JP2007196083A - Flat membrane filter medium for suspension filter, and its manufacturing method - Google Patents
Flat membrane filter medium for suspension filter, and its manufacturing method Download PDFInfo
- Publication number
- JP2007196083A JP2007196083A JP2006014474A JP2006014474A JP2007196083A JP 2007196083 A JP2007196083 A JP 2007196083A JP 2006014474 A JP2006014474 A JP 2006014474A JP 2006014474 A JP2006014474 A JP 2006014474A JP 2007196083 A JP2007196083 A JP 2007196083A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- flat membrane
- resin
- porous
- membrane filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 94
- 239000000725 suspension Substances 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 169
- 239000010410 layer Substances 0.000 claims description 263
- 239000000835 fiber Substances 0.000 claims description 159
- 229920005989 resin Polymers 0.000 claims description 115
- 239000011347 resin Substances 0.000 claims description 115
- 239000000463 material Substances 0.000 claims description 63
- 238000005187 foaming Methods 0.000 claims description 44
- 239000004745 nonwoven fabric Substances 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 38
- 239000002904 solvent Substances 0.000 claims description 37
- 239000002344 surface layer Substances 0.000 claims description 27
- 239000011148 porous material Substances 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 19
- 238000005470 impregnation Methods 0.000 claims description 17
- 239000004088 foaming agent Substances 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- 238000004090 dissolution Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 abstract description 87
- 239000000126 substance Substances 0.000 abstract description 28
- 238000011001 backwashing Methods 0.000 abstract description 10
- 238000007790 scraping Methods 0.000 abstract description 7
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 238000007598 dipping method Methods 0.000 abstract 1
- 230000001681 protective effect Effects 0.000 abstract 1
- 239000004744 fabric Substances 0.000 description 28
- 230000007423 decrease Effects 0.000 description 25
- 238000004140 cleaning Methods 0.000 description 22
- 230000000694 effects Effects 0.000 description 22
- 239000003795 chemical substances by application Substances 0.000 description 12
- 230000035699 permeability Effects 0.000 description 10
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- -1 polypropylene Polymers 0.000 description 8
- 239000006260 foam Substances 0.000 description 7
- 239000012779 reinforcing material Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 239000002759 woven fabric Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 229920000915 polyvinyl chloride Polymers 0.000 description 6
- 239000004800 polyvinyl chloride Substances 0.000 description 6
- 239000010865 sewage Substances 0.000 description 6
- 230000008602 contraction Effects 0.000 description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 4
- 229920002978 Vinylon Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000005033 polyvinylidene chloride Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 229920001410 Microfiber Polymers 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- 229920000856 Amylose Polymers 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Filtering Materials (AREA)
Abstract
Description
本発明は、湖沼、池、河川等の泥水や河川工事、下水工事、宅地造成工事、港湾工事、トンネル工事等の各種建設土木工事の現場等で発生する汚水若しくは食品工場等の工場から排出される汚水等の懸濁水をろ過して浄水化するための懸濁水フィルタ用平膜ろ材及びその製造方法に関する。 The present invention is discharged from factories such as sewage or food factories generated at various construction and civil engineering sites such as lakes, ponds, rivers, etc. The present invention relates to a flat membrane filter material for a suspended water filter for filtering and purifying suspended water such as sewage, and a method for producing the same.
従来、河川工事、下水工事、道路工事等の各種建設土木工事の現場等で発生する汚水等の懸濁水の浄化処理は、複数の固液分離装置等を組み合わせて行なわれている。このような懸濁水の浄化処理に関して、例えば以下のような技術が知られている。
(特許文献1)には、「原水が導入される傾斜型スクリーン装置と、この傾斜型スクリーン装置による粗取り水が導入される回転ドラム型固液分離装置とを備え、回転ドラム型固液分離装置は、内側に傾斜型スクリーン装置の処理水が導入される回転胴を有し、この回転胴には、織物または編物からなる基材の表面にその基材を直接起毛して得た太さ0.1〜10μmの極細繊維の立毛からなるろ層を形成してなるろ布がそのろ層が回転胴の内側になるように装着されている固液分離装置」が記載されている。
(特許文献2)には、「水域から汚染物質を含む原水を取水する取水装置と、取水装置で取水された原水をろ過して、ろ過水とろ過物とに固液分離する回転ドラム式連続ろ過装置と、回転ドラム式連続ろ過装置で得られたろ過物を凝集して、凝集フロック化する凝集反応装置と、凝集反応装置で凝集フロック化されたろ過物をケーク化して取り出すろ布走行式脱水装置とを備えた水域浄化装置」が記載されている。
(特許文献3)には、「スラリー状またはスラッジ状の被脱水処理物を濾過可能な単一の濾布ベルトが無端状に巻回されて順次移送される形式の濾布ベルト式脱水装置であって、濾布ベルトの上面側に供給される被脱水処理物に対し濾布ベルトの下面側から吸引負圧を作用させて被脱水処理物を初期脱水する負圧脱水部と、初期脱水された被脱水処理物を濾布ベルトと共に一対のプレスロール間で加圧して脱水し、かつ、脱水された処理物を一方のプレスロールに転着させて濾布ベルトから剥離させる加圧脱水転着部と、一方のプレスロールに転着した処理物を掻き落して回収する処理物回収部と、処理物が剥離された濾布ベルトを洗浄する洗浄部と、洗浄された濾布ベルトを一対のスクイズロール間で絞る絞り部とを備えていることを特徴とする濾布ベルト式脱水装置」が記載されている。
(Patent Document 1) includes “an inclined screen device into which raw water is introduced, and a rotating drum type solid-liquid separation device into which rough water is introduced by this inclined type screen device. The apparatus has a rotating drum into which the treated water of the inclined screen device is introduced, and the rotating drum has a thickness obtained by raising the substrate directly on the surface of the substrate made of woven fabric or knitted fabric. "Solid-liquid separation device" is described in which a filter cloth formed by forming naps of ultrafine fibers of 0.1 to 10 µm is mounted so that the filter layer is inside the rotating drum.
(Patent Document 2) states that “a water intake device that takes in raw water containing pollutants from the water area, and a continuous rotating drum type that filters the raw water taken by the water intake device and separates it into filtrate and filtrate. An agglomeration reaction device that agglomerates and aggregates the filtrate obtained by the filtration device and the rotary drum type continuous filtration device, and a filter cloth traveling type that extracts the aggregated flocked filtrate by the agglomeration reaction device. A water purification device comprising a dehydrator ”is described.
(Patent Document 3) states that “a filter cloth belt type dewatering device of a type in which a single filter cloth belt capable of filtering a slurry or sludge-like object to be dewatered is wound endlessly and sequentially transferred. A negative pressure dehydrating section for initially dehydrating the material to be dehydrated by applying suction negative pressure to the material to be dehydrated supplied to the upper surface side of the filter cloth belt from the lower surface side of the filter cloth belt; Pressure dehydration transfer that pressurizes between the pair of press rolls together with the filter cloth belt to dehydrate, and transfers the dehydrated process article to one press roll and peels it from the filter cloth belt. A pair of the cleaning part, the cleaning part for cleaning the filter cloth belt from which the processing object has been peeled off, and the cleaned filter cloth belt. It is equipped with an aperture part that squeezes between squeeze rolls Described filter cloth belt type dehydrator "that is.
しかしながら、上記従来の技術は以下のような課題を有していた。
(1)(特許文献1)に記載の固液分離装置のろ布は、織物または編物からなる基材の表面にその基材を直接起毛して得た極細繊維の立毛によりろ層を形成しているので、ろ層の摩耗が発生し易く耐久性に欠けるという課題を有していた。また、目詰まりが発生し易く洗浄が困難でメンテナンス性、長寿命性に欠けるという課題を有していた。
(2)(特許文献2)に記載の回転ドラム式連続ろ過装置では、織物または編物からなる基材の表面に、太さ0.1〜20μm程度の繊維の立毛が略一定方向に横たわったろ過材を用いているので、耐久性、メンテナンス性、長寿命性に欠けるという(特許文献1)と同様の課題を有していた。
(3)(特許文献3)に記載の濾布ベルト式脱水装置では、濾布ベルトが、その上面を構成する外面層と、その下面を構成する内面層と、これらの間の中間層とを有する3層構造のフェルト材から成り、外面層は被脱水処理物を濾過する極細繊維層で構成され、中間層は水分の透過を促進する中細繊維層で構成され、内面層は水切れを促進する基布層で構成されており、外面側が密で内面側が粗に形成されているが、単に繊維径の異なる繊維で形成された繊維層を積層した3層構造のフェルト材であるため、十分なろ過効率を得ることができず、表面に付着した懸濁物質の除去が困難で、洗浄水に浸漬させて洗浄を行ったり、加圧による脱水を行ったりする必要があり、長時間連続して使用することができず、メンテナンス性、実用性に欠けるという課題を有していた。
(4)(特許文献1)乃至(特許文献3)は、いずれも織物や編物或いは不織布のろ布を用いており、繊維同士の隙間の調整だけで空隙を形成するものであるが、繊維の断面形状が基本的に円形であるため繊維同士の接触面積が大きく、空隙率が低くなり易い傾向があり、また、空隙の形状が不揃いになるため均一な多孔質を得ることが困難で、ろ過性能にばらつきが生じ易いという課題を有していた。
また、ろ布表面の凹凸が大きく、付着した懸濁物質が剥がれ難いため、メンテナンス性、長寿命性に欠けるという課題を有していた。
(5)ろ布表面のろ層(外面層)の多孔質部を微細な空孔で形成する場合、通水性を確保するためには、その厚みが薄くならざるをえず、刷毛等による物理的な洗浄に弱く、破れ易くなって耐久性に欠けるという課題を有していた。また、耐久性を確保するために厚みを厚くすると、微細な空孔が厚さ方向に連なるため、懸濁物質が途中で詰まり易く、短時間でろ過性能が低下し、実用性、信頼性に欠けるという課題を有していた。
また、従来の平膜フィルタの表層のコーティングは、基材の表面に微多孔質のフィルムを貼ったものであるため、非常に弱く外的な洗浄で破損が発生し易く、一部が破損すると全体が使用できなくなる構造で、信頼性、長寿命性に欠けるという課題を有していた。
However, the above conventional technique has the following problems.
(1) The filter cloth of the solid-liquid separation device described in (Patent Document 1) forms a filter layer by napping of ultrafine fibers obtained by raising the substrate directly on the surface of the substrate made of woven fabric or knitted fabric. Therefore, there has been a problem that the filter layer is easily worn and lacks durability. In addition, there is a problem that clogging is likely to occur and cleaning is difficult, and maintenance and long life are lacking.
(2) In the rotary drum type continuous filtration device described in (Patent Document 2), filtration in which napped fibers having a thickness of about 0.1 to 20 μm lie in a substantially constant direction on the surface of a substrate made of woven fabric or knitted fabric. Since the material is used, it has the same problem as (Patent Document 1) that lacks durability, maintainability, and long life.
(3) In the filter cloth belt-type dehydrator described in (Patent Document 3), the filter cloth belt includes an outer surface layer constituting the upper surface, an inner surface layer constituting the lower surface, and an intermediate layer therebetween. The outer layer is composed of an ultrafine fiber layer that filters the material to be dehydrated, the intermediate layer is composed of a medium fine fiber layer that promotes the permeation of moisture, and the inner layer promotes water drainage. It is composed of a base fabric layer that is dense on the outer surface side and rough on the inner surface side, but is a three-layered felt material in which fiber layers formed of fibers with different fiber diameters are simply laminated. Filtration efficiency cannot be obtained, and it is difficult to remove suspended substances adhering to the surface. It must be immersed in washing water for cleaning or dehydration by pressure. Lack of maintainability and practicality It has been a problem that.
(4) (Patent Document 1) to (Patent Document 3) all use a woven fabric, a knitted fabric, or a non-woven filter cloth, and form a void only by adjusting a gap between fibers. Since the cross-sectional shape is basically circular, the contact area between fibers tends to be large and the porosity tends to be low, and the pore shape is not uniform, so it is difficult to obtain a uniform porosity and filtration. There was a problem that the performance is likely to vary.
Moreover, since the unevenness | corrugation on the surface of a filter cloth is large and the suspended substance adhering is hard to peel off, it had the subject that maintenance property and long-life property were missing.
(5) When the porous portion of the filter layer (outer surface layer) on the surface of the filter cloth is formed with fine pores, in order to ensure water permeability, the thickness must be reduced, and the physical properties of the brush, etc. It has a problem that it is weak to general cleaning, easily broken and lacks durability. In addition, if the thickness is increased to ensure durability, fine pores continue in the thickness direction, so suspended solids are likely to be clogged in the middle, resulting in reduced filtration performance in a short time, and practicality and reliability. It had the problem of lacking.
In addition, the surface coating of the conventional flat membrane filter is made by attaching a microporous film to the surface of the base material, so it is very weak and easily damaged by external cleaning. The entire structure is unusable and has a problem of lack of reliability and long life.
本発明は上記課題を解決するためになされたものであり、各種の汚水等の懸濁水が貯留されたろ過水槽等に浸漬することにより、タンクヘッダー水圧(水頭圧)だけで懸濁水をろ過することができ、目詰まりが発生し難く、凝集剤等を使用する必要がなく環境保護性に優れ、取り扱いが容易でろ過性能に優れ、吸引によりろ過能力を向上させることができ、汎用性、実用性に優れると共に、逆洗或いはブラシやスクレーパ等による物理的な掻き取り等により表面の懸濁物質を剥離することができ、耐久性、メンテナンス性に優れ、長期間に渡って継続運転が可能でろ過性能の安定性に優れる懸濁水フィルタ用平膜ろ材の提供、及び簡単な工程で均一な多孔質空間を形成することができる高歩留まりで量産性に優れる懸濁水フィルタ用平膜ろ材の製造方法の提供を目的とする。 The present invention has been made to solve the above-mentioned problems, and by immersing it in a filtered water tank or the like in which suspended water such as various sewage is stored, the suspended water is filtered only by tank header water pressure (water head pressure). Clogging is unlikely to occur, there is no need to use a flocculant, etc., environmental protection is excellent, handling is easy, filtration performance is improved, filtration capacity can be improved by suction, versatility, practical use In addition to excellent durability, it is possible to peel off suspended substances on the surface by backwashing or physical scraping with a brush or scraper, etc., and it has excellent durability and maintainability and can be operated continuously over a long period of time. Provision of a flat membrane filter medium for suspension water filters with excellent stability of filtration performance, and a flat membrane filter medium for suspension water filters that can form a uniform porous space with a simple process and is excellent in mass productivity. And an object thereof is to provide a manufacturing method.
上記課題を解決するために本発明の懸濁水フィルタ用平膜ろ材及びその製造方法は、以下の構成を有している。
請求項1に記載の懸濁水フィルタ用平膜ろ材は、多孔質層を備えた懸濁水フィルタ用平膜ろ材であって、前記多孔質層が、多孔質空間の核となる独立核空間と、複数の前記独立核空間の間を連通させる連続微空間と、で形成されたスクラム構造を備えた構成を有している。
この構成により、以下のような作用を有する。
(1)多孔質層が、独立核空間(独立気泡)の周囲に独立核空間同士を連結するように連続微空間(連続気泡)が形成されたスクラム構造を有することにより、多孔質層全体を厚く形成しても、懸濁水中の微細な粒子を捕捉する連続微空間の領域を薄く形成することができるので、多孔質層の目詰まりが発生し難く、ろ過性能の信頼性に優れると共に耐久性に優れる。
(2)多孔質層がスクラム構造を有することにより、連続使用中に多孔質層の表層側が破損しても、内側に形成されている連続微空間によって継続的なろ過を行うことが可能で長寿命性に優れ、濃度の濃い懸濁水にも対応することができ信頼性、汎用性に優れる。
In order to solve the above problems, the flat membrane filter medium for suspension water filter and the method for producing the same of the present invention have the following configurations.
The flat membrane filter for a suspended water filter according to
This configuration has the following effects.
(1) Since the porous layer has a scram structure in which continuous microspaces (open cells) are formed around the closed space (closed cells) so as to connect the closed space to each other, Even if it is thick, the continuous fine space region that captures fine particles in the suspended water can be thinly formed, so the clogging of the porous layer is unlikely to occur, and the filtration performance is highly reliable and durable. Excellent in properties.
(2) Since the porous layer has a scram structure, even if the surface layer side of the porous layer is damaged during continuous use, it is possible to perform continuous filtration with the continuous fine space formed inside. It has excellent lifespan and can be applied to suspension water with high concentration, providing excellent reliability and versatility.
ここで、スクラム構造とは、多孔質層の内部に多孔質空間の核となるサイズの大きな独立核空間(独立気泡)と、サイズの小さな連続微空間(連続気泡)が混在し、独立核空間同士の間を連結するように多数の連続微空間が形成され、多孔質層の表面と裏面が連通した構造を言う。
多孔質層を形成する不織布の繊維の断面形状を異形化することにより、繊維に沿うように略均一で連続的な流路を形成して連続微空間とすることができ、繊維間に形成される隙間(独立核空間)と確実に連通させて、スクラム構造を有する多孔質層を形成することができる。多孔質層を形成する不織布の材質としては、平均繊維径が3μm〜25μmのポリアミド、ポリエステル、ポリオレフィン、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール(ビニロン)系などの合成繊維が好適に用いられる。特に、耐水性、耐薬品性、耐候性の面からはポリエステルやポリプロピレンが好ましい。平均繊維径が3μmより細くなるにつれ、取扱いが困難となり、不織布の量産性、耐久性に欠ける傾向があり、25μmより太くなるにつれ、空孔(独立核空間)が大きくなって空隙率が増加し、ろ過性能が低下し易くなる傾向があり、いずれも好ましくない。
Here, the scrum structure is a mixture of a large-sized closed nucleus space (closed cell) that becomes the core of the porous space and a small continuous fine space (open cell) inside the porous layer. A structure in which a large number of continuous fine spaces are formed so as to connect each other, and the front surface and the back surface of the porous layer communicate with each other.
By making the cross-sectional shape of the nonwoven fabric fiber forming the porous layer irregular, a substantially uniform and continuous flow path can be formed along the fiber to form a continuous fine space, which is formed between the fibers. A porous layer having a scram structure can be formed by reliably communicating with the gap (independent nucleus space). As the material of the nonwoven fabric forming the porous layer, synthetic fibers such as polyamide, polyester, polyolefin, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol (vinylon), and the like having an average fiber diameter of 3 to 25 μm are preferable. Used. In particular, polyester and polypropylene are preferable in terms of water resistance, chemical resistance, and weather resistance. As the average fiber diameter becomes thinner than 3 μm, handling tends to be difficult, and the mass productivity and durability of the nonwoven fabric tends to be lacking. As the fiber becomes thicker than 25 μm, the voids (independent core space) increase and the porosity increases. There is a tendency that the filtration performance tends to be lowered, both of which are not preferable.
また、連続微空間は、不織布の繊維層の少なくとも表層部に含浸された多孔質性樹脂で形成することもできる。多孔質性樹脂により連続微空間を形成する方法としては、多孔質性樹脂の中に発泡剤を混合して発泡させる方法、多孔質性樹脂の中に多孔質性樹脂には溶解せず水やお湯、硫酸、塩酸等の溶解液に溶解する溶解剤を混合し、不織布の繊維層に含浸、固化させた後、溶解液で溶解剤を溶解させる方法、多孔質性樹脂の中に熱或いは溶媒により収縮する収縮材を混合し、不織布の繊維層に含浸、固化させた後、収縮材を収縮させる方法などがある。また、無機或いは有機質の微粉末をバインダーで混練し、吹き付けや塗布等により、不織布の表層の繊維層と一体化させ、微粉末同士が網目状に接合された連続微空間を形成してもよい。 The continuous fine space can also be formed of a porous resin impregnated in at least the surface layer portion of the nonwoven fabric fiber layer. As a method of forming a continuous fine space with a porous resin, a foaming agent is mixed in the porous resin and foamed, or the porous resin does not dissolve in the porous resin but water or A method of mixing a dissolving agent in a dissolving solution such as hot water, sulfuric acid, hydrochloric acid, etc., impregnating and solidifying the fiber layer of the nonwoven fabric, and then dissolving the dissolving agent in the dissolving solution, heat or solvent in the porous resin There is a method in which a shrinking material that shrinks is mixed, impregnated into a non-woven fiber layer and solidified, and then the shrinking material is shrunk. Alternatively, inorganic or organic fine powders may be kneaded with a binder and integrated with the fiber layer of the surface layer of the nonwoven fabric by spraying or coating to form a continuous fine space in which the fine powders are joined in a network. .
多孔質性樹脂としては、ポリ塩化ビニル、ポリビニルアルコール、ポリアミド、ポリエチレン、ポリプロピレン、ポリスチレン系、架橋ポリエチレン、架橋ポリプレン、ABS樹脂、ポリウレタン、ポリカーボネート、ポロアセタール、ポリブチレンテレフタレート、ポリフェニレンオキシド、ユリア樹脂、エポキシ樹脂、シリコン樹脂等が好適に用いられる。
溶解剤としては、アミロース、グルコース、塩化ナトリウム、塩化カルシウム、水酸化ナトリウム、ナフタリン等が好適に用いられる。
熱により収縮する収縮材としては、延伸したポリオレフィン、ポリ塩化ビニリデン、ポリスチレン、ポリ塩化ビニル等が好適に用いられる。また、水に漬けることにより収縮する収縮材としてビニロンが好適に用いられる。
これらの連続微空間の形成方法は、単独で用いてもよいし、複数組合せて用いてもよい。複数の組合せで多孔質層を形成することにより、容易に寸法や形状の異なる空孔を形成して空隙率を変化させることができるので、ろ過性能の調整を行うことができ、生産性、実用性に優れる。特に、多孔質性樹脂の中に発泡剤を混合して発泡させる方法と、多孔質性樹脂の中に溶解剤若しくは収縮材を混合して溶解若しくは収縮させる方法を組合せた場合、発泡剤の発泡により形成される大きな空孔(独立核空間)と連通するように、樹脂膜に多数の微細な空孔(連続微空間)が形成されたスクラム構造とすることができる。
Porous resins include polyvinyl chloride, polyvinyl alcohol, polyamide, polyethylene, polypropylene, polystyrene, cross-linked polyethylene, cross-linked polyprene, ABS resin, polyurethane, polycarbonate, poloacetal, polybutylene terephthalate, polyphenylene oxide, urea resin, epoxy Resin, silicon resin and the like are preferably used.
As the solubilizer, amylose, glucose, sodium chloride, calcium chloride, sodium hydroxide, naphthalene and the like are preferably used.
As the shrink material that shrinks by heat, stretched polyolefin, polyvinylidene chloride, polystyrene, polyvinyl chloride, and the like are preferably used. In addition, vinylon is preferably used as a shrinking material that shrinks when immersed in water.
These formation methods of continuous minute spaces may be used alone or in combination. By forming a porous layer with multiple combinations, pores with different dimensions and shapes can be easily formed and the porosity can be changed, so the filtration performance can be adjusted, and productivity and practical use Excellent in properties. In particular, when a foaming agent is mixed in a porous resin and foamed, and a method in which a dissolving agent or shrinkage material is mixed and dissolved or contracted in the porous resin, the foaming agent foams. A scram structure in which a large number of fine pores (continuous microspaces) are formed in the resin film so as to communicate with the large pores (independent nucleus spaces) formed by the above method can be obtained.
多孔質層の厚さは、10μm〜1000μmが好ましい。多孔質層の厚さが10μmより薄くなるにつれ、連続微空間を十分に確保することができず、ろ過能力が不足すると共に、刷毛等による物理的な洗浄などによって短時間で多孔質層全体が破損し易く、スクラム構造の効果が不十分となって寿命が低下し易くなる傾向があり、1000μmより厚くなるにつれ、通水性が不足してろ過効率が低下し易くなる傾向があり、いずれも好ましくない。多孔質層の厚さを10μm〜1000μmの範囲にすることで、多孔質層の表層側が破損しても、その内側が新たな表層となって連続微空間で継続的にろ過を行うことができ、ろ過性能の信頼性、長寿命性に優れる。 The thickness of the porous layer is preferably 10 μm to 1000 μm. As the thickness of the porous layer becomes thinner than 10 μm, a sufficient continuous fine space cannot be secured, the filtration capacity is insufficient, and the entire porous layer can be quickly removed by physical washing with a brush or the like. It tends to be damaged, the effect of the scrum structure is insufficient and the life tends to be reduced, and as it becomes thicker than 1000 μm, the water permeability tends to be insufficient and the filtration efficiency tends to decrease, both of which are preferable. Absent. By setting the thickness of the porous layer in the range of 10 μm to 1000 μm, even if the surface layer side of the porous layer breaks, the inside becomes a new surface layer and can be continuously filtered in a continuous fine space. Excellent filtration performance reliability and long life.
