Nothing Special   »   [go: up one dir, main page]

JP2007179827A - Method of manufacturing metal base material for oxide superconductive conductoor and method of manufacturing oxide superconductive conductor - Google Patents

Method of manufacturing metal base material for oxide superconductive conductoor and method of manufacturing oxide superconductive conductor Download PDF

Info

Publication number
JP2007179827A
JP2007179827A JP2005375834A JP2005375834A JP2007179827A JP 2007179827 A JP2007179827 A JP 2007179827A JP 2005375834 A JP2005375834 A JP 2005375834A JP 2005375834 A JP2005375834 A JP 2005375834A JP 2007179827 A JP2007179827 A JP 2007179827A
Authority
JP
Japan
Prior art keywords
thin film
oxide superconducting
base material
oxide
superconducting conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005375834A
Other languages
Japanese (ja)
Other versions
JP4739015B2 (en
Inventor
Naotaka Kaneko
直貴 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005375834A priority Critical patent/JP4739015B2/en
Publication of JP2007179827A publication Critical patent/JP2007179827A/en
Application granted granted Critical
Publication of JP4739015B2 publication Critical patent/JP4739015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an oxide superconductive conductor using a manufacturing method of a metal base material for an oxide superconductive conductor and the metal base material which is capable of producing an oxide superconductive conductor being made of a Ni-base alloy containing Mo and excellent in surface smoothness, and further having excellent superconductive properties in a case that an oxide superconductive thin film is formed on a polycrystal oriented intermediate thin film. <P>SOLUTION: The method includes the steps of operating annealing procedures at least one-time and also rolling procedures at least one-time at a higher temperature than 1,100°C on a mother material which is made of a Ni-base alloy containing Mo, and after the final rolling, making it electropolish. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超電導電力ケーブル、超電導マグネット、超電導エネルギー貯蔵装置、超電導発電装置、医療用MRI装置、超電導電流リードなどの分野への応用開発が進められている酸化物超電導導体の基材として用いられる酸化物超電導導体用金属基材の製造方法、該金属基材上に多結晶配向中間薄膜を介して酸化物超電導薄膜を成膜してなる酸化物超電導導体の製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention is used as a base material for oxide superconducting conductors that are being developed and applied in fields such as superconducting power cables, superconducting magnets, superconducting energy storage devices, superconducting power generation devices, medical MRI devices, and superconducting current leads. The present invention relates to a method for producing a metal substrate for an oxide superconducting conductor, and a method for producing an oxide superconducting conductor obtained by forming an oxide superconducting thin film on a metal substrate via a polycrystalline oriented intermediate thin film.

実用的な超電導導体として酸化物超電導体を使用するためには、基材上に、結晶配向性の良好な酸化物超電導体の薄膜を成膜する必要がある。一般には、金属基材そのものが多結晶であり、その結晶構造も酸化物超電導体と大きく異なるために、金属基材上に結晶配向性の良好な酸化物超電導体の薄膜を直接成膜することは難しい。そこで、表面を平滑にしたテープ形状をなすハステロイなどの金属基材上に、結晶配向性に優れたGdZrなどの多結晶配向中間薄膜を成膜し、この多結晶配向中間薄膜上にYBaCu系の酸化物超電導体の薄膜を成膜する試みが行われている。このYBaCu系の酸化物超電導体の薄膜成膜には、テープ基材上に均質に薄膜を成膜することができるパルスレーザ蒸着法(PLD)等が用いられている。多結晶配向中間薄膜は、その結晶粒が予めc軸配向し、a軸とb軸においても配向するようにイオンビームアシスト法(Ion Beam assisted Deposition;以下、IBAD法と記す。)により成膜されており、YBaCu系の酸化物超電導体の薄膜における各結晶軸、c軸とa軸とb軸も多結晶配向中間薄膜の結晶に整合するようにエピタキシャル成長して結晶化し、これにより結晶配向性の良好なYBaCu系の酸化物超電導体の薄膜が得られる。 In order to use an oxide superconductor as a practical superconductor, it is necessary to form a thin film of an oxide superconductor with good crystal orientation on a substrate. In general, the metal substrate itself is polycrystalline, and its crystal structure is also very different from that of the oxide superconductor. Therefore, a thin film of an oxide superconductor with good crystal orientation is directly formed on the metal substrate. Is difficult. Therefore, a polycrystalline orientation intermediate thin film such as Gd 2 Zr 2 O 7 having excellent crystal orientation is formed on a metal substrate such as Hastelloy having a tape shape with a smooth surface, and this polycrystalline orientation intermediate thin film Attempts have been made to form a thin film of a Y 1 Ba 2 Cu 3 O x- based oxide superconductor. For the thin film formation of the Y 1 Ba 2 Cu 3 O x- based oxide superconductor, a pulse laser deposition method (PLD) or the like capable of forming a thin film uniformly on a tape substrate is used. . The polycrystalline oriented intermediate thin film is formed by an ion beam assisted deposition (hereinafter referred to as IBAD method) so that the crystal grains are c-axis oriented in advance and are also oriented in the a-axis and b-axis. In the Y 1 Ba 2 Cu 3 O x- based oxide superconductor thin film, each crystal axis, c-axis, a-axis, and b-axis are epitaxially grown and crystallized so as to match the crystal of the polycrystalline oriented intermediate thin film. As a result, a Y 1 Ba 2 Cu 3 O x- based oxide superconductor thin film with good crystal orientation can be obtained.

