for 30 minutes to produce a cellulose acetate film (outer layer: 3 μm, inner layer: 74 μm, outer layer: 3 μm) having a residual solvent of 0.3 mass%. The optical properties of the produced cellulose acetate film (CF-02) were measured.
得られたポリマー基材(PK−1)の幅は1340mmであり、厚さは、80μmであった。エリプソメーター(M−150、日本分光(株)製)を用いて、波長500nmにおけるレターデーション値(Re)を測定したところ、6nmであった。また、波長500nmにおけるレターデーション値(Rth)を測定したところ、83nmであった。
作製したポリマー基材(PK−1)を2.0Nの水酸化カリウム溶液(25℃)に2分間浸漬した後、硫酸で中和し、純水で水洗、乾燥した。このPK−1の表面エネルギーを接触角法により求めたところ、63mN/mであった。
The obtained polymer substrate (PK-1) had a width of 1340 mm and a thickness of 80 μm. It was 6 nm when the retardation value (Re) in wavelength 500nm was measured using the ellipsometer (M-150, JASCO Corporation make). Moreover, it was 83 nm when the retardation value (Rth) in wavelength 500nm was measured.
The produced polymer substrate (PK-1) was immersed in a 2.0N potassium hydroxide solution (25 ° C.) for 2 minutes, neutralized with sulfuric acid, washed with pure water and dried. The surface energy of this PK-1 was determined by the contact angle method and found to be 63 mN / m.
次に、図6に示した構成と同様のスロットダイコーターを用いて、作製したポリマー基材(PK−1)の面上に、光学異方性層を形成した。具体的には、表面に配向膜用樹脂層を形成したポリマー基材(PK−1)を、ウェブWとして送出機により搬送し、ガイドロールによって支持しつつ、ラビング処理ロールで樹脂層にラビング処理を施し、配向膜とした。その後、図6に示した構成と同様のスロットダイコーター10により、光学異方性層形成用塗布液を配向膜のラビング処理面に塗布した。次に、ウェブWを、乾燥ゾーン及び加熱ゾーンに順次通過させ、液晶性化合物の分子を配向させた後、紫外線ランプを照射してその配向を固定して光学異方性層を形成し、光学補償シートを得た。
Next, an optical anisotropic layer was formed on the surface of the produced polymer substrate (PK-1) using a slot die coater having the same configuration as that shown in FIG. Specifically, the polymer base material (PK-1) having the alignment layer resin layer formed on the surface is conveyed as a web W by a feeding machine and supported by a guide roll while being rubbed to the resin layer by a rubbing treatment roll. To obtain an alignment film. Thereafter, a coating solution for forming an optically anisotropic layer was applied to the rubbing-treated surface of the alignment film by a
以下、より具体的に、各工程について説明する。
上記ポリマー基材(PK−1)の表面に、下記組成の配向膜形成用塗布液を塗布して、60℃の温風で60秒、さらに90℃の温風で150秒乾燥し、配向膜用樹脂層を形成した。
Hereinafter, each process will be described more specifically.
An alignment film-forming coating solution having the following composition is applied to the surface of the polymer substrate (PK-1), dried with warm air at 60 ° C. for 60 seconds, and further with warm air at 90 ° C. for 150 seconds, and the alignment film A resin layer was formed.
(配向膜塗布液組成)
──────────────────────────────────
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
──────────────────────────────────
(Orientation film coating solution composition)
──────────────────────────────────
Modified
次に、配向膜を形成したポリマー基材(PK−1)からなるウェブWを搬送させつつ、スロットダイ13により下記組成の光学異方性層形成用塗布液を配向膜のラビング処理面に、湿潤膜厚が5μmとなるように、5ml/m2で塗布した。塗布速度は60m/分とした。なお、ウェブWの進行方向側とは反対側に、ビード14aに対して十分な減圧調整を行えるよう、接触しない位置に減圧チャンバーを設置した。スロットダイ13の上流側リップランド長IUPを1mm、下流側リップランド長ILOを50μmとした。下流側リップランド19とウェブWとの隙間の長さは40μmに設定した。
Next, while transporting the web W made of the polymer substrate (PK-1) on which the alignment film is formed, a coating liquid for forming an optically anisotropic layer having the following composition is applied to the rubbing surface of the alignment film by the slot die 13. It was applied at 5 ml / m 2 so that the wet film thickness was 5 μm. The coating speed was 60 m / min. In addition, the decompression chamber was installed in the position which does not contact so that sufficient decompression adjustment with respect to the
(光学異方性層形成用塗布液の組成)
下記の組成物を、102kgのメチルエチルケトンに溶解して塗布液を調製した。
──────────────────────────────────────
下記のディスコティック液晶性化合物(1) 41.01質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製) 4.06質量部
セルロースアセテートブチレート
(CAB551−0.2、イーストマンケミカル社製) 0.34質量部
セルロースアセテートブチレート
(CAB531−1、イーストマンケミカル社製) 0.11質量部
フルオロ脂肪族基含有ポリマー例示化合物(P−33) 0.03質量部
フルオロ脂肪族基含有ポリマー例示化合物(P−136) 0.18質量部
光重合開始剤(イルガキュア907、チバガイギー社製) 1.35質量部
増感剤(カヤキュアDETX、日本化薬(株)製) 0.45質量部
──────────────────────────────────────
(Composition of coating liquid for forming optically anisotropic layer)
The following composition was dissolved in 102 kg of methyl ethyl ketone to prepare a coating solution.
──────────────────────────────────────
The following discotic liquid crystalline compound (1) 41.01 parts by mass Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 4.06 parts by mass Cellulose acetate butyrate (CAB551-0. 2, manufactured by Eastman Chemical Co., Ltd.) 0.34 parts by mass Cellulose acetate butyrate (CAB531-1, manufactured by Eastman Chemical Co., Ltd.) 0.11 parts by mass Fluoroaliphatic group-containing polymer exemplified compound (P-33) 0.03 mass Part Fluoroaliphatic group-containing polymer exemplified compound (P-136) 0.18 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy) 1.35 parts by mass Sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) ) 0.45 parts by mass ──────────────────────── ─────────────
塗布液14を塗布したウェブWを、100℃に設定した乾燥ゾーン、及び130℃に設定した加熱ゾーンを通過させ、この液晶層表面に60℃の雰囲気下で120W/cmの紫外線ランプにより紫外線を照射し、光学補償シート(KH−1)を作製した。
塗布可能性については目視によるビード状態の観察により判断し、ビード14aが破断した段階で塗布不可能とした。この結果、本実施例4では、塗布は可能であり、このときの減圧度は1000Paであった。
The web W coated with the
The applicability was judged by visual observation of the bead state, and the application was impossible when the
波長546nmで測定した光学異方性層のReレターデーション値は50nmであった。また、偏光板をクロスニコル配置とし、得られた光学補償シートのムラを観察したところ、正面、及び法線から60度まで傾けた方向から見ても、ムラは検出されなかった。 The Re retardation value of the optically anisotropic layer measured at a wavelength of 546 nm was 50 nm. Further, when the polarizing plate was arranged in a crossed Nicol arrangement and the unevenness of the obtained optical compensation sheet was observed, the unevenness was not detected even when viewed from the front and the direction inclined by 60 degrees from the normal line.
(偏光板の作製)
ポリビニルアルコール系接着剤を用いて、KH−1(光学補償シート)を、偏光子(HF−1)の片側表面に貼り付けた。また、厚さ80μmのトリアセチルセルロースフィルム(TD−80U:富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光子(HF−1)の反対側表面に貼り付けた。
偏光子(HF−1)の透過軸と、光学補償シートの支持体であるポリマーフィルム(PK−1)の遅相軸とが平行になるように配置した。偏光子(HF−1)の透過軸と上記トリアセチルセルロースフィルムの遅相軸とは、直交するように配置した。このようにして偏光板(HB−1)を作製した。
また、偏光子(HF−1)の反対側表面に、トリアセチルセルロースフィルム(TD−80U)の代わりに、反射防止フィルムLR−1を貼り付けた偏光板(HB−1′)、反射防止フィルムLR−5を貼り付けた偏光板(HB−1″)も用意した。
(Preparation of polarizing plate)
Using a polyvinyl alcohol-based adhesive, KH-1 (optical compensation sheet) was attached to one surface of the polarizer (HF-1). Also, a saponification treatment was performed on a 80 μm-thick triacetyl cellulose film (TD-80U: manufactured by Fuji Photo Film Co., Ltd.), and the opposite surface of the polarizer (HF-1) using a polyvinyl alcohol adhesive. Pasted on.
The transmission axis of the polarizer (HF-1) and the slow axis of the polymer film (PK-1) which is a support for the optical compensation sheet were arranged in parallel. The transmission axis of the polarizer (HF-1) and the slow axis of the triacetyl cellulose film were arranged so as to be orthogonal to each other. In this way, a polarizing plate (HB-1) was produced.
Further, a polarizing plate (HB-1 ′) having an antireflection film LR-1 attached to the opposite surface of the polarizer (HF-1) instead of the triacetyl cellulose film (TD-80U), an antireflection film A polarizing plate (HB-1 ″) with LR-5 attached was also prepared.
光学異方性層塗布液中のフルオロ脂肪族基含有ポリマー2種を除去したこと以外は、光学補償シート(KH−1)と全く同様にして、光学補償シート(KH−2)および偏光板(HB−2)、偏光板(HB−2′)、偏光板(HB−2″)を作製した。 The optical compensation sheet (KH-2) and the polarizing plate (KH-1) and the polarizing plate (except for the removal of two fluoroaliphatic group-containing polymers in the optically anisotropic layer coating solution) were the same as the optical compensation sheet (KH-1). HB-2), a polarizing plate (HB-2 ′), and a polarizing plate (HB-2 ″) were produced.
(TN液晶セルでの評価)
TN型液晶セルを使用した液晶表示装置(AQUOS LC20C1S、シャープ(株)製)に設けられている一対の偏光板を剥がし、代わりに上記の作製した偏光板(HB−1′)、偏光板(HB−1)を、光学補償シート(KH−1)が液晶セル側となるように粘着剤を介して、観察者側及びバックライト側に貼り付けた。観察者側の偏光板の最表面の保護フィルムは、反射防止フィルムLR−1となっている。観察者側の偏光板の透過軸と、バックライト側の偏光板の透過軸とは、Oモードとなるように配置した(液晶表示装置101:反射防止フィルムLR−1と光学補償シート(KH−1)の組み合わせ)。
また、偏光板(HB−1″)、偏光板(HB−1)を用いて、液晶表示装置102(反射防止フィルムLR5と光学補償シート(KH−1)の組み合わせ)を作製した。
同様に、偏光板(HB−2′)、偏光板(HB−2)を用いて、液晶表示装置102(反射防止フィルムLR−1と光学補償シート(KH−2)の組み合わせ)を作製し、偏光板(HB−2″)、偏光板(HB−2)を用いて、液晶表示装置104(反射防止フィルムLR−5と光学補償シート(KH−2)の組み合わせ)を作製した。(表2参照)
作製した液晶表示装置101〜104について、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までで視野角を測定した。上下左右で、コントラスト比(白透過率/黒透過率)が10以上、かつ黒側の階調反転(L1とL2での反転)のない領域を視野角として求めた。また、黒表示(L1)において、上下左右0°〜80°方向に変化させた時の色味変動を測定した。測定結果を表2に示す。
(Evaluation with TN liquid crystal cell)
A pair of polarizing plates provided in a liquid crystal display device (AQUAS LC20C1S, manufactured by Sharp Corporation) using a TN type liquid crystal cell is peeled off, and the above-prepared polarizing plate (HB-1 ′), polarizing plate ( HB-1) was affixed to the observer side and the backlight side via an adhesive so that the optical compensation sheet (KH-1) was on the liquid crystal cell side. The protective film on the outermost surface of the polarizing plate on the observer side is an antireflection film LR-1. The transmission axis of the polarizing plate on the viewer side and the transmission axis of the polarizing plate on the backlight side are arranged to be in the O mode (liquid crystal display device 101: antireflection film LR-1 and optical compensation sheet (KH- Combination of 1)).
In addition, a liquid crystal display device 102 (a combination of the antireflection film LR5 and the optical compensation sheet (KH-1)) was produced using the polarizing plate (HB-1 ″) and the polarizing plate (HB-1).
Similarly, using the polarizing plate (HB-2 ′) and the polarizing plate (HB-2), a liquid crystal display device 102 (a combination of the antireflection film LR-1 and the optical compensation sheet (KH-2)) is produced. A liquid crystal display device 104 (a combination of an antireflection film LR-5 and an optical compensation sheet (KH-2)) was prepared using the polarizing plate (HB-2 ″) and the polarizing plate (HB-2) (Table 2). reference)
About the produced liquid crystal display devices 101-104, the viewing angle was measured from black display (L1) to white display (L8) using the measuring machine (EZ-Contrast160D, ELDIM company make). A region having a contrast ratio (white transmittance / black transmittance) of 10 or more and no gradation inversion on the black side (inversion at L1 and L2) was obtained as a viewing angle in the vertical and horizontal directions. In addition, in the black display (L1), the variation in tint was measured when the direction was changed in the vertical and horizontal directions of 0 ° to 80 °. The measurement results are shown in Table 2.
上記表2の結果から分かるように、反射光色味変動を抑えた本発明の反射防止フィルムLR−1を使用した偏光板を用いた液晶表示装置(101,103)とすることで、色味変動の少ない視認性が高い表示装置が実現できる。更に、フルオロ脂肪族基含有ポリマーを添加した光学補償シートを併用することで、視野角が広くかつ透過光の色味変動も少ない視認性のさらに良い表示装置(101)が実現できる。 As can be seen from the results in Table 2 above, the liquid crystal display device (101, 103) using the polarizing plate using the antireflection film LR-1 of the present invention in which the reflected light color fluctuation is suppressed is used. A display device with low fluctuation and high visibility can be realized. Furthermore, by using together an optical compensation sheet to which a fluoroaliphatic group-containing polymer is added, a display device (101) with a wider viewing angle and less visibility of transmitted light can be realized.
[実施例5]
実施例4で用いたレターデーション上昇剤(1)を、下記のレターデーション上昇剤(2)に代え、内層の添加量を1.2質量部にし、Rthを90nmにしたポリマー基材を作製した以外は、実施例4と同様にして、光学補償シート、さらには、光学補償シート付き偏光板を作製した。色味変動が少なく視認性の高い表示装置が得られることを確認した。
[Example 5]
The retardation increasing agent (1) used in Example 4 was replaced with the following retardation increasing agent (2), and an addition amount of the inner layer was 1.2 parts by mass, and a polymer substrate having an Rth of 90 nm was prepared. Except for the above, an optical compensation sheet and a polarizing plate with an optical compensation sheet were produced in the same manner as in Example 4. It was confirmed that a display device with little color variation and high visibility was obtained.
(1) 支持体
(2) ハードコート層
(3) 中屈折率層
(4) 高屈折率層
(5) 低屈折率層
10 コーター
11 バックアップロール
W ウェブ
13 スロットダイ
14 塗布液
14a ビード
14b 塗膜
15 ポケット
16 スロット
16a スロット開口部
17 先端リップ
18 ランド
18a 上流側リップランド
18b 下流側リップランド
IUP 上流側リップランド18aのランド長さ
ILO 下流側リップランド18bのランド長さ
LO オーバーバイト長さ(下流側リップランド18bと上流側リップランド18aのウェブWとの距離の差)
GL 先端リップ17とウェブWの隙間(下流側リップランド18bとウェブWの隙間)
30 従来のスロットダイ
31a 上流側リップランド
31b 下流側リップランド
32 ポケット
33 スロット
40 減圧チャンバー
40a バックプレート
40b サイドプレート
40c ネジ
GB バックプレート40aとウェブWの間の隙間
GS サイドプレート40bとウェブWの間の隙間
(1) Support
(2) Hard coat layer
(3) Medium refractive index layer
(4) High refractive index layer
(5) Low
G L Tip lip 17 and web W gap (
30 the gap G S side plate 40b and the web W between the conventional slot-
Claims (12)
(ただしΔa*=a* max−a* min、Δb*=b* max−b* minを表し、a* max及びa* minは、それぞれa*値の最大値及び最小値;b* max及びb* minは、それぞれb*値の最大値及び最小値を表す。) With respect to incident light having an incident angle of 5 ° in the wavelength region of 380 nm to 780 nm of the CIE standard light source D 65 , the color change of the reflected light in the range of the output angle of −5 ° to −80 ° is CIE 1976 L * a * b. * An antireflection film satisfying Δa * ≦ 1 and Δb * ≦ 1 in a color space.
(Where Δa * = a * max− a * min , Δb * = b * max− b * min , where a * max and a * min are the maximum and minimum values of the a * value, respectively; b * max and (b * min represents the maximum value and the minimum value of the b * values, respectively.)
(ただしΔa*=a* max−a* min、Δb*=b* max−b* minを表し、a* max及びa* minは、それぞれa*値の最大値及び最小値;b* max及びb* minは、それぞれb*値の最大値及び最小値を表す。) The color change in the range of 0 ° to 80 ° from top to bottom and left and right satisfies Δa * ≦ 3.5 and Δb * ≦ 6.5 in the CIE1976L * a * b * color space. 10. A liquid crystal display device according to 10.
(Where Δa * = a * max− a * min , Δb * = b * max− b * min , where a * max and a * min are the maximum and minimum values of the a * value, respectively; b * max and (b * min represents the maximum value and the minimum value of the b * values, respectively.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006077180A JP2007256346A (en) | 2006-03-20 | 2006-03-20 | Anti-reflection film, polarizing plate and image display device, liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006077180A JP2007256346A (en) | 2006-03-20 | 2006-03-20 | Anti-reflection film, polarizing plate and image display device, liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007256346A true JP2007256346A (en) | 2007-10-04 |
Family
ID=38630688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006077180A Pending JP2007256346A (en) | 2006-03-20 | 2006-03-20 | Anti-reflection film, polarizing plate and image display device, liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007256346A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010197559A (en) * | 2009-02-24 | 2010-09-09 | Konica Minolta Opto Inc | Composition for anti-reflection layer, anti-reflection film, polarizing plate and image display device |
CN101975996A (en) * | 2010-08-26 | 2011-02-16 | 江苏万新光学有限公司 | Method and device for producing polarizing film having local polarization effect |
WO2013140811A1 (en) * | 2012-03-23 | 2013-09-26 | 凸版印刷株式会社 | Anti-reflection film |
JP5494884B1 (en) * | 2013-12-19 | 2014-05-21 | 大日本印刷株式会社 | Intermediate base film and touch panel sensor |
JP2016177183A (en) * | 2015-03-20 | 2016-10-06 | 大日本印刷株式会社 | Antireflection film, display unit using antireflection film and selection method of antireflection film |
JP2016177185A (en) * | 2015-03-20 | 2016-10-06 | 大日本印刷株式会社 | Antireflection film, display unit using antireflection film and selection method of antireflection film |
US20200408954A1 (en) * | 2018-03-02 | 2020-12-31 | Corning Incorporated | Anti-reflective coatings and articles and methods of forming the same |
US12140732B2 (en) * | 2019-03-01 | 2024-11-12 | Corning Incorporated | Anti-reflective coatings and articles and methods of forming the same |
-
2006
- 2006-03-20 JP JP2006077180A patent/JP2007256346A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010197559A (en) * | 2009-02-24 | 2010-09-09 | Konica Minolta Opto Inc | Composition for anti-reflection layer, anti-reflection film, polarizing plate and image display device |
CN101975996A (en) * | 2010-08-26 | 2011-02-16 | 江苏万新光学有限公司 | Method and device for producing polarizing film having local polarization effect |
CN101975996B (en) * | 2010-08-26 | 2012-07-04 | 江苏万新光学有限公司 | Method and device for producing polarizing film having local polarization effect |
WO2013140811A1 (en) * | 2012-03-23 | 2013-09-26 | 凸版印刷株式会社 | Anti-reflection film |
KR20140138262A (en) | 2012-03-23 | 2014-12-03 | 도판 인사츠 가부시키가이샤 | Anti-reflection film |
JP5494884B1 (en) * | 2013-12-19 | 2014-05-21 | 大日本印刷株式会社 | Intermediate base film and touch panel sensor |
JP2016177183A (en) * | 2015-03-20 | 2016-10-06 | 大日本印刷株式会社 | Antireflection film, display unit using antireflection film and selection method of antireflection film |
JP2016177185A (en) * | 2015-03-20 | 2016-10-06 | 大日本印刷株式会社 | Antireflection film, display unit using antireflection film and selection method of antireflection film |
US20200408954A1 (en) * | 2018-03-02 | 2020-12-31 | Corning Incorporated | Anti-reflective coatings and articles and methods of forming the same |
US12140732B2 (en) * | 2019-03-01 | 2024-11-12 | Corning Incorporated | Anti-reflective coatings and articles and methods of forming the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4820716B2 (en) | Antiglare film, antireflection film, polarizing plate and image display device | |
JP5380029B2 (en) | Liquid crystal display | |
JP5102958B2 (en) | Method for producing antireflection film | |
US20050207016A1 (en) | Antireflection film, polarizing plate and liquid crystal display | |
JP2007108724A (en) | Antiglare antireflection film, polarizing plate using same and liquid crystal display device | |
JP2006106714A (en) | Anti-reflection film, polarizing plate and liquid crystal display device | |
JP2006106715A (en) | Anti-reflection film, polarizing plate and liquid crystal display device | |
JP2007249191A (en) | Optical film, antireflection film, polarizing plate and image display device | |
JP2008146021A (en) | Optical film | |
JP2007264113A (en) | Optical film, polarizing plate, and image display device | |
JP2009217258A (en) | Optical film, method for producing the same, polarizing plate, and image display device | |
JP2007102208A (en) | Optical film, anti-reflection film, and polarizing plate and image display device using the optical film and the anti-reflection film | |
JP2006257402A (en) | Coating composition for forming low refractive-index layer, reflection-preventing film, polarizing plate, and liquid crystal display device | |
JP2006276839A (en) | Optically functional film, its manufacturing method, and polarizing plate using same and image display device | |
JP2006048025A (en) | Antireflection film and manufacturing method thereof | |
JP2006330705A (en) | Light diffusion film, anti-reflection film, polarizing plate and image display device using the light diffusion film or the anti-reflection film | |
JP2007083228A (en) | Production method of film having coated layer, film having coated layer, optical film, antireflection film, polarizing plate and liquid crystal display | |
JP2007041514A (en) | Liquid crystal display device | |
JP2007233375A (en) | Antireflection film, polarizing plate using the same, and image display device | |
JP2007169330A (en) | Transparent film, optical film, method for producing transparent film, polarizing plate, and image-displaying device | |
JP2007133162A (en) | Antiglare film, its manufacturing method, polarizing plate and image display apparatus using the same | |
JP2007196164A (en) | Method for manufacturing optical film, optical film, polarizing plate, and picture display device | |
JP2007213045A (en) | Antireflection film, polarizing plate, and display apparatus | |
JP2010061044A (en) | Anti-reflection film, polarizing plate, and image forming device | |
JP2007256346A (en) | Anti-reflection film, polarizing plate and image display device, liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071109 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071116 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071126 |