Nothing Special   »   [go: up one dir, main page]

JP2007165346A - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP2007165346A
JP2007165346A JP2005355616A JP2005355616A JP2007165346A JP 2007165346 A JP2007165346 A JP 2007165346A JP 2005355616 A JP2005355616 A JP 2005355616A JP 2005355616 A JP2005355616 A JP 2005355616A JP 2007165346 A JP2007165346 A JP 2007165346A
Authority
JP
Japan
Prior art keywords
iron core
reactor
protrusion
gap
core portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005355616A
Other languages
Japanese (ja)
Inventor
Kazuhiko Baba
和彦 馬場
Yoshio Takita
芳雄 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005355616A priority Critical patent/JP2007165346A/en
Publication of JP2007165346A publication Critical patent/JP2007165346A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulation Of General Use Transformers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor where vibration and noise can be reduced without deteriorating rigidity of the reactor even if a void part for adjusting a magnetic saturation characteristic is formed in a magnetic core. <P>SOLUTION: The reactor is provided with a first iron 1 which is formed in an E shape and has a center projection 10b, projections 10a and 10c at both ends, and a base iron core 15; a second iron core 2 adjusted to the first iron 1; winding 3 wound to the center projection 10b formed in the first iron 1; an adhesion 6 where at least a part of end faces of the projections 10a and 10c on both ends of the first iron 1 and the end face of the center projection 10b in the first iron 1 is adjusted to the second iron 2; and a void 8 for adjusting magnetic saturation characteristic, which is arranged in a first magnetic path and a second magnetic path 2 or near the adhesion 6 of a common magnetic path of the first magnetic path 1 and the second magnetic path 2 or near a shift to the base iron core 15, and is formed of a long hole or a slit. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、インバータ機器の高調波電流対策に用いられるリアクタの構造に関するものである。   The present invention relates to the structure of a reactor used for countermeasures against harmonic currents in inverter equipment.

有鉄心型のリアクタは、最近普及が目覚しいインバータ機器、特に民生用のインバータエアコン等に力率改善用として使用されるケースが多い。   The cored core type reactor is often used for power factor improvement in inverter equipment, which has recently been remarkably popular, especially for consumer-use inverter air conditioners.

互いに付け合わされたE型鉄心とI型鉄心とを有し、且つE型鉄心の中央部に相当する巻線部の先端にI型鉄心に対する、磁気飽和特性を調整するためのエアギャップを形成してある鉄心と、巻線部に巻き付けてある巻線コイルとを具備しており、I型鉄心におけるエアギャップの対向面、対向反対面を平面、凹面に夫々形成してあり、或いはその反対にエアギャップの対向面、対向反対面を凹面、平面に夫々形成してあるリアクタが提案されている(例えば、特許文献1参照)。
実開平2−95217号公報
An air gap for adjusting magnetic saturation characteristics with respect to the I-type iron core is formed at the tip of the winding portion corresponding to the center of the E-type iron core, which has an E-type iron core and an I-type iron core attached to each other. The opposite side and opposite side of the air gap in the I-type iron core are formed as a flat surface and a concave surface, respectively, or vice versa. A reactor has been proposed in which the air gap facing surface and the facing opposite surface are formed in a concave surface and a flat surface, respectively (for example, see Patent Document 1).
Japanese Utility Model Publication No. 2-95217

従来のリアクタは、E型鉄心の中央部に相当する巻線部の先端にI型鉄心に対するエアギャップが形成されているため、エアギャップにおける電磁的振動が避けられない。エアギャップの存在により、リアクタの発生する振動の主要成分が、例えば空気調和機の筐体の共振周波数に近い場合があり、空気調和機の振動の原因になっていた。   In the conventional reactor, since an air gap with respect to the I-type iron core is formed at the tip of the winding portion corresponding to the center portion of the E-type iron core, electromagnetic vibration in the air gap is inevitable. Due to the presence of the air gap, the main component of the vibration generated by the reactor may be close to the resonance frequency of the casing of the air conditioner, for example, which causes the vibration of the air conditioner.

この発明は、上記のような課題を解決するためになされたもので、鉄心に磁気飽和特性を調整するための空隙部を設けても、リアクタの剛性が低下せずに、振動、騒音を低減できるリアクタを提供することを目的とする。   The present invention has been made to solve the above-described problems, and even if a gap for adjusting magnetic saturation characteristics is provided in the iron core, the rigidity of the reactor is not reduced, and vibration and noise are reduced. An object is to provide a reactor that can be used.

この発明に係るリアクタは、E型形状で形成され、中央の突起部と、両端の二つの突起部と、底部鉄心とを有する第1の鉄心部と、この第1の鉄心部に付け合わされる第2の鉄心部と、第1の鉄心部に形成される中央の突起部に巻装される巻線と、第1の鉄心部の両端の二つの突起部の端面、及び第1の鉄心部の中央の突起部の端面の少なくとも一部が第2の鉄心部に付け合わされて形成される密着部と、第1の鉄心部の中央の突起部と、第2の鉄心部の一部と、第1の鉄心部の一方の端の突起部と、第1の鉄心部の底部鉄心の一部とで構成される第1の磁路と、第1の鉄心部の中央の突起部と、第2の鉄心部の一部と、第1の鉄心部の他方の端の突起部と、第1の鉄心部の底部鉄心の一部とで構成される第2の磁路と、第1の磁路と第2の磁路との夫々に、又は第1の磁路と第2の磁路との共通の磁路の密着部付近もしくは底部鉄心への移行部付近に設けられ、長孔又はスリットで形成された磁気飽和特性調整用の空隙部とを備えたことを特徴とする。   The reactor according to the present invention is formed in an E shape, and is attached to a first iron core portion having a central protrusion, two protrusions at both ends, and a bottom iron core, and the first iron core. A second iron core, a winding wound around a central protrusion formed in the first iron core, end surfaces of two protrusions at both ends of the first iron core, and the first iron core A close contact portion formed by attaching at least a part of an end surface of the central projection portion of the first core portion, a central projection portion of the first iron core portion, a part of the second iron core portion, A first magnetic path composed of a protrusion at one end of the first iron core, a part of the bottom iron core of the first iron core, a protrusion at the center of the first iron core, A second magnetic path composed of a part of the iron core part 2, a protrusion at the other end of the first iron core part, and a part of the bottom iron core of the first iron core part; Road and second Magnetic saturation formed by a long hole or a slit provided in each of the paths, or in the vicinity of the close contact portion of the common magnetic path of the first magnetic path and the second magnetic path or in the vicinity of the transition portion to the bottom iron core And a gap for adjusting characteristics.

この発明に係るリアクタは、上記構成により、鉄心に磁気飽和特性を調整するための空隙部を設けても、リアクタの剛性が低下せずに、振動、騒音を低減できる。   With the above configuration, the reactor according to the present invention can reduce vibration and noise without reducing the rigidity of the reactor even if a gap for adjusting magnetic saturation characteristics is provided in the iron core.

実施の形態1.
図1乃至図11は実施の形態1を示す図で、図1はリアクタ20の斜視図、図2はリアクタ20の断面図、図3はリアクタ20の磁気回路を示す断面図、図4はリアクタ20の組立方法を示す断面図、図5はリアクタ20の振動の周波数特性を示す図、図6乃至図11は変形例のリアクタ20の断面図である。
Embodiment 1 FIG.
1 to 11 are diagrams showing the first embodiment, FIG. 1 is a perspective view of the reactor 20, FIG. 2 is a sectional view of the reactor 20, FIG. 3 is a sectional view showing a magnetic circuit of the reactor 20, and FIG. FIG. 5 is a diagram showing frequency characteristics of vibration of the reactor 20, and FIGS. 6 to 11 are sectional views of a reactor 20 according to a modification.

図1に示すように、リアクタ20は、E型形状の第1の鉄心部1と、I型形状の第2の鉄心部2と、第1の鉄心部1に巻装される巻線3とを備える。第1の鉄心部1は、突起部10a、突起部10b、突起部10cを有し、巻線3は突起部10bに巻装され、スロット4に収納されている。突起部10bの端面内側には、磁気回路の磁気飽和特性を調整し、所定のインダクタンスとするための空隙部8が設けられている。   As shown in FIG. 1, the reactor 20 includes an E-shaped first iron core portion 1, an I-shaped second iron core portion 2, and a winding 3 wound around the first iron core portion 1. Is provided. The first iron core portion 1 has a protrusion 10 a, a protrusion 10 b, and a protrusion 10 c, and the winding 3 is wound around the protrusion 10 b and stored in the slot 4. On the inner side of the end face of the protrusion 10b, a gap 8 is provided for adjusting the magnetic saturation characteristics of the magnetic circuit to obtain a predetermined inductance.

図2に示すように、リアクタ20は、第1の鉄心部1に巻装される巻線3を電気的に絶縁する絶縁部5を備える。第1の鉄心部1は、電磁鋼板(厚さ、0.15〜0.5mm)を一枚一枚積層してE型形状に構成される。第2の鉄心部2は、第1の鉄心部1と同様に電磁鋼板を積層してI型形状に構成される。第1の鉄心部1に巻線3が巻装され、スロット4に巻線3が収容される。絶縁部5は、非磁性体で構成され、第1の鉄心部1と、第2の鉄心部2と、巻線3とを電気的に絶縁する。E型形状を成す第1の鉄心部1には、突起部10a、突起部10b、突起部10cが設けられ、突起部10bに巻線3が巻装される。   As shown in FIG. 2, the reactor 20 includes an insulating portion 5 that electrically insulates the winding 3 wound around the first iron core portion 1. The first iron core portion 1 is formed in an E shape by laminating electromagnetic steel plates (thickness, 0.15 to 0.5 mm) one by one. The second iron core portion 2 is formed in an I-shape by laminating electromagnetic steel sheets in the same manner as the first iron core portion 1. The winding 3 is wound around the first iron core portion 1, and the winding 3 is accommodated in the slot 4. The insulating part 5 is made of a nonmagnetic material and electrically insulates the first iron core part 1, the second iron core part 2, and the winding 3. The first iron core portion 1 having an E shape is provided with a protruding portion 10a, a protruding portion 10b, and a protruding portion 10c, and the winding 3 is wound around the protruding portion 10b.

E型形状を成す第1の鉄心部1の端面(突起部10a、突起部10b、突起部10cの端面)と、I型形状を成す第2の鉄心部2の端面とを密着させた密着部6を設けるとともに、E型形状を成す第1の鉄心部1の中央の突起部10b端面部の内部に、突起部10b端面方向に長い長孔で形成した空隙部8を設けた構成としている。長孔の空隙部8の長手方向両端部に、電磁鋼板の厚さ(0.15〜0.5mm)と同程度の薄肉鉄心部13を設ける。   A close contact portion in which an end surface of the first iron core portion 1 having an E shape (end surfaces of the protrusion portion 10a, the protrusion portion 10b, and the protrusion portion 10c) and an end surface of the second iron core portion 2 having an I shape are in close contact with each other. 6 and a gap 8 formed by a long slot extending in the direction of the end face of the protrusion 10b is provided inside the end face of the protrusion 10b at the center of the first iron core 1 having an E shape. Thin-walled iron cores 13 having the same thickness as that of the electromagnetic steel sheet (0.15 to 0.5 mm) are provided at both ends in the longitudinal direction of the gap 8 of the long hole.

リアクタ20に電圧が印加されると、巻線3に電流が流れる。巻線3に電流が流れると、図3に示すように、第1の磁路14a及び第2の磁路14bに磁束が流れる。図3に示す磁束の流れは、電圧が交流であるから、図示の方向と、逆の方向とが交互に繰り返される。リアクタ20のインダクタンスLは、次式で表わされる。
L=(4πμSN)10−7/l・・・(1)
ここで、
L:リアクタ20のインダクタンス[H]
μ:空気の比透磁率
S:空隙部8の長手方向の断面積[m
N:巻線3の巻数
:空隙部8の長さ(磁束が流れる方向)[m]
従って、空隙部8の長さlを、選択することにより、所定のインダクタンスLにすることができる。
When a voltage is applied to the reactor 20, a current flows through the winding 3. When a current flows through the winding 3, as shown in FIG. 3, a magnetic flux flows through the first magnetic path 14a and the second magnetic path 14b. In the flow of magnetic flux shown in FIG. 3, since the voltage is alternating current, the illustrated direction and the opposite direction are repeated alternately. The inductance L of the reactor 20 is expressed by the following equation.
L = (4πμ s SN 2 ) 10 −7 / l g (1)
here,
L: Reactor 20 inductance [H]
μ s : relative permeability of air S: cross-sectional area in the longitudinal direction of the gap 8 [m 2 ]
N: number of turns l g of the winding 3: length of the gap portion 8 (the direction of magnetic flux flow) [m]
Accordingly, the length l g of the gap portion 8, by selecting, can be predetermined inductance L.

図2に示すリアクタ20は、空隙部8が第1の鉄心部1の突起部10bの内部にあり、突起部10bの端面が第2の鉄心部2に密着しているため(密着部6)、従来のものより剛性が向上する。   In the reactor 20 shown in FIG. 2, the gap 8 is inside the protrusion 10b of the first iron core 1, and the end surface of the protrusion 10b is in close contact with the second iron core 2 (contact 6). The rigidity is improved as compared with the conventional one.

第1の鉄心部1と、第2の鉄心部2との固定方法について、説明する。第1の鉄心部1の突起部10a及び突起部10cと、第2の鉄心部2との固定は、溶接又は接着による。また、第1の鉄心部1の突起部10bと、第2の鉄心部2との固定は、接着又は圧入による。図4に第1の鉄心部1の突起部10bと、第2の鉄心部2とを圧入により固定する方法の一例を示す。   A method for fixing the first iron core portion 1 and the second iron core portion 2 will be described. The protrusions 10a and 10c of the first iron core 1 and the second iron core 2 are fixed by welding or adhesion. Further, the protrusion 10b of the first iron core portion 1 and the second iron core portion 2 are fixed by adhesion or press-fitting. FIG. 4 shows an example of a method for fixing the protruding portion 10b of the first iron core portion 1 and the second iron core portion 2 by press-fitting.

リアクタ20の振動の周波数特性を、従来のものと図2の構成のものについて測定し、測定結果を図5に示す。図5では、横軸が周波数、縦軸が振動(加速度)であり、従来のリアクタを破線、図2のリアクタ20を実線で示す。図5に示すように、従来のリアクタの振動の低次のピーク周波数がA点付近にあるのに対し、図2のリアクタ20では、A点の周波数の約倍の周波数に相当するB点付近に振動の低次のピーク周波数が移動していることがわかる。これは、例えば、空気調和機の筐体の共振周波数がA点付近にあり、従来のリアクタでは共振して空気調和機の振動が大きくなるが、図2のリアクタ20にすれば、低次のピーク周波数がB点付近に移動するため共振を避けることができ、空気調和機の振動が小さくなることを意味する。   The frequency characteristics of the vibration of the reactor 20 are measured for the conventional one and the structure shown in FIG. 2, and the measurement results are shown in FIG. In FIG. 5, the horizontal axis represents frequency, the vertical axis represents vibration (acceleration), the conventional reactor is indicated by a broken line, and the reactor 20 of FIG. 2 is indicated by a solid line. As shown in FIG. 5, the low-order peak frequency of the vibration of the conventional reactor is in the vicinity of the point A, whereas in the reactor 20 in FIG. 2, the vicinity of the point B corresponding to a frequency about twice the frequency of the point A. It can be seen that the low-order peak frequency of vibration moves. This is because, for example, the resonance frequency of the casing of the air conditioner is in the vicinity of point A. In the conventional reactor, the resonance of the air conditioner increases and the vibration of the air conditioner increases. However, if the reactor 20 in FIG. Resonance can be avoided because the peak frequency moves to the vicinity of point B, which means that the vibration of the air conditioner is reduced.

以上のように、磁気飽和を調整するための空隙部8を突起部10b端面部の内部に形成し、第1の鉄心部の端面と第2の鉄心部の端面を密着させた密着部6を設けることにより、密着部6により第1の鉄心部1と第2の鉄心部2が保持される構造となるため、リアクタ20の剛性が向上し、リアクタ20の振動、騒音を低減できる。   As described above, the gap portion 8 for adjusting the magnetic saturation is formed inside the end surface portion of the protrusion 10b, and the close contact portion 6 in which the end surface of the first iron core portion and the end surface of the second iron core portion are in close contact with each other. By providing the first core portion 1 and the second core portion 2 by the close contact portion 6, the rigidity of the reactor 20 is improved, and the vibration and noise of the reactor 20 can be reduced.

また、リアクタ20の剛性が向上し、リアクタ20の振動の固有値における主要なピーク周波数が高くなるため、例えば空気調和機の筐体の共振点を外れ、空気調和機の振動が低減する効果がある。   Moreover, since the rigidity of the reactor 20 is improved and the main peak frequency in the eigenvalue of the vibration of the reactor 20 is increased, for example, the resonance point of the casing of the air conditioner is removed, and the vibration of the air conditioner is reduced. .

なお、空隙部8の構成は、図2の構成に限定されるものではなく、例えば、図6に示すように、E型形状を成す第1の鉄心部1の、中央の突起部10bの端面部を凹面とする切り欠きを設ける構成にしてもよい。切り欠きで構成された空隙部8の両端部には、図2と同様、電磁鋼板の厚さ(0.15〜0.5mm)と同程度の薄肉鉄心部13を設ける。また、この薄肉鉄心部13の端面が密着部6となる。中央の突起部10bにおける第2の鉄心部2との密着部6の面積は、図2のものより小さくなるが、中央の突起部10bにおける第2の鉄心部2との密着部6の存在により、リアクタ20の剛性が向上し、リアクタ20の振動、騒音を低減できる。また、リアクタ20の剛性が向上し、リアクタ20の振動の固有値における主要なピーク周波数が高くなるため、例えば空気調和機の筐体の共振点を外れ、空気調和機の振動が低減する効果がある。尚、図6以下では、巻線3、絶縁部5の図示を省略している。   Note that the configuration of the gap 8 is not limited to the configuration of FIG. 2. For example, as shown in FIG. 6, the end surface of the central protrusion 10 b of the first iron core 1 having an E shape. You may make it the structure which provides the notch which makes a part a concave surface. As in FIG. 2, thin core portions 13 having the same thickness as that of the electromagnetic steel sheet (0.15 to 0.5 mm) are provided at both ends of the gap portion 8 constituted by the notches. Further, the end surface of the thin-walled iron core portion 13 becomes the close contact portion 6. The area of the close contact portion 6 with the second iron core portion 2 in the central protrusion portion 10b is smaller than that of FIG. 2, but the presence of the close contact portion 6 with the second iron core portion 2 in the central protrusion portion 10b. The rigidity of the reactor 20 is improved, and the vibration and noise of the reactor 20 can be reduced. Moreover, since the rigidity of the reactor 20 is improved and the main peak frequency in the eigenvalue of the vibration of the reactor 20 is increased, for example, the resonance point of the casing of the air conditioner is removed, and the vibration of the air conditioner is reduced. . In FIG. 6 and subsequent figures, the winding 3 and the insulating portion 5 are not shown.

また、図7で示すように第1の鉄心部1の突起部10bの端面の中央部に電磁鋼板の厚さ(0.35〜0.5mm)の2倍程度の幅の薄肉鉄心部13を設け、薄肉鉄心部13の端面を第2の鉄心部2に密着させて密着部6を形成し、その両側にスロット4に連通する切り欠きを設けて、この切り欠きを空隙部8としてもよい。   Further, as shown in FIG. 7, a thin core portion 13 having a width about twice the thickness (0.35 to 0.5 mm) of the electromagnetic steel plate is provided at the center portion of the end face of the projection portion 10 b of the first core portion 1. It is also possible that the end face of the thin-walled iron core portion 13 is brought into close contact with the second iron core portion 2 to form the close-contact portion 6, and notches communicating with the slots 4 are provided on both sides thereof, and the notches may be used as the gap portions 8. .

また、空隙部8は、E型形状を成す第1の鉄心部1の位置に限定されるものではなく、第2の鉄心部2に設けてもよい。例えば、図8に示すように、第1の鉄心部1における中央の突起部10bに対向するI型形状を成す第2の鉄心部2の端面付近に、第2の鉄心部2の長手方向に空隙部8を形成してもよい。空隙部8の長手方向の長さは、突起部10bの端面の長さより若干長くする。このケースは、薄肉鉄心部13は不要である。   Further, the gap 8 is not limited to the position of the first core part 1 having the E shape, and may be provided in the second core part 2. For example, as shown in FIG. 8, in the longitudinal direction of the second core portion 2, in the vicinity of the end surface of the second core portion 2 having an I-shape facing the central protrusion 10 b in the first core portion 1. The gap 8 may be formed. The length of the gap 8 in the longitudinal direction is slightly longer than the length of the end face of the protrusion 10b. In this case, the thin core portion 13 is not necessary.

また、図9に示すように、第2の鉄心部2の第1の鉄心部1の突起部10bの端面に対向する部分に、凹面となる切り欠きを設け、この切り欠きを空隙部8とする構成にしてもよい。この場合、空隙部8の長手方向の長さは、第1の鉄心部1の突起部10bの端面の長さより、電磁鋼板の厚さの倍程度短くする。   Further, as shown in FIG. 9, a notch that is a concave surface is provided in a portion of the second iron core portion 2 that faces the end surface of the protruding portion 10 b of the first iron core portion 1. You may make it the structure to carry out. In this case, the length of the gap portion 8 in the longitudinal direction is shorter than the length of the end face of the protrusion 10b of the first iron core portion 1 by about twice the thickness of the electromagnetic steel sheet.

また、図10、図11で示すように、第1の鉄心部1と第2の鉄心部2の両方に跨って空隙部8を設けることによっても構成できる。   Further, as shown in FIGS. 10 and 11, it can be configured by providing a gap 8 across both the first iron core portion 1 and the second iron core portion 2.

また、本実施の形態は、第1の鉄心部1をE型形状、第2の鉄心部2をI型形状に構成したが、これに限定されるものではなく、例えば、第1の鉄心部1、第2の鉄心部2共、E型で構成することによっても同様の効果が得られる。   In the present embodiment, the first iron core portion 1 is formed in an E shape and the second iron core portion 2 is formed in an I shape. However, the present invention is not limited to this. For example, the first iron core portion is formed. The same effect can be obtained by configuring both the first and second iron core portions 2 with the E type.

実施の形態2.
図12乃至図19は実施の形態2を示す図で、図12はリアクタ20の断面図、図13乃至19は変形例のリアクタ20の断面図である。実施の形態1では、E型形状を成す第1の鉄心部1の中央の突起部10bの端面と、I型形状を成す第2の鉄心部2の端面を密着させた密着部6を設けるとともに、密着部6付近のE型形状を成す第1の鉄心部1の中央の突起部10bの端面付近に長孔で形成した空隙部8を設けた構成としたが、図12に示すように、本実施の形態では、E型形状を成す第1の鉄心部1の3つの突起部10a、突起部10b、突起部10cの内、中央の突起部10bの根本部(底部鉄心15への移行部)に突起部10bの長手方向(第2の鉄心部2に対し垂直方向)に対して垂直方向にスリットで構成した空隙部8を設けると共に、空隙部8の長手方向の両側は薄肉鉄心部13により連結して構成されている。
Embodiment 2. FIG.
12 to 19 show the second embodiment, FIG. 12 is a cross-sectional view of the reactor 20, and FIGS. 13 to 19 are cross-sectional views of a reactor 20 according to a modification. In the first embodiment, the close contact portion 6 is provided in which the end surface of the central protrusion portion 10b of the first iron core portion 1 having the E shape and the end surface of the second iron core portion 2 having the I shape are in close contact with each other. The gap portion 8 formed by a long hole is provided in the vicinity of the end face of the central protrusion 10b of the first iron core portion 1 in the vicinity of the close contact portion 6 as shown in FIG. In the present embodiment, among the three protrusions 10a, protrusions 10b, and protrusions 10c of the first core part 1 having the E shape, the base part of the center protrusion 10b (the transition part to the bottom core 15). ) Are provided with gaps 8 constituted by slits in the vertical direction with respect to the longitudinal direction of the protrusions 10b (perpendicular to the second iron core part 2), and the both sides of the gap 8 in the longitudinal direction are thin-walled iron core parts 13 Are connected to each other.

以上のように、第1の鉄心部1の突起部10bの根本部に空隙部8を構成することにより、3箇所の密着部6により第1の鉄心部1と第2の鉄心部2が保持される構造となるため、リアクタ20の剛性が向上し、振動、騒音を低減できる。また、リアクタ20の剛性が向上し、リアクタ20の振動の周波数特性における主要なピーク周波数が高くなるため、例えば空気調和機の筐体の共振点を外れ、空気調和機の振動が低減する効果がある。   As described above, the first core portion 1 and the second core portion 2 are held by the three close contact portions 6 by configuring the gap portion 8 at the base portion of the protruding portion 10b of the first core portion 1. Therefore, the rigidity of the reactor 20 is improved and vibration and noise can be reduced. Further, since the rigidity of the reactor 20 is improved and the main peak frequency in the frequency characteristics of the vibration of the reactor 20 is increased, for example, the effect of reducing the vibration of the air conditioner by moving away from the resonance point of the casing of the air conditioner. is there.

尚、薄肉鉄心部13は少なくとも1つあればよく、また、空隙部8を形成するスリットは、複数のスリットにより構成してもよい。   It should be noted that at least one thin iron core portion 13 is sufficient, and the slit forming the gap 8 may be composed of a plurality of slits.

また、空隙部8は、図13〜図17に示すように、突起部10bの根本部以外の、任意の位置に形成してもよい。   Moreover, as shown in FIGS. 13-17, the space | gap part 8 may be formed in arbitrary positions other than the root part of the projection part 10b.

図13のリアクタ20は、片側に薄肉鉄心部13を有する空隙部8を突起部10bの長手方向中央付近に設けたものである。空隙部8はスロット4に連通している。   The reactor 20 of FIG. 13 is provided with a gap portion 8 having a thin core portion 13 on one side in the vicinity of the center in the longitudinal direction of the protruding portion 10b. The gap 8 communicates with the slot 4.

図14のリアクタ20は、中央に薄肉鉄心部13を有する空隙部8を、突起部10bの長手方向の途中の根元部側付近に設けたものである。分割された空隙部8は、夫々スロット4に連通している。   The reactor 20 of FIG. 14 is provided with a gap portion 8 having a thin core portion 13 in the center in the vicinity of the root portion in the middle of the projection portion 10b in the longitudinal direction. The divided gap portions 8 communicate with the slots 4 respectively.

図15のリアクタ20は、3分割された空隙部8を、突起部10bの長手方向の途中の根元部側付近に設けたものである。空隙部8の間、スロット4と空隙部8の間に、薄肉鉄心部13を有する。   The reactor 20 of FIG. 15 is provided with the three-divided gap portion 8 in the vicinity of the root portion in the middle of the protruding portion 10b in the longitudinal direction. A thin iron core portion 13 is provided between the gap portions 8 and between the slot 4 and the gap portion 8.

図16のリアクタ20は、3分割された空隙部8を、突起部10bの長手方向の中央部付近に設けたもので、中央の空隙部8は空隙長が両側の空隙部8よりも短くなっている。空隙部8の間の2箇所に薄肉鉄心部13を有し、両側の空隙部8はスロット4に連通している。中央の空隙部8の空隙長を両側の空隙部8の空隙長より短くすることにより、磁束が突起部10bの中央付近を通るので、漏れ磁束を小さくでき、リアクタ20の損失を低減できる。また、漏れ磁束による、他の機器への影響を抑制できる。   The reactor 20 shown in FIG. 16 is provided with a three-divided gap portion 8 in the vicinity of the central portion in the longitudinal direction of the protrusion 10b. The gap length at the center is shorter than the gap portions 8 on both sides. ing. The thin-walled iron core portions 13 are provided at two positions between the gap portions 8, and the gap portions 8 on both sides communicate with the slot 4. By making the gap length of the central gap portion 8 shorter than the gap lengths of the gap portions 8 on both sides, the magnetic flux passes near the center of the protrusion 10b, so that the leakage flux can be reduced and the loss of the reactor 20 can be reduced. Moreover, the influence on other apparatuses by leakage magnetic flux can be suppressed.

図17のリアクタ20は、図16のものと同じであるが、3分割された空隙部8の中、外側の空隙部8がスロット4に連通していない点だけが、図16のものと異なる。   The reactor 20 in FIG. 17 is the same as that in FIG. 16, but differs from that in FIG. 16 only in that the outer space 8 is not in communication with the slot 4 in the space 8 divided into three. .

また、空隙部8は、突起部10bに限定されるものではなく、図18に示すように、第1の鉄心部1の突起部10a、突起部10b、突起部10cの3箇所に空隙部8を分散させてもよい。   Moreover, the space | gap part 8 is not limited to the protrusion part 10b, but as shown in FIG. 18, the space | gap part 8 is provided in three places, the protrusion part 10a of the 1st iron core part 1, the protrusion part 10b, and the protrusion part 10c. May be dispersed.

図18のリアクタ20は、第1の鉄心部1の突起部10a、突起部10b、突起部10cの3箇所に空隙部8を分散して設けている。第1の磁路14a(図3参照)には、突起部10bの空隙部8と突起部10aの空隙部8とが直列に存在する。また、第2の磁路14b(図3参照)には、突起部10bの空隙部8と突起部10cの空隙部8とが直列に存在する。従って、リアクタ20のインダクタンスを一定にするために、図18の各空隙部8の空隙長は、図2、3の空隙部8の空隙長lの1/2に設定される。 In the reactor 20 of FIG. 18, the gaps 8 are distributed and provided at three locations of the protrusion 10 a, the protrusion 10 b, and the protrusion 10 c of the first iron core 1. In the first magnetic path 14a (see FIG. 3), the gap 8 of the protrusion 10b and the gap 8 of the protrusion 10a exist in series. Further, in the second magnetic path 14b (see FIG. 3), the gap 8 of the protrusion 10b and the gap 8 of the protrusion 10c exist in series. Therefore, in order to make the inductance of the reactor 20 constant, the gap length of each gap portion 8 in FIG. 18 is set to 1/2 of the gap length l g of the gap portion 8 in FIGS.

また、図19に示すように、突起部10bの長手方向に複数の空隙部8を設けてもよい。   Moreover, as shown in FIG. 19, you may provide the several space | gap part 8 in the longitudinal direction of the projection part 10b.

図19のリアクタ20は、突起部10bの長手方向に二つの空隙部8を配置している。この場合も、リアクタ20のインダクタンスを一定にするために、図18の各空隙部8の空隙長は、図2、3の空隙部8の空隙長lの1/2に設定される。 In the reactor 20 of FIG. 19, two gaps 8 are arranged in the longitudinal direction of the protrusion 10b. Again, in order to make the inductance of the reactor 20 constant, the gap length of each gap portion 8 in FIG. 18 is set to 1/2 of the gap length l g of the gap portion 8 in FIGS.

実施の形態3.
図20、21は実施の形態3を示す図で、図20はリアクタ20の断面図、図21は変形例のリアクタ20の断面図である。本実施の形態では、図20に示すように、E型形状を成す第1の鉄心部1の突起部10bに突起部10bの長手方向に対して垂直方向にスリットで形成された空隙部8を設けるとともに、空隙部8の中央部にくびれ部8a(幅1〜2mm)を設けることにより、空隙部8の中央部の空隙長を小さくなるように構成している。
Embodiment 3 FIG.
20 and 21 are diagrams showing the third embodiment. FIG. 20 is a cross-sectional view of the reactor 20, and FIG. In the present embodiment, as shown in FIG. 20, a gap 8 formed by a slit in the direction perpendicular to the longitudinal direction of the projection 10b is formed on the projection 10b of the first iron core portion 1 having an E shape. At the same time, the constriction 8a (width 1 to 2 mm) is provided at the center of the gap 8 so that the gap length at the center of the gap 8 is reduced.

以上のように、空隙部8を構成することにより、突起部10bを流れる磁束の漏れを低減して、効率のよいリアクタ20を実現できる。また、3箇所の密着部6により第1の鉄心部1と第2の鉄心部2が保持される構造となるため、リアクタの剛性が向上し、振動、騒音を低減できる。また、リアクタ20の剛性が向上し、リアクタ20の振動の周波数特性における主要なピーク周波数が高くなるため、例えば空気調和機の筐体の共振点を外れ、空気調和機の振動が低減する効果がある。   As described above, by configuring the gap 8, leakage of magnetic flux flowing through the protrusion 10 b can be reduced, and an efficient reactor 20 can be realized. In addition, since the first iron core portion 1 and the second iron core portion 2 are held by the three close contact portions 6, the rigidity of the reactor is improved, and vibration and noise can be reduced. Further, since the rigidity of the reactor 20 is improved and the main peak frequency in the frequency characteristics of the vibration of the reactor 20 is increased, for example, the effect of reducing the vibration of the air conditioner by moving away from the resonance point of the casing of the air conditioner. is there.

尚、空隙部8の形状は、図20に限定されるものではなく、例えば、図21に示すように突起部10bの中心に向かって、滑らかに小さくなる形状とすることによっても同様の効果が得られる。   Note that the shape of the gap 8 is not limited to that shown in FIG. 20. For example, a similar effect can be obtained by making the gap 8 smoothly smaller toward the center of the protrusion 10 b as shown in FIG. 21. can get.

実施の形態4.
図22乃至図27は実施の形態4を示す図で、図22はリアクタ20の断面図、図23乃至27は変形例のリアクタ20の断面図である。本実施の形態では、図22に示すように、E型形状を成す第1の鉄心部1の端面とI型形状を成す第2の鉄心部2の端面を密着させた密着部6を設けるとともに、I型形状を成す第2の鉄心部2の長手方向に対して垂直方向、且つ、第1の鉄心部1のスロット4と対向する位置にスリットで構成した二つの空隙部8を設けると共に、空隙部8の長手方向の両側を薄肉鉄心部13により連結した構成となっている。
Embodiment 4 FIG.
FIGS. 22 to 27 are diagrams showing the fourth embodiment. FIG. 22 is a cross-sectional view of the reactor 20, and FIGS. In the present embodiment, as shown in FIG. 22, a close contact portion 6 is provided in which the end surface of the first iron core portion 1 having an E shape is in close contact with the end surface of the second iron core portion 2 having an I shape. Two gaps 8 formed of slits are provided in a direction perpendicular to the longitudinal direction of the second iron core portion 2 having an I-shape and opposed to the slots 4 of the first iron core portion 1; The both sides of the gap portion 8 in the longitudinal direction are connected by the thin core portion 13.

以上のように、第2の鉄心部2に二つの空隙部8を形成することにより、3箇所の密着部6により第1の鉄心部1と第2の鉄心部2が保持される構造となるため、リアクタ20の剛性が向上し、振動、騒音を低減できる。また、リアクタ20の剛性が向上し、リアクタ20の振動の周波数特性における主要なピーク周波数が高くなるため、例えば空気調和機の筐体の共振点を外れ、空気調和機の振動が低減する効果がある。   As described above, by forming the two gap portions 8 in the second iron core portion 2, the first iron core portion 1 and the second iron core portion 2 are held by the three close contact portions 6. Therefore, the rigidity of the reactor 20 is improved, and vibration and noise can be reduced. Further, since the rigidity of the reactor 20 is improved and the main peak frequency in the frequency characteristics of the vibration of the reactor 20 is increased, for example, the effect of reducing the vibration of the air conditioner by moving away from the resonance point of the casing of the air conditioner. is there.

尚、I型形状を成す第2の鉄心部2の長手方向に対して垂直方向、且つ、第1の鉄心部1のスロット4と対向する位置にスリットで構成した空隙部8を設ける代わりに、図23に示すように、E型形状を成す第1の鉄心部1の両側の突起部10a、突起部10cと対向するI型形状を成す第2の鉄心部2の領域に磁束の経路を妨げるように斜めにスリットで構成した空隙部8を設けてもよい。   In addition, instead of providing the gap portion 8 formed of a slit in a direction perpendicular to the longitudinal direction of the second iron core portion 2 having the I shape and facing the slot 4 of the first iron core portion 1, As shown in FIG. 23, the path of the magnetic flux is obstructed in the region of the I-shaped second iron core portion 2 facing the protruding portions 10a and 10c on both sides of the first iron core portion 1 forming the E shape. As described above, the gap portion 8 formed of a slit obliquely may be provided.

また、図24に示すように、E型形状を成す第1の鉄心部1の中央の突起部10bと対向するI型形状を成す第2の鉄心部2の領域に磁束の経路を妨げるように斜めにスリットで構成した空隙部8を設けてもよい。   Further, as shown in FIG. 24, the path of the magnetic flux is obstructed in the region of the second iron core portion 2 forming the I-shape facing the central protrusion 10b of the first iron core portion 1 forming the E shape. You may provide the space | gap part 8 comprised with the slit diagonally.

また、図25で示すように、E型形状を成す第1の鉄心部1の突起部10a、突起部10b、突起部10cとをつなぐ底部鉄心15のスロット4と対向する領域に磁束の経路を妨げる方向にスリットで構成した空隙部8を設けてもよい。   Further, as shown in FIG. 25, a magnetic flux path is provided in a region facing the slot 4 of the bottom iron core 15 that connects the protrusion 10a, the protrusion 10b, and the protrusion 10c of the first iron core portion 1 having an E shape. You may provide the space | gap part 8 comprised with the slit in the direction to prevent.

また、図26で示すように、E型形状を成す第1の鉄心部1の突起部10a、突起部10b、突起部10cとをつなぐ底部鉄心15と、中央の突起部10bと対向する領域に磁束の経路を妨げる方向にスリットで構成した空隙部8を設けてもよい。   In addition, as shown in FIG. 26, in a region facing the bottom core 15 that connects the protrusion 10a, the protrusion 10b, and the protrusion 10c of the first iron core 1 having an E shape, and the central protrusion 10b. You may provide the space | gap part 8 comprised with the slit in the direction which blocks | prevents the path | route of magnetic flux.

また、図27に示すように、E型形状を成す第1の鉄心部1の突起部10a、突起部10b、突起部10cとをつなぐ底部鉄心15と、両側の突起部10a、突起部10cと対向する領域に磁束の経路を妨げる方向に斜めにスリットで構成した空隙部8を設けてもよい。   Further, as shown in FIG. 27, the bottom iron core 15 that connects the protrusion 10a, the protrusion 10b, and the protrusion 10c of the first iron core 1 having an E shape, and the protrusions 10a and 10c on both sides You may provide the space | gap part 8 comprised with the slit diagonally in the direction which blocks | prevents the path | route of magnetic flux in the area | region which opposes.

以上の説明では、E型形状を成す第1の鉄心部1と、I型形状を成す第2の鉄心部2との組合せによりリアクタ20の鉄心を形成する例を説明したが、E型形状の鉄心の組合せでリアクタ20の鉄心を形成してもよい。   In the above description, the example in which the iron core of the reactor 20 is formed by the combination of the first iron core portion 1 having an E shape and the second iron core portion 2 having an I shape has been described. The iron core of the reactor 20 may be formed by a combination of iron cores.

実施の形態1を示す図で、リアクタ20の斜視図である。FIG. 5 shows the first embodiment, and is a perspective view of a reactor 20. 実施の形態1を示す図で、リアクタ20の断面図である。FIG. 5 shows the first embodiment and is a cross-sectional view of a reactor 20. 実施の形態1を示す図で、リアクタ20の磁気回路を示す断面図である。FIG. 5 is a cross-sectional view showing the magnetic circuit of the reactor 20 according to the first embodiment. 実施の形態1を示す図で、リアクタ20の組立方法を示す断面図である。FIG. 5 shows the first embodiment, and is a cross-sectional view showing a method for assembling the reactor 20. 実施の形態1を示す図で、リアクタ20の振動の周波数特性を示す図である。FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating frequency characteristics of vibration of the reactor 20. 実施の形態1を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 1, and is sectional drawing of the reactor 20 of a modification. 実施の形態1を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 1, and is sectional drawing of the reactor 20 of a modification. 実施の形態1を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 1, and is sectional drawing of the reactor 20 of a modification. 実施の形態1を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 1, and is sectional drawing of the reactor 20 of a modification. 実施の形態1を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 1, and is sectional drawing of the reactor 20 of a modification. 実施の形態1を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 1, and is sectional drawing of the reactor 20 of a modification. 実施の形態2を示す図で、リアクタ20の断面図である。FIG. 5 shows the second embodiment and is a cross-sectional view of the reactor 20. 実施の形態2を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 2, and is sectional drawing of the reactor 20 of a modification. 実施の形態2を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 2, and is sectional drawing of the reactor 20 of a modification. 実施の形態2を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 2, and is sectional drawing of the reactor 20 of a modification. 実施の形態2を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 2, and is sectional drawing of the reactor 20 of a modification. 実施の形態2を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 2, and is sectional drawing of the reactor 20 of a modification. 実施の形態2を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 2, and is sectional drawing of the reactor 20 of a modification. 実施の形態2を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 2, and is sectional drawing of the reactor 20 of a modification. 実施の形態3を示す図で、リアクタ20の断面図である。FIG. 5 shows the third embodiment and is a cross-sectional view of the reactor 20. 実施の形態3を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 3, and is sectional drawing of the reactor 20 of a modification. 実施の形態4を示す図で、リアクタ20の断面図である。FIG. 10 is a diagram showing the fourth embodiment, and is a cross-sectional view of the reactor 20. 実施の形態4を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 4, and is sectional drawing of the reactor 20 of a modification. 実施の形態4を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 4, and is sectional drawing of the reactor 20 of a modification. 実施の形態4を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 4, and is sectional drawing of the reactor 20 of a modification. 実施の形態4を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 4, and is sectional drawing of the reactor 20 of a modification. 実施の形態4を示す図で、変形例のリアクタ20の断面図である。It is a figure which shows Embodiment 4, and is sectional drawing of the reactor 20 of a modification.

符号の説明Explanation of symbols

1 第1の鉄心部、2 第2の鉄心部、3 巻線、4 スロット、5 絶縁部、6 密着部、8 空隙部、8a くびれ部、10a 突起部、10b 突起部、10c 突起部、13 薄肉鉄心部、14a 第1の磁路、14b 第2の磁路、15 底部鉄心。   DESCRIPTION OF SYMBOLS 1 1st iron core part, 2nd 2nd iron core part, 3 winding, 4 slots, 5 insulation part, 6 contact part, 8 space | gap part, 8a constriction part, 10a protrusion part, 10b protrusion part, 10c protrusion part, 13 Thin core part, 14a 1st magnetic path, 14b 2nd magnetic path, 15 bottom iron core.

Claims (3)

E型形状で形成され、中央の突起部と、両端の二つの突起部と、底部鉄心とを有する第1の鉄心部と、
この第1の鉄心部に付け合わされる第2の鉄心部と、
前記第1の鉄心部に形成される中央の突起部に巻装される巻線と、
前記第1の鉄心部の両端の二つの突起部の端面、及び前記第1の鉄心部の中央の突起部の端面の少なくとも一部が前記第2の鉄心部に付け合わされて形成される密着部と、
前記第1の鉄心部の中央の突起部と、前記第2の鉄心部の一部と、前記第1の鉄心部の一方の端の突起部と、前記第1の鉄心部の底部鉄心の一部とで構成される第1の磁路と、
前記第1の鉄心部の中央の突起部と、前記第2の鉄心部の一部と、前記第1の鉄心部の他方の端の突起部と、前記第1の鉄心部の底部鉄心の一部とで構成される第2の磁路と、
前記第1の磁路と前記第2の磁路との夫々に、又は前記第1の磁路と前記第2の磁路との共通の磁路の前記密着部付近もしくは前記底部鉄心への移行部付近に設けられ、長孔又はスリットで形成された磁気飽和特性調整用の空隙部とを備えたことを特徴とするリアクタ。
A first iron core portion formed in an E shape, having a central protrusion, two protrusions at both ends, and a bottom iron core;
A second iron core portion attached to the first iron core portion;
A winding wound around a central protrusion formed on the first iron core;
An adhesion portion formed by attaching at least part of the end surfaces of the two protrusions at both ends of the first iron core and the end surface of the central protrusion of the first iron core to the second iron core. When,
A central protrusion of the first iron core, a part of the second iron core, a protrusion at one end of the first iron core, and a bottom iron core of the first iron core; A first magnetic path composed of a portion,
A central protrusion of the first iron core, a part of the second iron core, a protrusion at the other end of the first iron core, and a bottom iron core of the first iron core; A second magnetic path composed of a portion,
Transition to the vicinity of the close contact portion or the bottom iron core of the first magnetic path and the second magnetic path, or the common magnetic path of the first magnetic path and the second magnetic path And a void portion for adjusting magnetic saturation characteristics formed in the vicinity of the portion and formed by a long hole or a slit.
E型形状で形成され、中央の突起部と、両端の二つの突起部と、底部鉄心とを有する第1の鉄心部と、
この第1の鉄心部に付け合わされる第2の鉄心部と、
前記第1の鉄心部に形成される中央の突起部に巻装される巻線と、
前記第1の鉄心部の突起部の端面が前記第2の鉄心部に付け合わされて形成される密着部と、
前記第1の鉄心部の中央の突起部に設けられ、3個以上に分割されると共に、中央部の空隙長を他の空隙長よりも小さくした、前記中央の突起部の長手方向に直交する方向に長孔又はスリットで形成された磁気飽和特性調整用の空隙部とを備えたことを特徴とするリアクタ。
A first iron core portion formed in an E shape and having a central protrusion, two protrusions at both ends, and a bottom iron core;
A second iron core portion attached to the first iron core portion;
A winding wound around a central protrusion formed on the first iron core;
A close contact portion formed by attaching an end surface of the protrusion of the first core portion to the second core portion;
It is provided in the central protrusion of the first iron core and is divided into three or more, and the gap length of the center is smaller than other gap lengths, and is orthogonal to the longitudinal direction of the center protrusion. And a void portion for adjusting magnetic saturation characteristics formed by a long hole or a slit in the direction.
E型形状で形成され、中央の突起部と、両端の二つの突起部と、底部鉄心とを有する第1の鉄心部と、
この第1の鉄心部に付け合わされる第2の鉄心部と、
前記第1の鉄心部に形成される中央の突起部に巻装される巻線と、
前記第1の鉄心部の突起部の端面が前記第2の鉄心部に付け合わされて形成される密着部と、
前記第1の鉄心部の中央の突起部に設けられ、中央部の空隙長を他の空隙長よりも小さくした、前記中央の突起部の長手方向に直交する方向に長孔又はスリットで形成された磁気飽和特性調整用の空隙部とを備えたことを特徴とするリアクタ。
A first iron core portion formed in an E shape and having a central protrusion, two protrusions at both ends, and a bottom iron core;
A second iron core portion attached to the first iron core portion;
A winding wound around a central protrusion formed on the first iron core;
A close contact portion formed by attaching an end surface of the protrusion of the first core portion to the second core portion;
Provided in the central protrusion of the first iron core, and formed by a long hole or slit in a direction perpendicular to the longitudinal direction of the central protrusion, the gap length of the center being smaller than other gap lengths. A reactor for adjusting magnetic saturation characteristics.
JP2005355616A 2005-12-09 2005-12-09 Reactor Pending JP2007165346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355616A JP2007165346A (en) 2005-12-09 2005-12-09 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355616A JP2007165346A (en) 2005-12-09 2005-12-09 Reactor

Publications (1)

Publication Number Publication Date
JP2007165346A true JP2007165346A (en) 2007-06-28

Family

ID=38247972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355616A Pending JP2007165346A (en) 2005-12-09 2005-12-09 Reactor

Country Status (1)

Country Link
JP (1) JP2007165346A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141111A (en) * 2007-12-06 2009-06-25 Daikin Ind Ltd Reactor
JP2010093948A (en) * 2008-10-08 2010-04-22 Mitsubishi Electric Corp Electromagnetic actuator
JP2013080950A (en) * 2012-12-20 2013-05-02 Mitsubishi Electric Corp Ignition coil for internal combustion engine
JP2014225516A (en) * 2013-05-15 2014-12-04 Necトーキン株式会社 Reactor
JP2015046591A (en) * 2013-07-29 2015-03-12 Jfeスチール株式会社 Design method and manufacturing method for high frequency reactor
JP2015141997A (en) * 2014-01-28 2015-08-03 Jfeスチール株式会社 Reactor core, and reactor using the same
JP2015142122A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 reactor
JP2016051873A (en) * 2014-09-02 2016-04-11 田淵電機株式会社 Core structure, choke coil for interleave and transformer
US20210257138A1 (en) * 2017-01-27 2021-08-19 Toyota Motor Engineering & Manufacturing North America, Inc. Inductor with variable permeability core
KR102560081B1 (en) * 2022-10-17 2023-07-27 천복기계(주) Water Cooled High Frequency Welding Machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151316A (en) * 1979-05-15 1980-11-25 Ikeda Denki Kk Saturation type leakage transformer
JPS5931216U (en) * 1982-08-19 1984-02-27 フジテック株式会社 Gapped iron core reactor
JPH04171704A (en) * 1990-11-02 1992-06-18 Risho Kogyo Co Ltd Core for reactor
JPH0631122U (en) * 1992-09-21 1994-04-22 株式会社タムラ製作所 reactor
JP2001176732A (en) * 1999-12-14 2001-06-29 Hitachi Media Electoronics Co Ltd Transformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151316A (en) * 1979-05-15 1980-11-25 Ikeda Denki Kk Saturation type leakage transformer
JPS5931216U (en) * 1982-08-19 1984-02-27 フジテック株式会社 Gapped iron core reactor
JPH04171704A (en) * 1990-11-02 1992-06-18 Risho Kogyo Co Ltd Core for reactor
JPH0631122U (en) * 1992-09-21 1994-04-22 株式会社タムラ製作所 reactor
JP2001176732A (en) * 1999-12-14 2001-06-29 Hitachi Media Electoronics Co Ltd Transformer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141111A (en) * 2007-12-06 2009-06-25 Daikin Ind Ltd Reactor
JP2010093948A (en) * 2008-10-08 2010-04-22 Mitsubishi Electric Corp Electromagnetic actuator
JP2013080950A (en) * 2012-12-20 2013-05-02 Mitsubishi Electric Corp Ignition coil for internal combustion engine
JP2014225516A (en) * 2013-05-15 2014-12-04 Necトーキン株式会社 Reactor
JP2015046591A (en) * 2013-07-29 2015-03-12 Jfeスチール株式会社 Design method and manufacturing method for high frequency reactor
JP2015141997A (en) * 2014-01-28 2015-08-03 Jfeスチール株式会社 Reactor core, and reactor using the same
JP2015142122A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 reactor
JP2016051873A (en) * 2014-09-02 2016-04-11 田淵電機株式会社 Core structure, choke coil for interleave and transformer
US20210257138A1 (en) * 2017-01-27 2021-08-19 Toyota Motor Engineering & Manufacturing North America, Inc. Inductor with variable permeability core
KR102560081B1 (en) * 2022-10-17 2023-07-27 천복기계(주) Water Cooled High Frequency Welding Machine

Similar Documents

Publication Publication Date Title
JP2007165346A (en) Reactor
US5841335A (en) Choke coil
JP5215761B2 (en) Trance
JP2007059507A (en) Substrate mounting transformer
JP3569253B2 (en) Reciprocating motor
JP2019149517A (en) Electromagnetic apparatus
JP2006245050A (en) Coil component and reactor
JP4877505B2 (en) Reactor
JPH09205743A (en) Stator of induction motor
US7457429B2 (en) Laminated motor structure for electromagnetic transducer
JP2007324197A (en) Inductor
JP4363148B2 (en) Common mode noise filter
JP2019091747A (en) Transformer and coil bobbin
JP4998381B2 (en) Reactor and converter
JP6781043B2 (en) Composite magnetic circuit inductor
JP3534011B2 (en) choke coil
KR101899146B1 (en) high frequency transformer for securing controlled leakage inductance
JP5010959B2 (en) Ignition coil for internal combustion engine and method for manufacturing the same
JP2005045057A (en) Structure of winding of transformer
JP3723865B2 (en) reactor
JP5065995B2 (en) Transformer
JP2000124047A (en) Choke coil
JP4379757B2 (en) Noise cut transformer
JP2007096123A (en) Ferrite core
JP3085122B2 (en) choke coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420