多孔質層の連続微空間の平均空孔径は、0.5μm〜8μm、好ましくは1μm〜4μmが望ましい。平均空孔径が1μmより小さくなるにつれ、目詰まりが発生し易くなり、大量の懸濁水をろ過することが困難になる傾向が見られ、4μmより大きくなるにつれ、通水量が多くなり、ろ過性能が低下し易くなる傾向が見られる。また、平均空孔径が0.5μmより小さくなるにつれ、通水性が大幅に低下してろ過効率が低下し易くなる傾向があり、8μmより大きくなるにつれ、微小な懸濁物質を補足することが困難となり、懸濁物質が内部の空孔に引っ掛かって閉塞状態となり、逆洗や洗浄で除去できなくなる傾向があり、いずれも好ましくない。
尚、スクラム構造を有する多孔質層は単独で用いてもよいし、不織布等と積層して用いてもよい。
The average pore diameter of the continuous fine space of the porous layer is 0.5 μm to 8 μm, preferably 1 μm to 4 μm. As the average pore diameter becomes smaller than 1 μm, clogging is likely to occur, and it tends to be difficult to filter a large amount of suspended water. As the average pore diameter becomes larger than 4 μm, the amount of water passing increases and the filtration performance increases. There is a tendency to decrease easily. Also, as the average pore diameter becomes smaller than 0.5 μm, the water permeability tends to be greatly reduced and the filtration efficiency tends to be lowered, and as it becomes larger than 8 μm, it is difficult to supplement the fine suspended substances. Therefore, the suspended substance is caught in the internal pores and becomes a closed state, which tends to be unable to be removed by backwashing or washing, both of which are not preferable.
In addition, the porous layer having a scram structure may be used alone or may be laminated with a nonwoven fabric or the like.
スクラム構造を有する多孔質層を備えた懸濁水フィルタ用平膜ろ材は、逆洗(圧縮空気や浄水等を下流側から逆に流すこと)で洗浄する以外に、懸濁水フィルタ用平膜ろ材の表面を刷毛やブラシ等でなでて洗浄するブラシ洗浄方式、中、低圧水をノズルから噴出させ、表面の懸濁物質(固形付着物質)を吹き飛ばして洗浄するウォータージェット洗浄方式、電気掃除機のような吸引システムにより表面の懸濁物質(固形付着物質)を吸い取る吸引洗浄方式、スクレーパにより表面の懸濁物質(固形付着物質)を掻き取るスクレーパ洗浄方式等により洗浄することができる。重力ろ過を行うことができるので、目詰まりが発生し難く、外部からの小さな刺激で懸濁物質を剥離することができる。
また、懸濁水フィルタ用平膜ろ材の膜表面(多孔質層)を物理的に洗浄できるので、濃度の濃い懸濁水にも対応することができ汎用性に優れる。さらに、ブラシ洗浄やスクレーパ洗浄などの剥離洗浄により、膜表面に付着した懸濁物質を凝集した状態で剥離させてろ過槽などの底部に沈降させることができるので、懸濁水の濃度が濃くなることを防止でき、安定したろ過流量を得ることができる。
ろ過時に圧力装置を必要としないので省エネルギー性に優れ、ろ過装置全体を小型化、軽量化することができ、量産性、取り扱い性を向上させることができる。
Flat membrane filter media for suspended water filters equipped with a porous layer having a scram structure can be washed by backwashing (flowing compressed air, purified water, etc. from the downstream side), A brush cleaning system that cleans the surface with a brush or brush, a water jet cleaning system that blows away the suspended substances (solid adhering substances) on the surface by ejecting medium or low pressure water from the nozzle, and a vacuum cleaner Such a suction system can be used for cleaning by a suction cleaning method for sucking a suspended substance (solid adhering substance) on the surface, a scraper cleaning method for scraping a suspended substance (solid adhering substance) on a surface by a scraper, and the like. Since gravity filtration can be performed, clogging hardly occurs, and suspended substances can be peeled off with a small external stimulus.
Moreover, since the membrane surface (porous layer) of the flat membrane filter medium for suspension water filter can be physically washed, it can be used for suspension water having a high concentration and is excellent in versatility. In addition, the suspended water adhering to the membrane surface can be peeled off in a coherent state and settled down to the bottom of a filtration tank, etc. by peeling cleaning such as brush cleaning and scraper cleaning, so that the concentration of suspended water becomes high Can be prevented, and a stable filtration flow rate can be obtained.
Since a pressure device is not required at the time of filtration, it is excellent in energy saving, the entire filtration device can be reduced in size and weight, and mass productivity and handleability can be improved.
請求項2に記載の発明は、請求項1に記載の懸濁水フィルタ用平膜ろ材であって、前記多孔質層が、1以上の凸部及び/又は凹部で異形化された断面形状を有する繊維で形成されている構成を有している。
この構成により、請求項1の作用に加え、以下の作用を有する。
(1)多孔質層を形成する繊維が、1以上の凸部及び/又は凹部で異形化された断面形状を有することにより、多孔質層内に略均一な連続微空間を形成することができ、ろ過性能の均一性に優れる。
The invention according to
With this configuration, in addition to the operation of the first aspect, the following operation is provided.
(1) Since the fiber forming the porous layer has a cross-sectional shape that is deformed by one or more convex portions and / or concave portions, a substantially uniform continuous fine space can be formed in the porous layer. Excellent filtration performance uniformity.
ここで、繊維の断面形状を凸部や凹部で異形化する方法としては、所望の凸部や凹部を備えた断面形状を有する金型から繊維を延伸させる方法が好適に用いられる。これにより、凸部や凹部で異形化された断面形状が連続的に形成された繊維を得ることができ、繊維の長手方向と平行に凸条や凹条を形成することができる。また、延伸の際に繊維を捻ることにより、凸条や凹条を螺旋状に形成することができる。尚、繊維を液中で延伸させることにより、異形化された断面形状を確実に維持することができ生産性に優れる。
繊維の断面形状は、長手方向に一様である必要はなく、繊維の外周に規則的或いは不規則的に独立した1以上の凸部及び/又は凹部を形成してもよい。
Here, as a method for deforming the cross-sectional shape of the fiber with the convex portion or the concave portion, a method of drawing the fiber from a mold having a cross-sectional shape having a desired convex portion or concave portion is preferably used. Thereby, the fiber by which the cross-sectional shape deformed by the convex part and the recessed part was formed continuously can be obtained, and a protruding item | line and a concave item can be formed in parallel with the longitudinal direction of a fiber. Further, by twisting the fiber at the time of stretching, the ridges and the ridges can be formed in a spiral shape. By stretching the fiber in the liquid, the deformed cross-sectional shape can be reliably maintained, and the productivity is excellent.
The cross-sectional shape of the fiber does not need to be uniform in the longitudinal direction, and one or more convex portions and / or concave portions that are regularly or irregularly independent may be formed on the outer periphery of the fiber.
凸部や凹部の大きさや数は繊維径にもよるが、繊維径が10μm〜25μmの場合、円弧状の凸部や凹部の直径は2μm〜5μmが好ましい。また、凸部や凹部の数は2個〜8個が好ましい。凸部や凹部の直径が2μmより小さくなるか、凸部や凹部の数が2個より少なくなるにつれ、異形化の効果が不十分となり、通水性が低下し易くなってろ過効率が低下する傾向があり、凸部や凹部の直径が5μmより大きくなるか、凸部や凹部の数が8個より多くなるにつれ、断面形状を維持するのが困難となり生産性が低下し易くなると共に、空隙率が高くなってろ過性能が低下し易くなる傾向があり、いずれも好ましくない。 The size and number of the convex portions and concave portions depend on the fiber diameter, but when the fiber diameter is 10 μm to 25 μm, the diameter of the arc-shaped convex portions and concave portions is preferably 2 μm to 5 μm. The number of convex portions and concave portions is preferably 2 to 8. As the diameter of the convex part and the concave part becomes smaller than 2 μm, or the number of convex parts and concave parts becomes less than two, the effect of deforming becomes insufficient, the water permeability tends to decrease, and the filtration efficiency tends to decrease. As the diameter of the protrusions and recesses becomes larger than 5 μm, or the number of protrusions and recesses exceeds 8, the cross-sectional shape becomes difficult to maintain and the productivity tends to decrease, and the porosity Tends to be high and the filtration performance tends to decrease, both of which are not preferred.
請求項3に記載の発明は、請求項1に記載の懸濁水フィルタ用平膜ろ材であって、前記多孔質層が、不織布と、前記不織布の繊維層に含浸された多孔質性樹脂と、で一体化されて形成されている構成を有している。
この構成により、請求項1の作用に加え、以下の作用を有する。
(1)多孔質層が、不織布と不織布の繊維層に含浸された多孔質性樹脂とで一体化されて形成されているのでスクラム構造の耐久性に優れ、逆洗或いはブラシやスクレーパ等による物理的な掻き取り等によって表面の懸濁物質を剥離することができ、長期間に渡って継続運転が可能でろ過性能の安定性に優れる。
ここで、多孔質性樹脂は請求項1で説明したものと同様に、発泡性樹脂等を不織布の繊維層に含浸、固化させ、引張りやニードリングでセルを破壊した後、発泡させることにより形成することができる。また、溶解液で溶解剤を溶解させる方法や、熱或いは溶媒により収縮材を収縮させる方法も用いることができる。さらに、発泡剤(NaCl,NaHCO3等)を混入した溶融発泡樹脂を不織布に積層し、次いで、引張ってセルを破壊して発泡させる方法、粒径の異なる発泡剤を混入したキャスティングシロップに不織布を含浸、固化させ、引張り若しくはニードリングした後、溶解液(水等)に浸漬して発泡させる方法などがある。
Invention of Claim 3 is the flat membrane filter medium for suspension water filters of
With this configuration, in addition to the operation of the first aspect, the following operation is provided.
(1) Since the porous layer is integrally formed of a nonwoven fabric and a porous resin impregnated into the nonwoven fabric fiber layer, the scram structure is excellent in durability and physical properties such as backwashing or brush or scraper are used. It is possible to peel off suspended substances on the surface by an effective scraping, etc., and the continuous operation can be performed for a long period of time, and the stability of the filtration performance is excellent.
Here, the porous resin is formed by impregnating and solidifying a non-woven fiber layer with a foamable resin or the like and breaking the cell by pulling or needling and then foaming the same as described in
請求項4に記載の発明は、請求項1乃至3の内いずれか1項に記載の懸濁水フィルタ用平膜ろ材であって、前記多孔質層と、前記多孔質層の下流側に形成された前記多孔質層よりも空隙率の高い不織布の中間繊維層と、前記中間繊維層の下流側に形成された支持層と、前記支持層の下流側に形成された前記中間繊維層よりも空隙率の高い不織布の基材繊維層と、を備えた構成を有している。
この構成により、請求項1乃至3の内いずれか1項の作用に加え、以下のような作用を有する。
(1)スクラム構造を有する上流側の多孔質層の目を細かくすることにより、表面部で懸濁水中の粒子を確実に捕捉して、内部への侵入を阻止できろ過性能に優れると共に、下流側の下部繊維層の目を粗くすることにより、逆洗や物理的な剥離により多孔質層の表面に付着した懸濁物質を容易に取り除くことができ、目詰まりが発生し難く、長期間継続して使用することが可能でメンテナンス性、実用性に優れる。
(2)ろ過時に上流側となる多孔質層側から下流側の下部繊維層側に向かって空隙率が高くなるように空隙率を変化させることにより、微細な懸濁物質であっても確実に多孔質層の表面で捕捉して、ろ過することができると共に、ろ過された懸濁水のろ過水を下部繊維層側から速やかに排出することができ、ろ過効率に優れる。
(3)中間繊維層と下部繊維層との間に形成された支持層を有することにより、全体を補強して縦横の変形を防止することができ耐久性に優れる。
(4)下部繊維層により全体の厚みと強度を調整することができ、スクレーパやブラシ等により洗浄を行う際に、そのクッション性で衝撃を吸収することができ、多孔質層の破損が発生し難くなると共に、ろ過水を自由に移動、排出させることができ、通水性を向上させることができる。
Invention of Claim 4 is a flat membrane filter material for suspension water filters of any one of
With this configuration, in addition to the operation of any one of
(1) By making the porous layer on the upstream side having a scram structure finer, it is possible to reliably capture particles in the suspended water at the surface portion and prevent intrusion into the inside. By roughening the lower fiber layer on the side, suspended substances adhering to the surface of the porous layer can be easily removed by backwashing or physical peeling. It is possible to use it and is excellent in maintainability and practicality.
(2) By changing the porosity so that the porosity increases from the porous layer side that is the upstream side to the lower fiber layer side that is the downstream side during filtration, it is ensured even for fine suspended substances It can be captured and filtered at the surface of the porous layer, and the filtered water of the suspended water can be quickly discharged from the lower fiber layer side, and the filtration efficiency is excellent.
(3) By having the support layer formed between the intermediate fiber layer and the lower fiber layer, the entire structure can be reinforced to prevent vertical and horizontal deformation, and the durability is excellent.
(4) The overall thickness and strength can be adjusted by the lower fiber layer, and when washing with a scraper, brush, etc., impact can be absorbed by its cushioning property, and the porous layer is damaged. While becoming difficult, filtered water can be freely moved and discharged, and water permeability can be improved.
ここで、中間繊維層、下部繊維層を形成する不織布としては、前述の多孔質層を形成する不織布と同様のものが好適に用いられる。
懸濁水フィルタ用平膜ろ材の目付は500g/m2〜1000g/m2が好ましい。目付が500g/m2より小さくなるにつれ、長期間の使用により繰り返し加わる水圧に耐えることが困難となり、耐久性が低下し易くなる傾向があり、1000g/m2より大きくなるにつれ、量産性が低下し易くなる傾向があり、いずれも好ましくない。
支持層は、織布、ネット、その他の多孔膜等の補強材を中間繊維層と下部繊維層の間に配設することにより形成することができる。補強材としてモノフィラメントやマルチフィラメントの織物基布が好適に用いられるが、スパン織物を用いてもよい。また、補強材の材質としては、前述の不織布の材質と同様のものが好適に用いられる。ネットの場合は、ステンレス線とポリエステル等を複合させたものを縦横に網目状に配置してもよい。
Here, as the nonwoven fabric for forming the intermediate fiber layer and the lower fiber layer, the same nonwoven fabric as that for forming the porous layer described above is preferably used.
Basis weight of the flat film filter media for suspending water filter 500g / m 2 ~1000g / m 2 is preferred. As the basis weight becomes smaller than 500 g / m 2, it becomes difficult to withstand the water pressure repeatedly applied over a long period of time, and the durability tends to decrease, and as it becomes larger than 1000 g / m 2 , mass productivity decreases. It is easy to do, and neither is preferable.
The support layer can be formed by disposing a reinforcing material such as a woven fabric, a net, or other porous membrane between the intermediate fiber layer and the lower fiber layer. A monofilament or multifilament fabric base fabric is preferably used as the reinforcing material, but a spun fabric may be used. Further, as the material of the reinforcing material, the same material as that of the above-mentioned nonwoven fabric is preferably used. In the case of a net, a composite of stainless steel wire and polyester may be arranged in a mesh shape vertically and horizontally.
懸濁水フィルタ用平膜ろ材の見かけ密度は0.35g/cm3〜0.55g/cm3が好ましい。見かけ密度が0.35g/cm3より小さくなるにつれ、懸濁水と接触するろ過面積が不十分となり、ろ過効率が低下し易くなる傾向があり、0.55g/cm3より大きくなるにつれ、通水量が不十分となり、大量の懸濁水をろ過することが困難になる傾向があり、いずれも好ましくない。 The apparent density of the flat membrane filter media for suspending water filters 0.35g / cm 3 ~0.55g / cm 3 are preferred. As the apparent density becomes smaller than 0.35 g / cm 3, the filtration area in contact with the suspended water becomes insufficient, and the filtration efficiency tends to decrease. As the apparent density becomes larger than 0.55 g / cm 3 , Tends to be insufficient and it becomes difficult to filter a large amount of suspended water, both of which are not preferred.
懸濁水フィルタ用平膜ろ材は、98kPaの圧力差を与えたときの空気通過量が1(cm3/s)/cm2〜10(cm3/s)/cm2であることが好ましい。空気通過量が1(cm3/s)/cm2より小さくなるにつれ、通水量が不十分となり、大量の懸濁水をろ過することが困難になる傾向があり、10(cm3/s)/cm2より大きくなるにつれ、懸濁水と接触する繊維量が不十分となり、ろ過効率が低下し易くなる傾向があり、いずれも好ましくない。 The flat membrane filter medium for a suspended water filter preferably has an air passage amount of 1 (cm 3 / s) / cm 2 to 10 (cm 3 / s) / cm 2 when a pressure difference of 98 kPa is applied. As the air flow rate becomes smaller than 1 (cm 3 / s) / cm 2 , the water flow rate becomes insufficient, and it becomes difficult to filter a large amount of suspended water, and 10 (cm 3 / s) / As it becomes larger than cm 2, the amount of fibers that come into contact with the suspended water becomes insufficient, and the filtration efficiency tends to decrease, which is not preferable.
請求項5に記載の懸濁水フィルタ用平膜ろ材の製造方法は、請求項2又は4に記載の懸濁水フィルタ用平膜ろ材の製造方法であって、1以上の凸部及び/又は凹部で異形化された断面形状を有する繊維を三次元に交絡させて前記多孔質層を形成する構成を有している。
この構成により、以下の作用を有する。
(1)1以上の凸部及び/又は凹部で異形化された断面形状を有する繊維を三次元に交絡させて多孔質層を形成することにより、網目状の連続微空間を有するスクラム構造を簡便に形成することができ量産性に優れる。
ここで、繊維を三次元に交絡させる方法としては、ニードルパンチやウォータージェットニードル等が好適に用いられる。
The manufacturing method of the flat membrane filter material for suspension water filters of Claim 5 is a manufacturing method of the flat membrane filter material for suspension water filters of
This configuration has the following effects.
(1) A scram structure having a mesh-like continuous fine space can be simplified by forming a porous layer by three-dimensionally interlacing fibers having a cross-sectional shape deformed by one or more convex portions and / or concave portions. It can be formed into an excellent mass productivity.
Here, a needle punch, a water jet needle, or the like is preferably used as a method of entanglement of the fibers in three dimensions.
請求項6に記載の発明は、請求項3又は4に記載の懸濁水フィルタ用平膜ろ材の製造方法であって、前記多孔質層の形成工程が、発泡剤を混合した樹脂を前記不織布の繊維層の表層部に含浸させる樹脂含浸工程と、前記樹脂を発泡させる樹脂発泡工程と、を備えた構成を有している。
この構成により、以下の作用を有する。
(1)樹脂含浸工程により、発泡剤を混合した樹脂を不織布の繊維層の表層部に含浸させた後、樹脂発泡工程により、樹脂を発泡させるだけで、不織布の繊維層と発泡した多孔質性の樹脂が一体化された耐久性に優れるスクラム構造を備えた多孔質層を形成することができ、量産性に優れる。
(2)多孔質層の形成工程が、不織布の繊維層の表層部に発泡剤を混合した樹脂を含浸させる樹脂含浸工程と、樹脂を発泡させる樹脂発泡工程と、を有するので、既存の不織布にも簡便にスクラム構造を備えた多孔質層を形成することができ、生産性に優れる。
Invention of Claim 6 is a manufacturing method of the flat membrane filter material for suspension water filters of Claim 3 or 4, Comprising: The formation process of the said porous layer uses resin which mixed the foaming agent of the said nonwoven fabric. A resin impregnation step for impregnating the surface layer portion of the fiber layer and a resin foaming step for foaming the resin are provided.
This configuration has the following effects.
(1) After impregnating the surface layer portion of the nonwoven fiber layer with a resin mixed with a foaming agent in the resin impregnation step, the resin foams the porous layer with the nonwoven fiber layer by simply foaming the resin. It is possible to form a porous layer having a scrum structure in which the resin is integrated and has excellent durability, and is excellent in mass productivity.
(2) Since the formation process of the porous layer has a resin impregnation process for impregnating a resin in which a foaming agent is mixed with the surface layer portion of the nonwoven fabric fiber layer and a resin foaming process for foaming the resin, In addition, a porous layer having a scrum structure can be easily formed, and the productivity is excellent.
ここで、樹脂は一液タイプでも二液混合タイプでもよい。また、基材となる不織布の溶融転移点を超えない温度帯で発泡を生じるものであればよい。尚、常温で発泡するものは取扱いが容易で量産性に優れる。発泡剤は有機系でも無機系でもよいが、ろ材として好適な連続泡が形成されるように配合をコントロールすることが好ましい。
尚、樹脂は不織布に塗布又は吹付けすることにより、繊維に含浸させることがき、不織布の繊維層と樹脂が一体化されたスクラム構造を備えた多孔質層を形成することができる。
Here, the resin may be a one-component type or a two-component mixed type. Moreover, what is necessary is just to produce foaming in the temperature range which does not exceed the melting transition point of the nonwoven fabric used as a base material. In addition, what foams at normal temperature is easy to handle and has excellent mass productivity. The foaming agent may be organic or inorganic, but it is preferable to control the formulation so that continuous foam suitable as a filter medium is formed.
The resin can be impregnated into the fiber by being applied or sprayed onto the nonwoven fabric, and a porous layer having a scram structure in which the fiber layer of the nonwoven fabric and the resin are integrated can be formed.
請求項7に記載の発明は、請求項3又は4に記載の懸濁水フィルタ用平膜ろ材の製造方法であって、前記多孔質層の形成工程が、溶媒に溶解する溶解剤を混合した発泡性樹脂を前記不織布の繊維層の表層部に含浸させる樹脂含浸工程と、前記発泡性樹脂を発泡させる樹脂発泡工程と、前記繊維層を前記溶媒に浸漬して前記溶解剤を溶解させる溶解工程と、備えた構成を有している。
この構成により、以下の作用を有する。
(1)樹脂含浸工程により繊維層の表層部に含浸させる発泡性樹脂に、溶媒に溶解する溶解剤が混合されているので、樹脂発泡工程によって発泡性樹脂を発泡させた後に、溶解工程によって繊維層を溶媒に浸漬するだけで溶解剤を溶解させることができ、発泡により生じた空孔(独立核空間、独立気泡)の周囲の樹脂層に微細空孔(連続微空間、連続微細気泡)を形成して連通させることができ、スクラム構造を備えた多孔質層を形成することができる。
ここで、発泡性樹脂は前述と同様の樹脂に発泡剤を混合したものである。溶解剤は、前述と同様に樹脂には溶解せず水やお湯、硫酸、塩酸等の特定の溶媒に溶解するものであればよい。
Invention of Claim 7 is a manufacturing method of the flat membrane filter material for suspension water filters of Claim 3 or 4, Comprising: The formation process of the said porous layer is foaming which mixed the melt | dissolution agent melt | dissolved in a solvent. A resin impregnation step of impregnating the surface layer portion of the fiber layer of the nonwoven fabric with resin, a resin foaming step of foaming the foamable resin, and a dissolution step of dissolving the dissolving agent by immersing the fiber layer in the solvent; And having a configuration provided.
This configuration has the following effects.
(1) Since the foaming resin impregnated in the surface layer portion of the fiber layer by the resin impregnation step is mixed with a dissolving agent that dissolves in the solvent, the foaming resin is foamed by the resin foaming step, and then the fiber is formed by the dissolution step. The solubilizer can be dissolved simply by immersing the layer in a solvent, and fine pores (continuous microspaces, continuous microbubbles) are formed in the resin layer around the pores (closed core spaces, closed cells) generated by foaming. A porous layer having a scram structure can be formed.
Here, the foamable resin is obtained by mixing a foaming agent with the same resin as described above. The solubilizer may be any one that does not dissolve in the resin as described above but dissolves in a specific solvent such as water, hot water, sulfuric acid, hydrochloric acid, or the like.
請求項8に記載の発明は、請求項3又は4に記載の懸濁水フィルタ用平膜ろ材の製造方法であって、前記多孔質層の形成工程が、熱或いは溶媒により収縮する収縮材を混合した発泡性樹脂を前記不織布の繊維層の表層部に含浸させる樹脂含浸工程と、前記発泡性樹脂を発泡させる樹脂発泡工程と、前記繊維層を加熱或いは前記溶媒に浸漬して前記収縮材を収縮させる収縮工程と、を備えた構成を有している。
この構成により、以下の作用を有する。
(1)樹脂含浸工程により繊維層の表層部に含浸させる発泡性樹脂に、熱或いは溶媒により収縮する収縮材が混合されているので、樹脂発泡工程によって発泡性樹脂を発泡させた後に、収縮工程によって繊維層を加熱或いは溶媒に浸漬するだけで収縮材を収縮させることができ、発泡により生じた空孔(独立核空間)の周囲の樹脂層に微細空孔(連続微空間)を形成して連通させることができ、スクラム構造を備えた多孔質層を形成することができる。
ここで、発泡性樹脂は前述と同様の樹脂に発泡剤を混合したものである。収縮材は、前述と同様に加熱或いは溶媒に浸漬することにより収縮するものであればよい。
Invention of Claim 8 is a manufacturing method of the flat membrane filter material for suspension water filters of Claim 3 or 4, Comprising: The formation process of the said porous layer mixes the shrinkage | contraction material shrink | contracted with a heat | fever or a solvent. A resin impregnation step of impregnating the surface layer portion of the non-woven fiber layer with the foamed resin, a resin foaming step of foaming the foamable resin, and heating or immersing the fiber layer in the solvent to shrink the shrinkable material And a shrinking step.
This configuration has the following effects.
(1) Since the expandable resin impregnated in the surface layer portion of the fiber layer by the resin impregnation step is mixed with a shrinkable material that contracts by heat or a solvent, the expandable resin is foamed by the resin foaming step, and then the contraction step The shrinkable material can be shrunk simply by heating the fiber layer or immersing it in a solvent. By forming fine pores (continuous microspaces) in the resin layer around the pores (independent core space) generated by foaming A porous layer having a scrum structure can be formed.
Here, the foamable resin is obtained by mixing a foaming agent with the same resin as described above. The shrink material may be any material that shrinks when heated or immersed in a solvent as described above.
請求項1に記載の発明によれば、以下のような効果を有する。
(1)多孔質層が、複数の独立核空間とそれらを連結する連続微空間で形成されたスクラム構造を有するので、懸濁水中の微細な粒子を捕捉する連続微空間の領域を薄く形成することができ、多孔質層の目詰まりが発生し難く、ろ過性能の信頼性に優れ、多孔質層全体を厚く形成することができる耐久性に優れた懸濁水フィルタ用平膜ろ材を提供することができる。
(2)スクラム構造を有する多孔質層は、連続使用中に表層側が破損しても、内側に形成されている連続微空間によって継続的なろ過を行うことが可能で長寿命性に優れ、濃度の濃い懸濁水にも対応することができる信頼性、汎用性に優れた懸濁水フィルタ用平膜ろ材を提供することができる。
According to invention of
(1) Since the porous layer has a scram structure formed by a plurality of independent nuclear spaces and continuous fine spaces connecting them, a continuous fine space region for capturing fine particles in the suspension water is thinly formed. It is possible to provide a flat membrane filter medium for a suspended water filter, which is capable of forming a porous layer with a high thickness, which is capable of forming a thick porous layer, which is less likely to be clogged with a porous layer, excellent in filtration performance, and thick. Can do.
(2) A porous layer having a scram structure can be continuously filtered by a continuous fine space formed inside even if the surface layer is damaged during continuous use, and has an excellent long life and concentration. Therefore, it is possible to provide a flat membrane filter medium for a suspension water filter that can cope with a concentrated suspension water having excellent reliability and versatility.
請求項2に記載の発明によれば、請求項1の効果に加え、以下のような効果を有する。
(1)1以上の凸部及び/又は凹部で異形化された断面形状を有する繊維で多孔質層を形成することにより、多孔質層内に略均一な連続微空間を有するスクラム構造を形成することができ、ろ過性能の均一性に優れた懸濁水フィルタ用平膜ろ材を提供することができる。
According to invention of
(1) A scram structure having a substantially uniform continuous fine space is formed in the porous layer by forming the porous layer with fibers having a cross-sectional shape deformed by one or more convex portions and / or concave portions. Therefore, it is possible to provide a flat membrane filter medium for a suspended water filter that is excellent in the uniformity of filtration performance.
請求項3に記載の発明によれば、請求項1の効果に加え、以下のような効果を有する。
(1)不織布の繊維層に多孔質性樹脂が一体化して形成された多孔質層はスクラム構造の耐久性に優れるので、逆洗或いはブラシやスクレーパ等による物理的な掻き取り等によって表面の懸濁物質を簡便かつ確実に剥離することができ、長期間に渡って継続運転が可能なろ過性能の安定性に優れた懸濁水フィルタ用平膜ろ材を提供することができる。
According to invention of Claim 3, in addition to the effect of
(1) Since a porous layer formed by integrating a porous resin with a nonwoven fabric fiber layer has excellent scram structure durability, the surface is suspended by backwashing or physical scraping with a brush or scraper. It is possible to provide a flat membrane filter medium for a suspended water filter that can easily and reliably peel turbid substances and has excellent filtration performance that can be continuously operated for a long period of time.
請求項4に記載の発明によれば、請求項1乃至3の内いずれか1項の効果に加え、以下のような効果を有する。
(1)スクラム構造を有する多孔質層の表面部で懸濁水中の粒子を確実に捕捉して、内部への侵入を阻止できるろ過性能に優れた懸濁水フィルタ用平膜ろ材を提供することができる。
(2)ろ過時に上流側となる多孔質層の表面で微細な懸濁物質を確実に捕捉して、ろ過することができると共に、ろ過された懸濁水のろ過水を空隙率の高い下部繊維層側から速やかに排出することができるろ過効率に優れた懸濁水フィルタ用平膜ろ材を提供することができる。
(3)上流側の多孔質層の目を細かくし、下流側の下部繊維層の目を粗くすることにより、逆洗や物理的な剥離により多孔質層の表面に付着した懸濁物質を容易に取り除くことができ、目詰まりが発生し難く、長期間継続して使用することが可能なメンテナンス性、実用性、信頼性に優れた懸濁水フィルタ用平膜ろ材を提供することができる。
(4)下部繊維層のクッション性により、スクレーパやブラシ等による洗浄時の衝撃を吸収でき、多孔質層の破損を低減できる耐久性に優れた懸濁水フィルタ用平膜ろ材を提供することができる。
According to invention of Claim 4, in addition to the effect of any one of
(1) To provide a flat membrane filter material for a suspended water filter excellent in filtration performance capable of reliably capturing particles in suspended water at the surface portion of a porous layer having a scram structure and preventing entry into the interior. it can.
(2) The lower fiber layer having a high porosity can be used to reliably capture and filter fine suspended solids on the surface of the porous layer on the upstream side during filtration, and to filter the filtered suspension water. It is possible to provide a flat membrane filter medium for a suspended water filter that can be discharged quickly from the side and has excellent filtration efficiency.
(3) By making the upstream porous layer finer and making the downstream lower fiber layer coarser, suspended substances adhering to the surface of the porous layer by backwashing or physical peeling can be easily obtained. Therefore, it is possible to provide a flat membrane filter material for a suspended water filter that is easy to remove, clogging is less likely to occur, and can be used continuously for a long period of time.
(4) Due to the cushioning property of the lower fiber layer, it is possible to provide a flat membrane filter medium for a suspension water filter that can absorb the impact during washing with a scraper, a brush, etc., and can reduce damage to the porous layer. .
請求項5に記載の発明によれば、以下のような効果を有する。
(1)1以上の凸部及び/又は凹部で異形化された断面形状を有する繊維を三次元に交絡させることにより、ろ過性能及び耐久性に優れたスクラム構造を有する多孔質層を簡便に形成することができる量産性に優れた懸濁水フィルタ用平膜ろ材の製造方法を提供することができる。
According to invention of Claim 5, it has the following effects.
(1) A porous layer having a scram structure having excellent filtration performance and durability can be easily formed by three-dimensionally interlacing fibers having a cross-sectional shape deformed by one or more convex portions and / or concave portions. The manufacturing method of the flat membrane filter medium for suspension water filters excellent in mass productivity which can be performed can be provided.
請求項6に記載の発明によれば、以下のような効果を有する。
(1)樹脂含浸工程と樹脂発泡工程の二工程だけで、不織布の繊維層と発泡した多孔質性の樹脂が一体化された耐久性に優れた多孔質層を形成することができる量産性に優れた懸濁水フィルタ用平膜ろ材の製造方法を提供することができる。
According to invention of Claim 6, it has the following effects.
(1) Mass production that can form a porous layer with excellent durability in which a nonwoven fabric fiber layer and a foamed porous resin are integrated in only two steps of a resin impregnation step and a resin foaming step. An excellent method for producing a flat membrane filter medium for a suspended water filter can be provided.
請求項7に記載の発明によれば、以下のような効果を有する。
(1)樹脂含浸工程により繊維層の表層部に含浸させた発泡性樹脂を樹脂発泡工程によって発泡させた後に、溶解工程によって繊維層を溶媒に浸漬するだけで発泡性樹脂に混合された溶解剤を溶解させることができ、発泡により生じた独立核空間の周囲の樹脂層に連続微空間を形成して、ろ過性能及び耐久性に優れたスクラム構造を有する多孔質層を得ることができる量産性、信頼性に優れた懸濁水フィルタ用平膜ろ材の製造方法を提供することができる。
According to invention of Claim 7, it has the following effects.
(1) After the foamable resin impregnated in the surface layer portion of the fiber layer by the resin impregnation step is foamed by the resin foaming step, the dissolving agent mixed with the foamable resin simply by immersing the fiber layer in the solvent by the dissolution step Can form a porous layer having a scram structure with excellent filtration performance and durability by forming a continuous fine space in the resin layer around the independent core space generated by foaming It is possible to provide a method for producing a flat membrane filter medium for a suspended water filter having excellent reliability.
請求項8に記載の発明によれば、以下のような効果を有する。
(1)樹脂含浸工程により繊維層の表層部に含浸させた発泡性樹脂を樹脂発泡工程によって発泡させた後に、収縮工程によって繊維層を加熱或いは溶媒に浸漬するだけで発泡性樹脂に混合された収縮材を収縮させることができ、発泡により生じた独立核空間の周囲の樹脂層に連続微空間を形成して、ろ過性能及び耐久性に優れたスクラム構造を有する多孔質層を得ることができる量産性、信頼性に優れた懸濁水フィルタ用平膜ろ材の製造方法を提供することができる。
According to invention of Claim 8, it has the following effects.
(1) After the foamable resin impregnated in the surface layer portion of the fiber layer by the resin impregnation step is foamed by the resin foaming step, the fiber layer is mixed with the foamable resin only by being heated or immersed in a solvent by the shrinking step. The shrinkable material can be shrunk, and a continuous fine space can be formed in the resin layer around the independent core space generated by foaming to obtain a porous layer having a scram structure with excellent filtration performance and durability. It is possible to provide a method for producing a flat membrane filter medium for a suspended water filter that is excellent in mass productivity and reliability.
(実施の形態1)
本発明の実施の形態1における懸濁水フィルタ用平膜ろ材及びその製造方法について、以下図面を参照しながら説明する。
図1は実施の形態1における懸濁水フィルタ用平膜ろ材を示す要部断面模式図である。
図1中、1は本発明の実施の形態1における懸濁水フィルタ用平膜ろ材、2は不織布の繊維の断面形状を異形化することにより形成されたスクラム構造を有する懸濁水フィルタ用平膜ろ材1の多孔質層、3は多孔質層2の下流側に不織布で形成された多孔質層2よりも空隙率の高い懸濁水フィルタ用平膜ろ材1の中間繊維層、4は織布、ネット、その他の多孔膜等の補強材で中間繊維層3の下流側に形成された懸濁水フィルタ用平膜ろ材1の支持層、5は支持層4の下流側に不織布で形成された中間繊維層4よりも空隙率の高い下部繊維層である。
(Embodiment 1)
A flat membrane filter medium for a suspended water filter and a method for producing the same according to
FIG. 1 is a schematic cross-sectional view of an essential part showing a flat membrane filter medium for a suspended water filter in the first embodiment.
In FIG. 1, 1 is a flat membrane filter medium for suspension water filter according to
懸濁水フィルタ用平膜ろ材1の多孔質層2、中間繊維層3、下部繊維層5を形成する不織布の材質としては、ポリアミド、ポリエステル、ポリオレフィン、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール(ビニロン)系などの合成繊維を用いた。各々の層の平均繊維径は、空隙率等に応じて適宜選択することができる。多孔質層2を形成する合成繊維の平均繊維径は、3μm〜25μmとした。平均繊維径が3μmより細くなるにつれ、取扱いが困難となり、不織布の量産性、耐久性に欠ける傾向があり、25μmより太くなるにつれ、空孔が大きくなって空隙率が増加し、ろ過性能が低下し易くなる傾向があることがわかったためである。尚、耐水性、耐薬品性、耐候性の面からはポリエステルやポリプロピレンが好ましいことがわかった。
Nonwoven fabrics for forming the
懸濁水フィルタ用平膜ろ材1の目付は500g/m2〜1000g/m2に形成した。目付が500g/m2より小さくなるにつれ、長期間の使用により繰り返し加わる水圧に耐えることが困難となり、耐久性が低下し易くなる傾向があり、1000g/m2より大きくなるにつれ、量産性が低下し易くなる傾向があることがわかったためである。
支持層4は、織布、ネット、その他の多孔膜等の補強材を中間繊維層3と下部繊維層5の間に配設することにより形成した。補強材としては、モノフィラメントやマルチフィラメントの織物基布が好適に用いられるが、スパン織物を用いてもよい。尚、補強材の材質としては、前述の不織布の材質と同様のものが好適に用いられる。また、ネットの場合は、ステンレス線とポリエステル等を複合させたものを縦横に網目状に配置してもよい。
Basis weight of the aqueous suspension filtering spur
The support layer 4 was formed by disposing a reinforcing material such as a woven fabric, a net, or other porous membrane between the intermediate fiber layer 3 and the lower fiber layer 5. As the reinforcing material, a monofilament or multifilament fabric base fabric is preferably used, but a spun fabric may be used. In addition, as the material of the reinforcing material, the same material as that of the above-mentioned nonwoven fabric is preferably used. In the case of a net, a composite of stainless steel wire and polyester may be arranged in a mesh shape vertically and horizontally.
懸濁水フィルタ用平膜ろ材1の見かけ密度は0.35g/cm3〜0.55g/cm3に形成した。見かけ密度が0.35g/cm3より小さくなるにつれ、懸濁水と接触するろ過面積が不十分となり、ろ過効率が低下し易くなる傾向があり、0.55g/cm3より大きくなるにつれ、通水量が不十分となり、大量の懸濁水をろ過することが困難になる傾向があることがわかったためである。
懸濁水フィルタ用平膜ろ材1は、98kPaの圧力差を与えたときの空気通過量が1(cm3/s)/cm2〜10(cm3/s)/cm2となるように形成した。空気通過量が1(cm3/s)/cm2より小さくなるにつれ、通水量が不十分となり、大量の懸濁水をろ過することが困難になる傾向があり、10(cm3/s)/cm2より大きくなるにつれ、懸濁水と接触する繊維量が不十分となり、ろ過効率が低下し易くなる傾向があることがわかったためである。
Apparent density of the aqueous suspension filtering spur
The flat
多孔質層2の連続微空間(連続気泡)の平均空孔径は、0.5μm〜8μm、好ましくは1μm〜4μmに形成した。平均空孔径が1μmより小さくなるにつれ、目詰まりが発生し易くなり、大量の懸濁水をろ過することが困難になる傾向が見られ、4μmより大きくなるにつれ、通水量が多くなり、ろ過性能が低下し易くなる傾向が見られたためである。また、平均空孔径が0.5μmより小さくなるにつれ、通水性が大幅に低下してろ過効率が低下し易くなる傾向があり、8μmより大きくなるにつれ、微小な懸濁物質を補足することが困難となり、懸濁物質が内部の空孔に引っ掛かって閉塞状態となり、逆洗や洗浄で除去できなくなる傾向があることがわかった。
The average pore diameter of the continuous fine space (open cell) of the
多孔質層2の厚さは、10μm〜1000μmに形成した。多孔質層2の厚さが10μmより薄くなるにつれ、連続微空間を十分に確保することができず、ろ過能力が不足すると共に、刷毛等による物理的な洗浄などによって短時間で多孔質層2全体が破損し易く、スクラム構造の効果が不十分となって寿命が低下し易くなる傾向があり、1000μmより厚くなるにつれ、通水性が不足してろ過効率が低下し易くなる傾向があることがわかったためである。多孔質層2の厚さを10μm〜1000μmの範囲にすることで、多孔質層2の表層側が破損しても、その内側が新たな表層となって連続微空間で継続的にろ過を行うことができ、ろ過性能の信頼性、長寿命性に優れる。
The thickness of the
この懸濁水フィルタ用平膜ろ材1は、重力ろ過を行うことができ、目詰まりが発生し難く、外部からの小さな刺激で懸濁物質を剥離することができるので、逆洗で洗浄する以外に、ブラシ洗浄方式、ウォータージェット洗浄方式、吸引洗浄方式、スクレーパ洗浄方式等により洗浄することができ、濃度の濃い懸濁水にも対応することができ汎用性に優れる。また、ブラシ洗浄やスクレーパ洗浄などの剥離洗浄により、多孔質層2の表面に付着した懸濁物質を凝集した状態で剥離させてろ過槽などの底部に沈降させることができるので、懸濁水の濃度が濃くなることを防止でき、安定したろ過流量を得ることができる。
This flat
ろ過に圧力装置を必要としないので省エネルギー性に優れ、ろ過装置全体を小型化、軽量化することができ、量産性、取り扱い性を向上させることができる。
凝集剤等を使用することなく、河川や湖沼等に含まれているミネラル分を残存させたまま、懸濁物質のみを取り除いて浄化処理を行うことができ、清水として河川等に放流することができるので環境保護性に優れる。また、懸濁水中の懸濁物質が懸濁水フィルタ用平膜ろ材1の多孔質層2の表面に付着しても、ろ過効率が低下することがなく、優れたろ過性能を維持することができ、実用性、信頼性に優れる。
Since no pressure device is required for filtration, energy saving is excellent, the entire filtration device can be reduced in size and weight, and mass productivity and handleability can be improved.
Without the use of flocculants, etc., the minerals contained in rivers and lakes can be removed, and only the suspended solids can be removed for purification treatment, which can be discharged into rivers as fresh water. Excellent environmental protection because it can. Moreover, even if suspended substances in suspension water adhere to the surface of the
次に、懸濁水フィルタ用平膜ろ材の多孔質層について詳細に説明する。
図2は実施の形態1における懸濁水フィルタ用平膜ろ材の多孔質層を形成する繊維を示す模式斜視図である。
図2(a)は、多孔質層2を形成する繊維10の円周上に複数の凸部11が形成された例であり、図2(b)は、多孔質層2を形成する繊維10aの外周に凸部11aが螺旋状の凸条に形成された例であり、図2(c)は、多孔質層2を形成する繊維10bの外周表面に略球状の複数の凸部11bが形成された例である。
これらの凸部11,11a,11bは、表面に凸部11,11a,11bに対応する凹凸が形成された圧延ローラの間に繊維10,10a,10bを通すことにより形成することができる。
Next, the porous layer of the flat membrane filter medium for a suspended water filter will be described in detail.
FIG. 2 is a schematic perspective view showing fibers forming a porous layer of the flat membrane filter medium for a suspended water filter in the first embodiment.
FIG. 2A is an example in which a plurality of
These
凸部11,11a,11bの大きさは繊維10,10a,10bの繊維径にもよるが、繊維径が10μm〜25μmの場合、凸部11,11a,11bの直径は2μm〜5μmに形成した。凸部11,11a,11bの直径が2μmより小さくなるにつれ、異形化の効果が不十分となり、通水性が低下し易くなってろ過効率が低下する傾向があり、凸部11,11a,11bの直径が5μmより大きくなるにつれ、断面形状を維持するのが困難となり生産性が低下し易くなると共に、空隙率が高くなってろ過性能が低下し易くなる傾向があることがわかったためである。
懸濁水フィルタ用平膜ろ材1の多孔質層2の形成工程において、1以上の凸部11,11a,11bで異形化された断面形状を有する繊維10,10a,10bをニードルパンチやウォータージェットニードル等の方法によって、三次元に交絡させて多孔質層2を形成することにより、独立核空間を連通する略均一な連続微空間を形成することができ、多孔質層1の連続微空間(微細空孔)の平均空孔径を前述の0.5μm〜8μm、好ましくは1μm〜4μmに形成することができる。
The size of the
In the step of forming the
次に、多孔質層を形成する繊維の変形例について、図面を参照しながら説明する。図3は実施の形態1における懸濁水フィルタ用平膜ろ材の多孔質層を形成する繊維の断面形状の変形例を示す模式断面図である。
図3(a)は繊維10cの外周に5個の凸部11cが形成された例であり、図3(b)は繊維10dの外周に4個の凸部11dが形成された例であり、図3(c)は繊維10eの外周に3個の凸部11eが形成された例であり、図3(d)は繊維10fの外周に4個の凹部11fが形成された例であり、図3(e)は繊維10gの外周に3個の凹部11gが形成された例であり、図3(f)は繊維10hの外周に2個の凹部11hが形成された例である。
Next, a modification of the fiber forming the porous layer will be described with reference to the drawings. FIG. 3 is a schematic cross-sectional view showing a modification of the cross-sectional shape of the fibers forming the porous layer of the flat membrane filter medium for a suspended water filter in the first embodiment.
FIG. 3 (a) is an example in which five
図3に示した繊維10c乃至10hの断面形状と同様の断面形状を有する金型から繊維を延伸させることにより、繊維の断面形状を異形化することができ、繊維の長手方向に連続的な凸条や凹条を形成することができる。また、延伸の際に繊維を捻ることにより、図2(b)で示したように凸条や凹条を螺旋状に形成することができる。尚、繊維を液中で延伸させることにより、異形化された断面形状を確実に維持することができ生産性に優れる。
図3では、2個〜5個の凸部11c乃至11eや凹部11f乃至11hにより、断面形状を異形化したものを示したが、凸部11c乃至11eや凹部11f乃至11hの数は2個〜8個、形成することができる。凸部11c乃至11eや凹部11f乃至11hの数が2個より少なくなるにつれ、異形化の効果が不十分となり、通水性が低下し易くなってろ過効率が低下する傾向があり、凸部11c乃至11eや凹部11f乃至11hの数が8個より多くなるにつれ、断面形状を維持するのが困難となり生産性が低下し易くなると共に、空隙率が高くなってろ過性能が低下し易くなる傾向があることがわかったためである。
尚、図2及び図3で示した各々の繊維10乃至10hは、それぞれ単独で用いてもよいし、複数種類を組み合わせて用いてもよい。
By stretching the fiber from a mold having a cross-sectional shape similar to the cross-sectional shape of the
In FIG. 3, the shape of the cross-sectional shape is changed by two to five
Each of the
以上のように構成された実施の形態1における懸濁水フィルタ用平膜ろ材によれば、以下の作用を有する。
(1)スクラム構造を有する上流側の多孔質層2の目を細かくすることにより、表面部で懸濁水中の粒子を確実に捕捉して、内部への侵入を阻止でき、ろ過性能に優れる。
(2)ろ過時に上流側となる多孔質層2側から下流側の下部繊維層5側に向かって空隙率が高くなるように各層の空隙率を調整することにより、微細な懸濁物質であっても確実に多孔質層2の表面で捕捉して、ろ過することができると共に、ろ過された懸濁水のろ過水を下部繊維層5側から速やかに排出することができ、ろ過効率に優れる。
(3)上流側の多孔質層2の目を細かくし、下流側の下部繊維層5の目を粗くすることにより、逆洗や物理的な剥離により多孔質層2の表面に付着した懸濁物質を容易に取り除くことができ、目詰まりが発生し難く、長期間継続して使用することが可能でメンテナンス性、実用性に優れる。
(4)中間繊維層3と下部繊維層5との間に形成された支持層4を有することにより、全体を補強して縦横の変形を防止することができ耐久性に優れる。
(5)下部繊維層5により懸濁水フィルタ用平膜ろ材1の全体の厚みと強度を調整することができ、スクレーパやブラシ等により洗浄を行う際に、そのクッション性で衝撃を吸収することができ、多孔質層2の破損が発生し難くなると共に、ろ過水を自由に移動、排出させることができ、通水性を向上させることができる。
(6)多孔質層2を形成する繊維10乃至10hが、1以上の凸部11乃至11eや凹部11f乃至11hで異形化された断面形状を有することにより、多孔質層2内に略均一な連続微空間を形成することができ、ろ過性能の均一性に優れる。
(7)多孔質層2が、略均一な連続微空間が多重に形成されたスクラム構造を有するので、多孔質層2の表面で繊維10乃至10hが断裂する等しても、更にその内側の繊維10乃至10hで形成された連続微空間によって継続的にろ過を行うことができ、ろ過性能の信頼性、長寿命性に優れる。
According to the flat membrane filter material for a suspended water filter in the first embodiment configured as described above, the following action is obtained.
(1) By narrowing the eyes of the upstream
(2) By adjusting the porosity of each layer so that the porosity increases from the
(3) Suspension adhered to the surface of the
(4) By having the support layer 4 formed between the intermediate fiber layer 3 and the lower fiber layer 5, the entire structure can be reinforced to prevent vertical and horizontal deformation and excellent durability.
(5) The entire thickness and strength of the flat
(6) The
(7) Since the
以上のように構成された実施の形態1における懸濁水フィルタ用平膜ろ材の製造方法によれば、以下の作用を有する。
(1)1以上の凸部11乃至11eや凹部11f乃至11hで異形化された断面形状を有する繊維10乃至10hを三次元に交絡させて多孔質層2を形成することにより、連続微空間を有するスクラム構造を簡便に形成することができ量産性に優れる。
According to the manufacturing method of the flat membrane filter material for suspension water filter in
(1) By forming the
(実施の形態2)
本発明の実施の形態2における懸濁水フィルタ用平膜ろ材及びその製造方法について、以下図面を参照しながら説明する。
図4(a)は実施の形態2における懸濁水フィルタ用平膜ろ材の多孔質層を示す要部断面模式図であり、図4(b)は実施の形態2における懸濁水フィルタ用平膜ろ材の多孔質層の形成工程を示す要部断面模式図である。
図4(a)中、2aは実施の形態2における懸濁水フィルタ用平膜ろ材のスクラム構造を有する多孔質層、15は多孔質層2aを形成する不織布の繊維層(図示せず)に含浸され不織布と一体化された多孔質性樹脂、15aは多孔質層2aの多孔質空間の核となる独立核空間、15bは複数の独立核空間15aの間を連通させる連続微空間である。
尚、図示しない中間繊維層3、支持層4、下部繊維層5は実施の形態1と同様なので説明を省略するが、予め、多孔質層2aの基材となる不織布の繊維層(図示せず)と、中間繊維層3、支持層4、下部繊維層5を積層しておく。
(Embodiment 2)
A flat membrane filter for a suspended water filter and a method for producing the same in
FIG. 4 (a) is a schematic cross-sectional view of an essential part showing a porous layer of a flat membrane filter medium for suspension water filter according to the second embodiment, and FIG. 4 (b) is a flat membrane filter medium for suspension water filter according to the second embodiment. It is a principal part cross-section figure which shows the formation process of the porous layer of.
In FIG. 4 (a), 2a is a porous layer having a scram structure of a flat membrane filter medium for a suspended water filter in the
The intermediate fiber layer 3, the support layer 4, and the lower fiber layer 5 (not shown) are the same as those in the first embodiment, and thus the description thereof will be omitted. ), The intermediate fiber layer 3, the support layer 4, and the lower fiber layer 5 are laminated.
次に、スクラム構造を有する多孔質層の形成工程について詳細に説明する。
図4(b)中、16は多孔質性樹脂15を形成するポリ塩化ビニル、ポリビニルアルコール、ポリアミド、ポリエチレン、ポリプロピレン、ポリスチレン系、架橋ポリエチレン、架橋ポリプレン、ABS樹脂、ポリウレタン、ポリカーボネート、ポロアセタール、ポリブチレンテレフタレート、ポリフェニレンオキシド、ユリア樹脂、エポキシ樹脂、シリコン樹脂等の発泡性樹脂に混合され、水やお湯、硫酸、塩酸等の溶媒に溶解するアミロース、グルコース、塩化ナトリウム、塩化カルシウム、水酸化ナトリウム、ナフタリン等の溶解剤である。
まず、樹脂含浸工程において、前述の樹脂に発泡剤を混合した発泡性樹脂に、樹脂には溶解せず前述の溶媒に溶解する溶解剤16を混合し、基材となる不織布の繊維層に塗布又は吹付けすることにより、繊維に含浸させる。
Next, the formation process of the porous layer having a scram structure will be described in detail.
In FIG. 4 (b), 16 is polyvinyl chloride, polyvinyl alcohol, polyamide, polyethylene, polypropylene, polystyrene, crosslinked polyethylene, crosslinked polyprene, ABS resin, polyurethane, polycarbonate, polo acetal, poly, which forms the
First, in the resin impregnation step, the foaming resin in which the foaming agent is mixed with the above-mentioned resin is mixed with the
次に、図4(b)に示すように、樹脂発泡工程において、発泡性樹脂を発泡させ、サイズの大きな独立核空間15aを形成する。
最後に、多孔質性樹脂15と一体化された繊維層を、溶解工程において、前述の溶媒に浸漬し、該空間15a,15b間及び多孔質層2aの外側や内側と該空間15a,15b間の樹脂膜を破壊して、溶解剤16を溶解させ、図4(a)で示した独立核空間15aよりも微細な連続微空間15bを形成する。発泡剤の発泡により形成された独立核空間15aと連通するように、周囲の樹脂膜に多数の連続微空間15bが形成されたスクラム構造とすることができる。これにより、連続使用中に多孔質層2aの表層側が破損しても、内側に形成されている連続微空間15bによって継続的なろ過を行うことが可能で長寿命性に優れ、濃度の濃い懸濁水にも対応することができ信頼性、汎用性に優れる。
発泡剤を混合する樹脂は、一液タイプでも二液混合タイプでもよい。また、基材となる不織布の溶融転移点を超えない温度帯で発泡を生じるものであればよい。尚、常温で発泡するものは取扱いが容易で量産性に優れる。発泡剤は有機系でも無機系でもよいが、ろ材として好適な連続泡が形成されるように配合をコントロールすることが好ましい。また、樹脂発泡工程において、発泡性樹脂を発泡させる際の温度と同じか低い温度で溶解する溶解剤16を選択することにより、連続微空間15bを独立核空間15aと確実に連通させて形成することができる。
Next, as shown in FIG. 4B, in the resin foaming step, the foamable resin is foamed to form a large-sized
Finally, the fiber layer integrated with the
The resin for mixing the foaming agent may be a one-component type or a two-component mixed type. Moreover, what is necessary is just to produce foaming in the temperature range which does not exceed the melting transition point of the nonwoven fabric used as a base material. In addition, what foams at normal temperature is easy to handle and has excellent mass productivity. The foaming agent may be organic or inorganic, but it is preferable to control the formulation so that continuous foam suitable as a filter medium is formed. Further, in the resin foaming step, the continuous
次に、本発明の実施の形態2における懸濁水フィルタ用平膜ろ材の変形例について、以下図面を参照しながら説明する。
図5(a)は実施の形態2における懸濁水フィルタ用平膜ろ材の多孔質層の変形例を示す要部断面模式図であり、図5(b)は実施の形態2における懸濁水フィルタ用平膜ろ材の多孔質層の変形例の形成工程を示す要部断面模式図である。
図5(a)において、懸濁水フィルタ用平膜ろ材の多孔質層の変形例が実施の形態2と異なるのは、多孔質層2bの連続微空間15cの形状が略円柱状に形成されている点であり、機能としては実施の形態2における懸濁水フィルタ用平膜ろ材の多孔質層2aと同様である。
また、図5(b)において、懸濁水フィルタ用平膜ろ材の多孔質層の変形例の形成工程が実施の形態2と異なるのは、樹脂含浸工程において、基材となる不織布の繊維層に含浸させる発泡性樹脂に、溶解剤16の代わりに、熱により収縮する収縮材16aを混合した点と、溶解工程の代わりに、多孔質性樹脂15と一体化された繊維層を加熱して収縮材16aを収縮させる収縮工程を有する点である。
収縮材16aとしては、延伸したポリオレフィン、ポリ塩化ビニリデン、ポリ塩化ビニル等が好適に用いられる。収縮材16aの収縮量は加熱温度を選択することにより、適宜、調整することができる。樹脂発泡工程において、発泡性樹脂を発泡させる際の温度と同じか低い温度で収縮する収縮材16aを選択することにより、連続微空間15cを独立核空間15aと確実に連通させて形成することができる。尚、図5(a)では省略したが、実際には連続微空間15cの内部に収縮後の収縮材16aが残存する。
Next, modified examples of the flat membrane filter medium for a suspended water filter according to
FIG. 5 (a) is a schematic cross-sectional view of an essential part showing a modification of the porous layer of the flat membrane filter medium for suspension water filter in the second embodiment, and FIG. 5 (b) is for suspension water filter in the second embodiment. It is a principal part cross-sectional schematic diagram which shows the formation process of the modification of the porous layer of a flat membrane filter medium.
In FIG. 5 (a), the modification of the porous layer of the suspension membrane filter flat membrane filter is different from the second embodiment in that the shape of the continuous
Further, in FIG. 5 (b), the modification process of the porous layer of the flat membrane filter medium for suspension water filter is different from that of the second embodiment in that in the resin impregnation process, the fiber layer of the nonwoven fabric serving as the substrate is used. The impregnated foamable resin is mixed with a heat-shrinkable shrinkable material 16a instead of the dissolving
As the shrink material 16a, stretched polyolefin, polyvinylidene chloride, polyvinyl chloride or the like is preferably used. The amount of shrinkage of the shrinkable material 16a can be adjusted as appropriate by selecting the heating temperature. In the resin foaming process, by selecting the shrinkable material 16a that shrinks at the same temperature as or lower than the temperature at which the foamable resin is foamed, the
本実施の形態では、溶解剤16の形状を略球状に形成し、収縮材16aの形状を略円柱状に形成したが、これに限定されるものではなく、楕円球状、砲弾状、角柱状等の様々な形状に形成することができる。また、溶解剤16や収縮材16aの大きさは、多孔質層2a,2bに形成する連続微空間15b,15cの大きさに合わせて適宜、選択することができる。連続微空間15b,15cの平均空孔径が、0.5μm〜8μm、好ましくは1μm〜4μmとなるように、溶解剤16や収縮材16aの大きさを選別することにより、好適なろ過性能を得ることができる。
尚、溶媒で溶解する溶解剤16や熱で収縮する収縮材16aの代わりに、溶媒により収縮するビニロン等を収縮材として用い、樹脂発泡工程の後に、繊維層を溶媒に浸漬して収縮材を収縮させる収縮工程を行って連続微空間を形成することもできる。
また、これらの多孔質層2a,2bの形成方法や実施の形態1で説明した不織布の繊維の断面形状を異形化して多孔質層2を形成する方法を組合せてもよい。
多孔質層2a,2bは、中間繊維層3の上に積層した繊維層に形成する代わりに、中間繊維層3の表層側に直接、形成してもよい。この場合、多孔質層2a,2bと中間繊維層3を一体化することができ、耐久性を向上させることができる。
In the present embodiment, the shape of the
In addition, instead of the solvent 16 that dissolves in the solvent and the shrink material 16a that shrinks by heat, vinylon that shrinks by the solvent is used as the shrink material, and after the resin foaming step, the fiber layer is immersed in the solvent to obtain the shrink material. It is also possible to form a continuous fine space by performing a contraction step for contraction.
Moreover, you may combine the formation method of these
The
以上のように構成された実施の形態2における懸濁水フィルタ用平膜ろ材によれば、実施の形態1の作用に加え、以下の作用を有する。
(1)多孔質層2a,2bが、独立核空間15aの周囲に独立核空間15a同士を連結するように連続微空間15b、15cが形成されたスクラム構造を有することにより、多孔質層2a,2b全体を厚く形成しても、懸濁水中の微細な粒子を捕捉する連続微空間15b,15cの領域を薄く形成することができるので、多孔質層2a,2bの目詰まりが発生し難く、ろ過性能の信頼性に優れると共に耐久性に優れる。
(2)多孔質層2a,2bが、不織布と不織布の繊維層に含浸された多孔質性樹脂15とで一体化されて形成されているので耐久性に優れ、逆洗或いはブラシやスクレーパ等による物理的な掻き取り等によって表面の懸濁物質を剥離することができ、長期間に渡って継続運転が可能でろ過性能の安定性に優れる。
(3)多孔質層2a,2bが、独立核空間15aと連通するように、周囲の樹脂膜に多数の連続微空間15b,15cが形成されたスクラム構造を有するため、多孔質層2a,2bの表面で連続微空間15b,15cが破壊されても、更にその内側に連続して形成された連続微空間15b,15cによって継続的にろ過を行うことができ、ろ過性能の信頼性、長寿命性に優れる。
According to the flat membrane filter medium for the suspended water filter configured as described above, in addition to the function of the first embodiment, the following function is provided.
(1) The
(2) Since the
(3) Since the
以上のように構成された実施の形態2における懸濁水フィルタ用平膜ろ材の製造方法によれば、実施の形態1の作用に加え、以下の作用を有する。
(1)樹脂含浸工程により繊維層の表層部に含浸させる発泡性樹脂に、溶媒に溶解する溶解剤16が混合されている場合、樹脂発泡工程によって発泡性樹脂を発泡させた後に、溶解工程によって繊維層を溶媒に浸漬するだけで溶解剤16を溶解させることができ、発泡により生じた独立核空間15a周囲の樹脂層に連続微空間15bを形成して連通させることができ、スクラム構造を有する多孔質層2aを形成することができる。
(2)樹脂含浸工程により繊維層の表層部に含浸させる発泡性樹脂に、熱により収縮する収縮材16aが混合されている場合、樹脂発泡工程によって発泡性樹脂を発泡させた後に、収縮工程によって繊維層を加熱するだけで収縮材16aを収縮させることができ、発泡により生じた独立核空間15aの周囲の樹脂層に連続微空間15cを形成して連通させることができ、スクラム構造を備えた多孔質層2bを形成することができる。
According to the manufacturing method of the flat membrane filter material for a suspended water filter according to the second embodiment configured as described above, in addition to the functions of the first embodiment, the following functions are provided.
(1) When the foaming resin to be impregnated in the surface layer portion of the fiber layer by the resin impregnation step is mixed with the dissolving
(2) When the shrinkable material 16a that shrinks by heat is mixed with the foamable resin impregnated in the surface layer portion of the fiber layer by the resin impregnation process, after the foamable resin is foamed by the resin foaming process, The shrinkable material 16a can be shrunk only by heating the fiber layer, and the continuous
本発明は、各種の汚水等の懸濁水が貯留されたろ過水槽等に浸漬することにより、タンクヘッダー水圧(水頭圧)だけで懸濁水をろ過することができ、目詰まりが発生し難く、凝集剤等を使用する必要がなく環境保護性に優れ、取り扱いが容易でろ過性能に優れ、吸引によりろ過能力を向上させることができ、汎用性、実用性に優れると共に、逆洗或いはブラシやスクレーパ等による物理的な掻き取り等により表面の懸濁物質を剥離することができ、耐久性、メンテナンス性に優れ、長期間に渡って継続運転が可能でろ過性能の安定性に優れる懸濁水フィルタ用平膜ろ材の提供、及び簡単な工程で均一な多孔質空間を形成することができる高歩留まりで量産性に優れる懸濁水フィルタ用平膜ろ材の製造方法の提供を行うことができ、長期間に渡って継続運転が可能でろ過性能の安定性、装置の耐久性、メンテナンス性に優れたろ過装置を実現できる。 The present invention is capable of filtering suspended water only by tank header water pressure (water head pressure) by immersing it in a filtered water tank or the like in which suspended water such as various sewage is stored. No need to use chemicals, etc. Excellent environmental protection, easy handling, excellent filtration performance, improved filtration capacity by suction, excellent versatility and practicality, backwash or brush, scraper, etc. The suspended solids on the surface can be peeled off by physical scraping, etc., and it has excellent durability and maintainability, can be operated continuously over a long period of time, and has a stable filtration performance. Providing a membrane filter medium and a method for producing a flat membrane filter medium for a suspended water filter that is capable of forming a uniform porous space with a simple process and that is excellent in mass productivity, can be provided over a long period of time. Stability of possible filtration performance continuous operation I, durability of the apparatus, an excellent filtering device maintainability can be realized.
1 懸濁水フィルタ用平膜ろ材
2,2a,2b 多孔質層
3 中間繊維層
4 支持層
5 下部繊維層
10,10a,10b,10c,10d,10e,10f,10g,10h 繊維
11,11a,11b,11c,11d,11e 凸部
11f,11g,11h 凹部
15 多孔質性樹脂
15a 独立核空間
15b,15c 連続微空間
16 溶解剤
16a 収縮材
DESCRIPTION OF
Claims (8)
5. The method for producing a flat membrane filter material for a suspended water filter according to claim 3 or 4, wherein the porous layer is formed of a foamable resin mixed with a shrinkable material that shrinks by heat or a solvent. A resin impregnation step for impregnating a surface layer portion of the layer; a resin foaming step for foaming the foamable resin; and a shrinking step for shrinking the shrinkable material by heating or immersing the fiber layer in the solvent. A method for producing a flat membrane filter medium for a suspended water filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006014474A JP4825013B2 (en) | 2006-01-23 | 2006-01-23 | Method for producing flat membrane filter medium for suspended water filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006014474A JP4825013B2 (en) | 2006-01-23 | 2006-01-23 | Method for producing flat membrane filter medium for suspended water filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007196083A true JP2007196083A (en) | 2007-08-09 |
JP4825013B2 JP4825013B2 (en) | 2011-11-30 |
Family
ID=38451212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006014474A Active JP4825013B2 (en) | 2006-01-23 | 2006-01-23 | Method for producing flat membrane filter medium for suspended water filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4825013B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011245423A (en) * | 2010-05-27 | 2011-12-08 | Kureha Ltd | Method for production of filter element, and filter using the filter element |
JP2013031851A (en) * | 2012-11-09 | 2013-02-14 | Nitto Denko Corp | Epoxy resin porous membrane |
JP2013083192A (en) * | 2011-10-07 | 2013-05-09 | Denso Corp | Fuel filter device |
CN107138054A (en) * | 2016-03-01 | 2017-09-08 | 上海润惠环保设备有限公司 | A kind of preparation method of integrated PVDF Flat Membranes |
KR102176502B1 (en) * | 2019-12-12 | 2020-11-09 | (주)케이엠에프 | Fuel filter for fuel purification and method of removing fuel impurity |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712811A (en) * | 1980-05-30 | 1982-01-22 | Champion Int Corp | Method of removing floating solid matter from waste water current |
JPH01232972A (en) * | 1988-03-12 | 1989-09-18 | Toyobo Co Ltd | Blood filter |
JPH0768794A (en) * | 1993-07-09 | 1995-03-14 | Canon Inc | Resin-made filter for ink jetting, production of the filter, ink jet head, and production of the head |
JPH07251016A (en) * | 1994-03-14 | 1995-10-03 | Ishigaki Mech Ind Co | Filter membrane with asymmetric structure and filter apparatus wherein the filter membrane is used |
JPH09841A (en) * | 1995-06-13 | 1997-01-07 | Mitsubishi Paper Mills Ltd | Filter material and filter for filtering liquid |
JPH0929021A (en) * | 1995-07-21 | 1997-02-04 | Chisso Corp | Filter |
JP2001252507A (en) * | 2000-03-13 | 2001-09-18 | Ebara Corp | Filter member and apparatus and method for solid-liquid separation using the same |
JP2001353640A (en) * | 2000-06-16 | 2001-12-25 | Koike Engineering & Service Kk | Filtering device having back washing function |
JP2002537082A (en) * | 1999-02-24 | 2002-11-05 | ユニヴァシティート トウェンテ | Membrane and its use |
JP2005066403A (en) * | 2003-08-28 | 2005-03-17 | Teru Kagaku Kogyo Kk | Production method of filtration film for water treatment |
-
2006
- 2006-01-23 JP JP2006014474A patent/JP4825013B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712811A (en) * | 1980-05-30 | 1982-01-22 | Champion Int Corp | Method of removing floating solid matter from waste water current |
JPH01232972A (en) * | 1988-03-12 | 1989-09-18 | Toyobo Co Ltd | Blood filter |
JPH0768794A (en) * | 1993-07-09 | 1995-03-14 | Canon Inc | Resin-made filter for ink jetting, production of the filter, ink jet head, and production of the head |
JPH07251016A (en) * | 1994-03-14 | 1995-10-03 | Ishigaki Mech Ind Co | Filter membrane with asymmetric structure and filter apparatus wherein the filter membrane is used |
JPH09841A (en) * | 1995-06-13 | 1997-01-07 | Mitsubishi Paper Mills Ltd | Filter material and filter for filtering liquid |
JPH0929021A (en) * | 1995-07-21 | 1997-02-04 | Chisso Corp | Filter |
JP2002537082A (en) * | 1999-02-24 | 2002-11-05 | ユニヴァシティート トウェンテ | Membrane and its use |
JP2001252507A (en) * | 2000-03-13 | 2001-09-18 | Ebara Corp | Filter member and apparatus and method for solid-liquid separation using the same |
JP2001353640A (en) * | 2000-06-16 | 2001-12-25 | Koike Engineering & Service Kk | Filtering device having back washing function |
JP2005066403A (en) * | 2003-08-28 | 2005-03-17 | Teru Kagaku Kogyo Kk | Production method of filtration film for water treatment |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011245423A (en) * | 2010-05-27 | 2011-12-08 | Kureha Ltd | Method for production of filter element, and filter using the filter element |
JP2013083192A (en) * | 2011-10-07 | 2013-05-09 | Denso Corp | Fuel filter device |
JP2013031851A (en) * | 2012-11-09 | 2013-02-14 | Nitto Denko Corp | Epoxy resin porous membrane |
CN107138054A (en) * | 2016-03-01 | 2017-09-08 | 上海润惠环保设备有限公司 | A kind of preparation method of integrated PVDF Flat Membranes |
KR102176502B1 (en) * | 2019-12-12 | 2020-11-09 | (주)케이엠에프 | Fuel filter for fuel purification and method of removing fuel impurity |
Also Published As
Publication number | Publication date |
---|---|
JP4825013B2 (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2721391C (en) | Filter compound material, method for the production thereof and flat filter elements made of the filter compound material | |
JP4825013B2 (en) | Method for producing flat membrane filter medium for suspended water filter | |
JPH06311A (en) | Filtering material | |
US20160121273A1 (en) | Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor | |
KR102390788B1 (en) | Filter media, method for manufacturing thereof and Filter unit comprising the same | |
JPS6255885B2 (en) | ||
JP4583671B2 (en) | Operating method and cleaning method of spiral membrane element and spiral membrane module | |
JP3360857B2 (en) | Filtration device | |
JP2009022908A (en) | Sewage purification system | |
JP2009024111A (en) | Coal dressing system | |
JP4820340B2 (en) | 浚 渫 Wastewater purification system | |
JP2009022909A (en) | Flexible container bag | |
JP2009023265A (en) | Molding machine for centrifugal molding of concrete | |
JP2009022910A (en) | Sewage filtration box | |
KR102594953B1 (en) | Filter for water purifier and method for making the filter media | |
JP2009024109A (en) | Coal dressing system | |
JP2009022907A (en) | Sewage purification system | |
JP2009023264A (en) | Concrete mixer | |
JP2009023884A (en) | Aggregate manufacturing plant system for concrete product | |
JP2009022912A (en) | System for cleaning building demolition waste water | |
JP3421846B2 (en) | Method for filtering suspension containing concrete or stone sludge | |
JPH0685083U (en) | Filtration filter | |
JP2009022906A (en) | Sewage purification system | |
JPH07251016A (en) | Filter membrane with asymmetric structure and filter apparatus wherein the filter membrane is used | |
JP3655980B2 (en) | Filter media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101217 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110816 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4825013 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140916 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |