JP2007137791A - Novel physicochemically harmonized bactericidal disinfectant solution - Google Patents
Novel physicochemically harmonized bactericidal disinfectant solution Download PDFInfo
- Publication number
- JP2007137791A JP2007137791A JP2005331149A JP2005331149A JP2007137791A JP 2007137791 A JP2007137791 A JP 2007137791A JP 2005331149 A JP2005331149 A JP 2005331149A JP 2005331149 A JP2005331149 A JP 2005331149A JP 2007137791 A JP2007137791 A JP 2007137791A
- Authority
- JP
- Japan
- Prior art keywords
- bacteria
- sterilizing
- micro
- ppm
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Storage Of Fruits Or Vegetables (AREA)
- Cosmetics (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Physical Water Treatments (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
本発明は、主成分として、III価の鉄イオン(Fe3+)およびL−アスコルビン酸を含有した水溶液にマイクロ・ナノバブルを発生させた殺菌消毒液に関するものである。 The present invention relates to a sterilizing / disinfecting solution in which micro / nano bubbles are generated in an aqueous solution containing trivalent iron ions (Fe 3+ ) and L-ascorbic acid as main components.
現在、医療機関で汎用されている消毒液には、アルコール類、フェノール類、ハロゲン化合物、4級アンモニウム塩、ビグアナイド系薬剤、アルデヒド類などが存在するが、安全かつ低毒性であって、様々なタイプの細菌、真菌およびウイルスに対して有効性を示し、広範囲に使用が可能であり、保存性にも優れ、安価であるなどの条件を満たしているものは残念ながら見当たらない。このような状況を踏まえ、われわれは生体や環境にやさしく、病原菌に対しては峻烈な効果を示す、新しいタイプの殺菌消毒液を発明し、平成10年に「鉄イオン含有殺菌液」として特許出願した(特許文献1参照。)。その要旨は、抗菌作用を有しながら、人体に有用であるミネラルでもあるIII価の鉄イオン(Fe3+)を中核として、それに食品添加物として許認可されている保存剤や強化剤の中から選択し、これらと組み合わせることによって、高い殺菌効果と上述の諸条件をクリアしたものであった。 At present, there are alcohols, phenols, halogen compounds, quaternary ammonium salts, biguanide drugs, aldehydes, etc., which are widely used in medical institutions, but are safe and have low toxicity. Unfortunately, there is no one that satisfies the conditions of being effective against various types of bacteria, fungi and viruses, being able to be used in a wide range, having excellent storage stability and being inexpensive. In light of this situation, we invented a new type of disinfectant that is friendly to living organisms and the environment, and that shows a steep effect on pathogenic bacteria. (See Patent Document 1). The gist of this is from the preservatives and fortifiers that have antibacterial action, but also have a trivalent iron ion (Fe 3+ ), which is a mineral that is useful to the human body, and are approved as food additives. By selecting and combining these, the high bactericidal effect and the above-mentioned conditions were cleared.
具体的には、III価の鉄イオン(Fe3+)の含有量が500乃至1500ppmおよびL−アスコルビン酸の含有量が500乃至2000ppmであって、ソルビン酸、安息香酸およびそれらの塩並びにパラオキシ安息香酸エステルの少なくとも1種または2種以上を含有し、その含有量が200乃至2000ppmであることを特徴とする殺菌液であって、一例として、塩化第二鉄六水和物(FeCl3・6H2O)1000ppm、L−アスコルビン酸1000ppm、ソルビン酸カリウム500ppmからなる殺菌液を挙げることができる。この鉄イオン含有殺菌液の特徴の主なものは、次のとおりである。
(1)殺菌効果
(i)一般細菌および真菌に対して迅速な効果を示す(10秒以内で効果を示す。)。
(ii)抗酸菌に対しては1分以内の接触で有効である。
(iii)細菌芽胞に対しても1分〜120分の接触で有効である。
(2)毒性
(i)皮膚への塗布:毎日2回、2ヶ月間マウスの後足(foot pad)に塗布したが、異常は認められなかった。その後、ヒトの手指の消毒に数回/日、連日用いたが何らの異常は発生しなかった。
(ii)経口投与(p.o.):1ml/マウスの投与を行ったが毒性は認められなかった。なお、LD50は10ml/マウスと推測された。
(iii)腹腔内投与(i.p.):LD50は1ml/マウスであった。
(iv)培養細胞(動物)に対する影響は、1000倍の希釈により障害性は認められなくなった。
(v)うがいに用いても何ら異常は認められなかった。
(3)安定性
この鉄イオン含有殺菌液の殺菌効果は、長期にわたり安定性を示した(約3年間)。
(4)用途
この鉄イオン含有殺菌液は、食品添加物として承認されている化合物のみで構成され、それらが新しい化合物をつくることなく、相乗作用のみで高い殺菌効果を示した。従って、手指や傷口の消毒をはじめ、器具、器材、野菜などの生鮮食品の消毒にいたるまで利用可能である。また、医薬部外品として、薬用石鹸、薬用歯磨き、腋臭防止剤、洗口液にも応用し得るものである。
Specifically, the content of trivalent iron ions (Fe 3+ ) is 500 to 1500 ppm, the content of L-ascorbic acid is 500 to 2000 ppm, sorbic acid, benzoic acid and their salts, and paraoxybenzoic acid. An antibacterial solution containing at least one or two or more acid esters, the content of which is 200 to 2000 ppm, and, as an example, ferric chloride hexahydrate (FeCl 3 .6H A bactericidal solution composed of 2 O) 1000 ppm, L-
(1) Bactericidal effect (i) It shows a rapid effect on general bacteria and fungi (shows an effect within 10 seconds).
(Ii) Effective against acid-fast bacteria within 1 minute of contact.
(Iii) Effective for contact with bacterial spores for 1 minute to 120 minutes.
(2) Toxicity (i) Application to the skin: It was applied to the mouse foot pad twice a day for 2 months, but no abnormality was observed. Thereafter, it was used several times per day for disinfection of human fingers, but no abnormality occurred.
(Ii) Oral administration (po): 1 ml / mouse was administered, but no toxicity was observed. The LD 50 was estimated to be 10 ml / mouse.
(Iii) Intraperitoneal administration (ip): LD 50 was 1 ml / mouse.
(Iv) The effect on cultured cells (animals) was no longer recognized as being impaired by a 1000-fold dilution.
(V) No abnormalities were found when used for gargle.
(3) Stability The sterilizing effect of this iron ion-containing sterilizing solution showed stability over a long period (about 3 years).
(4) Use This iron ion-containing sterilizing solution is composed only of compounds that have been approved as food additives, and they showed a high sterilizing effect only by synergistic action without producing new compounds. Therefore, it can be used for sterilization of fresh foods such as instruments, equipment and vegetables as well as disinfection of fingers and wounds. In addition, as a quasi-drug, it can also be applied to medicated soaps, medicated toothpastes, odor control agents, and mouthwashes.
一方、消毒法としては、化学的消毒法のみならず、物理的消毒法も採用されている。すなわち、日常的に採用されている物理的消毒法としては、
(1)焼却(最も確実な方法である。)
(2)高圧蒸気滅菌(オートクレーブ)
(3)乾熱滅菌(160℃、30分間など)
(4)煮沸消毒
(5)フィルター濾過法
(6)紫外線消毒(微生物のDNAに吸収して破壊する。)
(7)放射線滅菌(γ線の利用により、物質内部にも浸透する。)
(8)超音波
などが存在するが、化学的消毒法と融合させ得る物理的消毒法として、比較的取扱いが容易でかつ安定性を示す超音波について調査した。その結果、超音波と密接な関係を有する超微細気泡(マイクロ・ナノバブル)に着目した。マイクロ・ナノバブルは超音波で強く水を振動させたとき、その音波が負圧のとき、水の分子と分子の間に空間ができ、中が真空になったときに超微細な気泡が無数に湧出し、これが自身の表面張力と次にくる正圧により押し潰され破壊(圧壊現象)し、消滅する(例えば、特許文献2など参照。)。マイクロ・ナノバブルにおいては、このような現象が繰り返されるのである。この特性が殺菌作用や有機物分解、洗浄作用さらには生物の活性化など有用な機能を示すことが明らかになってきた。この現象は水と空気を超高速で旋回させたり、放電現象によっても発生する(例えば、特許文献3など参照。)。一方、通常の気泡においては、泡は水中を上昇しながら大きくなり水面で弾けるのである。
On the other hand, as a disinfection method, not only a chemical disinfection method but also a physical disinfection method is adopted. That is, as a physical disinfection method that is routinely adopted,
(1) Incineration (the most reliable method)
(2) High-pressure steam sterilization (autoclave)
(3) Dry heat sterilization (160 ° C, 30 minutes, etc.)
(4) Boil disinfection (5) Filter filtration method (6) Ultraviolet disinfection (absorbed and destroyed by microbial DNA)
(7) Radiation sterilization (Use of gamma rays penetrates into the substance.)
(8) Although ultrasonic waves exist, as a physical disinfection method that can be fused with the chemical disinfection method, ultrasonic waves that are relatively easy to handle and show stability were investigated. As a result, we focused on ultra-fine bubbles (micro / nano bubbles) that are closely related to ultrasound. Micro / Nano Bubbles create a space between water molecules when water is vibrated strongly with ultrasonic waves, and when the sound waves have negative pressure, and countless number of ultra-fine bubbles are generated when the inside becomes vacuum. This springs out and is crushed and destroyed (collapse phenomenon) by its own surface tension and the next positive pressure, and disappears (see, for example, Patent Document 2). Such a phenomenon is repeated in micro / nano bubbles. It has become clear that this characteristic exhibits useful functions such as bactericidal action, organic matter decomposition, cleaning action, and biological activation. This phenomenon occurs also when water and air are swirled at an ultra-high speed or by a discharge phenomenon (see, for example, Patent Document 3). On the other hand, in a normal bubble, the bubble becomes larger while rising in the water and can be repelled on the surface of the water.
上述したように、優れた特徴を有する鉄イオン含有殺菌液ではあるが、抗生物質の例をみるまでもなく、菌は自身にダメージを与える化合物に対して、それを分解する酵素を産生し、自身を守るものである。事実、アルコールやビグアナイド系薬剤の耐性菌が院内感染の原因になっていることは、衆知の事柄である。従って、この鉄イオン含有殺菌液も耐性菌の出現を避けてとおることはできない。この現象を少しでもカバーするために抗菌作用を有するティモール、ユーカリなどの精油や界面活性剤などを微量添加することを勧めてはいるが、これらの添加物も化学物質と何ら変わりはないのである。すなわち、耐性菌になることを恒久的に阻止するためには何らかの工夫を要するのであって、このことが本発明の課題である。 As described above, although it is an iron ion-containing sterilizing liquid having excellent characteristics, it is not necessary to look at examples of antibiotics, and bacteria produce an enzyme that decomposes it against compounds that damage themselves, Protect yourself. In fact, it is common knowledge that resistant bacteria of alcohol and biguanide drugs cause nosocomial infections. Therefore, this iron ion-containing sterilizing solution cannot avoid the emergence of resistant bacteria. In order to cover this phenomenon as much as possible, it is recommended that trace amounts of essential oils and surfactants such as Timor and Eucalyptus that have antibacterial action are added, but these additives are no different from chemical substances. . That is, in order to permanently prevent becoming resistant bacteria, some device is required, and this is the subject of the present invention.
本発明者らは、微生物の殺菌効果と上述の鉄イオン含有殺菌液とマイクロ・ナノバブルとの関係を鋭意検討した結果、マイクロ・ナノバブルを含有した殺菌消毒液を提供するに至った。 As a result of intensive studies on the sterilizing effect of microorganisms and the relationship between the above-described sterilizing liquid containing iron ions and micro / nano bubbles, the present inventors have provided a sterilizing / disinfecting liquid containing micro / nano bubbles.
すなわち、主成分として、III価の鉄イオン(Fe3+)の含有量が500乃至1500ppmおよびL−アスコルビン酸の含有量が500乃至2000ppmであって、ソルビン酸、安息香酸およびそれらの塩並びにパラオキシ安息香酸エステルの少なくとも1種または2種以上を含有し、その含有量が200乃至2000ppmである水溶液にマイクロ・ナノバブルを発生させたことを特徴とする殺菌消毒液であって、上記水溶液100Lに対しマイクロ・ナノバブルを100ml以上/分で発生させ、計15L以上とすることが好ましく、上記水溶液の液面から50cm以上の深さからマイクロ・ナノバブルを発生さることが特に好ましい。 That is, as a main component, the content of trivalent iron ions (Fe 3+ ) is 500 to 1500 ppm, the content of L-ascorbic acid is 500 to 2000 ppm, sorbic acid, benzoic acid and their salts, and paraoxy A sterilizing and disinfecting solution characterized in that micro / nano bubbles are generated in an aqueous solution containing at least one or more benzoic acid esters, the content of which is 200 to 2000 ppm. It is preferable that micro / nano bubbles are generated at a rate of 100 ml or more / minute, and the total is preferably 15 L or more, and it is particularly preferable to generate micro / nano bubbles from a depth of 50 cm or more from the liquid surface of the aqueous solution.
本発明の第二は、主成分として、III価の鉄イオン(Fe3+)の含有量が500乃至1500ppmおよびL−アスコルビン酸の含有量が500乃至2000ppmであって、ソルビン酸、安息香酸およびそれらの塩並びにパラオキシ安息香酸エステルの少なくとも1種または2種以上を含有し、その含有量が200乃至2000ppmである水溶液にマイクロ・ナノバブルを発生させた後、密封して保存したことを特徴とする殺菌消毒液であって、上記水溶液にマイクロ・ナノバブルを発生させた後、60乃至90日間密封して保存することができ、上記水溶液100Lに対しマイクロ・ナノバブルを100ml以上/分で発生させ、計15L以上とすることが好ましく、上記水溶液の液面から50cm以上の深さからマイクロ・ナノバブルを発生さることが特に好ましい。 In the second aspect of the present invention, the content of trivalent iron ions (Fe 3+ ) is 500 to 1500 ppm and the content of L-ascorbic acid is 500 to 2000 ppm as the main components, and sorbic acid, benzoic acid and Micro- / nano bubbles are generated in an aqueous solution containing at least one or more of those salts and paraoxybenzoic acid ester, and the content thereof is 200 to 2000 ppm, and then sealed and stored. It is a sterilizing and disinfecting solution, and after micro / nano bubbles are generated in the aqueous solution, it can be stored sealed for 60 to 90 days. Micro / nano bubbles are generated at a rate of 100 ml / min or more with respect to 100 L of the aqueous solution. It is preferable to be 15 L or more, and micro / nano bubbles are introduced from a depth of 50 cm or more from the surface of the aqueous solution Raw Sarukoto is particularly preferred.
本発明の殺菌消毒液は、マイクロ・ナノバブルを含有することによって、生体組織への浸透力が高まることにより、鉄イオン含有殺菌液の殺菌力が飛躍的に高まり、短時間での芽胞の殺菌や検体の殺菌、鼻腔炎、歯周病、水虫など薬物が浸透し難い慢性感染症に対しても、より効果的な殺菌が可能となり、早期の完治への道が切り開かれた。このことは、難疾感染症に悩む人達にとって治療への期待を抱かせることができるものである。特に、手指、皮膚、鼻、粘膜、創傷部位、各種検体、手術部位、病室、家具、器具、物品などの消毒に広く使用することができる。 The sterilizing solution of the present invention contains micro / nano bubbles, so that the sterilizing power of the iron ion-containing sterilizing solution is remarkably increased by increasing the penetrating power to living tissue, and sterilization of spores in a short time Even for chronic infectious diseases that are difficult for drugs to penetrate, such as specimen sterilization, rhinitis, periodontal disease, athlete's foot, etc., more effective sterilization became possible, opening the way to early cure. This can give treatment hope to those who suffer from infectious diseases. In particular, it can be widely used for disinfecting fingers, skin, nose, mucous membranes, wound sites, various specimens, surgical sites, hospital rooms, furniture, instruments, articles and the like.
本発明にいう鉄イオン含有殺菌液とは、III価の鉄イオン(Fe3+)の含有量が500乃至1500ppmおよびL−アスコルビン酸の含有量が500乃至2000ppmであって、ソルビン酸、安息香酸およびそれらの塩並びにパラオキシ安息香酸エステルの少なくとも1種または2種以上を含有し、その含有量が200乃至2000ppmである殺菌液のことをいう。 The iron ion-containing sterilizing solution referred to in the present invention means that the content of trivalent iron ions (Fe 3+ ) is 500 to 1500 ppm and the content of L-ascorbic acid is 500 to 2000 ppm, and sorbic acid, benzoic acid And a sterilizing liquid containing at least one or more of paraoxybenzoates and salts thereof and having a content of 200 to 2000 ppm.
本発明にいう殺菌消毒液とは、殺菌作用を有する液性の消毒剤のことをいい、ここで殺菌作用とは微生物の菌体に障害を与えて細胞が死滅して元に戻らない不可逆的な変化をいう。その障害とは、微生物が生息するために必要な酵素やタンパク質にすばやく反応して細胞を破壊したり、細胞から水分を奪うなどして死滅させることをいう。また、強い酸化力で細胞壁や細胞膜を破壊し、消毒剤によっては微生物のタンパク質を凝固、沈着、変性などさせて溶菌現象を誘発する。 The bactericidal disinfectant referred to in the present invention refers to a liquid disinfectant having a bactericidal action. Here, bactericidal action is an irreversible effect that damages the cells of microorganisms and causes cells to die and return to their original state. Changes. The disorder means that cells are destroyed by reacting quickly with enzymes and proteins necessary for microorganisms to inhabit, or by depriving cells of moisture. In addition, cell walls and cell membranes are destroyed by strong oxidizing power, and some sterilizing agents induce lysis by coagulating, depositing, and denaturing microbial proteins.
本発明にいうマイクロ・ナノバブルとは、気泡の直径が50μm以下のものをいい、マイナスの電荷を帯びているため、細菌やウイルスを誘引する。次に、バブルが消滅する際(これを「圧壊現象」という。)に瞬間的に高温高圧になり水が分解し、フリーラジカル(主として活性酸素である。)が発生し、それが細菌やウイルスを破壊する。これらは、紫外線などと同様に細菌やウイルスを遺伝子レベルで破壊するため、抗生物質のように耐性菌が生じてこない。 The micro / nano bubble referred to in the present invention means a bubble having a diameter of 50 μm or less and has a negative charge, and therefore attracts bacteria and viruses. Next, when the bubble disappears (this is called “crushing phenomenon”), it instantaneously becomes high temperature and pressure and water decomposes, generating free radicals (mainly active oxygen), which are bacteria and viruses. Destroy. Since these destroy bacteria and viruses at the gene level, like ultraviolet rays, resistant bacteria like antibiotics do not occur.
本発明において、マイクロ・ナノバブルを発生させた後、密閉して保存するためには、マイクロ・ナノバブルを含有した殺菌消毒液を通常の方法で容器に入れ、栓を密閉することにより達成することができる。保存期間には、特に制限はなく容器に保存した後、いつでも使用することができる。しかし、実用上は60日間乃至90日間保存することができるので、その間に使用することが好ましい。 In the present invention, after micro / nano bubbles are generated, in order to store them in a sealed state, the sterilizing / disinfecting solution containing micro / nano bubbles can be put into a container by a normal method and the stoppers can be sealed. it can. There is no restriction | limiting in particular in a preservation | save period, After storing in a container, it can be used anytime. However, since it can be stored for 60 to 90 days in practice, it is preferably used during that time.
本発明の詳細を試験例および実施例に基づいて説明するが、本発明の主旨はこれに限定されるものではない。なお、マイクロ・ナノバブルを発生させるためには、直径が50μm以下の気泡を作成することができる装置であれば特に制限はなく、いずれの装置も使用できるが、本発明の試験例および実施例においては、吐出液体流量7L/分、気泡発生量最大1L/分である株式会社ナノプラネット研究所製のM2−MS/SUS型を使用した。 Details of the present invention will be described based on test examples and examples, but the gist of the present invention is not limited thereto. In order to generate micro / nano bubbles, there is no particular limitation as long as it is a device that can create bubbles having a diameter of 50 μm or less, and any device can be used, but in the test examples and examples of the present invention, Used an M2-MS / SUS type manufactured by Nano Planet Research Laboratories Ltd., which has a discharge liquid flow rate of 7 L / min and a maximum bubble generation amount of 1 L / min.
(試験例1)
幅70cm×奥行き30cm×高さ50cmの水槽に約100Lの水を入れ、この水に細菌の代表としてS. aureus(黄色ブドウ球菌)およびE. coli(大腸菌)をそれぞれ1×108個/水槽水ml添加し、株式会社ナノプラネット研究所製M2−MS/SUS型を用いて吐出液体流量7L/分にて、最大泡発生量(1L/分)でマイクロ・ナノバブルを60分間発生させた。このときのS. aureusおよびE. coliの減少していく様子を経時的に測定し、表1に示した。表1から明らかなように水中に発生させたマイクロ・ナノバブルは、確かに殺菌作用を示したが、汎用の化学的消毒法に比べて極めて緩慢である。すなわち、60分間で元の菌数の2万分の1乃至5万分の1の生菌数になるが、マイクロ・ナノバブルの発生を継続しても完全殺菌には至らなかった。従って、除菌程度であれば目的を達することができるが、滅菌を望む場合には、到底期待できるものではない。
(Test Example 1)
About 100 L of water is put into a water tank of width 70 cm × depth 30 cm × height 50 cm, and S. aureus (E. coli) and E. coli (E. coli) are each 1 × 10 8 cells / water tank as representative bacteria. Water / ml was added, and micro / nano bubbles were generated for 60 minutes with a maximum bubble generation amount (1 L / min) at a discharge liquid flow rate of 7 L / min using a Nano Planet Research Laboratory M2-MS / SUS type. The state in which S. aureus and E. coli decreased at this time was measured over time, and is shown in Table 1. As is clear from Table 1, micro / nano bubbles generated in water certainly showed bactericidal action, but are very slow compared to general chemical disinfection methods. That is, the number of viable bacteria was 1 / 20,000 to 1 / 50,000 of the original number of bacteria in 60 minutes, but even if the generation of micro / nano bubbles was continued, complete sterilization was not achieved. Therefore, the purpose can be achieved if it is about sterilization, but it cannot be expected when sterilization is desired.
(試験例2)
試験例1の結果を踏まえて、マイクロ・ナノバブルの発生量と発生時間と殺菌能力との関係について調べた。試験例1と同様の水槽および水量を用い、S. aureusを1×108個/水槽水ml添加し、S. aureusが1×104個/水槽水mlに減少する現象を基準とした。その結果を図1に示した。図1から明らかなように、十分な殺菌能力を発揮するためには、マイクロ・ナノバブルの発生量が500ml/分の場合、少なくとも30分以上、1000ml/分の場合、15分以上、200ml/分の場合約65分であり、発生量と発生時間とは反比例の関係にあり、1分間当たりのマイクロ・ナノバブル発生量は500ml/分×30分=15000ml必要であった。なお、100ml/分の場合は、長時間マイクロ・ナノバブルを発生させても殺菌作用はないことが同時に判明した。
(Test Example 2)
Based on the results of Test Example 1, the relationship between the generation amount of micro / nano bubbles, the generation time, and the bactericidal ability was examined. Using the same water tank and water volume as in Test Example 1, 1 × 10 8 pieces of S. aureus / ml of water in the water tank was added, and the phenomenon that S. aureus decreased to 1 × 10 4 pieces / ml of water in the water tank was used as a reference. The results are shown in FIG. As is clear from FIG. 1, in order to exert a sufficient sterilizing ability, when the generation amount of micro / nano bubbles is 500 ml / min, at least 30 minutes or more, when 1000 ml / min, 15 minutes or more, 200 ml / min In this case, the generation amount and the generation time were in an inversely proportional relationship, and the generation amount of micro / nano bubbles per minute was 500 ml / min × 30 minutes = 15000 ml. In the case of 100 ml / min, it was simultaneously found that there was no bactericidal action even if micro / nano bubbles were generated for a long time.
(試験例3)
次に、水中でマイクロ・ナノバブルの発生する位置(深さ)と殺菌作用との関係について調べた。深いところで発生するマイクロ・ナノバブルほど水中で圧壊現象を起こし、フリーラジカルの放出が多くなるものと推察されるからである。深さの異なる100L容の水槽にS. aureusを1×108個/水槽水ml添加し、マイクロ・ナノバブルを1L/分、30分間発生させ、生存する菌数を測定した。その結果を図2に示した。図2から分かるように、深さ10cmの位置からマイクロ・ナノバブルを発生させても、殺菌作用は示すが、その作用は弱いものである。しかし、深さ30cmの位置からマイクロ・ナノバブルを発生させると、菌数は1×105個/水槽水ml、深さ40cmの位置からマイクロ・ナノバブルを発生させると、菌数は2×104個/水槽水ml、深さ1mの位置からマイクロ・ナノバブルを発生させると、菌数は5×103個/水槽水ml、深さ3mの位置からマイクロ・ナノバブルを発生させると、菌数は2×103個/水槽水mlにまで減少した。このことはマイクロ・ナノバブルの発生量に比較して、その発生位置(深さ)は殺菌能力にはさほど重要な因子ではないことを示唆している。従って、以後実施した各種試験および実施例は深さ50cmの100L容の水槽、すなわち試験例1で使用した同じ型の水槽を使用した。なお、この水中におけるマイクロ・ナノバブルの発生量、発生時間および殺菌能力との関係は、後述する殺菌消毒液を使用したときにもそのまま該当することが明らかになった。
(Test Example 3)
Next, the relationship between the position (depth) at which micro / nano bubbles occur in water and the bactericidal action was investigated. This is because it is presumed that micro / nano bubbles generated deeper cause crushing phenomenon in water and increase free radical release. 1 × 10 8 S. aureus / ml of water in a water tank were added to a 100 L water tank with different depths, and micro / nano bubbles were generated at 1 L / min for 30 minutes, and the number of living bacteria was measured. The results are shown in FIG. As can be seen from FIG. 2, even when micro / nano bubbles are generated from a position having a depth of 10 cm, the bactericidal action is exhibited, but the action is weak. However, when micro / nano bubbles are generated from a position of 30 cm depth, the number of bacteria is 1 × 10 5 cells / ml of aquarium water, and when micro / nano bubbles are generated from a position of 40 cm depth, the number of bacteria is 2 × 10 4. When micro / nano bubbles are generated from a position of 1 m / aquarium water, 1 m depth, the number of bacteria is 5 × 10 3 cells / ml, and when micro / nano bubbles are generated from a position of 3 m depth, the number of bacteria is It decreased to 2 × 10 3 pieces / ml aquarium water. This suggests that the generation position (depth) is not a very important factor for sterilization ability compared to the generation amount of micro / nano bubbles. Accordingly, the various tests and examples carried out thereafter used a 100 L water tank having a depth of 50 cm, that is, the same type of water tank used in Test Example 1. It has been clarified that the relationship between the generation amount of micro / nano bubbles in water, the generation time, and the sterilizing ability is applicable as it is even when a sterilizing liquid described later is used.
(試験例4)
一般に消毒剤は、有機物ことにタンパク質の混入によって、殺菌効果が低下することはよく知られている。従って、タンパク質としてスキムミルクと酵母エキスとを同量混和し、その混和物を、10ppm量、100ppm量および1000ppm量添加し、同時にS. aureusおよびE. coliをそれぞれ1×108個/水槽水ml添加し、株式会社ナノプラネット研究所製M2−MS/SUS型を用いて吐出液体流量7L/分にて、最大泡発生量(1L/分)でマイクロ・ナノバブルを60分間発生させた。このときのS. aureusおよびE. coliへの殺菌効果を調べた。その結果は、表2に示したとおりであって、有機物の共存下では、その濃度が10ppm量の場合は、殺菌効果に殆ど影響が及ばなかったが、100ppm量以上になれば程度の差はあれ、殺菌能力は低下した。また、1000ppm量の高濃度では、菌の約0.1%量は破壊されずに生存していた。
(Test Example 4)
In general, it is well known that disinfectants have a reduced bactericidal effect due to contamination of organic substances, particularly proteins. Therefore, the same amount of skim milk and yeast extract is mixed as protein, and the mixture is added in amounts of 10 ppm, 100 ppm and 1000 ppm, and at the
(試験例5)
試験例1と同様の水槽に約100Lの培養液をみたし、37℃に設定した。次いでS. aureusおよびE. coliをそれぞれ1×107個/培養液ml添加して、株式会社ナノプラネット研究所製M2−MS/SUS型を用いて吐出液体流量7L/分にて、最大泡発生量(1L/分)でマイクロ・ナノバブルを48時間発生させ、添加菌の消長を経時的に測定し、表3に示した。なお、培養液の組成は、肉エキス10g、ペプトン10g、NaCl2gを水1Lに溶解し、pH7.2に調整した肉エキスブイヨンであった。表3から明らかなように、マイクロ・ナノバブル発生直後から菌は一度も増殖することなく減少したが、その程度は緩慢で、1時間後におおよそ1/2、24時間後には1/1000、48時間後には1/1万の菌は生存し続けた。なお、このまま試験を継続してもすべての菌が死に絶えることはなかった。
(Test Example 5)
About 100 L of the culture solution was placed in the same water tank as in Test Example 1 and set to 37 ° C. Next, S. aureus and E. coli were each added at 1 × 10 7 cells / ml of culture solution, and the maximum bubble was produced at a discharge liquid flow rate of 7 L / min using M2-MS / SUS type manufactured by Nano Planet Research Laboratory. Micro / nano bubbles were generated at a generated amount (1 L / min) for 48 hours, and the change of the added bacteria was measured over time. The composition of the culture solution was a meat extract broth prepared by dissolving 10 g of meat extract, 10 g of peptone, and 2 g of NaCl in 1 L of water and adjusting the pH to 7.2. As is apparent from Table 3, the bacteria decreased without growing even immediately after the occurrence of micro-nano bubbles, but the degree was slow, approximately 1/2 after 1 hour, 1/1000 after 48 hours, 48 hours. Later, 1 / 10,000 bacteria continued to survive. In addition, even if the test was continued as it was, all the bacteria did not die.
(試験例6)
試験例1と同様の水槽に約100Lの水をみたし、ガードされた細菌の集合体である歯周縁上歯石プラークを採取し、それをそのまま厚さ200μmの切片およびそれを直径10μmに微粉砕して水槽水に沈めた後、マイクロ・ナノバブルを500ml発生させ、15分毎に1部回収し、プラーク中に含有されている生菌数を測定し、その結果を表4に示した。なお、プラークはフィルターにて濾過回収し、無菌箱にて乾燥した。表4から明らかなように、プラーク中の生菌はまるでバリアーがないかのように、言い換えれば裸の菌と同じような割合で減少した。すなわち、マイクロ・ナノバブルは殺菌能力は弱いが生体組織や物に対して強い浸透性があることを示した。従来汎用された消毒液の場合、例えばヒビテン液を使用したときは、プラーク表面の菌は3分以内に殆ど死滅するが、内部に生息する菌は、60分間の浸漬に耐えて約30〜70%は生存し得た。
(Test Example 6)
About 100 L of water is poured into the same water tank as in Test Example 1, and the upper marginal calculus plaque, which is an aggregate of guarded bacteria, is collected, and is directly pulverized into a 200 μm-thick section and a diameter of 10 μm. After submerging in aquarium water, 500 ml of micro / nano bubbles were generated, 1 part was collected every 15 minutes, the number of viable bacteria contained in the plaque was measured, and the results are shown in Table 4. The plaques were collected by filtration with a filter and dried in a sterile box. As is apparent from Table 4, the viable bacteria in the plaque decreased as if there were no barriers, in other words, at the same rate as the naked bacteria. In other words, the micro-nano bubbles have weak sterilizing ability but have strong permeability to living tissues and objects. In the case of a conventionally used disinfectant, for example, when a Hibiten solution is used, the bacteria on the plaque surface are almost killed within 3 minutes, but the bacteria living inside are resistant to immersion for 60 minutes and are about 30 to 70. % Could survive.
上述した試験例1〜6の試験結果から明らかになったことは、マイクロ・ナノバブルの殺菌能力は汎用の化学的消毒法や物理的消毒法に比較して非常に弱いもので、いわゆる専門家が認識している殺菌とか消毒とは少々かけ離れて異質なものといわざるを得ない。その最たるものが試験例6である。 What has become clear from the test results of Test Examples 1 to 6 described above is that the disinfection ability of micro / nano bubbles is very weak compared to general chemical disinfection methods and physical disinfection methods. The recognized sterilization or disinfection is far from being a little different. The most important example is Test Example 6.
(試験例7)
細菌における芽胞は、外皮、芽胞殻、外層、芽胞壁と3〜4層の厚い膜で覆われ透過性が低く、そのため外界の影響に対して強い抵抗性を有し、切れ味のよい化学的消毒法がないのが現状である。従って、芽胞を被検体として試験を行った。なお、芽胞の分離採取は次の方法によった。(1)川原の乾いた砂を採取し、これを撹拌しながら100℃の熱風で数時間よく乾燥し、まず栄養細胞を殺菌した。その内の1gを水に入れ、直ちにフィルターにて濾過した。その濾過水の一部をスライドグラスに塗布し、常法に従って芽胞染色し、染色された芽胞数から混和物1g中の芽胞数を測定した。このときの芽胞は種々雑多な芽胞を含むものであった。(2)酵母エキス3g、ポリペプトン10g、グルコース10g、MnSO4・5H2O0.1g、NaCl3g、寒天15gを水1Lに溶解し、pH7.2に調整した芽胞形成培地にBacillus pumilusを塗布し、30℃で7日間好気的に培養し、芽胞を形成させた。また、トリプトン50g、ポリペプトン5g、チオグリコール酸ナトリウム5g、グルコース5g、Na2HPO41g、寒天15gを水1Lに溶解し、pH7.2に調整した芽胞形成培地にClostridium perfringensを塗布し、30℃で7日間嫌気的に培養し、芽胞を形成させた。得られた芽胞は70℃で15分間加熱し、栄養細胞は不活性化し、滅菌水で2回洗浄し、次いで減圧乾燥し、通常のデンプンと混和した。デンプン1g中の芽胞数を(1)と同様に測定した。試験例1と同様の水槽に約100Lの水をみたし、採取した芽胞を水槽水1ml当たり1×108個になるように添加し、マイクロ・ナノバブルを1L/分発生し、120分間経時的に水槽水を1ml採取し、常法の希釈法により芽胞が崩壊死滅していく様子を測定し、その結果を表5に示した。表5から明らかなように、芽胞の種類に関係なく殺菌効果を示し、その効果は試験例1に示す通常の栄養細胞に対する殺菌効果に少々見劣りするとはいえ、10分後には1%の芽胞が崩壊し、15分後には2〜2.5%、30分後には5%、60分後には35〜40%程度の芽胞が崩壊死滅した。すなわち、マイクロ・ナノバブルは強固な芽胞組織に対してもその浸透力により殺菌作用をある程度発揮することが実証された。この数値は芽胞の殺菌という見地からみると、正に驚くべき事象である。
(Test Example 7)
Spores in bacteria are covered with a thick film of 3-4 layers of outer skin, spore shell, outer layer, spore wall and have low permeability, so it has a strong resistance to the influence of the outside world and has a sharp chemical disinfection There is currently no law. Therefore, the test was performed using spores as subjects. The spores were separated and collected by the following method. (1) The dry sand of Kawahara was sampled and dried well with hot air at 100 ° C. for several hours while stirring it. First, vegetative cells were sterilized. 1 g of that was put into water and immediately filtered through a filter. A portion of the filtered water was applied to a slide glass and stained according to a conventional method, and the number of spores in 1 g of the mixture was measured from the number of stained spores. The spores at this time contained various miscellaneous spores. (2) 3 g of yeast extract, 10 g of polypeptone, 10 g of glucose, 0.1 g of MnSO 4 .5H 2 O, 3 g of NaCl, and 15 g of agar were dissolved in 1 L of water and Bacillus pumilus was applied to a spore-forming medium adjusted to pH 7.2. Cultured aerobically for 7 days at 0 ° C. to form spores. In addition, 50 g of tryptone, 5 g of polypeptone, 5 g of sodium thioglycolate, 5 g of glucose, 1 g of Na 2 HPO 4 and 15 g of agar were dissolved in 1 L of water, and Clostridium perfringens was applied to a spore formation medium adjusted to pH 7.2. And anaerobically cultured for 7 days to form spores. The resulting spores were heated at 70 ° C. for 15 minutes, vegetative cells were inactivated, washed twice with sterile water, then dried under reduced pressure and mixed with normal starch. The number of spores in 1 g of starch was measured in the same manner as in (1). About 100 L of water was poured into the same water tank as in Test Example 1, and the collected spores were added at 1 × 10 8 per 1 ml of water in the tank, generating 1 L / min of micro / nano bubbles, 120 minutes over time. 1 ml of aquarium water was sampled, and the state of spores decaying and dying was measured by a conventional dilution method. The results are shown in Table 5. As is clear from Table 5, the bactericidal effect was exhibited regardless of the type of spore, and the effect was slightly inferior to the bactericidal effect on normal vegetative cells shown in Test Example 1, but 1% of the spore was 10 minutes later. After 15 minutes, 2 to 2.5% of spores were destroyed, 5% after 30 minutes, and 35 to 40% of spores after 60 minutes. In other words, it was demonstrated that micro / nano bubbles exert a bactericidal action to some extent even with respect to strong spore tissues due to their penetrating power. This is a truly surprising phenomenon from the standpoint of spore disinfection.
マイクロ・ナノバブルの関与する殺菌作用は上述のとおりであるが、既存の消毒液との併用により殺菌作用にどのような影響を与えるかについて調査したが、アルコール、ハロゲン化合物およびフェノール化合物では、むしろその作用は低下することが明らかとなった。唯、特願2000−44417号に記載の「鉄イオン含有殺菌液」では、その殺菌効果が顕著に強化された。さらには、マイクロ・ナノバブルを含有させた「鉄イオン含有殺菌液」は、密封した状態では、開封しない限り、その強い殺菌力は数ヶ月間保持し得ることも明らかになった。なお、マイクロ・ナノバブルを含有させた「鉄イオン含有殺菌液」を開封した場合には、一時に全部使用することが肝要で残った殺菌液は徐々に本来の殺菌作用に戻ってしまう。 The bactericidal action involving micro / nano bubbles is as described above. However, the effect of the combined use with the existing disinfectant was examined on the bactericidal action. However, alcohol, halogen compounds and phenolic compounds are rather affected. It became clear that the action decreased. However, in the “iron ion-containing sterilizing solution” described in Japanese Patent Application No. 2000-44417, the sterilizing effect was remarkably enhanced. Furthermore, it became clear that the “iron ion-containing sterilizing solution” containing micro / nano bubbles can retain its strong sterilizing power for several months in a sealed state unless it is opened. When the “iron ion-containing sterilizing liquid” containing micro / nano bubbles is opened, the sterilizing liquid that remains to be used all at once is gradually returned to the original sterilizing action.
(製造例1)
III価の鉄イオン(Fe3+)の含有量が500乃至1500ppmおよびL−アスコルビン酸の含有量が500乃至2000ppmであって、ソルビン酸、安息香酸およびパラオキシ安息香酸エステルの少なくとも1種または2種以上を含有し、その含有量が200乃至2000ppmである殺菌液のうち、塩化第二鉄六水和物(FeCl3・6H2O)1000ppm、L−アスコルビン酸1000ppm、ソルビン酸カリウム500ppmからなる殺菌液を「BC−Fe」と称した。
(Production Example 1)
At least one or two kinds of sorbic acid, benzoic acid and paraoxybenzoic acid ester having a content of III-valent iron ions (Fe 3+ ) of 500 to 1500 ppm and a content of L-ascorbic acid of 500 to 2000 ppm Among the sterilizing liquids containing the above and having a content of 200 to 2000 ppm, a sterilizing agent comprising ferric chloride hexahydrate (FeCl 3 .6H 2 O) 1000 ppm, L-
(製造例2)
製造例1で製造した「BC−Fe」殺菌液を試験例1と同様の水槽に約100Lみたし、株式会社ナノプラネット研究所製M2−MS/SUS型を用いて吐出液体流量7L/分にて、最大泡発生量(1L/分)でマイクロ・ナノバブルを60分間発生させた殺菌消毒液を、500mlの試薬瓶に注入して、「ON−MNB」と称した。
(Production Example 2)
About 100 L of the “BC-Fe” sterilizing solution manufactured in Manufacturing Example 1 was poured into the same water tank as in Test Example 1, and the discharge liquid flow rate was 7 L / min using the M2-MS / SUS type manufactured by Nano Planet Research Laboratory. Then, a sterilizing / disinfecting solution in which micro / nano bubbles were generated for 60 minutes at the maximum foam generation amount (1 L / min) was poured into a 500 ml reagent bottle and referred to as “ON-MNB”.
(製造例3)
製造例1で製造した「BC−Fe」殺菌液を試験例1と同様の水槽に約100Lみたし、株式会社ナノプラネット研究所製M2−MS/SUS型を用いて吐出液体流量7L/分にて、最大泡発生量(1L/分)でマイクロ・ナノバブルを60分間発生させた液を500mlの試薬瓶に注入し、密栓1ヶ月保存したものを「CL−MNB」と称した。
(Production Example 3)
About 100 L of the “BC-Fe” sterilizing solution manufactured in Manufacturing Example 1 was poured into the same water tank as in Test Example 1, and the discharge liquid flow rate was 7 L / min using the M2-MS / SUS type manufactured by Nano Planet Research Laboratory. A solution in which micro / nano bubbles were generated for 60 minutes at a maximum bubble generation amount (1 L / min) was poured into a 500 ml reagent bottle and stored for 1 month in a tightly-sealed bottle, which was referred to as “CL-MNB”.
(実施例1)
病原菌に対する殺菌消毒液の効果をみるために、供試菌の懸濁液濃度を1×108個/生理食塩液mlに調整し、該懸濁液を常用濃度にした殺菌消毒液に2重量%それぞれ滴下した。経時的に一白金耳を釣菌し、各増菌培地に植菌して、最適環境下で培養し、各菌の増殖の有無で殺菌効果を観察した。一般細菌を10秒〜60秒間接触させたときの結果を表6に、芽胞形成菌を1分〜120分間接触させたときの結果を表7に示した。なお、一般細菌の多くは10秒以内に殺菌し得たので、代表的な菌種のみを表6に示した。表6及び表7から明らかなように、BC−Feにより一般細菌の多くは10秒間で死滅した。また、10秒では死滅しないE. faecalisやPs. aeruginosaもマイクロ・ナノバブルを含有したON−MNBやCL−MNBでは10秒以内ですべて死滅した。また、死滅には約1分間要する抗酸菌や1分以上を要するC. albicansでも20秒〜30秒間で完全に死滅した。なお、芽胞も早いものでは1分以内で、遅くとも60分間の接触ですべて崩壊死滅した。
Example 1
In order to see the effect of the sterilizing solution against pathogenic bacteria, the suspension concentration of the test bacterium is adjusted to 1 × 10 8 cells / ml of physiological saline solution, and the weight of the sterilizing solution is 2 wt. % Respectively. One platinum ear was picked over time, inoculated into each enrichment medium, cultured in an optimal environment, and the bactericidal effect was observed by the presence or absence of growth of each fungus. The results when the general bacteria were contacted for 10 to 60 seconds are shown in Table 6, and the results when the spore-forming bacteria were contacted for 1 to 120 minutes are shown in Table 7. Since many of the general bacteria could be sterilized within 10 seconds, only representative bacterial species are shown in Table 6. As is clear from Tables 6 and 7, BC-Fe killed many common bacteria in 10 seconds. Also, E. faecalis and Ps. Aeruginosa, which do not die in 10 seconds, all died within 10 seconds in ON-MNB and CL-MNB containing micro / nano bubbles. In addition, mycobacteria that took about 1 minute to kill and C. albicans that took more than 1 minute were completely killed in 20 to 30 seconds. The early spores were within 1 minute, and all collapsed and killed after 60 minutes at the latest.
(実施例2)
試験例4において、有機物が混入したときのマイクロ・ナノバブルの殺菌効果について検討したが、本発明の殺菌消毒液に対しても有機物混入時の殺菌効果について調べた。有機物の溶液として、スキムミルク及び酵母エキスのそれぞれ0.2重量%及び1重量%の溶液を調製し、その各々を殺菌消毒液に1ppm、50ppm及び100ppm添加し、同時に供試菌としてS. aureus(MRSA)及びE. coli O-157の懸濁液濃度を1×108個/生理食塩液mlに調整した懸濁液を2重量%添加した。供試菌との接触時間は10秒〜60秒間とし、経時的にその添加液を10μl採取し、培地に接種した。37℃で培養し、菌の発育の有無で殺菌効果を観察した。その結果を表8及び表9に示した。表8及び表9から分かるように、有機物の濃度が高い場合、BC−Feでは滅菌に60秒を要したが、マイクロ・ナノバブルを含有したON−MNBやCL−MNBでは約20秒以内で滅菌することができた。なお、本有機物溶液に特開2000−44417号公報に記載のCu2+などの抗菌性金属イオン、抗菌性を示すティトリーオイルなどの精油、または界面活性剤を微量添加することによって、殺菌能力が強化されたことはいうまでもない。
(Example 2)
In Test Example 4, the sterilizing effect of the micro / nano bubbles when the organic substance was mixed was examined. The sterilizing effect when the organic substance was mixed was also examined for the sterilizing liquid of the present invention. As organic solutions, skim milk and yeast extract of 0.2% by weight and 1% by weight, respectively, were prepared, and 1 ppm, 50 ppm, and 100 ppm were added to the disinfectant, respectively, and S. aureus ( MRSA) and E. coli O-157 suspension concentrations adjusted to 1 × 10 8 cells / ml of physiological saline were added at 2% by weight. The contact time with the test bacteria was 10 seconds to 60 seconds, and 10 μl of the added solution was collected over time and inoculated into the medium. The cells were cultured at 37 ° C., and the bactericidal effect was observed with and without the growth of the bacteria. The results are shown in Tables 8 and 9. As can be seen from Tables 8 and 9, when the concentration of organic substances is high, BC-Fe required 60 seconds for sterilization, but ON-MNB and CL-MNB containing micro / nano bubbles sterilized within about 20 seconds. We were able to. By adding a small amount of antibacterial metal ions such as Cu 2+ described in JP-A No. 2000-44417, essential oils such as Titry oil exhibiting antibacterial properties, or surfactants to the organic solution, the sterilizing ability is improved. Needless to say, it has been strengthened.
自然環境で細菌が旺盛に増殖するケースは食中毒事件の例をみるまでもなく、栄養豊富な食物の中において起こっている。従って、このような場合、本発明の殺菌消毒液は菌の増殖をどの程度抑止し得るか、また殺菌し得るかを観察した。すなわち、調理後に放置した食物の腐敗過程においてそれぞれの殺菌消毒液を噴霧し、その後の細菌の消長を観察した。通常、調理済みの食物に消毒液を直接噴霧することはあり得ないが、BC−Feは食品添加物を成分としているため、その結果によっては実用性が浮上してくるものと考えられる。 Cases of vigorous growth of bacteria in the natural environment occur in nutrition-rich foods, not to mention cases of food poisoning. Therefore, in such a case, it was observed how much the sterilizing / disinfecting solution of the present invention can inhibit the growth of bacteria and can be sterilized. That is, each sterilizing and disinfecting solution was sprayed in the process of decaying food left after cooking, and the subsequent change of bacteria was observed. Usually, it is impossible to spray a disinfectant directly on cooked food, but since BC-Fe contains food additives as a component, it is considered that the practicality will rise depending on the result.
(実施例3)
調理後の「かやく飯」、「冷や奴」、「マグロとイカの刺身」及び「肉じゃが」を28℃にて24時間放置し、その後各食物にそれぞれの殺菌消毒液を万遍なく噴霧し、それぞれの1部を噴霧直後から24時間後にわたり採取し、ホモゲナイザーにより均一化し、食物1g中の生菌数を常法に従って測定した。腐敗過程は調理の方法、食材や環境により当然異なるが、本実施例においては、「かやく飯」では24時間放置後に1.2×105個/g、「冷や奴」では8×107個/g、「マグロとイカの刺身」では3.5×108個/g、「肉じゃが」では1.5×107個/gの生菌数が測定された。これは調理直後の生菌数に比較し、それぞれ大幅に増加しており、特に「冷や奴」と「マグロとイカの刺身」ではすでに幾分か腐敗臭を呈していた。食物中の腐敗菌の消長を表10に示した。表10から明らかなように料理の種類によって多少異なるが、食物の腐敗が可成り進行した状態で殺菌消毒液を噴霧した場合、BC−Feでは噴霧直後の生菌数は1/100〜1/1000に、1時間後には約1/1000に、2時間後には1/1万〜1/10万に減少することが分かった。しかし、24時間経過すると効果は薄れ、菌数はやや増加傾向を示した。なお、「かやく飯」については、噴霧した消毒液が十分に行き渡っていないのか、生菌数の減少はやや劣っていた。これに対してON−MNBを噴霧したときは、BC−Feに比べ1桁多い減少を示し、24時間後も減少を続けて、完全殺菌に近い水準までに到達した。すなわち、ON−MNBはその強い浸透力で食物の表面のみならず、内部に侵入している菌にまで到達し、殺菌力を発揮することを示した。CL−MNBにおいてもON−MNBに多少劣るとはいえ、これに準じた成績を示した。
(Example 3)
After cooking "Kayaku rice", "Chilled guy", "Tuna and squid sashimi" and "Meat potato" are allowed to stand at 28 ° C for 24 hours, and then each food is sprayed with each sterilizing liquid evenly. One part of each was collected from immediately after spraying for 24 hours, homogenized with a homogenizer, and the number of viable bacteria in 1 g of food was measured according to a conventional method. The decaying process naturally varies depending on the cooking method, ingredients and environment, but in this example, “Kayaku-rice” is 1.2 × 10 5 pieces / g after being left for 24 hours, and “Chiller” is 8 × 10 7 pieces. / G, “Tuna and squid sashimi” had a count of 3.5 × 10 8 cells / g, and “Meat potato” had a count of 1.5 × 10 7 cells / g. This is a significant increase compared to the number of viable bacteria immediately after cooking, especially “Chiller” and “Tuna and squid sashimi”, which already had some rotting odor. Table 10 shows changes in the number of spoilage bacteria in the food. As is apparent from Table 10, the number of viable bacteria immediately after spraying is 1/100 to 1/1 in BC-Fe when sprayed with a bactericidal disinfectant solution in a state in which food decay has progressed considerably, depending on the type of dish. It was found that it decreased to about 1/1000 after 1000 hours and 1/1000 to 1 / 100,000 after 2 hours. However, after 24 hours, the effect diminished and the number of bacteria showed a slightly increasing tendency. As for “Kayaku rice”, the decrease in the number of viable bacteria was somewhat inferior because the sprayed disinfectant was not sufficiently distributed. On the other hand, when ON-MNB was sprayed, it decreased by an order of magnitude compared to BC-Fe, continued to decrease after 24 hours, and reached a level close to complete sterilization. That is, it was shown that ON-MNB reaches not only the surface of food but also the bacteria invading inside with its strong penetrating power and exerts bactericidal power. Although CL-MNB was somewhat inferior to ON-MNB, it showed results according to this.
(実施例4)
汎用の消毒液は、一般に検体といわれる排泄物には有効性に乏しく、使用するには不適切であるといわれているので、本発明の殺菌消毒液についての検体に対する有効性を検討した。
Example 4
A general-purpose disinfectant is said to be ineffective for excrement generally referred to as a specimen and is inappropriate for use. Therefore, the effectiveness of the disinfectant of the present invention for a specimen was examined.
(1)喀痰:数人から喀痰を採取し、混和した後、よく撹拌し、次いで2等分して一方は喀痰溶解剤スプラゾルを規定量投与し、30分間放置した。他方は、そのままの状態(粘稠性あり)で生菌数を測定した。その後、検体重量の2倍量の殺菌消毒液をそれぞれ加え、よく撹拌し、経時的に検体中の生菌数を測定し、その結果を表11に示した。表11から明らかなように、溶解剤を投与した場合には、BC−Feでは5分後に約1/100程度に、60分後には1/100万程度まで減少した。すなわち、完全殺菌には到らないが喀痰消毒に使用して差し支えない水準にまでなった。これに対して、ON−MNB及びCL−MNBを添加した場合には、5分後には生菌数が1/1000に、その後も急速に減少し、60分後には生菌を認めることはできず、完全殺菌に威力を発揮した。一方、溶解剤を使用しない喀痰にそれぞれの殺菌消毒液を添加した場合には、BC−Feでは5分後に約1/10に、60分後に1/1万程度しか減少せず、有効とはとても言い難い成績であった。これに対し、ON−MNBの場合は、完全殺菌には到らないが、菌は極僅かしか生存しておらず、実用上差し支えないことが判明した。CL−MNBもこれに準じた成績を示した。ここでもマイクロ・ナノバブルを含有したBC−Feの組織浸透力は相当強くなることが示された。 (1) Sputum: Spoons were collected from several people, mixed, then stirred well, then divided into two equal parts, one of which was given a prescribed amount of sputum solubilizing agent, and left for 30 minutes. On the other hand, the viable cell count was measured as it was (with viscosity). Thereafter, a bactericidal disinfectant having an amount twice the weight of the specimen was added and stirred well, and the number of viable bacteria in the specimen was measured over time. The results are shown in Table 11. As is apparent from Table 11, when the solubilizer was administered, BC-Fe decreased to about 1/100 after 5 minutes and to 1 / 1,000,000 after 60 minutes. In other words, although it could not be completely sterilized, it could be used for disinfection. In contrast, when ON-MNB and CL-MNB were added, the number of viable bacteria decreased to 1/1000 after 5 minutes and then rapidly decreased, and viable bacteria could be recognized after 60 minutes. It demonstrated its power for complete sterilization. On the other hand, when each bactericidal disinfectant solution is added to a candy that does not use a solubilizer, BC-Fe decreases to about 1/10 after 5 minutes and only about 1/1000 after 60 minutes. It was very difficult to say. On the other hand, in the case of ON-MNB, although it does not reach complete sterilization, it was found that the bacteria survived very little and could be used practically. CL-MNB also showed results according to this. Here too, it was shown that the tissue penetration of BC-Fe containing micro-nano bubbles is considerably increased.
(2)糞便:採取した糞便中には1×1011個/gの腸内細菌が生息していた。BC−Feを検体重量の2倍量加え、よく撹拌し、経時的に検体中の生菌数を測定した。その結果を表11に示した。表11から明らかなように、添加5分後には1/50に、60分後には約1/1億に、すなわち、1×102〜2×103個/gまで激減したが、全部の菌が死滅することはなかった。ON−MNBの添加では、BC−Feより1桁多い減少、すなわち1×102個/g以下となり、CL−MNBの添加においても類似の成績を示し、糞便の殺菌消毒に威力を発揮し得ることが明らかとなった。 (2) Feces: 1 × 10 11 bacteria / g of intestinal bacteria lived in the collected feces. BC-Fe was added twice as much as the sample weight, stirred well, and the number of viable bacteria in the sample was measured over time. The results are shown in Table 11. As can be seen from Table 11, 1/50 after 5 minutes addition, about 1/1100 million after 60 minutes, i.e. 1 × 10 2 to 2 × 10 3 pieces / g, The fungus was never killed. With addition of ON-MNB, it is decreased by an order of magnitude more than BC-Fe, that is, 1 × 10 2 / g or less, and similar results can be obtained with addition of CL-MNB, which can be effective for sterilization of feces. It became clear.
(3)膿:褥瘡の原因菌が、MRSA主体の膿及び緑膿菌主体の膿に対して、検体中の菌の死滅状況を観察したところ、両者の殺菌消毒液に対する感受性に有意な差はなかった。BC−Feの添加により原因菌は急速に減少し、完全死滅には到らなかったが、60分後には1×103個/g以下にまで減少した。これに対して、ON−MNBを添加したとき及びCL−MNBを添加したときには、原因菌は15分後にはすべて死滅した。以上の結果を概観するとき、検体に対する殺菌消毒効果をおしなべてみると、BC−Feはやや有効で、ON−MNBは高い有効性を発揮し、CL−MNBはそれに準じて有効との結論に到った。なお、殺菌消毒液の濃度を常用の2〜3倍に調整し、検体に添加するよりは、常用の濃度で投与量を多くした方がより効果的であった。さらに、従来汎用の消毒液、70%アルコールやビグアナイド系薬剤でも同様の試験をしたが、その効果は無効ではないが有効とはとても言い難い成績であった。 (3) Pus: When the causative bacteria of the pressure ulcers were observed for the sterilization of MRSA-based pus and Pseudomonas aeruginosa-based pus, the significant difference in susceptibility to the disinfectant was found. There wasn't. The addition of BC-Fe rapidly decreased the causative bacteria and did not reach complete death, but after 60 minutes, the number decreased to 1 × 10 3 cells / g or less. In contrast, when ON-MNB was added and when CL-MNB was added, all causative bacteria died after 15 minutes. When reviewing the above results, it was concluded that BC-Fe was somewhat effective, ON-MNB was highly effective, and CL-MNB was effective in accordance with the effect of sterilizing and disinfecting samples. It was. Rather than adjusting the concentration of the sterilizing and disinfecting solution to 2 to 3 times that of normal use and adding it to the specimen, it was more effective to increase the dose at the normal concentration. Furthermore, the same test was conducted with a conventional general-purpose disinfectant, 70% alcohol, and biguanide drugs, but the results were not ineffective but very difficult to say.
(実施例5)
本願発明の殺菌消毒液をうがいに使用した場合の効果を検討した。うがい前の唾液1ml中の生菌数を測定し、次いで殺菌消毒液で1回20秒、計3回すなわち1分間のうがいを行い、その直後、15分後及び60分後の唾液を採取し、唾液1ml中に含まれる生菌数を測定し、その結果を表12に示した。なお、対照として残留塩素0.6ppmの水道水を使用してうがいを行った。表12から分かるように、水道水でうがいをするのみでも直前5×108個/mlの菌数が、うがい直後には1/25の2×107個/mlに減少したが、その菌数は時間を経るにしたがい元に復し、60分後には1×108個/mlになることが明らかになった。BC−Feでうがいをした場合には、直前7×108個/mlの菌数が、うがい直後には約1/2000の4×104個/mlに減少し、その後60分経過しても菌数の増加はほとんどなかった。次にON−MNBでうがいをした場合には、うがい直後には1/100万まで減少し、60分後には若干菌の増殖は認められたが、低水準のままで留まっていた。CL−MNBでうがいをした場合には、その効果はON−MNBよりやや劣るとはいえ、近似の成績であった。なお、日常うがい薬として推奨されている塩化ベンザルコニウムやヨードホール(イソジン液)を使用した場合には、1/100〜1/1000の減少に留まり、ホウ酸や市販の洗口液も1/100程度の減少で、殺菌という観点からは水道水でのうがいと同レベルのものであることが分かった。
(Example 5)
The effect when the germicidal disinfectant of the present invention was used for gargle was examined. Measure the number of viable bacteria in 1 ml of saliva before gargle, then gargle 3 times, that is, 1 minute for 20 seconds once with a disinfectant solution, and immediately after that, collect saliva after 15 and 60 minutes. The number of viable bacteria contained in 1 ml of saliva was measured, and the results are shown in Table 12. As a control, gargle was performed using tap water with 0.6 ppm residual chlorine. As can be seen from Table 12, the number of bacteria of 5 × 10 8 cells / ml just before gargle with tap water was reduced to 2 × 10 7 cells / ml of 1/25 immediately after gargle. It was revealed that the number recovered as time passed and became 1 × 10 8 cells / ml after 60 minutes. In the case of gargle with BC-Fe, the number of bacteria of 7 × 10 8 cells / ml immediately before the gargle decreased to about 1/2000 of 4 × 10 4 cells / ml immediately after gargle, and 60 minutes later. There was almost no increase in the number of bacteria. Next, when gargled with ON-MNB, it decreased to 1/1 million immediately after gargle, and after 60 minutes, some growth of bacteria was observed, but remained at a low level. When gargled with CL-MNB, although the effect was slightly inferior to ON-MNB, it was an approximate result. In addition, when using benzalkonium chloride and iodohol (isodine solution) recommended as daily gargles, the reduction is only 1/100 to 1/1000, and boric acid and commercially available mouthwashes are also 1 From the viewpoint of sterilization, it was found that the level was about the same as that of tap water.
(実施例6)
本願発明の殺菌消毒液の皮膚面に対する殺菌効果を、スプレーした場合と清拭した場合とで調べた。
(Example 6)
The sterilizing effect on the skin surface of the sterilizing and disinfecting solution of the present invention was examined by spraying and wiping.
(1)手の皮膚面に広く殺菌消毒液を噴霧して、その効果を調べた。スプレー直後に滅菌ガーゼで10cm2の範囲を拭き取り、スワプ式により菌数を測定した。次に事前にスプレーした範囲を15分後、30分後、60分後にそれぞれ移動しながら10cm2 ずつ拭き取り、スワプ式により菌数を測定し、その結果を表13に示した。表13から明らかなように、水道水のスプレーでは当然ながらスプレー前の菌数と変わるところがなかったが、BC−Feをスプレーした場合には、スプレー直後の菌数は1/1300に急減し、時間の経過とともに、更に減少し、30分後には1/1万にまで減少したが、やはり完全には死滅に到らなかった。ON−MNBをスプレーした場合にも同様の傾向であったが、30分後にはほぼ無菌状態となった。しかし、60分後には環境中の落下細菌と推測される菌が少数検出された。また、CL−MNBの場合にもON−MNBの場合と近似の成績を示した。 (1) The disinfection liquid was widely sprayed on the skin surface of the hand, and the effect was examined. Immediately after spraying, the area of 10 cm 2 was wiped off with sterilized gauze, and the number of bacteria was measured by a swapping method. Next, the pre-sprayed area was wiped off by 10 cm 2 while moving after 15 minutes, 30 minutes and 60 minutes, and the number of bacteria was measured by a swapping method. The results are shown in Table 13. As is clear from Table 13, the tap water spray naturally did not change the number of bacteria before spraying, but when BC-Fe was sprayed, the number of bacteria immediately after spraying rapidly decreased to 1/1300, Although it further decreased with the passage of time and decreased to 1/1000 after 30 minutes, it was still not completely killed. The same tendency was observed when ON-MNB was sprayed, but the condition became almost aseptic after 30 minutes. However, after 60 minutes, a small number of bacteria presumed to be falling bacteria in the environment were detected. Also, CL-MNB showed similar results to ON-MNB.
(2)滅菌ガーゼに殺菌消毒液を浸し、該ガーゼにより手の皮膚表面を清拭し、スプレー方式と同じ手順で菌数を測定し、表13に示した。表13から明らかなように、水道水で清拭したとき、菌数は1/17に減少し、BC−Feでは清拭直後に1/2300に急減し、15分後には1/7000にまでなったが、その後菌は次第に増加し始めた。スプレーの場合と異なって殺菌消毒液の塗布状態が薄いため、早い段階で揮散し、効果の持続が短かったものと推察された。なお、ON−MNB及びCL−MNBにより清拭した場合、清拭直後にほぼ殺菌消毒されたが、15分後には生菌が出現し、60分後には少なからず増加していた。その多くは単なる落下細菌と推測された。 (2) A bactericidal antiseptic solution was immersed in a sterilized gauze, the skin surface of the hand was wiped with the gauze, and the number of bacteria was measured by the same procedure as the spray method. As is clear from Table 13, when wiped with tap water, the number of bacteria decreased to 1/17, and BC-Fe rapidly decreased to 1/2300 immediately after wiping, and to 1/7000 after 15 minutes. After that, the bacteria started to increase gradually. Unlike the case of spraying, the application state of the sterilizing and disinfecting solution was thin, so it was assumed that it was volatilized at an early stage and the effect lasted short. In addition, when wiped with ON-MNB and CL-MNB, it was almost sterilized immediately after wiping, but viable bacteria appeared after 15 minutes and increased considerably after 60 minutes. Many of them were speculated as mere falling bacteria.
(実施例7)
皮膚表面と同様の方法で可成り汚れの目立つ床面(リノリューム)に殺菌消毒液を噴霧し、その100cm2ずつを滅菌ガーゼで拭き取り、スワプ式により菌数を測定し、表14に示した。表14から明らかなようにいずれも実施例6におけるスプレー方式の成績に類似の傾向を示した。すなわち、処理前には2×107〜3×107/100cm2の生菌が存在していたが、BC−Feをスプレーした場合、直後には1/6000に減少し、60分後には1/3万にまでなった。これに対してON−MNB及びCL−MNBにおいては15分後には、床面はほぼ無菌状態になった。なお、床を清拭したときも同じく、実施例6における皮膚表面の清拭法に準じた成績であった。
(Example 7)
Bactericidal disinfectant was sprayed on the floor surface (linoleum), which was considerably noticeable in the same manner as the skin surface, 100 cm 2 of each was wiped off with sterilized gauze, and the number of bacteria was measured by the swap method. As is clear from Table 14, all showed a tendency similar to the results of the spray method in Example 6. That is, although live cells of 2 × 10 7 ~3 × 10 7 /
(実施例8)
最近、土壌の浄化事業に大企業が参入し始め、将来大きな産業に成長するものと期待されているが、現在のところ、汚染の浄化方法は化学的処理または物理的処理が主体となっている。しかし、将来は、農作物、果樹、花などの植物の成長促進や病害虫対策に、浄化と同時に一度土壌を殺菌し、その後それぞれの作物に適合した微生物を撒布して、効率のよい栽培法が普及していくものと推測される。そのため、畑の土壌を採取し、それを小型の植木鉢4鉢に入れて、その後ジョウロで各殺菌消毒液を土が十分湿るまで撒布した。その後、経時的に土壌を採取し、土壌1g当たりに生息する菌数を測定した。その結果、土壌中に5×109個/g生息していた菌は、BC−Feを撒布したところ、その直後に5×107個/g、すなわち1/100に、60分後には2×103個/g、すなわち1/250万になった。その後も漸次減少して12時間後には1×103個/g、すなわち1/500万にまで減少したが、ここでも全部の菌が死滅することはなかった。これに対して、ON−MNBの場合は、撒布直後に1/5000に、60分後には1/2500万(2×102個/g)、12時間後には1/5000万(1×102個/g)にまで激減し、ほぼ完全殺菌に近い水準になった。CL−MNBもこれに類似した成績であった。押しなべてみれと、いずれの殺菌消毒液も土壌の殺菌に高い有効性を示したが、ON−MNB及びCL−MNBはことのほか、その有効性を多いに発揮した。
(Example 8)
Recently, large companies have begun to enter the soil remediation business and are expected to grow into a large industry in the future. At present, however, pollution purification methods mainly consist of chemical treatment or physical treatment. . However, in the future, to promote the growth of plants such as crops, fruit trees, and flowers, and to control pests, soil is sterilized at the same time as purification, and then microorganisms suitable for each crop are distributed to spread efficient cultivation methods. It is presumed that Therefore, the soil in the field was collected, put in 4 small flower pots, and then sprayed with a watering funnel until each soil was sufficiently wet. Thereafter, the soil was collected over time, and the number of bacteria living per 1 g of soil was measured. As a result, the bacteria that had inhabited 5 × 10 9 cells / g in the soil distributed BC-Fe, immediately after that, 5 × 10 7 cells / g, that is, 1/100, and 2 minutes after 60 minutes. × 10 3 pieces / g, that is, 1 / 2500,000. Thereafter, it gradually decreased and decreased to 1 × 10 3 cells / g, that is, 1/5 million after 12 hours, but even here, all the bacteria were not killed. On the other hand, in the case of ON-MNB, 1/5000 immediately after distribution, 1/25 million (2 × 10 2 pieces / g) after 60 minutes, and 1/50 million (1 × 10 2 after 12 hours). It was drastically reduced to 2 / g), and was almost at the level of complete sterilization. CL-MNB had similar results. All the sterilizing disinfectants showed high effectiveness in soil sterilization, but ON-MNB and CL-MNB exhibited a lot of effectiveness in addition to that.
(実施例9)
食中毒の原因食材として野菜類が約30%を占めていることは意外と知られていない。特に、生野菜を食べるときは注意を要する。従って、野菜を十分に洗浄することは食中毒を予防する上で大切なことである。今回、大根、貝割れ、キャベツ、レタスを被検野菜として、それぞれの単位面積(cm2)当たりの洗浄前の生菌数と洗浄後の生菌数を経時的に測定し、その結果を表15に示した。なお、洗浄時間は20秒間、対照は水道水の流水洗浄とした。表15から明らかなように、野菜によって付着菌数に違いはあるが、水道水で洗浄するのみで、おおよそ1/1000に減少した。しかし、そのまま放置した状態では菌は漸次増加し、5時間後には洗浄前の1/10〜1/20までに復した。これは、野菜を栄養として増殖する菌と環境中から付着する菌の合計と考えられる。これに対して、BC−Feで洗浄したとき、その直後には菌はまったく検出されず、1時間後にも検出しないか、しても極僅かの菌数に過ぎなかった。しかし、経過5時間後には洗浄前の菌数の1/100までに増加した。この現象は、該液での洗浄効果は極めて高く、その効果はある程度持続することを示唆している。その理由は、野菜表面で該液成分の皮膜が形成され、それがバリアーとして働くものと思われる。なお、ON−MNB及びCL−MNBを使用したときは、さらに高い洗浄殺菌効果を発揮し、5時間経過してもほぼ無菌状態が継続していた。
Example 9
Surprisingly, it is not known that vegetables account for about 30% as a causative ingredient of food poisoning. Be especially careful when eating raw vegetables. Therefore, it is important to thoroughly wash vegetables to prevent food poisoning. This time, radish, cracked shellfish, cabbage and lettuce were used as test vegetables, and the number of viable bacteria before and after washing per unit area (cm 2 ) was measured over time. This is shown in FIG. The washing time was 20 seconds, and the control was washed with running tap water. As apparent from Table 15, the number of attached bacteria varies depending on the vegetables, but it was reduced to approximately 1/1000 only by washing with tap water. However, the bacteria gradually increased in the state of being left as it was, and returned to 1/10 to 1/20 before washing after 5 hours. This is considered to be the total of the bacteria that grow by using vegetables as nutrients and the bacteria that adhere from the environment. On the other hand, when it was washed with BC-Fe, no bacteria were detected immediately after that, and it was not detected even after 1 hour, or even a very small number of bacteria. However, it increased to 1/100 of the number of bacteria before washing after 5 hours. This phenomenon suggests that the cleaning effect with the liquid is extremely high, and the effect is sustained to some extent. The reason is considered that a film of the liquid component is formed on the vegetable surface, which acts as a barrier. In addition, when ON-MNB and CL-MNB were used, the further high washing | cleaning disinfection effect was exhibited and the aseptic state continued even if 5 hours passed.
(実施例10)
魚は体表面のみならず鱗の内部に多数潜んでいる病原菌や腐敗菌により腐敗の進行が早く、食中毒の原因食材としてよく知られている。特に、われわれ日本人は生食を好み、この種の事件は枚挙に暇がない。今回、腐敗の進行が特に早いサバ、イカ、イワシについて殺菌消毒液の洗浄効果を調べた。洗浄方法は水道水の場合、流水中で30秒間魚の表面を軽くこすり洗いをした。殺菌消毒液の場合は、該液を満たした容器の中で30秒間同様の処理を行った。その後、水道水で液を洗い流し、28℃で放置した。なお、検出菌は魚と縁が深いVibrio属とその他の菌とに分類して、洗浄前の生菌数と洗浄後の生菌数を経時的に測定し、その結果を表16に示した。表16から明らかなように、水道水では洗浄直後には、魚の種類を問わず付着している菌は約1/100と大幅に減少した。しかし、このまま放置すると、残存菌は再び増殖し始め、5時間後の総菌数は洗浄前の水準に復してしまった。特に、Vibrio属の増殖は顕著で洗浄前の数倍にも増加した。これに対して、BC−Feで洗浄したときは菌はほぼ死滅し、その後28℃に放置しても、Vibrio属を含めて菌は僅かに増殖したに過ぎなかった。ON−MNB及びCL−MNBの場合では、やさいの例と同様、さらに顕著な殺菌効果が発現し、それは数時間持続した。このことは本殺菌消毒液を使用することによって、食中毒事件の多くは解決し得ることを意味している。なおかつ、該殺菌消毒液による味の変質もなく、本来の魚の旨味は保たれていた。
(Example 10)
Fish is well known as a food ingredient for food poisoning because of its rapid decay due to many pathogens and spoilage bacteria lurking not only on the body surface but also inside the scales. In particular, we Japanese prefer raw food, and this kind of incident has no spare time. This time, we investigated the cleaning effect of the disinfectant solution on mackerel, squid, and sardines, which progressed particularly quickly. In the case of tap water, the surface of the fish was lightly rubbed for 30 seconds in running water. In the case of a sterilizing liquid, the same treatment was performed for 30 seconds in a container filled with the liquid. Thereafter, the liquid was washed away with tap water and left at 28 ° C. The detected bacteria were classified into the Vibrio genus and other bacteria that are closely related to fish, and the number of viable bacteria before washing and the number of viable bacteria after washing were measured over time, and the results are shown in Table 16. . As is apparent from Table 16, in tap water, immediately after washing, the number of bacteria attached to the fish was greatly reduced to about 1/100. However, if left as it is, the remaining bacteria began to grow again, and the total number of bacteria after 5 hours returned to the level before washing. In particular, the growth of Vibrio was remarkable and increased several times before washing. On the other hand, when washed with BC-Fe, the bacteria were almost killed, and even when left at 28 ° C., the bacteria including the Vibrio genus grew only slightly. In the case of ON-MNB and CL-MNB, similar to the easy example, a more pronounced bactericidal effect was developed, which lasted for several hours. This means that many food poisoning cases can be solved by using this disinfectant. Moreover, the taste of the original fish was maintained without any change in taste due to the sterilizing solution.
(実施例11)
野菜の種子が細菌や真菌に汚染されているときは、それが原因で発芽後正常に生育できなかったり、または間接的に土壌を汚染して結果として不作を招くことが多々生じる。従って、種子は清浄な状態であることが望ましい。貝割れ大根、ニラ、ミツバの種子を採取し、殺菌消毒液の洗浄効果を調べた。水道水では、各種子を流水中で1分間浸した後引き上げた。殺菌消毒液の場合も1分間浸した。処理した種子は、その後22℃の蒸留水に浅く浸して発芽させた。洗浄後の種子1粒に付着している細菌数を測定し、その結果を表17に示した。表17から明らかなように、水道水での洗浄のみでも付着菌は急減するが、すべては除去されず、5時間後には洗浄前の30〜50%の菌が再付着した。これに対して、それぞれの殺菌消毒液に浸したときは、いずれも付着菌はほとんど全滅状態で、5時間経過しても僅かの菌が再付着したに過ぎなかった。また、発芽に及ぼす影響は水道水に比して、発芽時間は10〜15%短縮され、その上発芽時間も向上した。この事実は種子への水分の浸透力が高まったことを示している。
(Example 11)
When vegetable seeds are contaminated with bacteria and fungi, they often fail to grow normally after germination or indirectly contaminate the soil, resulting in crop failure. Therefore, it is desirable that the seed is in a clean state. Shellfish radish, leek and honey bee seeds were collected, and the cleaning effect of the disinfectant was investigated. In the tap water, each child was dipped in running water for 1 minute and then lifted. In the case of the sterilizing / disinfecting liquid, it was immersed for 1 minute. The treated seeds were then allowed to germinate by being soaked shallowly in distilled water at 22 ° C. The number of bacteria attached to one seed after washing was measured, and the results are shown in Table 17. As is apparent from Table 17, the attached bacteria rapidly decreased only by washing with tap water, but not all were removed, and 30 to 50% of the bacteria before washing were reattached after 5 hours. On the other hand, when immersed in each sterilizing / disinfecting solution, the attached bacteria were almost completely annihilated and only a few bacteria were reattached after 5 hours. Moreover, the influence which it has on germination shortened
(実施例12)
不特定多数のヒトが触れて細菌や真菌に汚染されるドアのノブ(ステンレス製)及び小便用衛生陶器に対して、その洗浄効果を調べた。いずれも病院内の施設を使用、洗浄直後から通常とおり利用し、その後の付着菌数及び汚染状態を経時的に観察し、その結果を表18に示した。表18から明らかなように、洗浄前のノブに付着していた菌は10cm2当たり6×105個であったが、水道水で洗浄すると、その直後5×10すなわち1/10000に激減した。しかし、利用している間に菌は再び付着し始めて24時間後にはほぼ元の菌数(7×105個)に戻ってしまった。これに対して、BC−Feで清拭したときは、直後には生菌は検出されず、時間の経過とともに菌は徐々に再付着していくものの24時間後でも4×103個、すなわち元の1/100、48時間後でも2×104個、すなわち元の1/25の付着菌数を認めたに過ぎなかった。これは洗浄の対象が器具類の場合、抗菌作用がある一定時間持続することを意味している。ON−MNBで清拭したときは、直後から2時間は無菌状態が続いた。その後は漸次菌が付着するも24時間後でも7×102個、すなわち元の菌数の1/1000程度の生菌しか検出し得なかった。CL−MNBの場合も類似の成績であった。
(Example 12)
The cleaning effect was examined on door knobs (made of stainless steel) and sanitary ware for urine, which are contaminated by bacteria and fungi by many unspecified people. In either case, the facilities in the hospital were used and utilized as usual from immediately after washing, and the number of adherent bacteria and the state of contamination thereafter were observed over time. The results are shown in Table 18. As is apparent from Table 18, the number of bacteria attached to the knob before washing was 6 × 10 5 per 10 cm 2 , but when it was washed with tap water, it immediately decreased to 5 × 10, that is, 1 / 10,000. . However, the bacteria began to attach again during use and returned to the original number (7 × 10 5 ) after 24 hours. In contrast, when wiped with BC-Fe, viable bacteria were not detected immediately after, and the bacteria gradually reattached over time, but 4 × 10 3 cells even after 24 hours, that is, Even after 48 hours of the original 1/100, only 2 × 10 4 , ie, the original 1/25 adherent bacteria were observed. This means that when the object to be cleaned is an instrument, the antibacterial action lasts for a certain period of time. When wiped with ON-MNB, sterility continued for 2 hours immediately after. Thereafter, only 7 × 10 2 bacteria, ie, about 1/1000 of the original number of bacteria, could be detected after 24 hours. Similar results were obtained for CL-MNB.
次に小便用便器における生菌数の消長は、水道水で洗浄した場合、尿は細菌にとって一種良好な培地となり得るので、24時間で洗浄前の菌数に復し、底部も多少着色し、黄ばみを生じた。これに対して、BC−Feを洗浄に使用したときは、24時間経過しても洗浄前の菌数の1/30程度に、ON−MNB及びCL−MNBを使用したときは、さらに1桁以上、少ない菌数しか回復増殖し得なかった。また、汚れの再付着はいずれの殺菌消毒液を使用しても、余り目立つことなく洗浄直後の綺麗な状態を保持しているように見受けられた。 Next, the change in the number of viable bacteria in the urinal for urinal is that when washed with tap water, urine can be a good medium for bacteria, so it will return to the number of bacteria before washing in 24 hours, and the bottom will also be slightly colored, A yellowing occurred. On the other hand, when BC-Fe is used for washing, even when 24 hours have passed, about 1/30 of the number of bacteria before washing, when ON-MNB and CL-MNB are used, an additional digit As described above, only a small number of bacteria could recover and proliferate. In addition, it was seen that the re-deposition of the dirt was not noticeable regardless of which sterilizing solution was used, and kept clean after washing.
(実施例13)
室内犬4匹(ダックスフント2匹、テリア2匹)と屋外で飼育の柴犬4匹の体に対して、殺菌消毒液の洗浄効果を観察した。32℃に温めた水道水及び同じく32℃に温めた3種の殺菌消毒液のそれぞれに頭以外の体全体を3分間浸し、その間体をスポンジで掴むようにして洗浄した。次いで、体を引き上げてドライヤーにて体毛をブラッシングしながら乾燥した。その直後から24時間後まで体表面に付着している細菌数を測定し、毛並み及び体臭をチェックした。その結果は表19に示した。表19から明らかなように、室内で飼育の犬4匹の体表面に付着している菌数の平均値は10cm2当たり6×105であったが、水道水で洗浄直後の菌数は1/60に減少し、その後菌は増殖に転じ、24時間後にはほぼ洗浄前の状態に近づいた。これに対し、BC−Feで洗浄したときは、その直後に1/1万に激減し、24時間経過しても洗浄前の菌数の1/250の水準に留まり、抗菌作用の持続が観察された。また、体臭の減臭効果もあり、体毛はリンスを使用したときのようにファーっと起毛し、見た目の仕上がりは上々であった。次に、ON−MNBで洗浄したときは、その直後はほぼ無菌状態であったが、その後は徐々に菌が増え始め、24時間後には洗浄前の1/500の水準になった。CL−MNBのときも、これに類似の成績を示した。いずれもBC−Feに比し、1桁少ない菌数であった。なお、減臭効果及び体毛の状態はBC−Feに変わるところはなかった。また、屋外犬の場合は、室内犬の2〜3倍の細菌が付着していたが、その洗浄効果は室内犬に類似の効果を示した。
(Example 13)
The cleaning effect of the disinfectant was observed on the body of 4 indoor dogs (2 dachshunds, 2 terriers) and 4 Shiba dogs raised outdoors. The whole body other than the head was soaked for 3 minutes in each of the tap water warmed to 32 ° C. and the three sterilizing / disinfecting liquids also warmed to 32 ° C., and the body was washed while holding the body with a sponge. Next, the body was pulled up and dried while brushing the hair with a dryer. Immediately thereafter, 24 hours later, the number of bacteria adhered to the body surface was measured, and the fur and body odor were checked. The results are shown in Table 19. As is clear from Table 19, the average number of bacteria adhering to the body surface of 4 dogs raised indoors was 6 × 10 5 per 10 cm 2 , but the number of bacteria immediately after washing with tap water was After 1/60, the bacteria started to grow, and after 24 hours, it was almost in the state before washing. In contrast, when washed with BC-Fe, immediately after that, it drastically decreased to 1/1000. Even after 24 hours, it remained at the level of 1/250 of the number of bacteria before washing, and the antibacterial action was observed to continue. It was done. In addition, there was an effect of reducing body odor, and the hair was brushed as if using a rinse, and the appearance was excellent. Next, when it was washed with ON-MNB, it was almost aseptic immediately after that, but after that, the bacteria gradually started to increase, and after 24 hours, it became 1/500 level before washing. Similar results were shown for CL-MNB. In all cases, the number of bacteria was one digit less than that of BC-Fe. In addition, the deodorizing effect and the state of body hair were not changed to BC-Fe. In the case of an outdoor dog, two to three times as many bacteria as the indoor dog adhered, but the cleaning effect was similar to that of the indoor dog.
(実施例14)
飼い猫2匹の体に対して、犬と同じく殺菌消毒液の洗浄効果を観察した。その方法は、実施例13の犬の場合と同様に行った。その結果は、表20に示したとおりであって、菌の消長、体毛の状態は室内犬に近似の成績を示したが、体臭の減臭効果は犬の場合よりも高いように感じられた。
(Example 14)
The cleaning effect of the bactericidal disinfectant solution was observed on the body of 2 domestic cats as in the case of dogs. The method was the same as in the case of the dog of Example 13. The results were as shown in Table 20, and the fungus fate and body hair showed similar results to indoor dogs, but the deodorizing effect of body odor felt higher than in dogs. .
以上、3種の殺菌消毒液を使用した、野菜、種子、魚、器具、ペットの体毛などの洗浄効果は、いずれも高い有効性を示したが、マイクロ・ナノバブルを含有したON−MNB及びCL−MNBの両殺菌消毒液は1ランク上の洗浄効果を示した。 As described above, the cleaning effects of vegetables, seeds, fish, instruments, pet hair, etc. using three types of disinfecting disinfectants showed high effectiveness, but ON-MNB and CL containing micro / nano bubbles -Both sterilizing disinfectants of MNB showed a cleaning effect one rank higher.
細菌が生体内に侵入し、増殖することを感染と呼称するが、一度細菌が生体内で増殖をはじめ、それに対して生体が種々の反応を示しだす(感染症と呼称)と発熱、発赤、腫脹などの種々の現象が現れる。この時点で抗生物質などの薬剤の使用が適切で、その部位に十分浸透すれば感染症は治癒へと向かうべきものである。ところが、その使用の時期を無くしたり、使用法が不適切であったり、中断したり、局所に十分に到達しないという様な種々の現象が病原菌を感染部位より撲滅ないし排除することを妨害し、治療が不成功に終わるケースが多く、このようにして感染症は場合によっては長期化し、あるいは一層悪化して現在でも医療現場で治療に難渋する疾病へと転化していく。その代表的なものとして、副鼻腔炎、歯周病及び水虫(皮膚白癬症)などがあるが、それらの治療の前処理に殺菌消毒液を使用し、難治感染症の治療の一助になり得るかを検討した。 The invasion and proliferation of bacteria into the body is called infection, but once the bacteria start to grow in the body, the body shows various reactions (called infection), fever, redness, Various phenomena such as swelling appear. At this point, the use of drugs such as antibiotics is appropriate, and if the site penetrates sufficiently, the infection should be cured. However, various phenomena such as erasing the time of use, improper usage, discontinuation, and insufficiently reaching the local area prevent the eradication or elimination of pathogenic bacteria from the infected site, In many cases, treatment is unsuccessful. In this way, infectious diseases are sometimes prolonged or even worsened, and they are transformed into diseases that are still difficult to treat in the medical field. Typical examples include sinusitis, periodontal disease, and athlete's foot (dermatodermatosis), which can be used to treat intractable infections by using a bactericidal antiseptic solution for pretreatment of those treatments. We examined whether.
(実施例15)
慢性副鼻腔炎の発症の一例は、風邪を引いて鼻汁が出て、何らかの理由で病原性を有する細菌が感染し、副鼻腔内で多量に増殖、毒素を産生しはじめ、生体はこれに反応して、発症、膿が形成され、漸次その様相は激しさを増す。鼻汁(膿)は一層粘稠性を増し、体外へ排出されにくくなり、薬剤はこれらを突破し難く、局所は次第に慢性化の度を進め、粘膜が増殖、肥厚するなどの二次反応(粘膜自体が病的状態になる)が見られるようになり、治療は困難を極める。外科手術によらない場合は、鼻に金属の管を通し膿汁を吸い込んだり洗浄したりした後、消炎剤や抗生物質を噴霧し、ニューマクロライド系の抗生物質の長期服用(数ヶ月)を行うのが一般的な治療方法である。しかし、粘膜の肥厚が元の状態に復するにはさらに長い期間を費やすかあるいは完治に到らないケースも多い。主たる起炎菌が黄色ブドウ球菌の慢性副鼻腔炎患者8名を2名ずつの4グループに分け、それぞれ(i)生理的食塩液、(ii)BC−Fe、(iii)ON−MNB、(iv)CL−MNB、で毎日1回鼻洗浄を行い、その直後にニューマクロライド系の抗生物質(商品名:ロキシスロマイシン)を噴霧するとともに、通常の半量を長期服用する治験方法を採用した。治療効果は、(a)自覚症状、(b)鼻腔鼻粘膜の病的所見、(c)レントゲン写真、により診断した。その結果を表21に示した。表21から明らかなように、生理食塩液のみで洗浄した場合に比較してBC−Feを使用したときは、1ヶ月経過した頃から効果が現れ、継続治療で自覚症状のみならず、病的所見並びにレントゲン所見においても病状は漸次軽減された。さらに、ON−MNBまたはCL−MNBを鼻洗浄に使用したときは、BC−Feの場合に比し、より早い段階で症状は確実に軽快しはじめ、6ヶ月後には病的所見並びにレントゲン所見においてもほぼ完治した。
(Example 15)
One example of the development of chronic sinusitis is to catch a cold, get nasal discharge, and for some reason infected with pathogenic bacteria, start to multiply in the sinuses and produce toxins, and the body reacts to this Then, onset, pus is formed, and the aspect gradually increases in intensity. Nasal discharge (pus) is more viscous and less likely to be excreted from the body, drugs are difficult to break through, and the local reaction gradually increases with chronicity, such as secondary reaction (mucosal mucosa) Treatment becomes extremely difficult. If you don't use surgery, pass a metal tube through your nose, inhale and wash pus, then spray anti-inflammatory agents and antibiotics, and take long-term use of new macrolide antibiotics (months) Is a common treatment method. However, in many cases, it takes a longer period of time for the mucosal thickening to return to its original state, or it does not reach complete cure. 8 patients with chronic sinusitis whose main causative bacteria are Staphylococcus aureus were divided into 4 groups of 2 each, and (i) physiological saline, (ii) BC-Fe, (iii) ON-MNB, ( iv) A nasal washes were performed once daily with CL-MNB, and immediately after that, a necrolide antibiotic (trade name: roxithromycin) was sprayed and a clinical trial method in which a normal half amount was taken for a long time was adopted. The therapeutic effect was diagnosed by (a) subjective symptoms, (b) pathological findings of nasal mucosa, (c) radiographs. The results are shown in Table 21. As is apparent from Table 21, when BC-Fe was used compared to the case of washing with only physiological saline, the effect appeared from about one month later. In the findings as well as the X-ray findings, the disease was gradually alleviated. In addition, when ON-MNB or CL-MNB was used for nasal washing, the symptoms started to relieve at an earlier stage than with BC-Fe, and in 6 months the pathological and radiological findings Was almost completely cured.
(実施例16)
歯周病とは、歯を支えている周囲の組織、すなわち歯肉、セメント質、歯根膜、歯槽骨などが炎症を起こし、次第に崩壊していく病気で、その原因は歯周組織、特に歯周の境目である歯頸部にある溝に好んで住みつきプラーク(歯垢)を形成する細菌によるもので、この細菌の産生する毒素や酵素によって、まず歯肉炎として発症し、それが進展して歯周ポケットを形成、ここでプラークが成長して歯周病が発症する。症状の進行に伴いポケットは深く広がり、歯根部に炎症が波及して、漸次組織が破壊され、そこから出血したり、膿がでて口臭を感じるようになり、早晩歯を失うに到る。歯周病の治療を難しくしている要因は様々であるが、その一つに口腔内は細菌の生育、繁殖に好適な場でいつも清潔に保つことは至難なことで、特に歯周病原性の強い菌は粘着性を有する不溶性多糖類を産生し歯や歯肉への付着性がことのほか強く、しかもこの物質は歯周病原因菌を守るバリアーの役割をしていることである。従って、現在の歯周病の初期治療は歯周病の温床となるプラークや歯石を除去するスケーリングという処置が主体で、その後抗菌剤や消炎剤を歯周ポケットに注入し、現状を固定して組織の再生を図るという方法が採用されるが、炎症が深部に及んでいる場合は根治は難しく、そのため歯周病は慢性感染症の典型的なモデルとして認識されている。
(Example 16)
Periodontal disease is a disease in which the surrounding tissues that support the teeth, i.e., gums, cementum, periodontal ligament, alveolar bone, etc., become inflamed and gradually collapse. It is caused by bacteria that live in the groove in the neck of the tooth, which is the boundary of the teeth, and form plaques (plaque). The toxins and enzymes produced by these bacteria first cause gingivitis, which develops into the teeth Peripheral pockets are formed, where plaque grows and periodontal disease develops. As the symptom progresses, the pocket spreads deeply, inflammation spreads to the root of the tooth, gradually destroys the tissue, bleeds from it, begins to feel bad breath, and quickly loses teeth. There are various factors that make it difficult to treat periodontal disease, and one of them is that it is difficult to always keep the oral cavity clean and suitable for the growth and propagation of bacteria. A strong bacterium produces insoluble polysaccharides with adhesiveness and has strong adhesion to teeth and gingiva, and this substance also acts as a barrier to protect against periodontal disease-causing bacteria. Therefore, the current initial treatment of periodontal disease is mainly a treatment called scaling that removes plaque and tartar that becomes a hotbed of periodontal disease, and then injecting antibacterial agents and anti-inflammatory agents into the periodontal pocket and fixing the current situation Although a method of regenerating tissue is adopted, radical cure is difficult when inflammation is deep, and periodontal disease is recognized as a typical model of chronic infection.
本発明者らは、2004年に「歯周病の新規な治療法」として、米国に特許出願したが、その内容はBC−Feを歯肉ポケットに注入、次いで水で洗浄し、その後特殊な乳酸菌を充填するという、2者の組合せによる治療方法に関するものであった。上述の試験例6において、プラークに対する殺菌効果は、BC−FeよりON−MNBやCL−MNBを使用する方が浸透力を含めた殺菌能力が数段優れていることが証明されたので、生体に使用して(歯周ポケットに注入して)、in vitro と同様の効果を示し、早期の歯周病の治癒へのほう助になり得るかどうかの治験を実施した。 The present inventors filed a patent application in the United States in 2004 as “a novel treatment method for periodontal disease”, the content of which was injecting BC-Fe into a gingival pocket, then washing with water, and then a special lactic acid bacterium. It was related with the treatment method by a combination of the two of filling. In Test Example 6 described above, it was proved that the sterilizing effect on plaque was superior to BC-Fe in that the sterilizing ability including osmotic power was better by using ON-MNB or CL-MNB. (Injected into the periodontal pocket), the same effect as in vitro, and whether it can help to cure early periodontal disease.
歯周病の進行状態が中程度(ポケットの深さ10mm前後)の患者9名、深部(ポケットの深さ15mm以上)に及んでいる患者9名をそれぞれ3名ずつの3グループに分け、3種の殺菌消毒液を歯周ポケットに10日間連日注入し、それ以降は殺菌消毒液注入、5〜10分間放置、その後水で洗浄、続いて米国特許出願に記載の特殊な乳酸菌製剤を充填するという一連の処置を1回/日、毎日行った。その平均的な治療成績を表22及び表23に示した。なお、いずれの患者も主たる原因菌は、P. gingivalis、 P. intermedia、 B. forsythus、 A. actinomycetemcomitansの単独または複合感染であった。表22及び表23の成績から明らかなように、歯周ポケットに3種の殺菌消毒液をそれぞれ単独で10日間注入するという治療の第1段階では有意な差はなかったが、乳酸菌との併用の治療の第2段階においては、従来完全治癒は不可能とされていた歯周病が、前処理の殺菌消毒液にBC−Feを使用するよりON−MNBやCL−MNBを使用する方がより早く、約2ヶ月間前後の短期間でほぼ完治することが確認された。 Nine patients with moderate periodontal disease progression (pocket depth around 10mm) and 9 patients deep in the pocket (pocket depth 15mm or more) are divided into 3 groups of 3 Seed germicidal antiseptic solution is infused into periodontal pocket for 10 days every day, thereafter injecting germicidal antiseptic solution, left for 5-10 minutes, then washed with water, then filled with special lactic acid bacteria preparation described in US patent application A series of treatments were performed once a day every day. The average treatment results are shown in Table 22 and Table 23. The main causative bacteria in all patients were P. gingivalis, P. intermedia, B. forsythus, and A. actinomycetemcomitans, either alone or in combination. As is clear from the results in Tables 22 and 23, there was no significant difference in the first stage of treatment in which three kinds of bactericidal antiseptic solutions were individually injected into the periodontal pockets for 10 days, but they were used in combination with lactic acid bacteria. In the second stage of treatment, periodontal disease, which was previously impossible to completely cure, is more likely to use ON-MNB or CL-MNB than to use BC-Fe as a pre-treatment disinfectant solution. It was confirmed that it was almost completely cured in a short period of about 2 months.
(実施例17)
長年にわたり足の水虫に悩み、医者にも通い、今までいろいろと治療を試みてみたが、一向によくならず、特に夏季に悪化して困っている水虫患者20名に対して2ヶ月間治験を実施した。治験方法は、(i)金ダライに入れたBC−Fe及び浴槽に入れたON−MNBに患部を5分間浸し、その後ペーパータオルで拭うという患者と、(ii)従来から何らかの薬物治療(抗真菌剤のビホナゾールまたはクロトリマゾール)を受けている患者には、BC−FeまたはON−MNBの殺菌消毒液に5分間浸した後、その薬を塗布するという計4種類の治験方法を試みた。被験者の半数以上は爪白癬症(爪水虫)も罹患していて、爪が変色肥厚、先端部崩壊状態にあった。水虫そのものの完全治癒は相当難しい上、特に爪水虫の場合は厄介なものとして、専門家が認めるところである。表24に被治験者の白癬症の症状と患部より採取した皮膚または爪に生息蔓延していると推測される白癬菌の鏡検と培養検査の結果を示した。表25には上記治験方法4種類の平均的な治療効果を総括したものである。水虫に罹患しても直接的なダメージがないため放置して治療の困難な慢性に移行していくケースが多い。特に、爪水虫の場合はそれが顕著に現れる。表25から明らかなように、〔ON−MNB〕及び〔ON−MNB+水虫薬〕を治療に使用することによって、趾間型や小水疱型の場合は2ヶ月程度でほぼ完治の状態となり角化型も経過は良好、爪水虫の場合もこの治療方法を継続することによって、治癒への展望が開けたことは特筆すべきことである。
(Example 17)
I have been suffering from foot athlete's foot for many years, I went to a doctor and tried various treatments until now, but it did not improve at all, especially for 20 athlete's foot athletes who have been in trouble in the summer, and conducted a trial for 2 months. Carried out. The clinical trial method consists of (i) a patient who immerses the affected area in BC-Fe in gold dalai and ON-MNB in a bathtub for 5 minutes, and then wipes with a paper towel, and (ii) some conventional drug treatment (antifungal agent) Patients who were receiving (bifonazole or clotrimazole) were soaked in BC-Fe or ON-MNB disinfectant solution for 5 minutes and then applied the drug for a total of four trials. More than half of the subjects also suffered from onychomycosis (onychomycosis), and the nail was discolored and thickened and the tip collapsed. The complete cure of athlete's foot itself is quite difficult, and experts recognize that it is particularly troublesome for nail athlete's foot. Table 24 shows the symptom of ringworm disease of the subject and the results of microscopic examination and culture test of ringworm that is presumed to be prevalent in the skin or nails collected from the affected area. Table 25 summarizes the average therapeutic effects of the above four clinical trial methods. In many cases, there is no direct damage even if you are affected by athlete's foot, so you can leave it and change to chronic, which is difficult to treat. In particular, it is prominent in the case of nail fungus. As is apparent from Table 25, by using [ON-MNB] and [ON-MNB + athlete's foot drug] for treatment, in the case of intercostal type or small blister type, it becomes almost completely cured in about two months, and the keratinized type It is noteworthy that the course of treatment is good, and in the case of nail athlete's foot, the prospect of healing has been opened by continuing this treatment method.
本発明の殺菌消毒液は、手指、皮膚、鼻、粘膜、創傷部位、各種検体、手術部位、病室、家具、器具、物品などの消毒、ウェットティシュとして乳幼児および寝たきりの病人などの局部の消毒、まな板などの台所用品の洗浄除菌、便所などの洗浄除菌、医薬部外品として、薬用歯磨き、薬用石鹸、腋臭防止剤、浴用剤、洗口液など、化粧品としてニキビ防止用化粧水など、ペットおよび動物用として、体や足の消毒、脱臭剤、体毛のトリートメント、餌箱などペット用品の消毒、抗菌性資材として、各種樹脂製品、タイル、陶器、建材などへ応用することができる。さらには、上記以外にも生鮮食品の洗浄除菌や卵殻の消毒、土壌の消毒などその用途の裾野は広く、無限の可能性を秘めているものと思われる。21世紀に入りバイオテクノロジーの分野は今後益々発展するであろうが、その応用展開に不可欠なもの、それは利便性豊かで確かな効果を示す殺菌消毒液であり、この分野の専門家の間では切に渇望されているのである。 The disinfectant solution of the present invention is used for disinfecting fingers, skin, nose, mucous membranes, wound sites, various specimens, surgical sites, hospital rooms, furniture, instruments, articles, etc., local disinfection such as infants and bedridden sick people as wet tissue, Cleaning sterilization of kitchen utensils such as cutting boards, cleaning sterilization of toilets, etc., quasi-drugs, medicated toothpaste, medicated soaps, anti-odor agents, bath preparations, mouthwash, etc. For pets and animals, it can be applied to various resin products, tiles, pottery, building materials, etc. as disinfecting body and feet, deodorizing agents, body hair treatments, disinfecting pet goods such as bait boxes, and antibacterial materials. In addition to the above, it has a wide range of uses such as cleaning and disinfection of fresh food, disinfection of eggshells, and disinfection of soil, and it seems to have infinite possibilities. In the 21st century, the field of biotechnology will continue to develop in the future, but it is indispensable for its application development, which is a sterilizing and disinfecting solution that is convenient and has a certain effect. They are eagerly craving.
1.殺菌力を示す領域
2.殺菌力のない領域
1. 1. Area showing sterilizing power Area without sterilizing power
Claims (5)
The sterilizing / disinfecting solution according to any one of claims 1 to 4, wherein micro / nano bubbles are generated from a depth of 50 cm or more from the surface of the aqueous solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005331149A JP4899434B2 (en) | 2005-11-16 | 2005-11-16 | New physicochemical fusion type disinfectant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005331149A JP4899434B2 (en) | 2005-11-16 | 2005-11-16 | New physicochemical fusion type disinfectant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007137791A true JP2007137791A (en) | 2007-06-07 |
JP4899434B2 JP4899434B2 (en) | 2012-03-21 |
Family
ID=38201106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005331149A Expired - Fee Related JP4899434B2 (en) | 2005-11-16 | 2005-11-16 | New physicochemical fusion type disinfectant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4899434B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009101269A (en) * | 2007-10-22 | 2009-05-14 | Sharp Corp | Odor treatment method and system, and rearing system |
JP2009268394A (en) * | 2008-05-02 | 2009-11-19 | Shinwa:Kk | Method and apparatus for sterilizing food product using microbubble-mixed sodium hypochlorite diluent |
JPWO2008072371A1 (en) * | 2006-12-12 | 2010-03-25 | 国立大学法人 東京医科歯科大学 | Preparations for tissue sterilization or disinfection |
JP2011088842A (en) * | 2009-10-21 | 2011-05-06 | Panasonic Electric Works Co Ltd | Oral cleaning fluid, utilization method of oral cleaning fluid and manufacturing apparatus of oral cleaning fluid |
WO2012081420A1 (en) * | 2010-12-14 | 2012-06-21 | 国立大学法人広島大学 | Liquid for treatment of citrus greening disease and treatment method using same |
WO2013129245A1 (en) * | 2012-02-29 | 2013-09-06 | サンスター技研株式会社 | Bactericidal agent composition |
WO2019168034A1 (en) * | 2018-02-28 | 2019-09-06 | 腸内フローラ移植臨床研究株式会社 | Living microorganism-containing composition and production method thereof |
JP2020063382A (en) * | 2018-10-18 | 2020-04-23 | 株式会社田中金属製作所 | Agent for preventing or improving soil trouble |
CN112203499A (en) * | 2018-05-30 | 2021-01-08 | 株式会社水改质 | Method for preventing and controlling spider mites |
WO2021039645A1 (en) * | 2019-08-26 | 2021-03-04 | シンバイオシス株式会社 | Biological introduction aid and method of use thereof |
JPWO2019230788A1 (en) * | 2018-05-30 | 2021-04-22 | 株式会社アクアソリューション | How to improve fertilizer absorption rate |
JPWO2019230778A1 (en) * | 2018-05-30 | 2021-04-22 | 株式会社アクアソリューション | How to improve the soil |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000044417A (en) * | 1998-08-03 | 2000-02-15 | Kenko Hyakunijussai:Kk | Germicidal liquid containing iron ion |
JP2002143885A (en) * | 2000-11-14 | 2002-05-21 | Hirobumi Onari | Micro bubble |
JP2004121962A (en) * | 2002-10-01 | 2004-04-22 | National Institute Of Advanced Industrial & Technology | Method and apparatus for using nanometer-bubble |
JP2005246294A (en) * | 2004-03-05 | 2005-09-15 | National Institute Of Advanced Industrial & Technology | Oxygen-nanobubble water and production method therefor |
-
2005
- 2005-11-16 JP JP2005331149A patent/JP4899434B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000044417A (en) * | 1998-08-03 | 2000-02-15 | Kenko Hyakunijussai:Kk | Germicidal liquid containing iron ion |
JP2002143885A (en) * | 2000-11-14 | 2002-05-21 | Hirobumi Onari | Micro bubble |
JP2004121962A (en) * | 2002-10-01 | 2004-04-22 | National Institute Of Advanced Industrial & Technology | Method and apparatus for using nanometer-bubble |
JP2005246294A (en) * | 2004-03-05 | 2005-09-15 | National Institute Of Advanced Industrial & Technology | Oxygen-nanobubble water and production method therefor |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2008072371A1 (en) * | 2006-12-12 | 2010-03-25 | 国立大学法人 東京医科歯科大学 | Preparations for tissue sterilization or disinfection |
EP2103312A4 (en) * | 2006-12-12 | 2011-06-01 | Nat Univ Corp Tokyo Med & Dent | Preparation for sterilization or disinfection of tissue |
JP2014028832A (en) * | 2006-12-12 | 2014-02-13 | Tokyo Medical And Dental Univ | Preparation for sterilization or disinfection of tissue |
JP2009101269A (en) * | 2007-10-22 | 2009-05-14 | Sharp Corp | Odor treatment method and system, and rearing system |
JP2009268394A (en) * | 2008-05-02 | 2009-11-19 | Shinwa:Kk | Method and apparatus for sterilizing food product using microbubble-mixed sodium hypochlorite diluent |
JP4594996B2 (en) * | 2008-05-02 | 2010-12-08 | 株式会社 シンワ | Food sterilization method and apparatus using microbubble mixed sodium hypochlorite diluent |
JP2011088842A (en) * | 2009-10-21 | 2011-05-06 | Panasonic Electric Works Co Ltd | Oral cleaning fluid, utilization method of oral cleaning fluid and manufacturing apparatus of oral cleaning fluid |
US8945631B2 (en) | 2010-12-14 | 2015-02-03 | Hiroshima University | Liquid for treatment of citrus greening disease and treatment method using same |
WO2012081420A1 (en) * | 2010-12-14 | 2012-06-21 | 国立大学法人広島大学 | Liquid for treatment of citrus greening disease and treatment method using same |
JP5920729B2 (en) * | 2010-12-14 | 2016-05-18 | 国立大学法人広島大学 | Treatment liquid for citrus greening disease and treatment method using the same |
AU2013227556B2 (en) * | 2012-02-29 | 2016-05-19 | National University Corporation Okayama University | Bactericidal agent composition |
US9220799B2 (en) | 2012-02-29 | 2015-12-29 | Sunstar Engineering Inc. | Bactericidal agent composition |
JP2013180956A (en) * | 2012-02-29 | 2013-09-12 | Sunstar Engineering Inc | Bactericidal agent composition |
WO2013129245A1 (en) * | 2012-02-29 | 2013-09-06 | サンスター技研株式会社 | Bactericidal agent composition |
CN104135856A (en) * | 2012-02-29 | 2014-11-05 | 新时代技研株式会社 | Bactericidal agent composition |
JPWO2019168034A1 (en) * | 2018-02-28 | 2021-02-12 | 腸内フローラ移植臨床研究株式会社 | Biological microorganism-containing composition and method for producing the same |
WO2019168034A1 (en) * | 2018-02-28 | 2019-09-06 | 腸内フローラ移植臨床研究株式会社 | Living microorganism-containing composition and production method thereof |
JP7104435B2 (en) | 2018-02-28 | 2022-07-21 | 腸内フローラ移植臨床研究株式会社 | Biological microorganism-containing composition and method for producing the same |
JP2022040202A (en) * | 2018-05-30 | 2022-03-10 | 株式会社アクアソリューション | Fertilizer absorption improvement method |
JPWO2019230788A1 (en) * | 2018-05-30 | 2021-04-22 | 株式会社アクアソリューション | How to improve fertilizer absorption rate |
JPWO2019230778A1 (en) * | 2018-05-30 | 2021-04-22 | 株式会社アクアソリューション | How to improve the soil |
CN112203499A (en) * | 2018-05-30 | 2021-01-08 | 株式会社水改质 | Method for preventing and controlling spider mites |
JP2022048165A (en) * | 2018-05-30 | 2022-03-25 | 株式会社アクアソリューション | Soil amelioration method |
JP7210570B2 (en) | 2018-05-30 | 2023-01-23 | 株式会社アクアソリューション | How to improve soil |
JP2020063382A (en) * | 2018-10-18 | 2020-04-23 | 株式会社田中金属製作所 | Agent for preventing or improving soil trouble |
JP7327922B2 (en) | 2018-10-18 | 2023-08-16 | 株式会社Tks | Agent for preventing or improving soil damage |
WO2021039645A1 (en) * | 2019-08-26 | 2021-03-04 | シンバイオシス株式会社 | Biological introduction aid and method of use thereof |
CN113747906A (en) * | 2019-08-26 | 2021-12-03 | 真共生株式会社 | Biointroduction aid and method for using same |
Also Published As
Publication number | Publication date |
---|---|
JP4899434B2 (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4899434B2 (en) | New physicochemical fusion type disinfectant | |
JP6956143B2 (en) | Antimicrobial composition and how to use it | |
JP5752051B2 (en) | Antibacterial composition for biofilm removal and use thereof | |
CN1816330B (en) | Antiseptic compositions, methods and systems | |
CA2723117C (en) | Versatile disinfectant | |
WO2015153258A1 (en) | Stable compositions of uncomplexed iodine and methods of use | |
US20100120915A1 (en) | Antimicrobials and related methods | |
US20060075922A1 (en) | Controlled-acidity composition | |
CA2107996A1 (en) | Perillyl alcohol as a bactericide and yeasticide | |
CN1524587A (en) | Nursing wet towel using tea plant oil as antibacterial and fungistatic agent and production method thereof | |
CN102349548A (en) | Environment biological disinfectant with phages as main components and application thereof | |
CN102762981A (en) | Peracid and 2-hydroxy organic acid compositions and methods for treating items | |
CN110946159A (en) | Plant essence biological compound clothing mildew sweat odor removing agent | |
CN101416648B (en) | Disinfectant using hyacinth as raw material, preparation method and use thereof | |
CN1043342A (en) | A kind of Medical toilet soap | |
CN104784164A (en) | Protein-based skin cleaning disinfectant and preparation method thereof | |
CN105767039B (en) | A kind of rose bactericide and cleaning wiping cloth for electronic product surface disinfection | |
CN110946995A (en) | Natural herbal deodorant and deinsectization disinfectant special for pets | |
KR20100001244A (en) | Aprocessing method of antibacterial moisturing liquid made by deep seaelectronic water and the antibacterial moisturing liquid made by deepseaelectronic water thereof | |
RU2736364C2 (en) | Disinfectant composition with tartaric acid, lactic acid | |
US20120135085A1 (en) | Method and composition for disinfection and purification | |
CN103651587A (en) | Special biological antibacterial liquid for toothbrush | |
CN1223073A (en) | Composite high-efficiency broad-spectrum biocide | |
CN116784324A (en) | Foam disinfectant for invisible appliance, preparation method and application thereof | |
MXPA98000539A (en) | Acid and alcal microwave |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111219 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |