JP2007192474A - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- JP2007192474A JP2007192474A JP2006011623A JP2006011623A JP2007192474A JP 2007192474 A JP2007192474 A JP 2007192474A JP 2006011623 A JP2006011623 A JP 2006011623A JP 2006011623 A JP2006011623 A JP 2006011623A JP 2007192474 A JP2007192474 A JP 2007192474A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- tube
- heat exchanger
- refrigerant passage
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0475—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
- F28D1/0476—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、平面視で略U字形となる熱交換領域を備え、この熱交換領域に対して冷媒を前後ターン方式で流通させるようにした熱交換器に関する。 The present invention relates to a heat exchanger that includes a heat exchange region that is substantially U-shaped in a plan view, and that allows a refrigerant to flow through the heat exchange region in a front-rear turn manner.
従来より熱交換器を高性能化するための手法として、冷媒を対向流とする方法が知られている。自動車用の空調装置やエンジン冷却などに用いられるコンデンサ、ラジエータにおいては、冷却風の流入方向に対してコア部を前後に配置し、冷媒を一方のコアから他方のコア部にターンさせることで対向流とする、前後ターン方式などが知られている。このような前後ターン方式の熱交換器に関する従来例として、各チューブの中間部にねじり折曲部を設け、この部分でU字状に折曲形成することにより、連通する1本のチューブで冷媒を前後ターンさせるようにしたものが知られている(特許文献1参照)。
しかしながら、上記特開平8−145580号公報のように、連通するチューブをU字状に折り曲げることで冷媒を前後ターンさせる方式の熱交換器では、チューブの曲折部近傍における冷媒温度が熱交換器の厚さ方向の中央部で低くくなり、冷却風との温度差が小さくなるため、熱交換効率が低下するという問題点があった。 However, as in the above Japanese Patent Laid-Open No. 8-145580, in a heat exchanger of a type in which the refrigerant is turned back and forth by bending the communicating tube into a U shape, the refrigerant temperature in the vicinity of the bent portion of the tube has a temperature of the heat exchanger. There is a problem that the heat exchange efficiency is lowered because the temperature becomes lower at the center in the thickness direction and the temperature difference from the cooling air becomes smaller.
この発明の目的は、前後ターン方式の熱交換器において、チューブの曲折部近傍における熱交換効率を向上させることにある。 An object of the present invention is to improve heat exchange efficiency in the vicinity of a bent portion of a tube in a front-rear turn type heat exchanger.
上記課題を解決するため、本発明に係わる熱交換器は、複数の冷媒通路を持つチューブと冷却フィンとを交互に積層し、中間部分に形成した曲折部により平面視で略U字形となるように形成されたコア本体と、このコア本体の両端にそれぞれ連通接続する一対のヘッダタンクとを備え、平面視で前記コア本体の冷媒通路と直交して流れる冷却風と前記冷媒通路を流れる冷媒との間で熱交換させる熱交換器であって、前記冷媒通路を流れる冷媒のチューブ幅方向での並び順を、冷却風の風上側となる冷媒通路と、風下側となる冷媒通路とで同じ並び順となるようにしたことを特徴とする。 In order to solve the above-described problems, a heat exchanger according to the present invention is configured such that a tube having a plurality of refrigerant passages and cooling fins are alternately stacked, and a bent portion formed in an intermediate portion is substantially U-shaped in plan view. And a pair of header tanks connected to both ends of the core body respectively, and cooling air flowing perpendicularly to the refrigerant passage of the core body in plan view, and refrigerant flowing through the refrigerant passage A heat exchanger for exchanging heat between the refrigerant passages in the tube width direction of the refrigerant flowing through the refrigerant passages, the same order for the refrigerant passages on the upstream side of the cooling air and the refrigerant passages on the leeward side It is characterized by being in order.
上記構成によれば、コア本体の空気下流側となる冷媒通路を通過する冷媒の冷媒温度を高くすることができるので、冷却風との温度差が大きくなり、熱交換効率を向上させることができる。 According to the above configuration, since the refrigerant temperature of the refrigerant passing through the refrigerant passage on the air downstream side of the core body can be increased, the temperature difference with the cooling air is increased, and the heat exchange efficiency can be improved. .
以下、本発明に係わる熱交換器の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of a heat exchanger according to the present invention will be described with reference to the drawings.
図1は本実施形態に係わる熱交換器の概略構成図である。本実施形態に係わる熱交換器1は、図1に示すように、平面視で略U字形となるように形成されたコア本体2と、このコア本体2の両端にそれぞれ連通接続された入口ヘッダタンク3、および出口ヘッダタンク4とを備えている。 FIG. 1 is a schematic configuration diagram of a heat exchanger according to the present embodiment. As shown in FIG. 1, the heat exchanger 1 according to the present embodiment includes a core body 2 formed so as to be substantially U-shaped in plan view, and inlet headers connected to both ends of the core body 2. A tank 3 and an outlet header tank 4 are provided.
コア本体2は、内部に複数の冷媒通路が形成されたチューブ10と冷却フィン11とを交互に積層した第1コア部5および第2コア部6と、これらの中間部分に形成した曲折部7とから構成されている。 The core body 2 includes a first core portion 5 and a second core portion 6 in which tubes 10 each having a plurality of refrigerant passages and cooling fins 11 are alternately stacked, and a bent portion 7 formed at an intermediate portion thereof. It consists of and.
コア本体2のチューブ10は、図2に示すように、多穴管構造の扁平チューブからなり、その中間部分に曲折部7を形成し、両側を直線部8、9としたものである。このうち曲折部7は、チューブ端が同一平面上に位置し、且つ直線部8、9が並行配置されるように折り曲げられ、チューブ10は平面視で略U字形状となっている。また、曲折部7は直線部8、9の内部に形成された複数の冷媒通路12を流れる冷媒Rのチューブ幅方向での並び順が、冷却風Wの風上側となる直線部9の冷媒通路12と、風下側となる直線部8の冷媒通路12とで同じ並び順となるように全体がねじられている。なお、チューブ10としては、例えばアルミなどの曲げ加工が容易な金属部材を用いることができる。 As shown in FIG. 2, the tube 10 of the core body 2 is a flat tube having a multi-hole tube structure, in which a bent portion 7 is formed at an intermediate portion thereof and straight portions 8 and 9 are formed on both sides. Of these, the bent portion 7 is bent so that the tube ends are located on the same plane and the straight portions 8 and 9 are arranged in parallel, and the tube 10 is substantially U-shaped in plan view. The bent portion 7 is a refrigerant passage of the straight portion 9 in which the arrangement order in the tube width direction of the refrigerant R flowing through the plurality of refrigerant passages 12 formed inside the straight portions 8 and 9 is the upwind side of the cooling air W. 12 and the refrigerant passage 12 of the straight portion 8 on the leeward side are twisted as a whole in the same order. As the tube 10, for example, a metal member such as aluminum that can be easily bent can be used.
上記のように構成されたチューブ10の直線部8、9に冷却フィン11を挿入して高さ方向に積層することにより、熱交換領域となる第1コア部5および第2コア部6を備えたコア本体2を作製することができる。本実施形態では、冷却風Wの風上側を第2コア部6、風下側を第1コア部5としている。 By inserting the cooling fins 11 into the straight portions 8 and 9 of the tube 10 configured as described above and laminating them in the height direction, the first core portion 5 and the second core portion 6 serving as a heat exchange region are provided. The core body 2 can be manufactured. In this embodiment, the windward side of the cooling air W is the second core part 6, and the leeward side is the first core part 5.
また図1に示すように、入口ヘッダタンク3は、冷媒の入口パイプ13と接続され、この入口パイプ13から流入した冷媒Rを、連通する第1コア部5の各チューブ10に分配している。出口ヘッダタンク4は出口パイプ14と接続され、連通する第2コア部6の各チューブ10を通過した冷媒Rを出口パイプ14から外部に吐出している。すなわち、冷媒Rは入口ヘッダタンク3から第1コア部5を通過し、曲折部7で折り返して第2コア部6を通過し、さらに出口ヘッダタンク4から外部に吐出される。冷媒Rは、第1コア部5および第2コア部6を通過する間に、冷却風Wとの間で熱交換して温度が下げられる。 As shown in FIG. 1, the inlet header tank 3 is connected to a refrigerant inlet pipe 13, and distributes the refrigerant R flowing in from the inlet pipe 13 to each tube 10 of the first core portion 5 that communicates therewith. . The outlet header tank 4 is connected to the outlet pipe 14, and discharges the refrigerant R that has passed through the tubes 10 of the second core portion 6 that is in communication from the outlet pipe 14 to the outside. That is, the refrigerant R passes through the first core portion 5 from the inlet header tank 3, turns back at the bent portion 7, passes through the second core portion 6, and is further discharged from the outlet header tank 4 to the outside. While the refrigerant R passes through the first core portion 5 and the second core portion 6, the temperature of the refrigerant R is lowered by exchanging heat with the cooling air W.
次に、本実施形態の構成による作用を従来例の構成と比較しながら図3とともに説明する。図3(a)は、チューブ10の曲折部7近傍における冷媒温度と空気温度との関係を示す説明図である。また、図3(b)は従来例のチューブにおける冷媒温度と空気温度との関係を示す説明図であり、前述した特開平8−145580号公報のねじり折曲部に相当する部分を示している(一部形状を省略する)。 Next, the operation of the configuration of the present embodiment will be described with reference to FIG. FIG. 3A is an explanatory diagram showing the relationship between the refrigerant temperature and the air temperature in the vicinity of the bent portion 7 of the tube 10. FIG. 3B is an explanatory view showing the relationship between the refrigerant temperature and the air temperature in the conventional tube, and shows a portion corresponding to the twisted bent portion of the above-mentioned Japanese Patent Application Laid-Open No. 8-145580. (Some shapes are omitted).
図3(b)に示すように、従来例では冷媒Rのチューブ幅方向での並び順が、冷却風Wの風上側となる冷媒通路と風下側となる冷媒通路とで異なり、風上側の冷媒通路e〜aの並び順は風下側ではa〜eの並び順となっている。一方、図3(a)に示すように、本実施形態では冷媒Rのチューブ幅方向での並び順が、冷却風Wの風上側となる冷媒通路と風下側となる冷媒通路とで同じとなり、風上側の冷媒通路a〜eの並び順は風下側でもa〜eの並び順となっている。 As shown in FIG. 3B, in the conventional example, the arrangement order of the refrigerant R in the tube width direction is different between the refrigerant passage on the windward side of the cooling air W and the refrigerant passage on the leeward side. The arrangement order of the passages e to a is the arrangement order of a to e on the leeward side. On the other hand, as shown in FIG. 3A, in this embodiment, the arrangement order of the refrigerant R in the tube width direction is the same for the refrigerant passage on the upstream side of the cooling air W and the refrigerant passage on the leeward side, The arrangement order of the refrigerant passages a to e on the leeward side is also the order of a to e on the leeward side.
図3(a)、(b)のいずれの構成においても、前後に配置されたチューブに冷却風Wが流れることにより、冷却風Wは冷媒との間で熱交換して空気温度は風上から風下に向かって徐々に上昇する。従来例では、図3(b)に示すように、熱交換器の厚さ方向の中央部、すなわち内側の冷媒通路aを通過する冷媒の冷媒温度が低くなり、とくにコア部の空気下流側となる冷媒通路aを通過する冷媒は冷却風Wとの温度差が小さくなるため、熱交換効率が低下する(冷媒通路b〜dの冷媒についても同じ)。これに対して本実施形態の構成では、図3(a)に示すように、風上側の内側となる冷媒通路eを通過する冷媒の冷媒温度を高くすることができるため、冷却風Wとの温度差が大きくなり、熱交換効率を向上させることができる(冷媒通路b〜dについても同じ)。 3A and 3B, when the cooling air W flows through the tubes arranged at the front and rear, the cooling air W exchanges heat with the refrigerant, so that the air temperature is increased from the windward side. It gradually rises toward the leeward. In the conventional example, as shown in FIG. 3 (b), the refrigerant temperature of the refrigerant passing through the central portion in the thickness direction of the heat exchanger, that is, the inner refrigerant passage a is lowered, Since the refrigerant passing through the refrigerant passage a has a small temperature difference from the cooling air W, the heat exchange efficiency is lowered (the same applies to the refrigerants in the refrigerant passages b to d). On the other hand, in the configuration of the present embodiment, as shown in FIG. 3A, the refrigerant temperature of the refrigerant passing through the refrigerant passage e on the inner side of the windward side can be increased. A temperature difference becomes large and heat exchange efficiency can be improved (the same applies to the refrigerant passages b to d).
次に、チューブの他の構成例を図4に基づいて説明する。図4(a)はチューブの他の構成例を示す斜視図、図4(b)は(a)の矢視Iから見たときの側面図、図5はコア部
として構成した場合の断面図を示している。いずれの図も図1、図2と同等部分を同一符号で示している。
Next, another configuration example of the tube will be described with reference to FIG. 4A is a perspective view showing another configuration example of the tube, FIG. 4B is a side view when viewed from the arrow I of FIG. 4A, and FIG. 5 is a cross-sectional view when the core portion is configured. Is shown. In each figure, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.
図2に示すチューブ10では、両方のチューブ端が同一平面上に位置しているが、本例のチューブ10Aでは、図4(a)、(b)に示すように、チューブ端が1段上下方向にずれた位置に設定されている。このようなチューブ構成とした場合は、図2の例に比べて曲折部7の折り曲げ角度が緩くなるため、冷媒の流れもスムーズになり、また折り曲げ加工も容易になる。また、本例のチューブ10Aを積層してコア部を構成すると、図5に示すように、最上部と最下部では直線部(8または9)が並行して配置されなくなり、この部分では冷却フィン11を保持することが難しくなる。しかしながら、ダミーチューブ(図中、二点鎖線で示す)を上下に配置することにより、最上部と最下部でもチューブ幅方向で冷却フィン11を確実に保持する構造とすることができる。 In the tube 10 shown in FIG. 2, both tube ends are located on the same plane. However, in the tube 10A of this example, the tube ends are moved up and down by one stage as shown in FIGS. 4 (a) and 4 (b). It is set at a position shifted in the direction. In the case of such a tube configuration, the bending angle of the bent portion 7 becomes gentler than in the example of FIG. 2, so that the flow of the refrigerant becomes smooth and the bending process becomes easy. Further, when the tube portion 10A of this example is laminated to constitute the core portion, as shown in FIG. 5, the straight portion (8 or 9) is not arranged in parallel at the uppermost portion and the lowermost portion. 11 becomes difficult to hold. However, by arranging the dummy tubes (indicated by a two-dot chain line in the figure) above and below, the cooling fins 11 can be reliably held in the tube width direction even at the uppermost part and the lowermost part.
1…熱交換器
2…コア本体
3…入口ヘッダタンク
4…出口ヘッダタンク
5…第1コア部
6…第2コア部
7…曲折部
8…直線部(風下側)
9…直線部(風上側)
10、10A…チューブ
11…冷却フィン
12…冷媒通路
13…入口パイプ
14…出口パイプ
DESCRIPTION OF SYMBOLS 1 ... Heat exchanger 2 ... Core main body 3 ... Inlet header tank 4 ... Outlet header tank 5 ... 1st core part 6 ... 2nd core part 7 ... Bending part 8 ... Straight part (leeward side)
9 ... Straight section (windward side)
DESCRIPTION OF SYMBOLS 10, 10A ... Tube 11 ... Cooling fin 12 ... Refrigerant passage 13 ... Inlet pipe 14 ... Outlet pipe
Claims (1)
前記冷媒通路(12)を流れる冷媒のチューブ幅方向での並び順を、冷却風の風上側となる冷媒通路(12)と、風下側となる冷媒通路(12)とで同じ並び順となるようにしたことを特徴とする熱交換器。
Tubes (10) having a plurality of refrigerant passages (12) and cooling fins (11) are alternately stacked, and formed into a substantially U shape in plan view by a bent portion (7) formed in an intermediate portion. A core main body (2) and a pair of header tanks (3, 4) communicating with both ends of the core main body are provided, and flows perpendicularly to the refrigerant passage (12) of the core main body (2) in plan view. A heat exchanger for exchanging heat between the cooling air and the refrigerant flowing through the refrigerant passage (12),
The arrangement order of the refrigerant flowing through the refrigerant passage (12) in the tube width direction is the same as the arrangement of the refrigerant passage (12) on the upstream side of the cooling air and the refrigerant passage (12) on the leeward side. A heat exchanger characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006011623A JP2007192474A (en) | 2006-01-19 | 2006-01-19 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006011623A JP2007192474A (en) | 2006-01-19 | 2006-01-19 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007192474A true JP2007192474A (en) | 2007-08-02 |
Family
ID=38448319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006011623A Pending JP2007192474A (en) | 2006-01-19 | 2006-01-19 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007192474A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216315A (en) * | 2008-03-11 | 2009-09-24 | Showa Denko Kk | Heat exchanger |
WO2015037234A1 (en) * | 2013-09-11 | 2015-03-19 | ダイキン工業株式会社 | Heat exchanger manufacturing method and heat exchanger |
WO2015037235A1 (en) * | 2013-09-11 | 2015-03-19 | ダイキン工業株式会社 | Heat exchanger, air conditioner, and heat exchanger manufacturing method |
WO2016036726A1 (en) * | 2014-09-05 | 2016-03-10 | Carrier Corporation | Multiport extruded heat exchanger |
JP2017096550A (en) * | 2015-11-24 | 2017-06-01 | 株式会社富士通ゼネラル | Heat exchanger |
WO2017109933A1 (en) * | 2015-12-25 | 2017-06-29 | 三菱電機株式会社 | Heat exchanger, air conditioner equipped with same, and manufacturing method for flattened u-bend pipes |
JP2017534826A (en) * | 2014-09-15 | 2017-11-24 | アアヴィッド・サーマロイ・エルエルシー | Thermosiphon with a bent tube |
JP2017537795A (en) * | 2014-11-25 | 2017-12-21 | サパ・アーエスSapa As | Multi-hole extrusion tube design |
JP2018105573A (en) * | 2016-12-28 | 2018-07-05 | 昭和電工株式会社 | Heat transfer device |
CN110986631A (en) * | 2019-12-05 | 2020-04-10 | 博格思众(常州)热交换器有限公司 | Micro-channel parallel flow heat exchanger |
WO2020169710A1 (en) * | 2019-02-21 | 2020-08-27 | BSH Hausgeräte GmbH | Evaporator for a refrigeration device and refrigeration device |
-
2006
- 2006-01-19 JP JP2006011623A patent/JP2007192474A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216315A (en) * | 2008-03-11 | 2009-09-24 | Showa Denko Kk | Heat exchanger |
WO2015037234A1 (en) * | 2013-09-11 | 2015-03-19 | ダイキン工業株式会社 | Heat exchanger manufacturing method and heat exchanger |
WO2015037235A1 (en) * | 2013-09-11 | 2015-03-19 | ダイキン工業株式会社 | Heat exchanger, air conditioner, and heat exchanger manufacturing method |
JP2015055401A (en) * | 2013-09-11 | 2015-03-23 | ダイキン工業株式会社 | Method of manufacturing heat exchanger, and heat exchanger |
JP2015078829A (en) * | 2013-09-11 | 2015-04-23 | ダイキン工業株式会社 | Heat exchanger, air conditioner, and manufacturing method of heat exchanger |
US10514204B2 (en) | 2014-09-05 | 2019-12-24 | Carrier Corporation | Multiport extruded heat exchanger |
WO2016036726A1 (en) * | 2014-09-05 | 2016-03-10 | Carrier Corporation | Multiport extruded heat exchanger |
US10655920B2 (en) | 2014-09-15 | 2020-05-19 | Aavid Thermalloy, Llc | Thermosiphon with bent tube section |
JP2017534826A (en) * | 2014-09-15 | 2017-11-24 | アアヴィッド・サーマロイ・エルエルシー | Thermosiphon with a bent tube |
JP2017537795A (en) * | 2014-11-25 | 2017-12-21 | サパ・アーエスSapa As | Multi-hole extrusion tube design |
JP2017096550A (en) * | 2015-11-24 | 2017-06-01 | 株式会社富士通ゼネラル | Heat exchanger |
JPWO2017109933A1 (en) * | 2015-12-25 | 2018-03-08 | 三菱電機株式会社 | HEAT EXCHANGER, AIR CONDITIONER HAVING THE SAME, AND METHOD FOR MANUFACTURING FLAT TUBE BEND |
GB2561098A (en) * | 2015-12-25 | 2018-10-03 | Mitsubishi Electric Corp | Heat exchanger, air conditioner equipped with same, and manufacturing method for flattened u-bend pipes |
WO2017109933A1 (en) * | 2015-12-25 | 2017-06-29 | 三菱電機株式会社 | Heat exchanger, air conditioner equipped with same, and manufacturing method for flattened u-bend pipes |
US10677531B2 (en) | 2015-12-25 | 2020-06-09 | Mitsubishi Electric Corporation | Heat exchanger, air-conditioning apparatus including the same, and method of producing flat-tube U-bend |
GB2561098B (en) * | 2015-12-25 | 2021-08-04 | Mitsubishi Electric Corp | Heat exchanger, air-conditioning apparatus including the same, and method of producing flat-tube u-bend |
JP2018105573A (en) * | 2016-12-28 | 2018-07-05 | 昭和電工株式会社 | Heat transfer device |
WO2020169710A1 (en) * | 2019-02-21 | 2020-08-27 | BSH Hausgeräte GmbH | Evaporator for a refrigeration device and refrigeration device |
CN113454409A (en) * | 2019-02-21 | 2021-09-28 | Bsh家用电器有限公司 | Evaporator for a refrigeration device and refrigeration device |
CN110986631A (en) * | 2019-12-05 | 2020-04-10 | 博格思众(常州)热交换器有限公司 | Micro-channel parallel flow heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007192474A (en) | Heat exchanger | |
JP4674602B2 (en) | Heat exchanger | |
JP5803768B2 (en) | Heat exchanger fins and heat exchangers | |
JP5585543B2 (en) | Vehicle cooling system | |
US20080121385A1 (en) | Heat dissipation fin for heat exchangers | |
JP6011481B2 (en) | Heat exchanger fins | |
JP2007298197A (en) | Heat exchanger | |
JP2005326135A (en) | Heat exchanger | |
JP2004225961A (en) | Multi-flow type heat exchanger | |
CN104937362B (en) | Heat exchanger | |
JP2015017776A5 (en) | ||
JP2007170718A (en) | Heat exchanger | |
JP6661880B2 (en) | Air conditioner | |
JP2007255812A (en) | Finned heat exchanger, and air conditioner | |
JP2008082672A (en) | Heat exchanger | |
JP5187047B2 (en) | Tube for heat exchanger | |
JP2014156988A (en) | Heat exchanger | |
JP2007187381A (en) | Heat exchanger | |
JP2005055013A (en) | Heat exchanger | |
JP2005061648A (en) | Heat exchanger | |
JP5947158B2 (en) | Outdoor heat exchanger for heat pump | |
JP2007192431A (en) | Heat exchanger | |
JP4629451B2 (en) | Cross flow type radiator | |
JP2006207944A (en) | Heat exchanger | |
JP4764738B2 (en) | Heat exchanger |