金属基材には、高強度、耐酸化性、耐熱性などが要求されるが、さらに酸化物材料に近い熱膨張係数を持っていることが望ましい。これまでに見出された金属テープ基材の有力候補の一つに、Cr,Mo,Fe等を成分として含むNi基合金がある。
ところで、超電導テープ導体用基材において重要な要素の一つに、テープ表面の平滑性がある。酸化物超電導薄膜の超電導特性は、結晶の配向度に大きく依存しており、基材表面に凹凸が存在すると、それに応じて結晶の配向が乱れてしまい、特性が大きく低下することが知られている。そのためテープ基材表面の平滑性を良好にするための試みが考えられている。この試みの一つとして、ロール圧延を行う方法が考えられている(例えば、特許文献1参照。)。
この方法では、硬度が高くなるため、圧延工程前に焼鈍しを行っている。この時の焼鈍し温度は1000〜1050℃であり、これは1000℃以下では十分に軟化せず、1050℃以上では金属結晶の再結晶化により母材表面の平滑度が著しく低下するためである。この方法を用いると最終圧延後の金属テープ基材表面の平滑度を、Rmax=0.2μm以下にすることができる。また、最終圧延工程より前に28μm以下の粒度を持つ研磨剤で研磨を行うことにより、Rmax=0.1μmにまで平滑にすることができる。
特開平10−245662号公報 応用金属学大系6 128〜145頁 ステンレス鋼便覧 第3版 ステンレス協会 710〜711頁
The metal substrate is required to have high strength, oxidation resistance, heat resistance, etc., but it is desirable that the metal substrate has a thermal expansion coefficient close to that of the oxide material. One of the promising candidates for the metal tape base material found so far is a Ni-based alloy containing Cr, Mo, Fe and the like as components.
By the way, one of the important elements in the base material for a superconducting tape conductor is the smoothness of the tape surface. The superconducting properties of oxide superconducting thin films are highly dependent on the degree of crystal orientation, and it is known that if there are irregularities on the surface of the substrate, the orientation of the crystals will be disturbed accordingly and the properties will be greatly reduced. Yes. For this reason, attempts have been made to improve the smoothness of the tape substrate surface. As one of the attempts, a method of performing roll rolling is considered (for example, refer to Patent Document 1).
In this method, since the hardness is increased, annealing is performed before the rolling process. The annealing temperature at this time is 1000 to 1050 ° C. This is because the softness is not sufficiently softened below 1000 ° C., and the smoothness of the base metal surface is remarkably lowered due to recrystallization of the metal crystal above 1050 ° C. . When this method is used, the smoothness of the surface of the metal tape substrate after the final rolling can be reduced to R max = 0.2 μm or less. Further, by performing polishing with an abrasive having a particle size of 28 μm or less before the final rolling step, it is possible to smoothen to R max = 0.1 μm.
JP-A-10-245661 Applied Metallurgy 6 128-145 Stainless Steel Handbook 3rd Edition Stainless Steel Association 710-711

前記特許文献1に記載された従来技術にあっては、金属テープ基材表面の平滑度をRmax=0.1μm程度までしか平滑化できないため、最終圧延工程後の金属テープ基材に電解研磨や化学研磨を行い、さらに平滑な表面を得る必要がある。電解研磨や化学研磨で被研磨面を平滑化するためには、被研磨面が均一な固溶体となっていることが望ましい。貴である部位と卑である部位が存在すると、貴である部位と卑である部位における溶出の速度が異なり、平滑化できず、成膜用の基板として良好な表面を得ることができない。特に、Moを成分として含むNi基合金は、熱処理が難しく、熱処理によってMoに富む化合物が析出してしまうことが知られている(例えば、非特許文献1参照。)。さらに、そのMoに富む析出物近傍は、Moが欠乏してしまう。Moに富む化合物は貴であり、前記Moに富む析出物近傍のMoが欠乏した基質部は卑である。そのため電解研磨や化学研磨に適さない基材となる。
Moを含むNi基合金は、650〜1090℃の温度でMoに富む化合物が析出してしまうことが知られている(例えば、非特許文献2参照)。したがって、特許文献1で行われている1000℃〜1050℃での焼鈍しは、まさにMoに富む化合物が析出してしまうと考えられる温度である。
In the prior art described in Patent Document 1, since the smoothness of the surface of the metal tape substrate can only be smoothed to about R max = 0.1 μm, the metal tape substrate after the final rolling process is electropolished. Further, it is necessary to obtain a smoother surface by performing chemical polishing. In order to smooth the surface to be polished by electrolytic polishing or chemical polishing, it is desirable that the surface to be polished be a uniform solid solution. If there is a noble part and a base part, the elution rates at the noble part and the base part are different, and smoothing cannot be performed, and a good surface cannot be obtained as a substrate for film formation. In particular, it is known that a Ni-based alloy containing Mo as a component is difficult to be heat-treated, and a compound rich in Mo is precipitated by the heat-treatment (see, for example, Non-Patent Document 1). Further, Mo is deficient in the vicinity of the Mo-rich precipitate. The Mo-rich compound is precious, and the Mo-deficient substrate portion near the Mo is a base. Therefore, it becomes a base material that is not suitable for electrolytic polishing or chemical polishing.
It is known that a Ni-based alloy containing Mo precipitates a compound rich in Mo at a temperature of 650 to 1090 ° C. (see, for example, Non-Patent Document 2). Therefore, annealing at 1000 ° C. to 1050 ° C. performed in Patent Document 1 is a temperature at which a compound rich in Mo is expected to be precipitated.

本発明は前記事情に鑑みてなされ、Moを含むNi基合金からなり、表面の平滑度が極めて小さく、その上に多結晶配向中間薄膜上に酸化物超電導薄膜を成膜した場合に、良好な超電導特性を持つ酸化物超電導導体を製造可能な酸化物超電導導体用金属基材の製造方法及び該金属基材を用いた酸化物超電導導体の製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, is made of a Ni-based alloy containing Mo, has a very low surface smoothness, and is good when an oxide superconducting thin film is formed on a polycrystalline oriented intermediate thin film thereon. It is an object of the present invention to provide a method for producing a metal substrate for an oxide superconducting conductor capable of producing an oxide superconducting conductor having superconducting properties, and a method for producing an oxide superconducting conductor using the metal substrate.

前記目的を達成するため、本発明は、Moを含むNi基合金からなる母材に、1100℃以上の温度で少なくとも1回の焼鈍しと、少なくとも1回の圧延とを行い、最終圧延の後に電解研磨を行って酸化物超電導導体用金属基材を得ることを特徴とする酸化物超電導導体用金属基材の製造方法を提供する。   In order to achieve the above object, the present invention performs at least one annealing at a temperature of 1100 ° C. or more and rolling at least once on a base material made of a Ni-based alloy containing Mo, and after the final rolling Provided is a method for producing a metal substrate for an oxide superconducting conductor, which is obtained by performing electropolishing to obtain a metal substrate for an oxide superconducting conductor.

また本発明は、Moを含むNi基合金からなる母材に、1100℃以上の温度で少なくとも1回の焼鈍しと、少なくとも1回の圧延とを行い、最終圧延の後に電解研磨を行って酸化物超電導導体用金属基材を作製し、次いで、前記酸化物超電導導体用金属基材上にIBAD法により多結晶配向中間薄膜を成膜し、次いで、前記多結晶配向中間薄膜上に酸化物超電導薄膜を成膜し、酸化物超電導導体を得ることを特徴とする酸化物超電導導体の製造方法を提供する。   In the present invention, a base material made of a Ni-based alloy containing Mo is subjected to at least one annealing at a temperature of 1100 ° C. or more and at least one rolling, and is subjected to electrolytic polishing after final rolling to oxidize. A metal base material for a superconductor is prepared, and then a polycrystalline oriented intermediate thin film is formed on the metal base material for oxide superconducting conductor by an IBAD method, and then an oxide superconducting material is formed on the polycrystalline oriented intermediate thin film. Provided is a method for producing an oxide superconducting conductor characterized in that a thin film is formed to obtain an oxide superconducting conductor.

本発明によれば、Moを含むNi基合金の焼鈍し温度を1100℃以上とすることによって、Moに富む化合物が析出せず、その後の電解研磨処理によって酸化物超電導導体用金属基材の表面平滑度を向上させることができ、この酸化物超電導導体用金属基材上に多結晶配向中間薄膜を介して酸化物超電導薄膜を成膜することにより、臨界電流密度が高い高性能な酸化物超電導導体を提供することができる。   According to the present invention, when the annealing temperature of the Ni-based alloy containing Mo is set to 1100 ° C. or higher, the Mo-rich compound does not precipitate, and the surface of the metal substrate for the oxide superconducting conductor is subjected to subsequent electrolytic polishing treatment. Smoothness can be improved, and high-performance oxide superconductivity with high critical current density can be obtained by depositing an oxide superconducting thin film on the metal substrate for oxide superconducting conductor via a polycrystalline oriented intermediate thin film. A conductor can be provided.

図1は、本発明の酸化物超電導導体の一実施形態を示す断面図である。本実施形態の酸化物超電導導体1は、テープ形状をなしている酸化物超電導導体用金属基材2上に第1の多結晶配向中間薄膜3が設けられ、該第1の多結晶配向中間薄膜3上に第2の多結晶配向中間薄膜4が設けられ、該第2の多結晶配向中間薄膜4上に酸化物超電導薄膜5が設けられ、該酸化物超電導薄膜5上にAg保護層6が設けられた構成になっている。   FIG. 1 is a sectional view showing an embodiment of the oxide superconducting conductor of the present invention. The oxide superconducting conductor 1 of this embodiment is provided with a first polycrystalline oriented intermediate thin film 3 on a metal substrate 2 for an oxide superconducting conductor having a tape shape, and the first polycrystalline oriented intermediate thin film. 2 is provided with a second polycrystalline oriented intermediate thin film 4, an oxide superconducting thin film 5 is provided on the second polycrystalline oriented intermediate thin film 4, and an Ag protective layer 6 is provided on the oxide superconducting thin film 5. It is a provided configuration.

酸化物超電導導体用金属基材は、Moを含むNi基合金からなる母材に、1100℃以上の温度で少なくとも1回の焼鈍しと、少なくとも1回の圧延とを行い、最終圧延の後に電解研磨を行って製造される。   The metal substrate for the oxide superconducting conductor is subjected to at least one annealing and rolling at least once at a temperature of 1100 ° C. or more on a base material made of a Ni-based alloy containing Mo, and electrolysis is performed after the final rolling. Manufactured by polishing.

この酸化物超電導導体用金属基材2の材料である、Moを含むNi基合金の特に好ましい例として、ハステロイ(Haynes Stellite社商品名)を挙げることができる。このハステロイは、含有する元素の種類や量の違いにより、ハステロイA、ハステロイC、ハステロイDなどいくつかの種類に分けられている。本発明においては、これらのハステロイのうち、特にMoを含むもの、例えば、ハステロイAやハステロイCを好適に使用することができる。種々のハステロイが含有する元素とその比率は、Cが0〜0.15%、Siが1.0〜10.0%、Mnが1.0〜2.0%、Crが1.0〜23.0%、Coが0〜2.5%、Moが0〜30%、Wが0〜5.0%、Alが0〜2.0%、Feが0〜20.0%、Cuが0〜3.0%の範囲にあり、残部はNiである。ハステロイAとハステロイCについて、それぞれが含有する元素の種類および比率を表1に示す。   As a particularly preferred example of the Ni-based alloy containing Mo, which is a material of the metal substrate 2 for oxide superconducting conductor, there is Hastelloy (trade name of Haynes Stellite). This Hastelloy is divided into several types such as Hastelloy A, Hastelloy C and Hastelloy D depending on the kinds and amounts of elements contained. In the present invention, among these Hastelloys, those containing Mo in particular, for example Hastelloy A and Hastelloy C, can be suitably used. The elements contained in various hastelloys and their ratios are as follows: C is 0 to 0.15%, Si is 1.0 to 10.0%, Mn is 1.0 to 2.0%, and Cr is 1.0 to 23 0.0%, Co 0-2.5%, Mo 0-30%, W 0-5.0%, Al 0-2.0%, Fe 0-20.0%, Cu 0 It is in the range of ˜3.0%, and the balance is Ni. Table 1 shows the types and ratios of the elements contained in Hastelloy A and Hastelloy C.

Figure 2007179827
Figure 2007179827

Moを含むNi基合金の母材は、1100℃以上の温度で焼鈍しを行い、次いで圧延する。前述した通り、Moを含むNi基合金は、650〜1090℃の温度でMoに富む化合物が析出してしまうことが知られており、1090℃以下で焼鈍しを行うと、このNi基合金中にMoに富む化合物が析出し、その近傍部にはMoが欠乏した組成の領域が生じる。このMo成分が偏在した基材を電解研磨すると、化学的に貴であるMoに富む領域と、卑であるMo欠乏部分とで研磨状態に格差を生じるため、最終圧延後の基材の表面を電解研磨しても、平滑度の向上ができず、却って表面の平滑度が悪化する場合もある。   The base material of the Ni-based alloy containing Mo is annealed at a temperature of 1100 ° C. or higher and then rolled. As described above, it is known that a Ni-based alloy containing Mo precipitates a compound rich in Mo at a temperature of 650 to 1090 ° C. When annealing is performed at a temperature of 1090 ° C. or lower, A compound rich in Mo is deposited on the surface, and a region having a composition deficient in Mo is formed in the vicinity thereof. When the base material in which the Mo component is unevenly distributed is electropolished, a difference occurs in the polishing state between the chemically rich Mo-rich region and the base Mo-deficient portion. Even if electrolytic polishing is performed, the smoothness cannot be improved, and the surface smoothness may deteriorate.

一方、本発明の製造方法にあっては、焼鈍し時の温度を1100℃以上とすることで、Moに富む化合物の析出を抑えることができ、これによって最終圧延後の基材の表面を電解研磨によって極めて平滑に加工できる。   On the other hand, in the manufacturing method of the present invention, by setting the temperature during annealing to 1100 ° C. or higher, precipitation of a compound rich in Mo can be suppressed, whereby the surface of the substrate after final rolling is electrolyzed. It can be processed extremely smoothly by polishing.

焼鈍しを終えたNi基合金母材をテープ状の酸化物超電導導体用金属基材2に加工する場合に使用するロールは、鋳鉄ロールや鋼ロールなどのようないわゆる通常ロールでも差し支えないが、硬さが70〜100Hs程度、ヤング率が21500kgf/mm程度の鍛鋼ロールや、硬さが120Hs程度、ヤング率が66000kgf/mm程度のタングステンカーバイド焼結ロールなどのいわゆる超硬ロールを使用することで、酸化物超電導導体用金属基材2表面の平滑度をさらに向上させることができる。圧延工程で使用するロールをすべて超硬ロールにする必要はないが、特に最終圧延工程においては、超硬ロールを使用することが好ましい。また、最終圧延工程に使用する超硬ロールは、その表面の凹凸が0.1μm以下になるように研磨されていることが好ましい。 The roll used when processing the annealed Ni-base alloy base material into the tape-shaped metal substrate 2 for oxide superconducting conductor may be a so-called normal roll such as a cast iron roll or a steel roll. hardness is about 70~100Hs, Young's modulus and forged steel rolls about 21500kgf / mm 2 is about 120Hs hardness, Young's modulus to use so-called carbide roll such 66000kgf / mm 2 approximately tungsten carbide sintered roll Thereby, the smoothness of the surface of the metal substrate 2 for an oxide superconducting conductor can be further improved. Although it is not necessary to make all the rolls used in the rolling process a cemented carbide roll, it is preferable to use a cemented carbide roll particularly in the final rolling process. Moreover, it is preferable that the cemented carbide roll used for the last rolling process is grind | polished so that the unevenness | corrugation of the surface may be 0.1 micrometer or less.

圧延工程において好適に使用される圧延機としては、図2(a)に示すようにNi基合金母材7を挟んで圧延する上下一対の駆動ロール8,8を備えた二重圧延機10A、図2(b)に示すような二重圧延機の上方にさらに駆動ロール8を設けた三重圧延機10B、図2(c)に示すような上下一対の駆動ロール8,8の上下にさらにロール9,9を設けた四重圧延機10Cなどを例示することができる。ここでの圧延条件は、温度が室温〜300℃、圧下率が5〜20%、圧延速度が1〜10m/分程度である。   As a rolling mill suitably used in the rolling process, as shown in FIG. 2 (a), a double rolling mill 10A provided with a pair of upper and lower drive rolls 8 and 8 for rolling with a Ni-based alloy base material 7 interposed therebetween, A triple rolling mill 10B further provided with a driving roll 8 above the double rolling mill as shown in FIG. 2 (b), and a roll further above and below the pair of upper and lower driving rolls 8 and 8 as shown in FIG. 2 (c). A quadruple rolling mill 10C provided with 9, 9 can be exemplified. The rolling conditions here are a temperature of room temperature to 300 ° C., a rolling reduction of 5 to 20%, and a rolling speed of about 1 to 10 m / min.

圧延工程の前に行われる焼鈍し工程においては、所望の焼鈍し温度を得ることのできる加熱装置を用いて基材の焼鈍しを行えばよい。加熱装置の例としては、バッチ式電気炉、連続焼成炉などを挙げることができる。特に基材がテープ状になっている場合は、例えば図3に示すように供給ボビン11から巻き取りボビン12の間の任意の位置に加熱装置13を設け、テープ状の酸化物超電導導体用金属基材を巻き取りボビン12がゆっくりと巻き取る間に、加熱装置13が酸化物超電導導体用金属基材を加熱することで焼鈍しを行うことができる。この時、巻き取りボビン12の回転数を変化させることで、焼鈍し時間を調整することができる。   In the annealing step performed before the rolling step, the substrate may be annealed using a heating device that can obtain a desired annealing temperature. Examples of the heating device include a batch electric furnace and a continuous firing furnace. In particular, when the substrate is in the form of a tape, for example, as shown in FIG. 3, a heating device 13 is provided at an arbitrary position between the supply bobbin 11 and the take-up bobbin 12, and the tape-shaped metal for an oxide superconducting conductor is provided. While the substrate is wound up and the bobbin 12 is slowly wound up, the heating device 13 can perform the annealing by heating the metal substrate for the oxide superconducting conductor. At this time, the annealing time can be adjusted by changing the rotation speed of the winding bobbin 12.

酸化物超電導導体用金属基材2の製造時、焼鈍しと圧延との回数は遠くに限定されず、最終圧延工程によって所望の厚さの酸化物超電導導体用金属基材2を得るために必要な回数を繰り返し行うことができる。また、最終圧延工程の前に、酸化物超電導導体用金属基材2の表面を研磨材により研磨し、表面の平滑度を向上させることもできる。   During the production of the metal substrate 2 for oxide superconductor, the number of annealing and rolling is not limited to far away, and is necessary for obtaining the metal substrate 2 for oxide superconductor having a desired thickness by the final rolling process. Can be repeated a number of times. Moreover, before the final rolling step, the surface of the metal substrate 2 for oxide superconducting conductor can be polished with an abrasive to improve the smoothness of the surface.

この研磨工程で用いる研磨材の粒度は、28μm(#600)以下であることが好ましく、10〜28μm(#1600〜#600)の範囲にあることがさらに好ましい。粒度10μm(#1600)未満の研磨材を用いても、表面平滑度の顕著な向上は認められない。粒度が28μm(#600)を越える研磨材は、表面の平滑度を逆に悪化させてしまう傾向にあるので好ましくない。   The particle size of the abrasive used in this polishing step is preferably 28 μm (# 600) or less, and more preferably in the range of 10 to 28 μm (# 1600 to # 600). Even when an abrasive having a particle size of less than 10 μm (# 1600) is used, no significant improvement in surface smoothness is observed. An abrasive having a particle size exceeding 28 μm (# 600) is not preferable because it tends to deteriorate the smoothness of the surface.

最終圧延工程の後、酸化物超電導導体用金属基材2の表面をさらに平滑化するために電解研磨を施す。この電解研磨の方法としては、従来より、金属の表面処理等で行われている電解研磨法と同等の手法や条件を用いて、或いは酸化物超電導導体用金属基材2の材質に応じて、研磨液組成やpH、印加電圧等を適宜変更して実施することができる。一例として、ハステロイを用いた酸化物超電導導体用金属基材2を電解研磨するのに好適な条件を例示すれば、リン酸と硫酸を主成分とする混合液を電解液として用い、参照電極を銀−塩化銀として、1.2V以上の電位を印加することによって、最終圧延工程後の基材表面を電解研磨する方法が挙げられる。   After the final rolling step, electrolytic polishing is performed to further smooth the surface of the metal substrate 2 for oxide superconducting conductor. As a method of this electropolishing, conventionally, using the same method and conditions as the electropolishing method performed by metal surface treatment or the like, or according to the material of the metal substrate 2 for an oxide superconductor, The polishing liquid composition, pH, applied voltage and the like can be changed as appropriate. As an example, if conditions suitable for electropolishing the metal substrate 2 for oxide superconducting conductors using Hastelloy are exemplified, a mixed solution mainly composed of phosphoric acid and sulfuric acid is used as an electrolytic solution, and a reference electrode is used. As the silver-silver chloride, there is a method of electrolytic polishing the substrate surface after the final rolling step by applying a potential of 1.2 V or more.

本実施形態において、電解研磨工程後に得られる酸化物超電導導体用金属基材2の表面平滑度Rmaxは、0.05μm以下、好ましくは0.03μm以下、より好ましくは0.02μm以下であることが望ましい。酸化物超電導導体用金属基材2の表面平滑度Rmaxが0.05μm以上であると、得られる酸化物超電導導体1の臨界電流密度向上効果が十分に得られなくなる。 In the present embodiment, the surface smoothness R max of oxide superconductor metal substrate 2 obtained after electrolytic polishing process, 0.05 .mu.m or less, preferably 0.03μm or less, and more preferably not more than 0.02μm Is desirable. When the surface smoothness R max of the metal substrate 2 for oxide superconductor is 0.05 μm or more, the effect of improving the critical current density of the obtained oxide superconductor 1 cannot be sufficiently obtained.

本実施形態において、この酸化物超電導導体用金属基材2上には、結晶配向性に優れた第1の多結晶配向中間薄膜3及び第2の多結晶配向中間薄膜4が成膜され、該第2の多結晶配向中間薄膜4上には、酸化物超電導体薄膜5が成膜される。この多結晶配向中間薄膜3、4は、スパッタ装置により多結晶配向中間薄膜を形成する際に、スパッタリングと同時に基材成膜面の斜め方向からイオンビームを照射しながらGdZr、CeO、YSZなどからなる結晶配向性の優れた1層又は2層以上の多結晶配向中間薄膜3,4を形成するイオンビームアシスト法(IBAD法)等によって成膜される。 In this embodiment, the first polycrystalline oriented intermediate thin film 3 and the second polycrystalline oriented intermediate thin film 4 excellent in crystal orientation are formed on the metal substrate 2 for the oxide superconducting conductor, An oxide superconductor thin film 5 is formed on the second polycrystalline oriented intermediate thin film 4. The polycrystalline oriented intermediate thin films 3 and 4 are formed with Gd 2 Zr 2 O 7 while irradiating an ion beam from an oblique direction of the base film forming surface simultaneously with sputtering when forming the polycrystalline oriented intermediate thin film by a sputtering apparatus. The film is formed by an ion beam assist method (IBAD method) or the like for forming one or two or more polycrystallized intermediate thin films 3 and 4 made of CeO 2 , YSZ or the like and having excellent crystal orientation.

この多結晶配向中間薄膜3,4は、立方晶系の結晶構造を有する結晶の集合した微細な結晶粒が多数相互に結晶粒界を介して接合一体化されてなるものであり、各結晶粒の結晶軸のc軸は酸化物超電導導体用金属基材2の上面(成膜面)に対してほぼ直角に向けられ、各結晶粒の結晶軸のa軸どうしおよびb軸どうしは、互いに同一方向に向けられて面内配向されている。多結晶配向中間薄膜3,4の1層当たりの厚みは、それぞれ0.1〜1.0μm程度とされる。多結晶配向中間薄膜3,4の1層当たりの厚みを1.0μmを超えて厚くしても、もはやその配向による酸化物超電導薄膜5の超電導特性改善効果の増大は期待できず、経済的にも不利となる。一方、多結晶配向中間薄膜3,4の1層当たりの厚みが0.1μm未満であると、薄すぎて酸化物超電導薄膜5を十分支持できない恐れがある。この多結晶配向中間薄膜3,4の構成材料としてはGdZr、CeO、YSZの他に、SmZr、MgO、SrTiO3等を用いることができる。 The polycrystalline oriented intermediate thin films 3 and 4 are formed by integrating a large number of fine crystal grains in which crystals having a cubic crystal structure are joined together via a grain boundary. The c-axis of the crystal axis is oriented substantially perpendicular to the upper surface (deposition surface) of the metal substrate 2 for oxide superconducting conductors, and the a-axis and the b-axis of each crystal grain are the same. Oriented in-plane and oriented. The thickness per layer of the polycrystalline oriented intermediate thin films 3 and 4 is about 0.1 to 1.0 μm. Even if the thickness per layer of the polycrystalline oriented intermediate thin films 3 and 4 exceeds 1.0 μm, the effect of improving the superconducting characteristics of the oxide superconducting thin film 5 due to the orientation can no longer be expected. Is also disadvantageous. On the other hand, if the thickness per layer of the polycrystalline oriented intermediate thin films 3 and 4 is less than 0.1 μm, the oxide superconducting thin film 5 may not be sufficiently supported because it is too thin. In addition to Gd 2 Zr 2 O 7 , CeO 2 , and YSZ, Sm 2 Zr 2 O 7 , MgO, SrTiO 3, and the like can be used as constituent materials for the polycrystalline oriented intermediate thin films 3 and 4.

酸化物超電導薄膜5は、YBaCu、GdBaCu、YbBaCu、HoBaCuなる組成、(Bi,Pb)CaSrCu、(Bi,Pb)CaSrCuなる組成、あるいはTlBaCaCu、TlBaCaCu、TlBaCaCuなる組成などに代表される臨界温度の高い酸化物超電導体からなるものである。この酸化物超電導薄膜5の厚みは、0.5〜5μm程度で、かつ長手方向に均一な厚みとなっている。また、酸化物超電導薄膜5の膜質は均一となっており、酸化物超電導薄膜5の結晶のc軸とa軸とb軸も多結晶配向中間薄膜3,4の結晶に整合するようにエピタキシャル成長して結晶化しており、結晶配向性が優れたものとなっている。 The oxide superconducting thin film 5, Y 1 Ba 2 Cu 3 O x, Gd 1 Ba 2 Cu 3 O x, Yb 1 Ba 2 Cu 3 O x, Ho 1 Ba 2 Cu 3 O x having a composition, (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O x, (Bi, Pb) 2 Ca 2 Sr 3 Cu 4 O x having a composition, or Tl 2 Ba 2 Ca 2 Cu 3 O x, Tl 1 Ba 2 Ca 2 Cu 3 O x, It is made of an oxide superconductor having a high critical temperature typified by a composition such as Tl 1 Ba 2 Ca 3 Cu 4 O x . The oxide superconducting thin film 5 has a thickness of about 0.5 to 5 μm and a uniform thickness in the longitudinal direction. The oxide superconducting thin film 5 has a uniform film quality and is epitaxially grown so that the c-axis, a-axis and b-axis of the oxide superconducting thin film 5 are aligned with the crystals of the polycrystalline oriented intermediate thin films 3 and 4. It is crystallized and has excellent crystal orientation.

この酸化物超電導薄膜5の成膜方法は限定されないが、レーザ蒸着法などが好ましい。そのレーザ蒸着法に用いるレーザ光源としては特に限定されず、例えば、Ar−F(193nm)、Kr−F(248nm)などのエキシマレーザ、YAGレーザ、COレーザなどのいずれのものを用いても良い。 A method for forming the oxide superconducting thin film 5 is not limited, but a laser deposition method or the like is preferable. The laser light source used for the laser vapor deposition method is not particularly limited, and for example, any of excimer lasers such as Ar-F (193 nm) and Kr-F (248 nm), YAG lasers, and CO 2 lasers may be used. good.

本実施形態の酸化物超電導導体1は、酸化物超電導導体用金属基材2を製造する際、Moを含むNi基合金の焼鈍し温度を1100℃以上とすることによって、Moに富む化合物が析出せず、その後の電解研磨処理によって酸化物超電導導体用金属基材2の表面平滑度を向上させることができ、この酸化物超電導導体用金属基材2上に多結晶配向中間薄膜3,4を介して酸化物超電導薄膜5を成膜することにより、臨界電流密度が高い高性能な酸化物超電導導体1を提供することができる。   The oxide superconducting conductor 1 according to the present embodiment deposits a Mo-rich compound by setting the annealing temperature of a Ni-based alloy containing Mo to 1100 ° C. or higher when the metal base 2 for an oxide superconducting conductor is manufactured. Then, the surface smoothness of the metal substrate 2 for oxide superconducting conductor can be improved by the subsequent electropolishing treatment, and the polycrystalline oriented intermediate thin films 3 and 4 are formed on the metal substrate 2 for oxide superconducting conductor. By forming the oxide superconducting thin film 5 through, a high-performance oxide superconducting conductor 1 having a high critical current density can be provided.

表2に示した工程に従って、ハステロイ(C276)母材を厚さ100μmのテープ状の酸化物超電導導体用金属基材に加工した。焼鈍しは、表3に示す温度(1020℃、1050℃、1070℃、1090℃、1100℃、1150℃、1200℃)にて行った。これらのうち、1100℃、1150℃、1200℃の3つが本発明に係る実施例、それ以外は比較例である。   In accordance with the steps shown in Table 2, a Hastelloy (C276) base material was processed into a tape-shaped metal substrate for an oxide superconducting conductor having a thickness of 100 μm. The annealing was performed at the temperatures shown in Table 3 (1020 ° C, 1050 ° C, 1070 ° C, 1090 ° C, 1100 ° C, 1150 ° C, 1200 ° C). Among these, three of 1100 ° C., 1150 ° C., and 1200 ° C. are examples according to the present invention, and the others are comparative examples.

Figure 2007179827
Figure 2007179827

Figure 2007179827
Figure 2007179827

表3に示すように、それぞれの温度にて焼鈍しを行った場合の最終圧延後の基材の平滑度は同程度であった。   As shown in Table 3, the smoothness of the base material after the final rolling when annealing was performed at each temperature was about the same.

その後、各基材に対し、リン酸と硫酸を主成分とする混合液を電解液として用いた電解研磨を施し、電解研磨後の酸化物超電導導体用金属基材の表面平滑度Rmaxを測定した。その結果、1090℃以下の温度で焼鈍しを行った酸化物超電導導体用金属基材は、Moに富む化合物が析出していたため、表面が平滑化されず、逆に粗くなってしまった。一方、1100℃以上の温度で焼鈍しを行った酸化物超電導導体用金属基材は、Moに富む化合物が析出していなかったため、最終圧延後に電解研磨を行うことによって、Rmax=0.01μm程度の良好な平滑度が得られた。 Thereafter, each substrate is subjected to electrolytic polishing using a mixed solution mainly composed of phosphoric acid and sulfuric acid as an electrolytic solution, and the surface smoothness R max of the metal substrate for an oxide superconducting conductor after electrolytic polishing is measured. did. As a result, the metal base material for oxide superconducting conductors annealed at a temperature of 1090 ° C. or lower had a surface that was not smoothed because the Mo-rich compound was precipitated, and the surface became rough. On the other hand, the metal substrate for oxide superconducting conductor annealed at a temperature of 1100 ° C. or higher had no Mo-rich compound precipitated, so that by performing electropolishing after final rolling, R max = 0.01 μm A good degree of smoothness was obtained.

次に、これらの酸化物超電導導体用金属基材(厚さ100μm)上に、図4に示したような構成のイオンビームアシストスパッタリング装置を使用して、GdZrからなる厚さ1μmの第1の多結晶配向中間薄膜を成膜した。具体的には、テープ状の酸化物超電導導体用金属基材21が巻かれた基材送出ボビン22を成膜処理容器23内に配置し、基材送出ボビン22から酸化物超電導導体用金属基材21を基材ホルダ24上に連続的に送り出し、多結晶配向中間層形成後の酸化物超電導導体用金属基材21を基材巻取ボビン25で巻き取れるようにセットした。ここで、ターゲット26としては、GdZrを用い、成膜を行った。そして、このイオンビームアシストスパッタリング装置の成膜処理容器23内部をクライオポンプ27およびロータリーポンプ28で真空引きして3.0×10−4Torrに減圧し、また、酸化物超電導導体用金属基材21を負に帯電させた。 Next, a thickness of Gd 2 Zr 2 O 7 is formed on the metal substrate (thickness: 100 μm) for these oxide superconducting conductors using an ion beam assisted sputtering apparatus having a configuration as shown in FIG. A 1 μm first polycrystalline oriented intermediate thin film was deposited. Specifically, a base material delivery bobbin 22 around which a tape-shaped metal substrate 21 for an oxide superconductor is wound is disposed in a film forming treatment vessel 23, and the metal base for an oxide superconductor is provided from the base material delivery bobbin 22. The material 21 was continuously fed onto the substrate holder 24, and the metal substrate 21 for oxide superconducting conductor after the formation of the polycrystalline orientation intermediate layer was set to be wound up by the substrate winding bobbin 25. Here, Gd 2 Zr 2 O 7 was used as the target 26 to form a film. And the inside of the film-forming treatment container 23 of this ion beam assisted sputtering apparatus is evacuated by a cryopump 27 and a rotary pump 28 to reduce the pressure to 3.0 × 10 −4 Torr, and a metal substrate for an oxide superconducting conductor 21 was negatively charged.

さらに、スパッタ電圧1200V、スパッタ電流240mAのアルゴンイオンと酸素イオンの混合イオンビームを第一のフィラメント型イオンソース29から発生させる際、フィラメントとアノード間に印加するイオン化電圧値を50Vとし、一方、アシスト電圧200V、アシスト電流100mAのアルゴンイオンと酸素イオンの混合イオンビームを第二のフィラメント型イオンソース30から発生させる際、フィラメントとアノード間に印加するイオン化電圧値を50Vとし、酸化物超電導導体用金属基材21の成膜面上にターゲット26の粒子を堆積させると同時にイオンビームを照射して成膜処理することで、厚さ100μmの酸化物超電導導体用金属基材上に、GdZrからなる厚さ1μmの第1の多結晶配向中間薄膜を成膜した。ここでの第二のフィラメント型イオンソース30から発生させる混合イオンビームの入射角度は55度に設定した。 Further, when a mixed ion beam of argon ions and oxygen ions having a sputtering voltage of 1200 V and a sputtering current of 240 mA is generated from the first filament ion source 29, the ionization voltage value applied between the filament and the anode is set to 50 V, while assisting. When a mixed ion beam of argon ions and oxygen ions having a voltage of 200 V and an assist current of 100 mA is generated from the second filament ion source 30, the ionization voltage value applied between the filament and the anode is 50 V, and the metal for the oxide superconductor By depositing the particles of the target 26 on the film forming surface of the base material 21 and simultaneously irradiating with an ion beam, the film is processed to form Gd 2 Zr 2 on the metal base material for oxide superconductor having a thickness of 100 μm. first polycrystalline orientation intermediate thin film having a thickness of 1μm consisting O 7 It was formed. Here, the incident angle of the mixed ion beam generated from the second filament type ion source 30 was set to 55 degrees.

次に、第1の多結晶配向中間薄膜を成膜した酸化物超電導導体用金属基材をレーザ蒸着装置にセットし、CeOをターゲットとしてレーザ蒸着を行い、第1の多結晶配向中間薄膜上にCeOからなる第2の多結晶配向中間薄膜を成膜した。次に、ターゲットをYBaCuに変えてレーザ蒸着を行い、第2の多結晶配向中間薄膜上に、YBaCuからなる厚さ1μmの酸化物超電導薄膜を成膜した。さらに、この酸化物超電導薄膜上に、厚さ10μmのAg保護層を成膜し、図1に示す構造を有する酸化物超電導導体を製造した。 Next, the metal substrate for the oxide superconducting conductor on which the first polycrystalline orientation intermediate thin film is formed is set in a laser deposition apparatus, laser deposition is performed using CeO 2 as a target, and the first polycrystalline orientation intermediate thin film is formed. A second polycrystalline oriented intermediate thin film made of CeO 2 was formed. Next, laser deposition is performed by changing the target to Y 1 Ba 2 Cu 3 O x , and a 1 μm thick oxide superconducting thin film made of Y 1 Ba 2 Cu 3 O x is formed on the second polycrystalline oriented intermediate thin film. Was deposited. Further, an Ag protective layer having a thickness of 10 μm was formed on this oxide superconducting thin film, thereby producing an oxide superconducting conductor having the structure shown in FIG.

焼鈍し温度が異なるそれぞれの酸化物超電導導体用金属基材を用いて製造した酸化物超電導導体の臨界電流密度(Jc)を測定し、結果を表2に示す。表3に記した通り、1100℃以上で焼鈍しを行った酸化物超電導導体用金属基材を用い製造した酸化物超電導導体の方が、明らかにJcが高いことがわかった。   The critical current density (Jc) of the oxide superconductors manufactured using the respective metal substrates for oxide superconductors with different annealing temperatures was measured, and the results are shown in Table 2. As described in Table 3, it was found that the oxide superconducting conductor manufactured using the metal substrate for oxide superconducting conductor annealed at 1100 ° C. or higher clearly has higher Jc.

また、前記酸化物超電導導体用金属基材を最終圧延後、電解研磨を行わずに、多結晶配向中間薄膜、酸化物超電導薄膜、Ag保護層を順に成膜し、得られた酸化物超電導導体の臨界電流密度(Jc)を測定した。その結果を表4に示す。表4より、基材に電解研磨を施さずに各層を成膜した場合には、基材をどの温度で焼鈍しを行っても同程度のJc値になることがわかる。   Also, after the final rolling of the metal substrate for oxide superconducting conductor, without performing electrolytic polishing, a polycrystalline oriented intermediate thin film, an oxide superconducting thin film, and an Ag protective layer were sequentially formed, and the resulting oxide superconducting conductor was obtained. The critical current density (Jc) of was measured. The results are shown in Table 4. From Table 4, it can be seen that when each layer is formed without subjecting the substrate to electropolishing, the Jc value is comparable even if the substrate is annealed at any temperature.

Figure 2007179827
Figure 2007179827

表3及び表4の結果より、1090℃以下の温度で焼鈍しした基材は、最終圧延後に電解研磨を行うと、平滑度が悪くなり、そのために基材上に多結晶配向中間薄膜を介して酸化物超電導薄膜を形成して得られた酸化物超電導導体のJcが低くなっている。これに対し、1100℃以上の温度で焼鈍しした本発明に係る基材は、最終圧延後に電解研磨を行った方が平滑になるため、基材上に多結晶配向中間薄膜を介して酸化物超電導薄膜を形成して得られた酸化物超電導導体のJcが高くなっている。   From the results of Tables 3 and 4, the base material annealed at a temperature of 1090 ° C. or less has poor smoothness when subjected to electrolytic polishing after the final rolling, and for that reason, a polycrystalline oriented intermediate thin film is interposed on the base material. Thus, Jc of the oxide superconducting conductor obtained by forming the oxide superconducting thin film is low. On the other hand, the base material according to the present invention annealed at a temperature of 1100 ° C. or higher becomes smoother when the electrolytic polishing is performed after the final rolling, so that the oxide is formed on the base material through a polycrystalline oriented intermediate thin film. Jc of the oxide superconducting conductor obtained by forming the superconducting thin film is high.

本発明の酸化物超電導導体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the oxide superconductor of this invention. 本発明の製造方法において用いるロール圧延装置の構造を例示する概略構成図である。It is a schematic block diagram which illustrates the structure of the roll rolling apparatus used in the manufacturing method of this invention. 本発明の製造方法において用いる焼鈍し装置を例示する概略構成図である。It is a schematic block diagram which illustrates the annealing apparatus used in the manufacturing method of this invention. 本発明の製造方法において用いるイオンビームアシストスパッタリング装置を例示する構成図である。It is a block diagram which illustrates the ion beam assist sputtering apparatus used in the manufacturing method of this invention.

符号の説明Explanation of symbols

1…酸化物超電導導体、2,21…酸化物超電導導体用金属基材、3…第1の多結晶配向中間薄膜、4…第1の多結晶配向中間薄膜、5…酸化物超電導薄膜、6…Ag保護層、7…Ni基合金母材、8…駆動ロール、9…ロール、10A…二重圧延機、10B…三重圧延機、10C…四重圧延機、11…供給ボビン、12…巻き取りボビン、13…加熱装置、22…基材送出ボビン、23…基材送出ボビン、24…基材ホルダ、25…基材巻取ボビン、26…ターゲット、27…クライオポンプ、28…ロータリーポンプ、29…第一のフィラメント型イオンソース、30…第二のフィラメント型イオンソース。
DESCRIPTION OF SYMBOLS 1 ... Oxide superconducting conductor, 2, 21 ... Metal base material for oxide superconducting conductor, 3 ... 1st polycrystalline orientation intermediate thin film, 4 ... 1st polycrystalline orientation intermediate thin film, 5 ... Oxide superconducting thin film, 6 DESCRIPTION OF SYMBOLS ... Ag protective layer, 7 ... Ni base alloy base material, 8 ... Drive roll, 9 ... Roll, 10A ... Double rolling mill, 10B ... Triple rolling mill, 10C ... Quadruple rolling mill, 11 ... Supply bobbin, 12 ... Winding Take-up bobbin, 13 ... heating device, 22 ... substrate delivery bobbin, 23 ... substrate delivery bobbin, 24 ... substrate holder, 25 ... substrate take-up bobbin, 26 ... target, 27 ... cryopump, 28 ... rotary pump, 29 ... 1st filament type ion source, 30 ... 2nd filament type ion source.

Claims (2)

Moを含むNi基合金からなる母材に、1100℃以上の温度で少なくとも1回の焼鈍しと、少なくとも1回の圧延とを行い、最終圧延の後に電解研磨を行って酸化物超電導導体用金属基材を得ることを特徴とする酸化物超電導導体用金属基材の製造方法。   A base material made of a Ni-based alloy containing Mo is subjected to at least one annealing at a temperature of 1100 ° C. or more and at least one rolling, and after the final rolling, electrolytic polishing is performed to provide a metal for an oxide superconducting conductor A method for producing a metal substrate for an oxide superconducting conductor, comprising obtaining a substrate. Moを含むNi基合金からなる母材に、1100℃以上の温度で少なくとも1回の焼鈍しと、少なくとも1回の圧延とを行い、最終圧延の後に電解研磨を行って酸化物超電導導体用金属基材を作製し、
次いで、前記酸化物超電導導体用金属基材上にイオンビームアシスト法により多結晶配向中間薄膜を成膜し、
次いで、前記多結晶配向中間薄膜上に酸化物超電導薄膜を成膜し、酸化物超電導導体を得ることを特徴とする酸化物超電導導体の製造方法。
A base material made of a Ni-based alloy containing Mo is subjected to at least one annealing at a temperature of 1100 ° C. or more and at least one rolling, and after the final rolling, electrolytic polishing is performed to provide a metal for an oxide superconducting conductor Make the substrate,
Next, a polycrystalline oriented intermediate thin film is formed on the metal substrate for the oxide superconductor by an ion beam assist method,
Then, an oxide superconducting thin film is formed on the polycrystalline oriented intermediate thin film to obtain an oxide superconducting conductor.
JP2005375834A 2005-12-27 2005-12-27 Method for producing metal substrate for oxide superconductor, method for producing oxide superconductor Expired - Fee Related JP4739015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375834A JP4739015B2 (en) 2005-12-27 2005-12-27 Method for producing metal substrate for oxide superconductor, method for producing oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375834A JP4739015B2 (en) 2005-12-27 2005-12-27 Method for producing metal substrate for oxide superconductor, method for producing oxide superconductor

Publications (2)

Publication Number Publication Date
JP2007179827A true JP2007179827A (en) 2007-07-12
JP4739015B2 JP4739015B2 (en) 2011-08-03

Family

ID=38304810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375834A Expired - Fee Related JP4739015B2 (en) 2005-12-27 2005-12-27 Method for producing metal substrate for oxide superconductor, method for producing oxide superconductor

Country Status (1)

Country Link
JP (1) JP4739015B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249162A (en) * 2010-05-27 2011-12-08 Fujikura Ltd Method for manufacturing superconducting wire rod
JP2013037849A (en) * 2011-08-05 2013-02-21 Chubu Electric Power Co Inc Superconducting wire
WO2018181561A1 (en) * 2017-03-30 2018-10-04 古河電気工業株式会社 Connecting structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250931A (en) * 1992-03-02 1993-09-28 Fujikura Ltd Oxide superconductive conductor
JPH1153967A (en) * 1997-08-01 1999-02-26 Fujikura Ltd Oxide polycrystalline basic material and oxide superconducting conductor and manufacture thereof
JP2001266666A (en) * 2000-02-01 2001-09-28 Zentrum Fuer Funktionswerkstoffe Gemeinnuetzige Gmbh Superconductive element
JP2001518681A (en) * 1997-10-01 2001-10-16 アメリカン スーパーコンダクター コーポレイション Substrate with improved oxidation resistance
JP2007115561A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250931A (en) * 1992-03-02 1993-09-28 Fujikura Ltd Oxide superconductive conductor
JPH1153967A (en) * 1997-08-01 1999-02-26 Fujikura Ltd Oxide polycrystalline basic material and oxide superconducting conductor and manufacture thereof
JP2001518681A (en) * 1997-10-01 2001-10-16 アメリカン スーパーコンダクター コーポレイション Substrate with improved oxidation resistance
JP2001266666A (en) * 2000-02-01 2001-09-28 Zentrum Fuer Funktionswerkstoffe Gemeinnuetzige Gmbh Superconductive element
JP2007115561A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249162A (en) * 2010-05-27 2011-12-08 Fujikura Ltd Method for manufacturing superconducting wire rod
JP2013037849A (en) * 2011-08-05 2013-02-21 Chubu Electric Power Co Inc Superconducting wire
WO2018181561A1 (en) * 2017-03-30 2018-10-04 古河電気工業株式会社 Connecting structure
JP2018170173A (en) * 2017-03-30 2018-11-01 古河電気工業株式会社 Connection structure
CN110462938A (en) * 2017-03-30 2019-11-15 古河电气工业株式会社 Connection structural bodies
JP6998667B2 (en) 2017-03-30 2022-01-18 古河電気工業株式会社 Connection structure

Also Published As

Publication number Publication date
JP4739015B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
US8038810B2 (en) Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
EP3214627B1 (en) Superconducting wire material substrate and method for manufacturing same, and superconducting wire material
WO2013157286A1 (en) Substrate for superconducting film, superconducting wire, and superconducting wire fabrication method
JP4741326B2 (en) Oxide superconducting conductor and manufacturing method thereof
EP3043359B1 (en) Substrate for superconducting wire, method for manufacturing the same, and superconducting wire
EP3042978B1 (en) Layered substrate for epitaxial growth and process for producing same
JP4739015B2 (en) Method for producing metal substrate for oxide superconductor, method for producing oxide superconductor
JP4694965B2 (en) Method for producing metal substrate for oxide superconducting wire and method for producing oxide superconducting wire
JP2007115561A (en) Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JPH10245662A (en) Production of substrate for superconducting tape conductor
JP5624839B2 (en) Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same
JP4033945B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JP4804993B2 (en) Oxide superconducting conductor
US12070923B2 (en) Substrate for epitaxial growth and method for producing same
JP2012049086A (en) Oxide superconductive thin film wire rod, metal substrate for oxide superconductive thin film wire rod, and method of manufacturing the same
JP4732162B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP5481180B2 (en) Base material for oxide superconductor and oxide superconductor
JP2012018829A (en) Superconductive wire material and manufacturing method thereof
WO2002093590A1 (en) Oxide supercoductor in the form of tape and method for preparation thereof
JP2013026188A (en) Base material for oxide superconducting conductor and method for producing the same, and oxide superconducting conductor
JP2004273246A (en) Oxide superconductor wire and substrate therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees