JP2007155397A - Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method - Google Patents
Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method Download PDFInfo
- Publication number
- JP2007155397A JP2007155397A JP2005348179A JP2005348179A JP2007155397A JP 2007155397 A JP2007155397 A JP 2007155397A JP 2005348179 A JP2005348179 A JP 2005348179A JP 2005348179 A JP2005348179 A JP 2005348179A JP 2007155397 A JP2007155397 A JP 2007155397A
- Authority
- JP
- Japan
- Prior art keywords
- light
- sound wave
- component concentration
- temperature
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 154
- 238000005259 measurement Methods 0.000 title claims description 122
- 238000000691 measurement method Methods 0.000 title claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 91
- 238000002835 absorbance Methods 0.000 claims abstract description 65
- 230000008859 change Effects 0.000 claims description 87
- 230000007704 transition Effects 0.000 claims description 63
- 238000004364 calculation method Methods 0.000 claims description 49
- 238000013208 measuring procedure Methods 0.000 claims description 23
- 238000009529 body temperature measurement Methods 0.000 claims description 6
- 239000000306 component Substances 0.000 description 302
- 238000001514 detection method Methods 0.000 description 31
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 23
- 239000008103 glucose Substances 0.000 description 23
- 238000010521 absorption reaction Methods 0.000 description 15
- 239000004020 conductor Substances 0.000 description 14
- 239000008280 blood Substances 0.000 description 13
- 210000004369 blood Anatomy 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 7
- 230000031700 light absorption Effects 0.000 description 7
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 239000012503 blood component Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02809—Concentration of a compound, e.g. measured by a surface mass change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02818—Density, viscosity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02881—Temperature
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
【課題】本発明では、被検体又は被測定物の温度の音波強度への影響を少なくして成分濃度を正確に測定することを目的とする。
【解決手段】本発明は、所定の温度における水が同じ吸光度を示す異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し且つ前記異なる2波長の光のうち所定の1波長の光を電気的に強度変調して出射する混合光単一光出射手段と、前記被検体から発生する音波の大きさを測定する音波強度測定手段と、を備え、前記混合光単一光出射手段は、前記異なる2波長の光及び前記所定の1波長の光を複数回交互に出射することを特徴とする。
【選択図】図4An object of the present invention is to accurately measure a component concentration by reducing the influence of the temperature of a subject or an object to be measured on sound wave intensity.
The present invention is to emit light of two different wavelengths in which water at a predetermined temperature shows the same absorbance by electrically modulating the intensity with a signal having the same frequency and opposite phase, and out of the light of the two different wavelengths. A mixed light single light emitting means for emitting light having a predetermined wavelength that is electrically intensity modulated, and a sound intensity measuring means for measuring the magnitude of a sound wave generated from the subject, and the mixed light. The single light emitting means emits the different two wavelengths of light and the predetermined one wavelength of light alternately a plurality of times.
[Selection] Figure 4
Description
本発明は、人間又は動物の被検体の非侵襲な成分濃度測定方法、成分濃度測定装置及び成分濃度測定装置制御方法、或いは人間又は動物から採取した被測定物の成分濃度測定方法、成分濃度測定装置及び成分濃度測定装置制御方法に関する。 The present invention relates to a noninvasive component concentration measurement method, a component concentration measurement device and a component concentration measurement device control method for a human or animal subject, or a component concentration measurement method or component concentration measurement of a sample collected from a human or animal. The present invention relates to a device and a component concentration measuring device control method.
高齢化が進み、成人病に対する対応が大きな課題になりつつある。血糖値などの検査においては血液の採取が必要なために患者にとって大きな負担となるので、血液を採取しない非侵襲な成分濃度測定装置が注目されている。現在までに開発された非侵襲な成分濃度測定装置としては、皮膚内に電磁波を照射し、測定対象とする血液成分、例えば、血糖値の場合はグルコース分子に吸収され、局所的に加熱して熱膨張を起こして生体内から発生する音波を観測する、光音響法が注目されている。 With the aging of society, dealing with adult diseases is becoming a major issue. In blood glucose level and other tests, blood collection is necessary, which places a heavy burden on the patient. Therefore, a non-invasive component concentration measurement apparatus that does not collect blood has attracted attention. As a non-invasive component concentration measuring device that has been developed so far, the skin is irradiated with electromagnetic waves and absorbed by blood molecules to be measured, for example, glucose molecules in the case of blood glucose levels, and heated locally. A photoacoustic method that observes a sound wave generated from a living body due to thermal expansion has attracted attention.
しかし、グルコースと電磁波との相互作用は小さく、また生体に安全に照射し得る電磁波の強度には制限があり、生体の血糖値測定においては、十分な効果をあげるに至っていない。 However, the interaction between glucose and electromagnetic waves is small, and there is a limit to the intensity of electromagnetic waves that can be safely irradiated to a living body, so that a sufficient effect has not been achieved in measuring blood glucose levels in the living body.
図7および図8は、従来例として、光音響法による従来の血液成分濃度測定装置の構成例を示す図である。図7は光パルスを電磁波として用いた第1の従来例である(例えば、非特許文献1参照。)。本例では血液成分として血糖、すなわちグルコースを測定対象としている。図7において、駆動回路604はパルス状の励起電流をパルス光源616に供給し、パルス光源616はサブマイクロ秒の持続時間を有する光パルスを発生し、発生した光パルスは被検体610に照射される。光パルスは被検体610の内部にパルス状の光音響信号と呼ばれる音波を発生させ、発生した音波は超音波検出器613により検出され、さらに音圧に比例した電気信号に変換される。
7 and 8 are diagrams showing a configuration example of a conventional blood component concentration measuring apparatus using a photoacoustic method as a conventional example. FIG. 7 shows a first conventional example using a light pulse as an electromagnetic wave (see, for example, Non-Patent Document 1). In this example, blood glucose, that is, glucose is the measurement target as the blood component. In FIG. 7, a
変換された電気信号の波形は波形観測器620により観測される。この波形観測器620は上記励起電流に同期した信号によりトリガされ、変換された電気信号は波形観測器620の管面上の一定位置に表示され、変換された電気信号は積算・平均して測定することができる。このようにして得られた電気信号の振幅を解析して、被検体610の内部の血糖値、すなわちグルコースの量が測定される。図7に示す例の場合はサブマイクロ秒のパルス幅の光パルスを最大1kHzの繰り返しで発生し、1024個の光パルスを平均して、前記電気信号を測定しているが十分な精度が得られていない。
The waveform of the converted electric signal is observed by the
そこで、より精度を高める目的で、連続的に強度変調した光源を用いる第2の従来例が開示されている。図8に第2の従来例の装置の構成を示す(例えば、特許文献1参照。)。本例も血糖を主な測定対象として、異なる波長の複数の光源を用いて、高精度化を試みている。説明の煩雑さを避けるために、図8により光源の数が2の場合の動作を説明する。図8において、異なる波長の光源、即ち、第1の光源601及び第2の光源605は、それぞれ駆動回路604及び駆動回路608により駆動され、連続光を出力する。
Therefore, a second conventional example using a light source that is continuously intensity-modulated has been disclosed for the purpose of improving accuracy. FIG. 8 shows the configuration of a second conventional apparatus (see, for example, Patent Document 1). In this example as well, blood sugar is the main measurement target, and high accuracy is attempted using a plurality of light sources having different wavelengths. In order to avoid complicated explanation, the operation when the number of light sources is 2 will be described with reference to FIG. In FIG. 8, light sources having different wavelengths, that is, a
第1の光源601及び第2の光源605が出力する光は、モータ618により駆動され一定回転数で回転するチョッパ板617により断続される。ここでチョッパ板617は不透明な材質により形成され、モータ618の軸を中心とする第1の光源601及び第2の光源605の光が通過する円周上に、互いに素な個数の開口部が形成されている。
Light output from the
上記の構成により、第1の光源601及び第2の光源605の各々が出力する光は互いに素な変調周波数f1及び変調周波数f2で強度変調された後、合波部609により合波され、1の光束として被検体610に照射される。
With the above-described configuration, the light output from each of the
被検体610の内部には第1の光源601の光により周波数f1の光音響信号が発生し、第2の光源605の光により周波数f2の光音響信号が発生し、これらの光音響信号は、音響センサ619により検出され、音圧に比例した電気信号に変換され、その周波数スペクトルが、周波数解析器621により観測される。本例においては、複数の光源の波長は全てグルコースの吸収波長に設定されており、各波長に対応する光音響信号の強度は、血液中に含まれるグルコースの量に対応した電気信号として測定される。
The inside of the
ここで、予め光音響信号の測定値の強度と別途採血した血液によりグルコースの含有量を測定した値との関係を記憶しておいて、前記光音響信号の測定値からグルコースの量を測定している。
上述の従来例においては以下のような課題がある。人間や動物などの被検体の温度は個体差、あるいは外気の温度や湿度により変化する。また、人間や動物などから採取した被測定物の温度は測定環境により変化する。このような温度変化により被検体又は被測定物の熱膨張率、被検体又は被測定物内の音速、被検体又は被測定物の測定対象の成分の吸光度特性が変化するため、光音響信号は温度に依存して下記のように変化する。 The conventional example described above has the following problems. The temperature of a subject such as a human or an animal varies depending on individual differences or the temperature and humidity of the outside air. In addition, the temperature of an object to be measured collected from a human or an animal varies depending on the measurement environment. Such a change in temperature changes the thermal expansion coefficient of the subject or the object to be measured, the sound velocity in the object or the object to be measured, and the absorbance characteristics of the component to be measured of the object or the object to be measured. It varies as follows depending on the temperature.
光照射により被検体又は被測定物から発生する音波の音圧sは以下の数式1のように表される。
The sound pressure s of the sound wave generated from the subject or the object to be measured by the light irradiation is expressed as the following
ここで、Iは照射光強度、βは被検体又は被測定物の熱膨張係数、cは被検体又は被測定物内の音速、Cpは被検体又は被測定物の比熱である。上記のパラメータの中で、β、cは温度により変化するため、温度変化により、熱膨張係数がΔβ変化し、音速がΔc変化した場合の音圧の変化Δsは数式(2)のように表される。 Here, I is an irradiation light intensity, β is a thermal expansion coefficient of the subject or the object to be measured, c is a sound velocity in the object or the object to be measured, and C p is a specific heat of the object or the object to be measured. Among the above parameters, since β and c change with temperature, the thermal expansion coefficient changes by Δβ due to temperature change, and the change in sound pressure when the sound speed changes by Δc, Δs is expressed as equation (2). Is done.
ここで、熱膨張係数βは温度変化1°C当たり3%変化する。数式(2)により、例えば温度が0.1°C変化した場合、光音響信号は約0.3%変化することがわかる。この0.1°Cの温度変化による光音響信号の変化の割合0.3%は、グルコースの濃度が5mg/dL変化した場合の光音響信号の変化の割合、0.017%の約20倍であり、温度の変化はグルコースの濃度測定に大きな影響を与える。 Here, the thermal expansion coefficient β changes by 3% per 1 ° C. temperature change. From equation (2), it can be seen that, for example, when the temperature changes by 0.1 ° C., the photoacoustic signal changes by about 0.3%. The rate of change of the photoacoustic signal due to the temperature change of 0.1 ° C. is 0.3%, the rate of change of the photoacoustic signal when the glucose concentration changes by 5 mg / dL, about 20 times the rate of 0.017%. The change in temperature greatly affects the measurement of glucose concentration.
このように、従来の被検体又は被測定物の成分濃度の測定方法においては測定時の被検体又は被測定物の温度変化により、測定誤差が非常に大きくなるという課題があった。 As described above, the conventional method for measuring the concentration of a component of a subject or a measurement object has a problem that a measurement error becomes very large due to a temperature change of the sample or the measurement object during measurement.
上記の課題を解決するために、本発明は、所定の温度における測定対象の成分及び水の吸光度特性から設定した異なる2波長の光、及び異なる2波長の光のうち所定の1波長の光を交互に複数回出射し、被検体又は被測定物から発生する音波の大きさを測定することにより、被検体又は被測定物の温度変化を間接的に測定して、被検体又は被測定物の温度変化による誤差を小さくして、成分濃度を正確に測定する成分濃度測定方法、成分濃度測定装置及び成分濃度測定装置制御方法である。ここで、被検体とは測定対象の人間や動物であり、被測定物とは測定対象の人間や動物から採取した測定対象物であり、以下の説明においても同様である。 In order to solve the above-mentioned problems, the present invention provides light of two different wavelengths set from the light absorption characteristics of the component to be measured and water at a predetermined temperature, and light of a predetermined one of the two different wavelengths. By alternately emitting a plurality of times and measuring the magnitude of the sound wave generated from the object or the object to be measured, the temperature change of the object or the object to be measured is indirectly measured, and the object or object to be measured is measured. A component concentration measurement method, a component concentration measurement device, and a component concentration measurement device control method for accurately measuring a component concentration by reducing an error due to a temperature change. Here, the subject is a measurement target human or animal, and the measurement target is a measurement target collected from the measurement target human or animal, and the same applies to the following description.
初めに、本発明の成分濃度測定装置及び成分濃度測定装置制御方法の基本原理を、一例として、被検体の成分濃度を測定する場合について説明する。 First, the case where the component concentration of a subject is measured will be described as an example of the basic principle of the component concentration measuring device and the component concentration measuring device control method of the present invention.
本発明では、異なる2波長の光の中の、第1の光の波長を、例えば被検体の測定対象の成分による吸光度が被検体の大部分を占める水による吸光度と顕著に異なる波長に設定し、第2の光の波長を水が第1の光の波長におけるのと合い等しい吸光度を示す波長に設定する。上記の波長の設定方法を、血液中のグルコースの濃度を測定する場合を例として図1により説明する。 In the present invention, the wavelength of the first light among the two different wavelengths of light is set to a wavelength that is significantly different from the absorbance due to water, for example, where the absorbance due to the measurement target component of the subject occupies most of the subject. The wavelength of the second light is set to a wavelength indicating the same absorbance as that of water at the wavelength of the first light. The above-described wavelength setting method will be described with reference to FIG. 1, taking as an example the case of measuring the concentration of glucose in blood.
図1は常温における水とグルコース水溶液の吸光度特性を示す。図1において、縦軸は吸光度を示し、横軸は光の波長を示している。また、図1において、実線は水の吸光度特性を示し、破線はグルコース水溶液の吸光度特性を示している。図1に示す波長λ1はグルコースによる吸光度が水による吸光度と顕著に異なる波長であり、波長λ2は、水がλ1における吸光度と合い等しい吸光度を示す波長である。従って、例えば、第1の光の波長をλ1と設定し、第2の光の波長をλ2と設定することができる。 FIG. 1 shows the absorbance characteristics of water and an aqueous glucose solution at room temperature. In FIG. 1, the vertical axis indicates the absorbance, and the horizontal axis indicates the wavelength of light. In FIG. 1, the solid line indicates the absorbance characteristic of water, and the broken line indicates the absorbance characteristic of the glucose aqueous solution. The wavelength λ 1 shown in FIG. 1 is a wavelength at which the absorbance due to glucose is significantly different from the absorbance due to water, and the wavelength λ 2 is a wavelength at which water has the same absorbance as that at λ 1 . Thus, for example, the wavelength of the first light can be set to λ 1 and the wavelength of the second light can be set to λ 2 .
以下の説明においては、第1の光の波長を測定対象の成分による吸光度が水による吸光度と顕著に異なる波長λ1に設定し、第2の光の波長を水が第1の光の波長λ1におけるのと合い等しい吸光度を示す波長λ2に設定することを前提にして説明する。 In the following description, the wavelength of the first light is set to a wavelength λ 1 where the absorbance by the component to be measured is significantly different from the absorbance by water, and the wavelength of the second light is the wavelength λ of the first light. The description will be made on the assumption that the wavelength λ 2 is set to be equal to that in FIG.
上記のように設定した異なる2波長の光の各々を、同一周波数で逆位相の信号により強度変調してパルス状の光として出射し、出射された異なる2波長の光が被検体の成分に吸収されて発生する音波の大きさを測定して、被検体の測定対象の成分の濃度を測定する。上記のように強度変調された異なる2波長の光を出射した場合、第1の光を測定対象の成分と水の両方が吸収して被検体から発生する第1の音波と、第2の光を被検体の大部分を占める水が吸収して被検体から発生する第2の音波とは、周波数が等しくかつ逆位相である。従って、第1の音波と第2の音波は被検体内で重畳し、音波の差として、第1の音波の中の測定対象の成分が吸収して被検体から発生する音波の大きさのみが残留する。そこで、残留した音波により、第1の光が測定対象の成分が吸収して被検体から発生する音波のみを測定することができる。上記の測定においては、測定対象の成分と水の両方が吸収して発生する音波と水が吸収して発生する音波を個別に測定して差を演算するよりも、測定対象の成分が吸収して被検体から発生する音波を正確に測定することができる。 Each of the two different wavelengths of light set as described above is intensity-modulated with a signal of the opposite phase at the same frequency and emitted as pulsed light, and the emitted two different wavelengths of light are absorbed by the component of the subject. The magnitude of the generated sound wave is measured, and the concentration of the component to be measured of the subject is measured. When light of two different wavelengths whose intensity is modulated as described above is emitted, the first light wave generated from the subject by the absorption of the first light by both the component to be measured and water, and the second light The second sound wave generated from the subject by absorbing water occupying most of the subject has the same frequency and an opposite phase. Therefore, the first sound wave and the second sound wave are superimposed in the subject, and only the magnitude of the sound wave generated from the subject due to absorption of the component to be measured in the first sound wave is obtained as the difference between the sound waves. Remains. Therefore, only the sound wave generated from the subject by the first light being absorbed by the component to be measured can be measured by the remaining sound wave. In the above measurement, the measurement target component absorbs rather than the difference between the sound wave generated by the absorption of both the measurement target component and water and the sound wave generated by the water absorption. Thus, the sound wave generated from the subject can be accurately measured.
さらに、被検体と音波検出素子との接触状態などの音波測定系の誤差の要因を除いて、高精度に測定する方法を以下に説明する。波長λ1の光及び波長λ2の光の各々に対する、被検体の大部分を占める水の吸収係数をα1 (w)及びα2 (w)として、被検体の測定対象の成分のモル吸収係数をα1 (g)及びα2 (g)とすれば、波長λ1の光及び波長λ2の光の各々により被検体から発生する音波の大きさs1及びs2を含む連立方程式は数式(3)で表される。 Furthermore, a method for measuring with high accuracy, excluding the cause of errors in the sound wave measurement system such as the contact state between the subject and the sound wave detection element, will be described below. For each of the light of wavelength λ 1 and the light of wavelength λ 2 , the absorption coefficient of water occupying most of the subject is α 1 (w) and α 2 (w) , and the molar absorption of the component to be measured of the subject If the coefficients are α 1 (g) and α 2 (g) , the simultaneous equations including the magnitudes s 1 and s 2 of sound waves generated from the subject by the light of wavelength λ 1 and the light of wavelength λ 2 are It is expressed by Equation (3).
上記の、数式(3)を解いて、被検体の測定対象の成分濃度Mを求めることができる。ここで、Cは制御あるいは予想困難な係数、すなわち、被検体と音波検出素子の結合状態、音波検出素子の感度、被検体において光により音波が発生される位置と音波検出素子との間の距離、被検体の比熱及び熱膨張係数、被検体の内部の音波の速度、波長λ1の光及び波長λ2の光の変調周波数、水の吸収係数及び被検体の成分のモル吸収係数、などに依存する未知定数である。さらに数式(3)でCを消去すると次の数式(4)が得られる。 By solving Equation (3), the component concentration M of the subject to be measured can be obtained. Here, C is a coefficient that is difficult to control or predict, that is, the coupling state between the subject and the sound wave detection element, the sensitivity of the sound wave detection element, and the distance between the position where the sound wave is generated by light in the subject and the sound wave detection element. , specific heat and thermal expansion coefficient of the object, the speed of the internal wave of the subject, the wavelength lambda 1 of light and the wavelength lambda 2 of the light modulation frequencies, the molar absorption coefficient of the component of the absorption coefficient and the subject of water, etc. It depends on the unknown constant. Further, when C is eliminated by Expression (3), the following Expression (4) is obtained.
ここで、波長λ1の光及び波長λ2の光の各々に対する、被検体の大部分を占める水の吸収係数α1 (w)及びα2 (w)が等しくなるように選択されているので、α1 (w)=α2 (w)が成立し、さらに、s1≒s2であることを用いれば、成分濃度Mは数式(5)で表される。 Here, the absorption coefficients α 1 (w) and α 2 (w) of water occupying most of the subject for each of the light of wavelength λ 1 and the light of wavelength λ 2 are selected to be equal. , Α 1 (w) = α 2 (w) is satisfied, and further, if it is used that s 1 ≈s 2 , the component concentration M is expressed by Equation (5).
上記の数式(5)に、既知の係数として、α1 (w)、α1 (g)及びα2 (g)を代入し、さらに、波長λ1の光及び波長λ2の光の各々により被検体から発生する音波の大きさs1及びs2を測定して代入することにより、被検体の成分濃度Mを算出することができる。上記の数式(5)においては、2つの音波の大きさs1及びs2を個別に測定するよりも、それらの差s1−s2を測定して、別に測定した音波の大きさs2で除する方が、被検体の成分濃度を高精度に測定することができる。 Substituting α 1 (w) , α 1 (g), and α 2 (g) as known coefficients into the above equation (5), and further by each of light of wavelength λ 1 and light of wavelength λ 2 The component concentration M of the subject can be calculated by measuring and substituting the magnitudes s 1 and s 2 of the sound waves generated from the subject. In the above formula (5), rather than separately measuring the two sound wave sizes s 1 and s 2 , the difference s 1 -s 2 is measured and the sound wave size s 2 measured separately is measured. The component concentration of the subject can be measured with high accuracy.
そこで、本発明の成分濃度測定装置及び成分濃度測定装置制御方法においては、まず、波長λ1の光及び波長λ2の光を、互いに逆位相の変調信号により強度変調して、1の光束に合波して出射することにより、被検体から発生する音波の大きさs1及び音波の大きさs2が相互に重畳して生じる音波の差(s1−s2)を測定する。次に、波長λ2の光を出射して、被検体から発生する音波の大きさs2を測定する。上記のように測定した(s1−s2)とs2とから、数式(5)により(s1−s2)÷s2を演算して被検体の測定対象の成分濃度を高精度に測定することができる。 Therefore, in the component concentration measuring apparatus and the component concentration measuring apparatus control method of the present invention, first, the light of wavelength λ 1 and the light of wavelength λ 2 are intensity-modulated by the modulation signals having opposite phases to each other to form one light beam. By combining and emitting, a difference (s 1 −s 2 ) between sound waves generated by superimposing the sound wave magnitude s 1 and the sound wave magnitude s 2 generated from the subject is measured. Next, light of wavelength λ 2 is emitted, and the magnitude s 2 of the sound wave generated from the subject is measured. From (s 1 −s 2 ) and s 2 measured as described above, (s 1 −s 2 ) ÷ s 2 is calculated according to Equation (5), and the concentration of the measurement target component of the subject can be calculated with high accuracy. Can be measured.
本発明の成分濃度測定装置及び成分濃度測定装置制御方法における被検体の温度の変化による影響は以下の通りである。 The influence of the temperature change of the subject in the component concentration measuring apparatus and the component concentration measuring apparatus control method of the present invention is as follows.
図2に、水に照射する光の波長に対する水の吸光度特性の変化のグラフの図を示す。図2において、吸光度特性は、水の温度を25℃から55℃まで5℃刻みで変化させたときのものを示している。また、図3に、水の温度変化に対する水の吸光度特性の変化のグラフの図を示す。 FIG. 2 shows a graph of the change in the absorbance characteristics of water with respect to the wavelength of light irradiated on the water. In FIG. 2, the absorbance characteristics indicate those when the temperature of water is changed from 25 ° C. to 55 ° C. in increments of 5 ° C. FIG. 3 shows a graph of a change in the absorbance property of water with respect to a change in water temperature.
図2に示すように、水の吸光特性は、波長1300nm〜1450nmでは、温度の上昇と共に増加し、波長1450nm〜1600nmでは、温度の上昇と共に減少する。つまり、水の吸光特性は、温度の上昇と共に波長が減少する方向にスライドする傾向がある。本発明では、数式(5)により成分濃度を測定するので、数式(2)で説明した温度変化による音波の大きさの変動の影響は受けないが、温度変化により水の吸光度特性が変化した場合、数式(5)における音波の大きさs2、s1−s2が、温度により変化するので、成分濃度Mに対する誤差の要因となる。 As shown in FIG. 2, the light absorption characteristics of water increase with increasing temperature at wavelengths of 1300 nm to 1450 nm, and decrease with increasing temperature at wavelengths of 1450 nm to 1600 nm. That is, the light absorption characteristic of water tends to slide in a direction in which the wavelength decreases with increasing temperature. In the present invention, since the component concentration is measured by the equation (5), it is not affected by the variation of the sound wave size due to the temperature change described in the equation (2), but the water absorbance characteristic is changed by the temperature change. Since the sound wave magnitudes s 2 and s 1 -s 2 in Equation (5) vary depending on the temperature, they cause an error with respect to the component concentration M.
ここで、図3によると、温度変化に対する水の吸光特性は、照射する光の各波長について線形に変化する。そのため、波長λ1及びλ2に対する水の吸光特性は、次の数式(6)として記述できる。ここで、波長λ1に対する吸光特性のグラフの傾きをχ1、波長λ2に対する吸光特性のグラフの傾きをχ2とし、所定の温度T0における水の吸光度をα0 (w)とする。また、所定の温度T0とは、図3の吸光特性のグラフの交点の温度である。 Here, according to FIG. 3, the light absorption characteristics with respect to the temperature change linearly change for each wavelength of the irradiated light. Therefore, the light absorption characteristics of water with respect to the wavelengths λ 1 and λ 2 can be described as the following formula (6). Here, chi 1 the slope of the graph of absorption characteristics with respect to the wavelength lambda 1, and the inclination chi 2 of the graph of absorption characteristics with respect to the wavelength lambda 2, the absorbance of water at a given temperature T 0 and α 0 (w). The predetermined temperature T 0 is the temperature at the intersection of the graph of the light absorption characteristics in FIG.
ここで、被測定物の成分のうち水の吸光度は、図3で説明したように被測定物の温度に依存する。また、数式(3)より音波の大きさs1及びs2は、それぞれ成分濃度Mに依存する。そのため、成分濃度Mに依存したある温度Teとすると音波の大きさをs1=s2とすることができる。そのため、数式(6)と数式(4)から、T=Teのときs1−s2=0の条件で、α1 (g)と比較してα2 (g)が無視できるほどに小さい場合には、α2 (g)=0とでき、数式(7)を導出できる。なお、数式(7)を導出する際には、数式(5)の導出と同様に、s1≒s2であることを用いている。 Here, the absorbance of water among the components of the object to be measured depends on the temperature of the object to be measured as described with reference to FIG. In addition, the magnitudes of sound waves s 1 and s 2 depend on the component concentration M, respectively, from Equation (3). Therefore, when a certain temperature T e which depends on the component concentration M wave magnitude it is possible to s 1 = s 2. Therefore, from equation (6) and Equation (4), under the condition of s 1 -s 2 = 0 when T = T e, as small as alpha 1 (g) as compared to the alpha 2 (g) is negligible In this case, α 2 (g) = 0 can be obtained, and Expression (7) can be derived. It should be noted that, when deriving the formula (7), it is used that s 1 ≈s 2 as in the derivation of the formula (5).
さらに、数式(7)と数式(3)の第2式を用いて、数式(8)を導出できる。 Furthermore, Formula (8) can be derived using the second formula of Formula (7) and Formula (3).
従って、被検体の温度T0、Teの値及び/又はそのときの音波の大きさs2を数式(7)又は数式(8)に代入することにより成分濃度Mを算出できる。 Thus, it calculates the constituent concentration M by substituting the magnitude s 2 value and / or sound waves when the temperature T 0, T e of the subject in the formula (7) or formula (8).
本発明においては、第1の光の波長を、所定の温度における被検体の測定対象の成分の吸光度が被検体の大部分を占める水の吸光度と顕著に異なる波長λ1に設定し、第2の光の波長を、所定の温度における水が第1の光の波長λ1におけるのと合い等しい吸光度を示す波長λ2に設定する。また、被検体の温度変化に対して音波の大きさが線形に変化することから、異なる2波長の光のうち所定の1波長の光の照射により発生する音波の大きさの推移から被検体の温度変化量の空間的分布を間接的に測定することとした。上記の方法により、本発明は被検体の温度の変化による誤差の発生を防止している。 In the present invention, the wavelength of the first light is set to a wavelength λ 1 that is significantly different from the absorbance of water in which the absorbance of the measurement target component of the subject at a predetermined temperature occupies most of the subject, Is set to a wavelength λ 2 indicating that the water at a predetermined temperature has the same absorbance as that of the first light at the wavelength λ 1 . Further, since the size of the sound wave changes linearly with respect to the temperature change of the subject, the transition of the size of the sound wave generated by the irradiation of the light of a predetermined one wavelength among the two different wavelengths of light is detected. We decided to measure the spatial distribution of temperature change indirectly. By the above method, the present invention prevents the occurrence of an error due to a change in the temperature of the subject.
以上が本発明の成分濃度測定方法、成分濃度測定装置及び成分濃度測定装置制御方法の基本原理である。 The above is the basic principle of the component concentration measurement method, component concentration measurement device, and component concentration measurement device control method of the present invention.
次に本発明による課題を解決するための具体的手段について説明する。本発明に係る成分濃度測定方法は、所定の温度における水が同じ吸光度を示す異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し且つ前記異なる2波長の光のうち所定の1波長の光を電気的に強度変調して出射する混合光単一光出射手段が前記異なる2波長の光及び前記所定の1波長の光を複数回交互に被測定物に出射すると共に、音波の大きさを測定する音波強度測定手段が前記被測定物から発生する音波の大きさを測定する単一音波強度測定手順を有する。 Next, specific means for solving the problems according to the present invention will be described. The component concentration measurement method according to the present invention emits light of two different wavelengths in which water at a predetermined temperature has the same absorbance, and is emitted after being intensity-modulated electrically with signals having the same frequency and opposite phase, and the two different wavelengths of light. Among them, the mixed light single light emitting means for emitting the light having a predetermined one wavelength by modulating the intensity electrically emits the two different wavelengths of light and the predetermined one wavelength of light alternately to the object to be measured a plurality of times. In addition, the sound intensity measuring means for measuring the intensity of sound waves has a single sound intensity measuring procedure for measuring the intensity of sound waves generated from the object to be measured.
本発明では、混合光単一光出射手段は、異なる2波長の光、即ち、第1の光の波長を前述の測定原理に従って被測定物の測定対象の成分及び水の吸光度特性から選定された波長λ1に設定し、及び第2の光の波長を前述の測定原理に従って被測定物の測定対象の成分及び水の吸光度特性から選定された波長λ2に設定する。そして、単一音波強度測定手順において、混合光単一光出射手段は、第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被測定物に出射する。このように出射した第1の光及び第2の光、又は第2の光が被測定物に照射されると被測定物から音波が発生し、音波強度測定手段は、被測定物から発生する音波を測定する。ここで、音波強度測定手段により測定される音波のうち前述の第1の光及び第2の光の混合光により発生する音波は、第1の音波により発生する第1の音波と第2の光により発生する第2の音波の差の音波である。 In the present invention, the mixed light single light emitting means selects the light of two different wavelengths, that is, the wavelength of the first light, from the component to be measured of the object to be measured and the light absorption characteristics of water according to the above-described measurement principle. The wavelength λ 1 is set, and the wavelength of the second light is set to the wavelength λ 2 selected from the component to be measured of the object to be measured and the absorbance characteristics of water according to the measurement principle described above. Then, in the single sound intensity measurement procedure, the mixed light single light emitting means alternately applies the mixed light of the first light and the second light and the single light of the second light to the object to be measured a plurality of times. Exit. When the first light and the second light thus emitted or the second light is irradiated onto the object to be measured, sound waves are generated from the object to be measured, and the sound intensity measuring means is generated from the object to be measured. Measure sound waves. Here, of the sound waves measured by the sound wave intensity measuring means, the sound waves generated by the mixed light of the first light and the second light are the first sound wave and the second light generated by the first sound wave. Is a sound wave of the difference between the second sound waves generated by.
第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被測定物に出射すると、被測定物における光の被照射部の温度が上昇する。ここで、図3で説明したように被測定物の温度と被測定物の成分のうち水の吸光度との関係が線形であるため、複数回出射する光のうち所定の1波長の光である第2の光により被測定物から発生する音波の大きさをモニタすることによって、間接的に被測定物の温度変化量の空間的分布を測定することができる。ここで、「被測定物の温度変化量の空間的分布」とは、第1の光及び第2の光、又は第2の光により被測定物の温度変化に影響を与える領域内の分布を意味する。 When the mixed light of the first light and the second light and the single light of the second light are alternately emitted to the object to be measured a plurality of times, the temperature of the light irradiated part in the object to be measured increases. Here, since the relationship between the temperature of the object to be measured and the absorbance of water among the components of the object to be measured is linear as described with reference to FIG. 3, it is light of a predetermined wavelength among the light emitted a plurality of times. By monitoring the magnitude of the sound wave generated from the object to be measured by the second light, the spatial distribution of the temperature change amount of the object to be measured can be indirectly measured. Here, the “spatial distribution of the temperature change amount of the object to be measured” refers to the distribution within the region that affects the temperature change of the object to be measured by the first light and the second light, or the second light. means.
このように、本発明に係る成分濃度測定方法は、被測定物の温度変化量の空間的分布を正確に測定できるため、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に測定することができる。また、間接的に被測定物の温度を測定し、かつ空間的分布を計測する他の手段と比較して、別途特殊な温度測定器や煩雑な手順が不要であるため、低コストを実現することができる。 As described above, since the component concentration measurement method according to the present invention can accurately measure the spatial distribution of the temperature change amount of the object to be measured, the component concentration can be accurately determined by reducing the influence of the change in the sound intensity due to the temperature change amount. Can be measured. In addition, compared with other means for indirectly measuring the temperature of the object to be measured and measuring the spatial distribution, a special temperature measuring instrument and complicated procedures are not required, thus realizing low cost. be able to.
本発明の成分濃度測定方法の前記単一音波強度測定手順において前記混合光単一光出射手段は、前記混合光単一光出射手段からの異なる2波長の光により前記被測定物から発生する音波の大きさが所定の大きさ以下となるまで、前記異なる2波長の光及び前記所定の1波長の光を交互に出射することが望ましい。 In the single sound intensity measurement procedure of the component concentration measurement method of the present invention, the mixed light single light emitting means generates sound waves generated from the object to be measured by light of two different wavelengths from the mixed light single light emitting means. It is desirable that the different two wavelengths of light and the predetermined one wavelength of light be emitted alternately until the size of becomes less than or equal to a predetermined size.
被測定物の成分のうち水の吸光度は、図3で説明したように被測定物の温度に依存する。そのため、互いに異なる2つの波長を選択して第1の光及び第2の光の波長を設定すると、第1の光及び第2の光の混合光により被測定物から発生する音波の大きさは、被測定物の所定の温度(例えば、波長1382nmの光、波長1608nmの光に設定した場合の温度T0−2)からの上昇に比例して下降する。そして、成分濃度Mに依存したある温度Teとなると音波の大きさは、所定の値以下に至り、やがて上昇に転じる。 Among the components of the object to be measured, the absorbance of water depends on the temperature of the object to be measured as described with reference to FIG. Therefore, if two different wavelengths are selected and the wavelengths of the first light and the second light are set, the magnitude of the sound wave generated from the object to be measured by the mixed light of the first light and the second light is The temperature decreases in proportion to an increase from a predetermined temperature of the object to be measured (for example, temperature T 0-2 when the light having a wavelength of 1382 nm and the light having a wavelength of 1608 nm is set). The wave size becomes a certain temperature T e which depends on the component concentration M is led to a predetermined value or less, eventually turns to rise.
従って、本発明に係る成分濃度測定方法は、単一音波強度測定手順において音波の大きさが所定の大きさ以下となるまで、交互に光を出射することにより、被測定物から発生する音波の大きさが所定の大きさ以下となるまでの被測定物の温度の空間的分布を間接的に測定することができる。 Therefore, the component concentration measuring method according to the present invention allows the sound waves generated from the object to be measured by alternately emitting light until the size of the sound wave becomes a predetermined magnitude or less in the single sound intensity measurement procedure. It is possible to indirectly measure the spatial distribution of the temperature of the object to be measured until the size becomes a predetermined size or less.
本発明の成分濃度測定方法において、前記被測定物の温度を一定温度に保持する温度保持手段が、前記被測定物の温度を前記所定の温度に保持し、前記所定の1波長の光を電気的に強度変調して出射する単一光出射手段が前記所定の1波長の光を前記被測定物に出射し、前記音波強度測定手段が前記被測定物から発生する音波の大きさを測定する所定温度音波強度測定手順を前記単一音波強度測定手順の前にさらに有することが望ましい。 In the component concentration measurement method of the present invention, temperature holding means for holding the temperature of the object to be measured at a constant temperature holds the temperature of the object to be measured at the predetermined temperature, and the light of the predetermined wavelength is electrically A single light emitting means for emitting the light with a predetermined intensity is emitted to the object to be measured, and the sound intensity measuring means measures the magnitude of the sound wave generated from the object to be measured. It is desirable to further have a predetermined temperature sound intensity measurement procedure before the single sound intensity measurement procedure.
本発明に係る成分濃度測定方法は、所定温度音波強度測定手順において被測定物の温度を強制的に所定の温度にして、所定の温度における被測定物から発生する音波を測定することができる。 The component concentration measuring method according to the present invention can measure the sound wave generated from the measurement object at the predetermined temperature by forcibly setting the temperature of the measurement object to the predetermined temperature in the predetermined temperature acoustic intensity measurement procedure.
本発明の成分濃度測定方法において、音波の大きさから成分濃度を算出する第1成分濃度算出手段が、前記単一音波強度測定手順において前記混合光単一光出射手段からの所定の1波長の光により前記被測定物から発生する音波の大きさのうち前記混合光単一光出射手段からの異なる2波長の光により前記被測定物から発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさ及び前記所定温度音波強度測定手順において測定される音波の大きさから成分濃度を算出する第1成分濃度算出手順をさらに有することが望ましい。 In the component concentration measuring method of the present invention, the first component concentration calculating means for calculating the component concentration from the magnitude of the sound wave has a predetermined one wavelength from the mixed light single light emitting means in the single sound intensity measuring procedure. Among the magnitudes of sound waves generated from the object to be measured by light, the sound waves generated from the object to be measured by two different wavelengths of light from the mixed light single light emitting means are below a predetermined magnitude. It is desirable to further have a first component concentration calculation procedure for calculating the component concentration from the size of the sound wave corresponding to the predetermined temperature and the size of the sound wave measured in the predetermined temperature sound wave intensity measurement procedure.
本発明では、単一音波強度測定手順において第1の光及び第2の光の混合光により発生する音波の大きさが所定の値以下となるまで第2の光の単一光により発生する音波の大きさを測定する。ここで、混合光により発生する音波の大きさが所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、第1成分濃度算出手順において第1成分濃度算出手段は、混合光より発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさ及び単一光により発生する音波の大きさから、数式(8)により成分濃度を算出できる。従って、本発明に係る成分濃度測定方法は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。 In the present invention, the sound wave generated by the single light of the second light until the magnitude of the sound wave generated by the mixed light of the first light and the second light becomes a predetermined value or less in the single sound intensity measurement procedure. Measure the size of. Here, when the magnitude of the sound wave generated by the mixed light is equal to or less than a predetermined value, s 1 -s 2 can be regarded as substantially zero. For this reason, in the first component concentration calculation procedure, the first component concentration calculation means generates the sound wave corresponding to the magnitude of the sound wave generated from the mixed light below a predetermined magnitude and the single light. From the magnitude of the sound wave, the component concentration can be calculated by Equation (8). Therefore, the component concentration measuring method according to the present invention can accurately calculate the component concentration while reducing the influence of the change in the sound wave intensity due to the temperature change amount.
本発明の成分濃度測定方法において、音波の大きさの推移から前記被測定物の温度を測定する音波推移温度測定手段が、前記単一音波強度測定手順において前記混合光単一光出射手段からの所定の1波長の光により前記被測定物から発生する音波の大きさの推移から温度を測定する音波推移温度測定手順をさらに有することが望ましい。 In the component concentration measuring method of the present invention, the sound wave transition temperature measuring means for measuring the temperature of the object to be measured from the sound wave magnitude transition is the single sound intensity measuring procedure from the mixed light single light emitting means. It is desirable to further include a sound wave transition temperature measurement procedure for measuring the temperature from the transition of the magnitude of the sound wave generated from the object to be measured by light having a predetermined wavelength.
本発明では、第2の光により発生する音波の大きさの推移から被測定物の温度を推定する。ここで、音波の大きさの推移は、被測定物の温度に対して線形に変化することから、音波推移温度測定手順において音波推移温度測定手段は、複数回の第2の光の被測定物への出射により被測定物の温度変化と共に変化する音波の大きさに基づいて所定の近似計算から第1の光及び第2の光の混合光により発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさを推定することができる。これにより、本発明に係る成分濃度測定方法は、1波長の光により発生する音波の大きさの推移から被測定物の温度の空間的分布を間接的に得ることができる。 In the present invention, the temperature of the object to be measured is estimated from the transition of the magnitude of the sound wave generated by the second light. Here, since the transition of the magnitude of the sound wave changes linearly with respect to the temperature of the object to be measured, the sound wave transition temperature measuring means in the sound wave transition temperature measuring procedure, the object to be measured a plurality of times of the second light. The magnitude of the sound wave generated by the mixed light of the first light and the second light is less than a predetermined magnitude from a predetermined approximate calculation based on the magnitude of the sound wave that changes with the temperature change of the object to be measured due to emission to The magnitude of the corresponding sound wave can be estimated. Thereby, the component concentration measuring method according to the present invention can indirectly obtain the spatial distribution of the temperature of the object to be measured from the transition of the magnitude of the sound wave generated by the light of one wavelength.
本発明の成分濃度測定方法において、温度から成分濃度を算出する第2成分濃度算出手段が、前記音波推移温度測定手順において測定される温度のうち前記単一音波強度測定手順において前記混合光単一光出射手段からの異なる2波長の光により前記被測定物から発生する音波の大きさが所定の大きさ以下となったときの温度及び前記所定の温度から成分濃度を算出する第2成分濃度算出手順をさらに有することが望ましい。 In the component concentration measuring method according to the present invention, the second component concentration calculating means for calculating the component concentration from the temperature includes the single mixed light in the single sound intensity measuring procedure among the temperatures measured in the sound wave transition temperature measuring procedure. Second component concentration calculation for calculating the component concentration from the temperature when the magnitude of the sound wave generated from the object to be measured is less than or equal to a predetermined magnitude due to light of two different wavelengths from the light emitting means and the predetermined temperature It is desirable to further have a procedure.
本発明では、単一音波強度測定手順において第1の光及び第2の光の混合光により発生する音波の大きさが所定の値以下となるまで第2の光の単一光により発生する音波の大きさを測定する。ここで、混合光により発生する音波の大きさが所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、第2成分濃度算出手順において第2成分濃度算出手段は、混合光より発生する音波の大きさが所定の大きさ以下となったときの温度Te及び所定の温度T0から、数式(7)により成分濃度を算出できる。従って、本発明に係る成分濃度測定方法は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。 In the present invention, the sound wave generated by the single light of the second light until the magnitude of the sound wave generated by the mixed light of the first light and the second light becomes a predetermined value or less in the single sound intensity measurement procedure. Measure the size of. Here, when the magnitude of the sound wave generated by the mixed light is equal to or less than a predetermined value, s 1 -s 2 can be regarded as substantially zero. For this reason, in the second component concentration calculation procedure, the second component concentration calculation means calculates the mathematical expression (from the temperature Te and the predetermined temperature T 0 when the magnitude of the sound wave generated from the mixed light is equal to or less than the predetermined size. The component concentration can be calculated by 7). Therefore, the component concentration measuring method according to the present invention can accurately calculate the component concentration while reducing the influence of the change in the sound wave intensity due to the temperature change amount.
本発明の成分濃度測定方法において、前記単一音波強度測定手順の前に、前記異なる2波長の光の波長を調整する波長調整手段が、前記混合光単一光出射手段に前記異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調させて前記所定の温度の水に出射させ、前記音波強度測定手段の測定する前記水から発生する音波の大きさが零になるように前記混合光単一光出射手段の前記異なる2波長の光の波長を調整する波長調整手順をさらに有することが望ましい。 In the component concentration measurement method of the present invention, before the single sound intensity measurement procedure, a wavelength adjusting unit that adjusts the wavelength of the two different wavelengths of light is added to the mixed light single light emitting unit. The intensity of the sound wave generated from the water measured by the sound wave intensity measuring means is zero so that the light is electrically intensity-modulated with a signal of the same phase at the same frequency and emitted to the water at the predetermined temperature. It is desirable to further include a wavelength adjustment procedure for adjusting the wavelengths of the two different wavelengths of light from the mixed light single light emitting means.
本発明では、成分濃度測定装置の波長調整手段は、混合光単一光出射手段の出射する第1の光の波長及び第2の光の波長を、前述の測定原理に従って所定の温度における被測定物の測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に設定する。さらに、波長調整手段は、混合光単一光出射手段に第1の光及び第2の光を同一周波数で逆位相の信号により電気的に強度変調させ、所定の温度に保持された水により作製した校正用検体に出射させ、校正用検体から発生する音波の大きさを音波強度測定手段に測定させる。音波強度測定手段の測定する音波の大きさが零になるように、波長調整手段は混合光単一光出射手段の出射する第1の光の波長と第2の光の波長いずれか、又は両方を調整する。校正用検体から発生する音波の大きさが零になる状態は、第1の光により発生する第1の音波と第2の光により発生する第2の音波は、互いに逆位相で、かつ大きさが等しく、校正用検体の中で重畳して打ち消しあっている状態である。従って、上記のように調整された第1の光の波長及び第2の光の波長の各々は、水が同じ吸光度を示す波長であり、各々波長λ1及び波長λ2に一致する。なお、単一光出射手段は、混合光単一光出射手段の出射する第1の光、第2の光のうちいずれか一方を出射することとなる。 In the present invention, the wavelength adjusting means of the component concentration measuring device measures the wavelength of the first light and the wavelength of the second light emitted by the mixed light single light emitting means at a predetermined temperature according to the measurement principle described above. The wavelength λ 1 and the wavelength λ 2 are selected from the components to be measured and the absorbance characteristics of water. Further, the wavelength adjusting means is made of water that is held at a predetermined temperature by causing the mixed light single light emitting means to electrically modulate the intensity of the first light and the second light with a signal having the same frequency and opposite phase. The calibration sample is emitted, and the sound intensity generated from the calibration sample is measured by the sound intensity measuring means. The wavelength adjusting means is either or both of the wavelength of the first light and the second light emitted from the mixed light single light emitting means so that the size of the sound wave measured by the sound intensity measuring means becomes zero. Adjust. When the magnitude of the sound wave generated from the calibration sample is zero, the first sound wave generated by the first light and the second sound wave generated by the second light are opposite in phase and magnitude. Are equal to each other and cancel each other in a superimposed manner in the calibration sample. Therefore, each of the wavelength of the first light and the wavelength of the second light adjusted as described above is a wavelength at which water exhibits the same absorbance, and corresponds to the wavelength λ 1 and the wavelength λ 2 , respectively. The single light emitting means emits one of the first light and the second light emitted from the mixed light single light emitting means.
波長調整手段により混合光単一光出射手段の出射する第1の光の波長と第2の光の波長いずれか、又は両方を調整することにより、第1の光の波長及び第2の光の波長を、前述の測定原理に従って所定の温度における測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に正確に一致させることができる。従って、本発明の成分濃度測定方法は、被測定物の測定対象の成分濃度を正確に測定することができる。 The wavelength of the first light and the wavelength of the second light are adjusted by adjusting either or both of the wavelength of the first light and the wavelength of the second light emitted by the mixed light single light emitting means by the wavelength adjusting means. The wavelength can be made to exactly match the wavelength λ 1 and the wavelength λ 2 selected from the absorbance characteristics of the component to be measured and water at a predetermined temperature according to the measurement principle described above. Therefore, the component concentration measuring method of the present invention can accurately measure the component concentration of the object to be measured.
本発明の成分濃度測定方法の前記所定温度音波強度測定手順において、前記混合光単一光出射手段が前記異なる2波長の光のうち前記所定の1波長の光を出射し、前記音波強度測定手段が音波の大きさを測定することが望ましい。 In the predetermined temperature acoustic intensity measuring procedure of the component concentration measuring method of the present invention, the mixed light single light emitting means emits the predetermined one wavelength of the two different wavelengths of light, and the acoustic intensity measuring means It is desirable to measure the magnitude of sound waves.
本発明に係る成分濃度測定方法では、混合光単一光出射手段が、単一光出射手段を兼ねることにより、簡易な構成で1波の光を被測定物に出射することができる。 In the component concentration measuring method according to the present invention, the mixed light single light emitting means can also serve as the single light emitting means, so that one wave of light can be emitted to the object to be measured with a simple configuration.
本発明に係る成分濃度測定装置制御方法は、所定の温度における水が同じ吸光度を示す異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し且つ前記異なる2波長の光のうち所定の1波長の光を電気的に強度変調して出射する混合光単一光出射手段が前記異なる2波長の光及び前記所定の1波長の光を複数回交互に出射すると共に、音波の大きさを測定する音波強度測定手段が被検体から発生する音波の大きさを測定する単一音波強度測定手順を有する。 The component concentration measuring apparatus control method according to the present invention emits light of two different wavelengths, in which water at a predetermined temperature shows the same absorbance, with the same frequency being electrically intensity-modulated by signals of opposite phases, and the two different wavelengths. The mixed light single light emitting means for emitting the light having a predetermined wavelength out of the light of the predetermined wavelength alternately emits the two different wavelengths of light and the predetermined light of the plurality of times alternately. The sound intensity measuring means for measuring the magnitude of the sound wave has a single sound intensity measuring procedure for measuring the magnitude of the sound wave generated from the subject.
本発明では、混合光単一光出射手段は、異なる2波長の光、即ち、第1の光の波長及び第2の光の波長を、前述の測定原理に従って被検体の測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に設定する。そして、単一音波強度測定手順において、混合光単一光出射手段は、第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被検体に出射する。このように出射した第1の光及び第2の光、又は第2の光が被検体に照射されると被検体から音波が発生し、音波強度測定手段は、被検体から発生する音波の大きさを測定する。ここで、音波強度測定手段により測定される音波のうち前述の第1の光及び第2の光の混合光により発生する音波は、第1の音波により発生する第1の音波と第2の光により発生する第2の音波の差の音波である。 In the present invention, the mixed light single light emitting means converts two different wavelengths of light, i.e., the wavelength of the first light and the wavelength of the second light, into the component to be measured and the water in accordance with the measurement principle described above. Are set to the wavelength λ 1 and the wavelength λ 2 selected from the absorbance characteristics. In the single sound intensity measurement procedure, the mixed light single light emitting unit emits the mixed light of the first light and the second light and the single light of the second light alternately to the subject a plurality of times. To do. When the subject is irradiated with the first light and the second light, or the second light emitted in this way, a sound wave is generated from the subject, and the sound intensity measuring means measures the magnitude of the sound wave generated from the subject. Measure the thickness. Here, of the sound waves measured by the sound wave intensity measuring means, the sound waves generated by the mixed light of the first light and the second light are the first sound wave and the second light generated by the first sound wave. Is a sound wave of the difference between the second sound waves generated by.
第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被検体に出射すると、被検体における光の被照射部の温度が上昇する。ここで、図3で説明したように被検体の温度と被検体の成分のうち水の吸光度との関係が線形であるため、複数回出射する光のうち所定の1波長の光である第2の光により被検体から発生する音波の大きさをモニタすることによって、間接的に被検体の温度変化量の空間的分布を測定することができる。ここで、「被検体の温度変化量の空間的分布」とは、第1の光及び第2の光、又は第2の光により被検体の温度変化に影響を与える領域内の分布を意味する。 When the mixed light of the first light and the second light and the single light of the second light are alternately emitted to the subject a plurality of times, the temperature of the light irradiated portion in the subject rises. Here, since the relationship between the temperature of the subject and the absorbance of water among the components of the subject is linear as described with reference to FIG. 3, the second light that is a predetermined one wavelength among the light emitted a plurality of times. The spatial distribution of the temperature change amount of the subject can be indirectly measured by monitoring the magnitude of the sound wave generated from the subject with the light of. Here, the “spatial distribution of the amount of change in temperature of the subject” means the first light and the second light, or a distribution within a region that affects the temperature change of the subject by the second light. .
このように、本発明に係る成分濃度測定方法は、被検体の温度変化量の空間的分布を正確に測定できるため、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に測定することができる。また、間接的に被検体の温度を測定し、かつ空間的分布を計測する他の手段と比較して、別途特殊な温度測定器や煩雑な手順が不要であるため、低コストを実現することができる。 As described above, since the component concentration measurement method according to the present invention can accurately measure the spatial distribution of the temperature change amount of the subject, the influence of the change in the sound wave intensity due to the temperature change amount is reduced and the component concentration is accurately determined. Can be measured. Compared with other means of indirectly measuring the temperature of the subject and measuring the spatial distribution, a special temperature measuring instrument and complicated procedures are not required separately, thus realizing low cost. Can do.
本発明の成分濃度測定装置制御方法の前記単一音波強度測定手順において前記混合光単一光出射手段は、前記混合光単一光出射手段からの異なる2波長の光により前記被検体から発生する音波の大きさが所定の大きさ以下となるまで、前記異なる2波長の光及び前記所定の1波長の光を交互に出射することが望ましい。 In the single sound intensity measurement procedure of the component concentration measuring apparatus control method of the present invention, the mixed light single light emitting means is generated from the subject by light of two different wavelengths from the mixed light single light emitting means. It is desirable that the two different wavelengths of light and the predetermined one wavelength of light be emitted alternately until the size of the sound wave is equal to or smaller than a predetermined size.
被検体の成分のうち水の吸光度は、図3で説明したように被検体の温度に依存する。そのため、互いに異なる2つの波長を選択して第1の光及び第2の光の波長を設定すると、第1の光及び第2の光の混合光により被検体から発生する音波の大きさは、被検体の所定の温度(例えば、波長1382nmの光、波長1608nmの光に設定した場合の温度T0−2)からの上昇に比例して下降する。そして、成分濃度Mに依存したある温度Teとなると音波の大きさは、所定の値以下に至り、やがて上昇に転じる。 The absorbance of water among the components of the subject depends on the temperature of the subject as described in FIG. Therefore, when two different wavelengths are selected and the wavelengths of the first light and the second light are set, the magnitude of the sound wave generated from the subject by the mixed light of the first light and the second light is It decreases in proportion to an increase from a predetermined temperature of the subject (for example, temperature T 0-2 when set to light having a wavelength of 1382 nm and light having a wavelength of 1608 nm). The wave size becomes a certain temperature T e which depends on the component concentration M is led to a predetermined value or less, eventually turns to rise.
従って、本発明に係る成分濃度測定装置制御方法は、単一音波強度測定手順において音波の大きさが所定の大きさ以下となるまで、交互に光を出射することにより、被検体から発生する音波の大きさが所定の大きさ以下となるまでの被検体の温度の空間的分布を間接的に測定することができる。 Therefore, the component concentration measurement apparatus control method according to the present invention allows sound waves generated from the subject to be emitted alternately until the size of the sound waves is equal to or less than a predetermined magnitude in the single sound intensity measurement procedure. It is possible to indirectly measure the spatial distribution of the temperature of the subject until the magnitude of is less than or equal to a predetermined magnitude.
本発明の成分濃度測定装置制御方法において、前記被検体の温度を一定温度に保持する温度保持手段が、前記被検体の温度を前記所定の温度に保持し、前記所定の1波長の光を電気的に強度変調して出射する単一光出射手段が前記所定の1波長の光を出射し、前記音波強度測定手段が前記被検体から発生する音波の大きさを測定する所定温度音波強度測定手順を前記単一音波強度測定手順の前にさらに有することが望ましい。 In the component concentration measurement apparatus control method of the present invention, the temperature holding means for holding the temperature of the subject at a constant temperature holds the temperature of the subject at the predetermined temperature, and electrically outputs the light of the predetermined one wavelength. A predetermined temperature sound intensity measuring procedure in which a single light emitting means for emitting light with a predetermined intensity emits light of the predetermined wavelength, and the sound intensity measuring means measures the magnitude of a sound wave generated from the subject. It is desirable to further include before the single sound intensity measurement procedure.
本発明に係る成分濃度測定装置制御方法は、所定温度音波強度測定手順において被検体の温度を強制的に所定の温度にして、所定の温度における被検体から発生する音波を測定することができる。 The component concentration measurement apparatus control method according to the present invention can measure the sound wave generated from the subject at the predetermined temperature by forcibly setting the temperature of the subject to the predetermined temperature in the predetermined temperature acoustic intensity measurement procedure.
本発明の成分濃度測定装置制御方法において、音波の大きさから成分濃度を算出する第1成分濃度算出手段が、前記単一音波強度測定手順において前記混合光単一光出射手段からの所定の1波長の光により前記被検体から発生する音波の大きさのうち前記混合光単一光出射手段からの異なる2波長の光により前記被検体から発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさ及び前記所定温度音波強度測定手順において測定される音波の大きさから成分濃度を算出する第1成分濃度算出手順をさらに有することが望ましい。 In the component concentration measuring apparatus control method of the present invention, the first component concentration calculating means for calculating the component concentration from the sound wave size is a predetermined one from the mixed light single light emitting means in the single sound intensity measuring procedure. Of the magnitudes of sound waves generated from the subject by light of a wavelength, the magnitudes of sound waves generated from the object by light of two different wavelengths from the mixed light single light emitting means are below a predetermined magnitude. It is desirable to further have a first component concentration calculation procedure for calculating the component concentration from the size of the sound wave corresponding to the predetermined temperature and the size of the sound wave measured in the predetermined temperature sound wave intensity measurement procedure.
本発明では、単一音波強度測定手順において第1の光及び第2の光の混合光により発生する音波の大きさが所定の値以下となるまで第2の光の単一光により発生する音波の大きさを測定する。ここで、混合光により発生する音波の大きさが所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、第1成分濃度算出手順において第1成分濃度算出手段は、混合光より発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさ及び単一光により発生する音波の大きさから、数式(8)により成分濃度を算出できる。従って、本発明に係る成分濃度測定装置制御方法は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。 In the present invention, the sound wave generated by the single light of the second light until the magnitude of the sound wave generated by the mixed light of the first light and the second light becomes a predetermined value or less in the single sound intensity measurement procedure. Measure the size of. Here, when the magnitude of the sound wave generated by the mixed light is equal to or less than a predetermined value, s 1 -s 2 can be regarded as substantially zero. For this reason, in the first component concentration calculation procedure, the first component concentration calculation means generates the sound wave corresponding to the magnitude of the sound wave generated from the mixed light below a predetermined magnitude and the single light. From the magnitude of the sound wave, the component concentration can be calculated by Equation (8). Therefore, the component concentration measuring apparatus control method according to the present invention can accurately calculate the component concentration while reducing the influence of the change in the sound wave intensity due to the temperature change amount.
本発明の成分濃度測定装置制御方法において、音波の大きさの推移から前記被検体の温度を測定する音波推移温度測定手段が、前記単一音波強度測定手順において前記混合光単一光出射手段からの所定の1波長の光により前記被検体から発生する音波の大きさの推移から温度を測定する音波推移温度測定手順をさらに有することが望ましい。 In the component concentration measuring apparatus control method of the present invention, the sound wave transition temperature measuring means for measuring the temperature of the subject from the sound wave magnitude transition is the mixed light single light emitting means in the single sound intensity measuring procedure. It is desirable to further include a sound wave transition temperature measurement procedure for measuring the temperature from the transition of the magnitude of the sound wave generated from the subject by the light having a predetermined wavelength.
本発明では、第2の光により発生する音波の大きさの推移から被検体の温度を推定する。ここで、音波の大きさの推移は、被検体の温度に対して線形に変化することから、音波推移温度測定手順において音波推移温度測定手段は、複数回の第2の光の被検体への出射により被検体の温度変化と共に変化する音波の大きさに基づいて所定の近似計算から第1の光及び第2の光の混合光により発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさを推定することができる。これにより、本発明に係る成分濃度測定装置制御方法は、1波長の光により発生する音波の大きさの推移から被検体の温度の空間的分布を間接的に得ることができる。 In the present invention, the temperature of the subject is estimated from the transition of the magnitude of the sound wave generated by the second light. Here, since the transition of the magnitude of the sound wave changes linearly with respect to the temperature of the subject, the sound wave transition temperature measuring means in the sound wave transition temperature measuring procedure, the plurality of times the second light is applied to the subject. The magnitude of the sound wave generated by the mixed light of the first light and the second light is less than or equal to a predetermined magnitude from a predetermined approximate calculation based on the magnitude of the sound wave that changes with the temperature change of the subject due to the emission. Sometimes the magnitude of the corresponding sound wave can be estimated. Thereby, the component concentration measuring device control method according to the present invention can indirectly obtain the spatial distribution of the temperature of the subject from the transition of the magnitude of the sound wave generated by the light of one wavelength.
本発明の成分濃度測定装置制御方法において、温度から成分濃度を算出する第2成分濃度算出手段が、前記音波推移温度測定手順において測定する温度のうち前記単一音波強度測定手順において前記混合光単一光出射手段からの異なる2波長の光により前記被検体から発生する音波の大きさが所定の大きさ以下となったときの温度及び前記所定の温度から成分濃度を算出する第2成分濃度算出手順をさらに有することが望ましい。 In the component concentration measuring device control method of the present invention, the second component concentration calculating means for calculating the component concentration from the temperature includes the mixed light unit in the single sound intensity measuring procedure among the temperatures measured in the sound wave transition temperature measuring procedure. A second component concentration calculation that calculates a component concentration from a temperature when the magnitude of a sound wave generated from the subject is equal to or less than a predetermined magnitude due to two different wavelengths of light from one light emitting means and the predetermined temperature It is desirable to further have a procedure.
本発明では、単一音波強度測定手順において第1の光及び第2の光の混合光により発生する音波の大きさが所定の値以下となるまで第2の光の単一光により発生する音波の大きさを測定する。ここで、混合光により発生する音波の大きさが所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、第2成分濃度算出手順において第2成分濃度算出手段は、混合光より発生する音波の大きさが所定の大きさ以下となったときの温度Te及び所定の温度T0から、数式(7)により成分濃度を算出できる。従って、本発明に係る成分濃度測定装置制御方法は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。 In the present invention, the sound wave generated by the single light of the second light until the magnitude of the sound wave generated by the mixed light of the first light and the second light becomes a predetermined value or less in the single sound intensity measurement procedure. Measure the size of. Here, when the magnitude of the sound wave generated by the mixed light is equal to or less than a predetermined value, s 1 -s 2 can be regarded as substantially zero. For this reason, in the second component concentration calculation procedure, the second component concentration calculation means calculates the mathematical expression (from the temperature Te and the predetermined temperature T 0 when the magnitude of the sound wave generated from the mixed light is equal to or less than the predetermined size. The component concentration can be calculated by 7). Therefore, the component concentration measuring apparatus control method according to the present invention can accurately calculate the component concentration while reducing the influence of the change in the sound wave intensity due to the temperature change amount.
本発明の成分濃度測定装置制御方法において、前記単一音波強度測定手順の前に、前記異なる2波長の光の波長を調整する波長調整手段が、前記混合光単一光出射手段に前記異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調させて前記所定の温度の水に出射させ、前記音波強度測定手段の測定する前記水から発生する音波の大きさが零になるように前記混合光単一光出射手段の前記異なる2波長の光の波長を調整する波長調整手順をさらに有することが望ましい。 In the component concentration measurement apparatus control method of the present invention, before the single sound intensity measurement procedure, the wavelength adjusting means for adjusting the wavelengths of the two different light wavelengths is different from the mixed light single light emitting means. The intensity of the light of the wavelength is electrically modulated by the opposite signal at the same frequency and emitted to the water of the predetermined temperature, and the magnitude of the sound wave generated from the water measured by the sound wave intensity measuring means becomes zero. In this way, it is desirable to further include a wavelength adjustment procedure for adjusting the wavelengths of the two different wavelengths of light from the mixed light single light emitting means.
本発明では、成分濃度測定装置の波長調整手段は、混合光単一光出射手段の出射する第1の光の波長及び第2の光の波長を、前述の測定原理に従って所定の温度における被検体の測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に設定する。さらに、波長調整手段は、混合光単一光出射手段に第1の光及び第2の光を同一周波数で逆位相の信号により電気的に強度変調させ、所定の温度に保持された水により作製した校正用検体に出射させ、校正用検体から発生する音波の大きさを音波強度測定手段に測定させる。音波強度測定手段の測定する音波の大きさが零になるように、波長調整手段は混合光単一光出射手段の出射する第1の光の波長と第2の光の波長いずれか、又は両方を調整する。校正用検体から発生する音波の大きさが零になる状態は、第1の光により発生する第1の音波と第2の光により発生する第2の音波は、互いに逆位相で、かつ大きさが等しく、校正用検体の中で重畳して打ち消しあっている状態である。従って、上記のように調整された第1の光の波長及び第2の光の波長の各々は、水が同じ吸光度を示す波長であり、各々波長λ1及び波長λ2に一致する。なお、単一光出射手段は、混合光単一光出射手段の出射する第1の光、第2の光のうちいずれか一方を出射することとなる。 In the present invention, the wavelength adjusting means of the component concentration measuring device is configured to change the wavelength of the first light and the wavelength of the second light emitted from the mixed light single light emitting means according to the measurement principle described above at a predetermined temperature. The wavelength λ 1 and the wavelength λ 2 selected from the components to be measured and the absorbance characteristics of water are set. Further, the wavelength adjusting means is made of water that is held at a predetermined temperature by causing the mixed light single light emitting means to electrically modulate the intensity of the first light and the second light with a signal having the same frequency and opposite phase. The calibration sample is emitted, and the sound intensity generated from the calibration sample is measured by the sound intensity measuring means. The wavelength adjusting means is either or both of the wavelength of the first light and the second light emitted from the mixed light single light emitting means so that the size of the sound wave measured by the sound intensity measuring means becomes zero. Adjust. When the magnitude of the sound wave generated from the calibration sample is zero, the first sound wave generated by the first light and the second sound wave generated by the second light are opposite in phase and magnitude. Are equal to each other and cancel each other in a superimposed manner in the calibration sample. Therefore, each of the wavelength of the first light and the wavelength of the second light adjusted as described above is a wavelength at which water exhibits the same absorbance, and corresponds to the wavelength λ 1 and the wavelength λ 2 , respectively. The single light emitting means emits one of the first light and the second light emitted from the mixed light single light emitting means.
波長調整手段により混合光単一光出射手段の出射する第1の光の波長と第2の光の波長いずれか、又は両方を調整することにより、第1の光の波長及び第2の光の波長を、前述の測定原理に従って所定の温度における測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に正確に一致させることができる。従って、本発明の成分濃度測定装置制御方法は、被検体の測定対象の成分濃度を正確に測定することができる。 The wavelength of the first light and the wavelength of the second light are adjusted by adjusting either or both of the wavelength of the first light and the wavelength of the second light emitted by the mixed light single light emitting means by the wavelength adjusting means. The wavelength can be made to exactly match the wavelength λ 1 and the wavelength λ 2 selected from the absorbance characteristics of the component to be measured and water at a predetermined temperature according to the measurement principle described above. Therefore, the component concentration measuring apparatus control method of the present invention can accurately measure the component concentration of the measurement target of the subject.
本発明の成分濃度測定装置制御方法の前記所定温度音波強度測定手順において、前記混合光単一光出射手段が前記異なる2波長の光のうち前記所定の1波長の光を出射し、前記音波強度測定手段が音波の大きさを測定することが望ましい。 In the predetermined temperature acoustic intensity measurement procedure of the component concentration measuring device control method of the present invention, the mixed light single light emitting means emits the predetermined one wavelength of the two different wavelengths of light, and the acoustic intensity It is desirable for the measuring means to measure the magnitude of the sound wave.
本発明に係る成分濃度測定装置制御方法では、混合光単一光出射手段が、単一光出射手段を兼ねることにより、簡易な構成で1波の光を被検体に出射することができる。 In the component concentration measuring apparatus control method according to the present invention, the mixed light single light emitting means can also serve as the single light emitting means, so that one wave of light can be emitted to the subject with a simple configuration.
本発明に係る成分濃度測定装置は、所定の温度における水が同じ吸光度を示す異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して被測定物に出射し且つ前記異なる2波長の光のうち所定の1波長の光を電気的に強度変調して前記被測定物に出射する混合光単一光出射手段と、前記被測定物から発生する音波の大きさを測定する音波強度測定手段と、を備え、前記混合光単一光出射手段は、前記異なる2波長の光及び前記所定の1波長の光を複数回交互に出射することを特徴とする。 The component concentration measuring apparatus according to the present invention is configured to emit light of two different wavelengths, in which water at a predetermined temperature has the same absorbance, is electrically intensity-modulated with a signal having the same frequency and opposite phase, and is emitted to the object to be measured. A mixed light single light emitting means for electrically modulating the intensity of a predetermined one of the two wavelengths of light and emitting it to the object to be measured, and the size of a sound wave generated from the object to be measured Sound wave intensity measuring means, wherein the mixed light single light emitting means alternately emits the light of two different wavelengths and the light of the predetermined one wavelength a plurality of times.
本発明では、混合光単一光出射手段は、異なる2波長の光、即ち、第1の光の波長及び第2の光の波長を、前述の測定原理に従って被測定物の測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に設定する。そして、混合光単一光出射手段は、第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被測定物に出射する。このように出射した第1の光及び第2の光、又は第2の光が被測定物に照射されると被測定物から音波が発生し、音波強度測定手段は、被測定物から発生する音波の大きさを測定する。ここで、音波強度測定手段により測定される音波のうち前述の第1の光及び第2の光の混合光により発生する音波は、第1の音波により発生する第1の音波と第2の光により発生する第2の音波の差の音波である。 In the present invention, the mixed light single light emitting means converts two different wavelengths of light, i.e., the wavelength of the first light and the wavelength of the second light, into the component to be measured of the object to be measured according to the measurement principle described above, and The wavelength λ 1 and the wavelength λ 2 selected from the absorbance characteristics of water are set. The mixed light single light emitting means emits the mixed light of the first light and the second light and the single light of the second light alternately to the object to be measured a plurality of times. When the first light and the second light thus emitted or the second light is irradiated onto the object to be measured, sound waves are generated from the object to be measured, and the sound intensity measuring means is generated from the object to be measured. Measure the magnitude of the sound wave. Here, of the sound waves measured by the sound wave intensity measuring means, the sound waves generated by the mixed light of the first light and the second light are the first sound wave and the second light generated by the first sound wave. Is a sound wave of the difference between the second sound waves generated by.
第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被測定物に出射すると、被測定物における光の被照射部の温度が上昇する。ここで、図3で説明したように被測定物の温度と被測定物の成分のうち水の吸光度との関係が線形であるため、複数回出射する光のうち所定の1波長の光である第2の光により被測定物から発生する音波の大きさをモニタすることによって、間接的に被測定物の温度変化量の空間的分布を測定することができる。 When the mixed light of the first light and the second light and the single light of the second light are alternately emitted to the object to be measured a plurality of times, the temperature of the light irradiated part in the object to be measured increases. Here, since the relationship between the temperature of the object to be measured and the absorbance of water among the components of the object to be measured is linear as described with reference to FIG. 3, it is light of a predetermined wavelength among the light emitted a plurality of times. By monitoring the magnitude of the sound wave generated from the object to be measured by the second light, the spatial distribution of the temperature change amount of the object to be measured can be indirectly measured.
このように、本発明に係る成分濃度測定装置は、被測定物の温度変化量の空間的分布を正確に測定できるため、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に測定することができる。また、間接的に被測定物の温度を測定し、かつ空間的分布を計測する他の手段と比較して、別途特殊な温度測定器や煩雑な方法が不要であるため、低コストを実現することができる。 As described above, the component concentration measuring apparatus according to the present invention can accurately measure the spatial distribution of the temperature change amount of the object to be measured. Can be measured. In addition, compared with other means for indirectly measuring the temperature of the object to be measured and measuring the spatial distribution, a special temperature measuring device and a complicated method are not required separately, thus realizing low cost. be able to.
本発明の成分濃度測定装置において、前記混合光単一光出射手段は、前記混合光単一光出射手段からの異なる2波長の光により前記被測定物から発生する音波の大きさが所定の大きさ以下となるまで、前記異なる2波長の光及び前記所定の1波長の光を交互に出射することが望ましい。 In the component concentration measuring apparatus of the present invention, the mixed light single light emitting means has a predetermined magnitude of sound waves generated from the object to be measured by two different wavelengths of light from the mixed light single light emitting means. It is desirable that the two different wavelengths of light and the predetermined one wavelength of light be emitted alternately until the value becomes less than or equal to the height.
被測定物の成分のうち水の吸光度は、図3で説明したように被測定物の温度に依存する。そのため、互いに異なる2つの波長を選択して第1の光及び第2の光の波長を設定すると、第1の光及び第2の光の混合光により被測定物から発生する音波の大きさは、被測定物の所定の温度(例えば、波長1382nmの光、波長1608nmの光に設定した場合の温度T0−2)からの上昇に比例して下降する。そして、成分濃度Mに依存したある温度Teとなると音波の大きさは、所定の値以下に至り、やがて上昇に転じる。 Among the components of the object to be measured, the absorbance of water depends on the temperature of the object to be measured as described with reference to FIG. Therefore, if two different wavelengths are selected and the wavelengths of the first light and the second light are set, the magnitude of the sound wave generated from the object to be measured by the mixed light of the first light and the second light is The temperature decreases in proportion to an increase from a predetermined temperature of the object to be measured (for example, temperature T 0-2 when the light having a wavelength of 1382 nm and the light having a wavelength of 1608 nm is set). The wave size becomes a certain temperature T e which depends on the component concentration M is led to a predetermined value or less, eventually turns to rise.
従って、本発明に係る成分濃度測定装置は、混合光単一光出射手段が第1の光及び第2の光の混合光により発生する音波の大きさが所定の大きさ以下となるまで、交互に光を出射することにより、被測定物から発生する音波の大きさが所定の大きさ以下となるまでの被測定物の温度の空間的分布を間接的に測定することができる。 Accordingly, the component concentration measuring apparatus according to the present invention is configured so that the mixed-light single-light emitting means alternates until the magnitude of the sound wave generated by the mixed light of the first light and the second light is equal to or less than a predetermined magnitude. By emitting light, the spatial distribution of the temperature of the object to be measured until the magnitude of the sound wave generated from the object to be measured is equal to or smaller than a predetermined magnitude can be indirectly measured.
本発明の成分濃度測定装置において、前記被測定物の温度を前記所定の温度に保持する温度保持手段と、前記所定の1波長の光を電気的に強度変調して前記被測定物に出射する単一光出射手段と、をさらに備え、前記単一光出射手段は、前記温度保持手段により保持される前記所定の温度における前記被測定物に前記所定の1波長の光を出射することが望ましい。 In the component concentration measuring apparatus of the present invention, the temperature holding means for holding the temperature of the object to be measured at the predetermined temperature, and the light of the predetermined wavelength are electrically intensity-modulated and emitted to the object to be measured. A single light emitting means, and the single light emitting means preferably emits light of the predetermined one wavelength to the object to be measured at the predetermined temperature held by the temperature holding means. .
本発明に係る成分濃度測定装置は、温度保持手段が被測定物の温度を強制的に所定の温度にして、所定の温度における被測定物から発生する音波を測定することができる。 In the component concentration measuring apparatus according to the present invention, the temperature holding means forcibly sets the temperature of the object to be measured to a predetermined temperature and can measure sound waves generated from the object to be measured at the predetermined temperature.
本発明の成分濃度測定装置において、前記混合光単一光出射手段からの所定の1波長の光により前記被測定物から発生する音波のうち前記混合光単一光出射手段からの異なる2波長の光により前記被測定物から発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさ及び前記単一光出射手段からの所定の1波長の光により前記被測定物から発生する音波の大きさから成分濃度を算出する第1成分濃度算出手段をさらに備えることが望ましい。 In the component concentration measuring apparatus of the present invention, among the sound waves generated from the object to be measured by light having a predetermined wavelength from the mixed light single light emitting means, two different wavelengths from the mixed light single light emitting means are used. The object to be measured by the magnitude of the sound wave corresponding to the magnitude of the sound wave generated from the object to be measured by light below a predetermined magnitude and the light having a predetermined wavelength from the single light emitting means. It is desirable to further include a first component concentration calculating means for calculating the component concentration from the magnitude of the sound wave generated from.
本発明では、音波強度測定手段が混合光単一光出射手段の出射する第1の光及び第2の光の混合光により発生する音波の大きさが所定の値以下となるまで第2の光の単一光により発生する音波の大きさを測定する。ここで、混合光により発生する音波の大きさが所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、第1成分濃度算出手段は、混合光より発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさ及び単一光により発生する音波の大きさから、数式(8)により成分濃度を算出できる。従って、本発明に係る成分濃度測定装置は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。 In the present invention, the second light is applied until the sound intensity generated by the mixed light of the first light and the second light emitted from the mixed light single light emitting means is equal to or less than a predetermined value. The size of the sound wave generated by the single light is measured. Here, when the magnitude of the sound wave generated by the mixed light is equal to or less than a predetermined value, s 1 -s 2 can be regarded as substantially zero. For this reason, the first component concentration calculating means calculates the mathematical expression from the magnitude of the sound wave corresponding to the magnitude of the sound wave generated from the mixed light and the magnitude of the sound wave generated by the single light when the magnitude is smaller than a predetermined magnitude. The component concentration can be calculated by (8). Therefore, the component concentration measuring apparatus according to the present invention can accurately calculate the component concentration while reducing the influence of the change in the sound wave intensity due to the temperature change amount.
本発明の成分濃度測定装置において、前記単一光出射手段からの所定の1波長の光により前記被測定物から発生する音波の大きさの推移から前記被測定物の温度を測定する音波推移温度測定手段をさらに備えることが望ましい。 In the component concentration measuring apparatus of the present invention, the sound wave transition temperature for measuring the temperature of the object to be measured from the transition of the magnitude of the sound wave generated from the object to be measured by the light having a predetermined wavelength from the single light emitting means. It is desirable to further include measurement means.
本発明では、第2の光により発生する音波の大きさの推移から被測定物の温度を推定する。ここで、音波の大きさの推移は、被測定物の温度に対して線形に変化することから、音波推移温度測定手段は、複数回の第2の光の被測定物への出射により被測定物の温度変化と共に変化する音波の大きさに基づいて所定の近似計算から第1の光及び第2の光の混合光により発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさを推定することができる。これにより、本発明に係る成分濃度測定装置は、1波長の光により発生する音波の大きさの推移から被測定物の温度の空間的分布を間接的に得ることができる。 In the present invention, the temperature of the object to be measured is estimated from the transition of the magnitude of the sound wave generated by the second light. Here, since the transition of the magnitude of the sound wave changes linearly with respect to the temperature of the object to be measured, the sound wave transition temperature measuring means measures the object by measuring the second light emitted to the object to be measured a plurality of times. Corresponding to the case where the size of the sound wave generated by the mixed light of the first light and the second light is equal to or less than the predetermined size from a predetermined approximate calculation based on the size of the sound wave that changes with the temperature change of the object. It is possible to estimate the magnitude of the sound wave to be performed. Thereby, the component concentration measuring apparatus according to the present invention can indirectly obtain the spatial distribution of the temperature of the object to be measured from the transition of the magnitude of the sound wave generated by the light of one wavelength.
本発明の成分濃度測定装置において、前記音波推移温度測定手段の測定する温度のうち前記混合光単一光出射手段から出射される光により前記被測定物から発生する音波の大きさが所定の大きさ以下となったときの温度及び前記所定の温度から成分濃度を算出する第2成分濃度算出手段をさらに備えることが望ましい。 In the component concentration measuring apparatus of the present invention, the magnitude of the sound wave generated from the object to be measured by the light emitted from the mixed light single light emitting means among the temperatures measured by the sound wave transition temperature measuring means is a predetermined magnitude. It is desirable to further include a second component concentration calculation means for calculating the component concentration from the temperature when the temperature becomes less than or equal to the predetermined temperature.
本発明では、音波強度測定手段が混合光単一光出射手段の出射する第1の光及び第2の光の混合光により発生する音波の大きさが所定の値以下となるまで第2の光の単一光により発生する音波の大きさを測定する。ここで、混合光により発生する音波の大きさが所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、第2成分濃度算出手段は、混合光より発生する音波の大きさが所定の大きさ以下となったときの温度Te及び所定の温度T0から、数式(7)により成分濃度を算出できる。従って、本発明に係る成分濃度測定装置は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。 In the present invention, the second light is applied until the sound intensity generated by the mixed light of the first light and the second light emitted from the mixed light single light emitting means is equal to or less than a predetermined value. The size of the sound wave generated by the single light is measured. Here, when the magnitude of the sound wave generated by the mixed light is equal to or less than a predetermined value, s 1 -s 2 can be regarded as substantially zero. Therefore, the second component concentration calculating means calculates the component concentration from Equation (7) from the temperature Te and the predetermined temperature T 0 when the size of the sound wave generated from the mixed light is equal to or less than the predetermined size. it can. Therefore, the component concentration measuring apparatus according to the present invention can accurately calculate the component concentration while reducing the influence of the change in the sound wave intensity due to the temperature change amount.
本発明に係る成分濃度測定装置は、所定の温度における水が同じ吸光度を示す異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調して出射し且つ前記異なる2波長の光のうち所定の1波長の光を電気的に強度変調して出射する混合光単一光出射手段と、前記被検体から発生する音波の大きさを測定する音波強度測定手段と、を備え、前記混合光単一光出射手段は、前記異なる2波長の光及び前記所定の1波長の光を複数回交互に出射することを特徴とする。 The component concentration measuring apparatus according to the present invention emits light of two different wavelengths, in which water at a predetermined temperature exhibits the same absorbance, with the same frequency being electrically modulated with an opposite phase signal, and emitted with the two different wavelengths of light. A mixed light single light emitting means for electrically modulating and emitting light of a predetermined wavelength, and a sound intensity measuring means for measuring the magnitude of a sound wave generated from the subject, The mixed light single light emitting means alternately emits the different two-wavelength light and the predetermined one-wavelength light a plurality of times.
本発明では、混合光単一光出射手段は、異なる2波長の光、即ち、第1の光の波長及び第2の光の波長を、前述の測定原理に従って被検体の測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に設定する。そして、混合光単一光出射手段は、第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被検体に出射する。このように出射した第1の光及び第2の光、又は第2の光が被検体に照射されると被検体から音波が発生し、音波強度測定手段は、被検体から発生する音波の大きさを測定する。ここで、音波強度測定手段により測定される音波のうち前述の第1の光及び第2の光の混合光により発生する音波は、第1の音波により発生する第1の音波と第2の光により発生する第2の音波の差の音波である。 In the present invention, the mixed light single light emitting means converts two different wavelengths of light, i.e., the wavelength of the first light and the wavelength of the second light, into the component to be measured and the water in accordance with the measurement principle described above. Are set to the wavelength λ 1 and the wavelength λ 2 selected from the absorbance characteristics. Then, the mixed light single light emitting unit emits the mixed light of the first light and the second light and the single light of the second light alternately to the subject a plurality of times. When the subject is irradiated with the first light and the second light, or the second light emitted in this way, a sound wave is generated from the subject, and the sound intensity measuring means measures the magnitude of the sound wave generated from the subject. Measure the thickness. Here, of the sound waves measured by the sound wave intensity measuring means, the sound waves generated by the mixed light of the first light and the second light are the first sound wave and the second light generated by the first sound wave. Is a sound wave of the difference between the second sound waves generated by.
第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被検体に出射すると、被検体における光の被照射部の温度が上昇する。ここで、図3で説明したように被検体の温度と被検体の成分のうち水の吸光度との関係が線形であるため、複数回出射する光のうち所定の1波長の光である第2の光により被検体から発生する音波の大きさをモニタすることによって、間接的に被検体の温度変化量の空間的分布を測定することができる。 When the mixed light of the first light and the second light and the single light of the second light are alternately emitted to the subject a plurality of times, the temperature of the light irradiated portion in the subject rises. Here, since the relationship between the temperature of the subject and the absorbance of water among the components of the subject is linear as described with reference to FIG. 3, the second light that is a predetermined one wavelength among the light emitted a plurality of times. The spatial distribution of the temperature change amount of the subject can be indirectly measured by monitoring the magnitude of the sound wave generated from the subject with the light of.
このように、本発明に係る成分濃度測定装置は、被検体の温度変化量の空間的分布を正確に測定できるため、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に測定することができる。また、間接的に被検体の温度を測定し、かつ空間的分布を計測する他の手段と比較して、別途特殊な温度測定器や煩雑な方法が不要であるため、低コストを実現することができる。 As described above, since the component concentration measuring apparatus according to the present invention can accurately measure the spatial distribution of the temperature change amount of the subject, the influence of the change in the sound wave intensity due to the temperature change amount is reduced and the component concentration is accurately determined. Can be measured. Compared with other means of indirectly measuring the temperature of the subject and measuring the spatial distribution, a special temperature measuring device and a complicated method are not required separately, thus realizing low cost. Can do.
本発明の成分濃度測定装置において、前記混合光単一光出射手段は、前記混合光単一光出射手段からの異なる2波長の光により前記被検体から発生する音波の大きさが所定の大きさ以下となるまで、前記異なる2波長の光及び前記所定の1波長の光を交互に出射することが望ましい。 In the component concentration measuring apparatus according to the present invention, the mixed light single light emitting means has a predetermined magnitude of sound waves generated from the subject by two different wavelengths of light from the mixed light single light emitting means. It is desirable to alternately emit the two different wavelengths of light and the predetermined one wavelength of light until the following is true.
被検体の成分のうち水の吸光度は、図3で説明したように被検体の温度に依存する。そのため、互いに異なる2つの波長を選択して第1の光及び第2の光の波長を設定すると、第1の光及び第2の光の混合光により被検体から発生する音波の大きさは、被検体の所定の温度(例えば、波長1382nmの光、波長1608nmの光に設定した場合の温度T0−2)からの上昇に比例して下降する。そして、成分濃度Mに依存したある温度Teとなると音波の大きさは、所定の値以下に至り、やがて上昇に転じる。 The absorbance of water among the components of the subject depends on the temperature of the subject as described in FIG. Therefore, when two different wavelengths are selected and the wavelengths of the first light and the second light are set, the magnitude of the sound wave generated from the subject by the mixed light of the first light and the second light is It decreases in proportion to an increase from a predetermined temperature of the subject (for example, temperature T 0-2 when set to light having a wavelength of 1382 nm and light having a wavelength of 1608 nm). The wave size becomes a certain temperature T e which depends on the component concentration M is led to a predetermined value or less, eventually turns to rise.
従って、本発明に係る成分濃度測定装置は、混合光単一光出射手段が第1の光及び第2の光の混合光により発生する音波の大きさが所定の大きさ以下となるまで、交互に光を出射することにより、被検体から発生する音波の大きさが所定の大きさ以下となるまでの被検体の温度の空間的分布を間接的に測定することができる。 Accordingly, the component concentration measuring apparatus according to the present invention is configured so that the mixed-light single-light emitting means alternates until the magnitude of the sound wave generated by the mixed light of the first light and the second light is equal to or less than a predetermined magnitude. By emitting light, the spatial distribution of the temperature of the subject until the magnitude of the sound wave generated from the subject becomes a predetermined magnitude or less can be indirectly measured.
本発明の成分濃度測定装置において、前記被検体の温度を前記所定の温度に保持する温度保持手段と、前記所定の1波長の光を電気的に強度変調して前記被検体に出射する単一光出射手段と、をさらに備え、前記単一光出射手段は、前記温度保持手段により保持される前記所定の温度における前記被検体に前記所定の1波長の光を出射することが望ましい。 In the component concentration measurement apparatus of the present invention, a temperature holding unit that holds the temperature of the subject at the predetermined temperature, and a single unit that electrically modulates the intensity of the predetermined one wavelength of light and emits the light to the subject. It is preferable that the single light emitting unit emits light of the predetermined one wavelength to the subject at the predetermined temperature held by the temperature holding unit.
本発明に係る成分濃度測定装置は、温度保持手段が被検体の温度を強制的に所定の温度にして、所定の温度における被検体から発生する音波を測定することができる。 In the component concentration measuring apparatus according to the present invention, the temperature holding means forcibly sets the temperature of the subject to a predetermined temperature, and can measure a sound wave generated from the subject at the predetermined temperature.
本発明の成分濃度測定装置において、前記混合光単一光出射手段からの所定の1波長の光により前記被検体から発生する音波のうち前記混合光単一光出射手段からの異なる2波長の光により前記被検体から発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさ及び前記単一光出射手段からの所定の1波長の光により前記被検体から発生する音波の大きさから成分濃度を算出する第1成分濃度算出手段をさらに備えることが望ましい。 In the component concentration measuring apparatus according to the present invention, light having two different wavelengths from the mixed light single light emitting means among sound waves generated from the subject by light having a predetermined wavelength from the mixed light single light emitting means. Is generated from the subject by the magnitude of the corresponding sound wave when the magnitude of the sound wave generated from the subject is less than or equal to a predetermined magnitude and light of a predetermined wavelength from the single light emitting means. It is desirable to further include first component concentration calculation means for calculating the component concentration from the magnitude of the sound wave.
本発明では、音波強度測定手段が混合光単一光出射手段の出射する第1の光及び第2の光の混合光により発生する音波の大きさが所定の値以下となるまで第2の光の単一光により発生する音波の大きさを測定する。ここで、混合光により発生する音波の大きさが所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、第1成分濃度算出手段は、混合光より発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさ及び単一光により発生する音波の大きさから、数式(8)により成分濃度を算出できる。従って、本発明に係る成分濃度測定装置は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。 In the present invention, the second light is applied until the sound intensity generated by the mixed light of the first light and the second light emitted from the mixed light single light emitting means is equal to or less than a predetermined value. The size of the sound wave generated by the single light is measured. Here, when the magnitude of the sound wave generated by the mixed light is equal to or less than a predetermined value, s 1 -s 2 can be regarded as substantially zero. For this reason, the first component concentration calculating means calculates the mathematical expression from the magnitude of the sound wave corresponding to the magnitude of the sound wave generated from the mixed light and the magnitude of the sound wave generated by the single light when the magnitude is smaller than a predetermined magnitude. The component concentration can be calculated by (8). Therefore, the component concentration measuring apparatus according to the present invention can accurately calculate the component concentration while reducing the influence of the change in the sound wave intensity due to the temperature change amount.
本発明の成分濃度測定装置において、前記単一光出射手段からの所定の1波長の光により前記被検体から発生する音波の大きさの推移から前記被検体の温度を測定する音波推移温度測定手段をさらに備えることが望ましい。 In the component concentration measuring apparatus according to the present invention, the sound wave transition temperature measuring means for measuring the temperature of the subject from the transition of the magnitude of the sound wave generated from the subject by light of a predetermined wavelength from the single light emitting means. It is desirable to provide further.
本発明では、第2の光により発生する音波の大きさの推移から被検体の温度を推定する。ここで、音波の大きさの推移は、被検体の温度に対して線形に変化することから、音波推移温度測定手段は、複数回の第2の光の被検体への出射により被検体の温度変化と共に変化する音波の大きさに基づいて所定の近似計算から第1の光及び第2の光の混合光により発生する音波の大きさが所定の大きさ以下となったときに相当する音波の大きさを推定することができる。これにより、本発明に係る成分濃度測定装置は、1波長の光により発生する音波の大きさの推移から被検体の温度の空間的分布を間接的に得ることができる。 In the present invention, the temperature of the subject is estimated from the transition of the magnitude of the sound wave generated by the second light. Here, since the transition of the magnitude of the sound wave changes linearly with respect to the temperature of the subject, the sound wave transition temperature measuring means detects the temperature of the subject by emitting the second light to the subject a plurality of times. Based on the magnitude of the sound wave that changes with the change, the sound wave corresponding to when the magnitude of the sound wave generated by the mixed light of the first light and the second light is equal to or less than a predetermined magnitude from a predetermined approximate calculation. The size can be estimated. Thereby, the component concentration measuring apparatus according to the present invention can indirectly obtain the spatial distribution of the temperature of the subject from the transition of the magnitude of the sound wave generated by the light of one wavelength.
本発明の成分濃度測定装置において、前記音波推移温度測定手段の測定する温度のうち前記混合光単一光出射手段から出射される光により前記被検体から発生する音波の大きさが所定の大きさ以下となったときの温度及び前記所定の温度から成分濃度を算出する第2成分濃度算出手段をさらに備えることが望ましい。 In the component concentration measuring apparatus of the present invention, the magnitude of the sound wave generated from the subject by the light emitted from the mixed light single light emitting means out of the temperature measured by the sound wave transition temperature measuring means is a predetermined magnitude. It is desirable to further include a second component concentration calculating means for calculating a component concentration from the temperature when the temperature becomes below and the predetermined temperature.
本発明では、音波強度測定手段が混合光単一光出射手段の出射する第1の光及び第2の光の混合光により発生する音波の大きさが所定の値以下となるまで第2の光の単一光により発生する音波の大きさを測定する。ここで、混合光により発生する音波の大きさが所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、第2成分濃度算出手段は、混合光より発生する音波の大きさが所定の大きさ以下となったときの温度Te及び所定の温度T0から、数式(7)により成分濃度を算出できる。従って、本発明に係る成分濃度測定装置は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。 In the present invention, the second light is applied until the sound intensity generated by the mixed light of the first light and the second light emitted from the mixed light single light emitting means is equal to or less than a predetermined value. The size of the sound wave generated by the single light is measured. Here, when the magnitude of the sound wave generated by the mixed light is equal to or less than a predetermined value, s 1 -s 2 can be regarded as substantially zero. Therefore, the second component concentration calculating means calculates the component concentration from Equation (7) from the temperature Te and the predetermined temperature T 0 when the size of the sound wave generated from the mixed light is equal to or less than the predetermined size. it can. Therefore, the component concentration measuring apparatus according to the present invention can accurately calculate the component concentration while reducing the influence of the change in the sound wave intensity due to the temperature change amount.
本発明の成分濃度測定装置において、前記混合光単一光出射手段に異なる2波長の光を、同一周波数で逆位相の信号により電気的に強度変調して水に出射させ、前記音波強度測定手段に前記水から発生する音波の大きさを測定させ、測定した音波の大きさが零になるように前記異なる2波長の光の波長を調整する波長調整手段をさらに備えることが望ましい。 In the component concentration measuring apparatus according to the present invention, the mixed-light single-light emitting means emits light of two different wavelengths, which is electrically intensity-modulated by signals having the same frequency and opposite phase, and is emitted to water. It is desirable to further comprise wavelength adjusting means for measuring the magnitude of the sound wave generated from the water and adjusting the wavelengths of the two different wavelengths so that the measured sound wave magnitude becomes zero.
本発明では、成分濃度測定装置の波長調整手段は、混合光単一光出射手段の出射する第1の光の波長及び第2の光の波長を、前述の測定原理に従って所定の温度における被検体又は被測定物の測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に設定する。さらに、波長調整手段は、混合光単一光出射手段に第1の光及び第2の光を同一周波数で逆位相の信号により電気的に強度変調させ、所定の温度に保持された水により作製した校正用検体に出射させ、校正用検体から発生する音波の大きさを音波強度測定手段に測定させる。音波強度測定手段の測定する音波の大きさが零になるように、波長調整手段は混合光単一光出射手段の出射する第1の光の波長と第2の光の波長いずれか、又は両方を調整する。校正用検体から発生する音波の大きさが零になる状態は、第1の光により発生する第1の音波と第2の光により発生する第2の音波は、互いに逆位相で、かつ大きさが等しく、校正用検体の中で重畳して打ち消しあっている状態である。従って、上記のように調整された第1の光の波長及び第2の光の波長の各々は、水が同じ吸光度を示す波長であり、各々波長λ1及び波長λ2に一致する。なお、単一光出射手段は、混合光単一光出射手段の出射する第1の光、第2の光のうちいずれか一方を出射することとなる。 In the present invention, the wavelength adjusting means of the component concentration measuring device is configured to change the wavelength of the first light and the wavelength of the second light emitted from the mixed light single light emitting means according to the measurement principle described above at a predetermined temperature. Alternatively, the wavelength λ 1 and the wavelength λ 2 selected from the component to be measured of the object to be measured and the water absorbance characteristics are set. Further, the wavelength adjusting means is made of water that is held at a predetermined temperature by causing the mixed light single light emitting means to electrically modulate the intensity of the first light and the second light with a signal having the same frequency and opposite phase. The calibration sample is emitted, and the sound intensity generated from the calibration sample is measured by the sound intensity measuring means. The wavelength adjusting means is either or both of the wavelength of the first light and the second light emitted from the mixed light single light emitting means so that the size of the sound wave measured by the sound intensity measuring means becomes zero. Adjust. When the magnitude of the sound wave generated from the calibration sample is zero, the first sound wave generated by the first light and the second sound wave generated by the second light are opposite in phase and magnitude. Are equal to each other and cancel each other in a superimposed manner in the calibration sample. Therefore, each of the wavelength of the first light and the wavelength of the second light adjusted as described above is a wavelength at which water exhibits the same absorbance, and corresponds to the wavelength λ 1 and the wavelength λ 2 , respectively. The single light emitting means emits one of the first light and the second light emitted from the mixed light single light emitting means.
波長調整手段により混合光単一光出射手段の出射する第1の光の波長と第2の光の波長いずれか、又は両方を調整することにより、第1の光の波長及び第2の光の波長を、前述の測定原理に従って所定の温度における測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に正確に一致させることができる。従って、本発明の成分濃度測定装置は、被検体又は被測定物の測定対象の成分濃度を正確に測定することができる。 The wavelength of the first light and the wavelength of the second light are adjusted by adjusting either or both of the wavelength of the first light and the wavelength of the second light emitted by the mixed light single light emitting means by the wavelength adjusting means. The wavelength can be made to exactly match the wavelength λ 1 and the wavelength λ 2 selected from the absorbance characteristics of the component to be measured and water at a predetermined temperature according to the measurement principle described above. Therefore, the component concentration measuring apparatus of the present invention can accurately measure the component concentration of the measurement target of the subject or the object to be measured.
本発明の成分濃度測定装置において、前記単一光出射手段は、前記混合光単一光出射手段の前記異なる2波長の光のうち前記所定の1波長の光を電気的に強度変調して出射することが望ましい。 In the component concentration measuring apparatus of the present invention, the single light emitting means emits the light of the predetermined one wavelength among the different two wavelengths of light of the mixed light single light emitting means after being electrically modulated. It is desirable to do.
本発明に係る成分濃度測定装置は、混合光単一光出射手段が単一光出射手段を兼ねることにより、簡易な構成で1波の光を被検体又は被測定物に出射することができる。 In the component concentration measuring apparatus according to the present invention, the mixed light single light emitting means can also serve as the single light emitting means, so that one wave of light can be emitted to the subject or the object to be measured with a simple configuration.
本発明の成分濃度測定方法、成分濃度測定装置及び成分濃度装置制御方法は、被検体又は被測定物で発生する音波への被検体又は被測定物の温度変化の影響を少なくすることが可能で成分濃度の測定精度を向上させることができる。 The component concentration measurement method, the component concentration measurement device, and the component concentration device control method of the present invention can reduce the influence of the temperature change of the subject or the measured object on the sound wave generated in the subject or the measured object. The measurement accuracy of the component concentration can be improved.
添付の図面を参照して本発明の実施の形態を説明する。 Embodiments of the present invention will be described with reference to the accompanying drawings.
以下に説明する実施の形態は本発明の構成の例であり、本発明は以下の実施の形態に制限されるものではない。また、以下においては、本発明の成分濃度測定装置及び成分濃度測定装置制御方法について、被検体の成分濃度を測定する場合の実施の形態を説明するが、被検体を被測定物に置き換えれば被測定物の成分濃度を測定する場合の実施の形態に相当する。 The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. In the following, embodiments of measuring the component concentration of the subject will be described for the component concentration measuring apparatus and the component concentration measuring apparatus control method of the present invention. This corresponds to the embodiment for measuring the component concentration of the measurement object.
図4に本実施の形態に係る成分濃度測定装置の構成を示す。図4において、電源、あるいは全体の動作を制御する制御部などの通常の技術により実現できる部分は図示していない。 FIG. 4 shows the configuration of the component concentration measuring apparatus according to the present embodiment. In FIG. 4, parts that can be realized by a normal technique such as a power source or a control unit for controlling the entire operation are not shown.
図4において、本実施の形態の成分濃度測定装置10は、混合光単一光出射手段の一部としての第1の光源11及び第2の光源12、変調信号発生部21、180°移相回路22、合波部31、波長制御部41、温度保持手段の一部としての温度検出部61、加熱部62、冷却部63、温度制御部65、導熱材93、音波強度測定手段の一部としての音波検出部71、粘着性ゴム73、第1成分濃度算出手段又は第2成分濃度算出手段としての成分濃度算出部81により構成される。ここで、本実施形態において第2の光源12は、単一光出射手段を兼ねている。また、合波部31は、前記混合光単一光出射手段及び前記単一光出射手段に含まれる。ここで、導熱材93は、被検体1を安定に保持する前記保持体である。
In FIG. 4, the component
変調信号発生部21は、第1の光源11及び第2の光源12から出力される2波長の光を強度変調するための変調信号を出力する。180°移相回路22は、変調信号発生部21からの変調信号のうち一方を反転して出力する。
The
第1の光源11は、変調信号発生部21からの変調信号を基に駆動し異なる2波長の光のうち一方を強度変調して出射する。また、第2の光源12は、180°移相回路22で反転された変調信号を基に駆動し異なる2波長の光のうち他方を強度変調して出射する。これにより、第1の光源11及び第2の光源12は、異なる2波長の光のそれぞれを同一周波数で逆位相の信号により電気的に強度変調して出力することができる。また、第1の光源11又は第2の光源12のいずれか一方の光の出射を停止させれば、第1の光源11又は第2の光源12は、異なる2波長の光のうち所定の1波長の光のみを出射することができる。このように、混合光単一光出射手段としての第1の光源11及び第2の光源12が単一光出射手段としての第2の光源12を兼ねることにより、簡易な構成で1波の光を被検体1に出射することができる。
The first light source 11 is driven based on the modulation signal from the modulation
ここで、第1の光源11及び第2の光源12は、例えば半導体レーザを適用することができ、各々の波長は、一方の光の波長を測定対象とする成分が特徴的な吸収を呈する波長に設定し、他方の光の波長を水が一方の光の波長におけるのと相等しい吸収を呈する波長に設定する。ここで、図1で説明したように測定対象とする成分をグルコース又はコレステロールとした場合には、グルコース又はコレステロールの特徴的な吸収を示す波長を照射することによって、グルコース又はコレステロールの濃度を精度よく測定することができる。第1の光源11及び第2の光源12としての半導体レーザは、ヒーター又はペルチェ素子により加熱又は冷却することにより発生する光の波長を変化させることができる。
Here, for example, a semiconductor laser can be applied to the first light source 11 and the second
合波部31は、第1の光源11からの光と第2の光源12からの光とを例えばハーフミラーにより合波して変調光32として被検体1に向けて出射する。
The multiplexing
音波検出部71は、第1の光源11又は/及び第2の光源12から合波部31を介して出射された光により被検体1で発生する音波を検出し、音波の振幅に比例した電気信号を出力する。
The sound
温度検出部61は、例えばサーミスタを適用して、被検体1の変調光32により音波が発生する位置の近傍の温度を検出する。また、温度制御部65は、温度検出部61の検出する温度を所定の温度に近づけるように加熱部62及び冷却部63の温度を制御して被検体1の温度を所定の温度に保持する。加熱部62は、例えば電熱線等のヒーターを適用して温度制御部65からの加熱電力に応じて被検体1において変調光32により音波が発生する部位を加熱する。一方、冷却部63は、例えばペルチェ素子ファンを適用して温度制御部65からの冷却電力に応じて被検体1において変調光32により音波が発生する部位を冷却する。そのため、温度検出部61、加熱部62及び冷却部63は、被検体1において変調光32により音波が発生する部位の近傍に、後述する実装例のように導熱材93を介して被検体1に接して設ける。なお、図4においては、導熱材93は、図面の煩雑さを避けるために概念的な形状で示している。
The
また、導熱材93は、被検体1に柔軟に接触して安定に保持し、かつ温度検出部61、加熱部62及び冷却部63と被検体1の間で熱を伝導させる機能を有する。導熱材93は、例えば柔軟で熱伝導度の高いゴムなどで作製することにより、被検体1に適切に接触して保持し、かつ導熱材93の温度は被検体1の温度と一致させることができる。粘着性ゴム73は被検体1に接触して、被検体1から発生する音波を音波検出部71へ伝達する機能を有する。粘着性ゴム73は、例えば音波の伝達しやすい柔軟なゴムで作製されている。
Further, the
成分濃度算出部81は、異なる2波長の光及び1波長の光による音波の大きさをそれぞれ記憶しておき、成分濃度を算出する。このように、成分濃度算出部81を有することにより、測定対象の成分濃度を算出することができる。成分濃度算出部81における具体的な算出機能については後述する。
The component
波長制御部41は、第1の光源11の出射する光の波長及び第2の光源12の出射する光の波長を調整する。本実形態では、被検体1に代えて所定の温度T0に保持された水により作製した校正用検体5を配置する。そして、波長制御部41は、第1の光源11及び第2の光源12の出射する第1の光の波長及び第2の光の波長を、前述の測定原理に従って所定の温度T0における被検体1の測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に設定する。さらに、波長制御部41は、第1の光源11及び第2の光源12に第1の光及び第2の光を同一周波数で逆位相の信号により電気的に強度変調させて校正用検体5に出射させる。また、校正用検体5から発生する音波の大きさを音波検出部71に検出させる。波長制御部41は、音波検出部71の検出する音波の大きさが零になるように、第1の光源11及び第2の光源12の出射する第1の光の波長と第2の光の波長いずれか、又は両方を調整する。校正用検体5から発生する音波の大きさが零になる状態は、第1の光により発生する第1の音波と第2の光により発生する第2の音波は、互いに逆位相で、かつ大きさが等しく、校正用検体5の中で重畳して打ち消しあっている状態である。従って、上記のように調整された第1の光の波長及び第2の光の波長の各々は、水が同じ吸光度を示す波長であり、各々波長λ1及び波長λ2に一致する。
The wavelength control unit 41 adjusts the wavelength of the light emitted from the first light source 11 and the wavelength of the light emitted from the second
波長制御部41により第1の光源11及び第2の光源12の出射する第1の光の波長と第2の光の波長いずれか、又は両方を調整することにより、第1の光の波長及び第2の光の波長を、前述の測定原理に従って所定の温度T0における測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に正確に一致させることができる。従って、本実施形態の成分濃度測定装置10は、被検体1の測定対象の成分濃度を正確に測定することができる。
By adjusting either or both of the wavelength of the first light and the wavelength of the second light emitted from the first light source 11 and the second
ここで、本実施の形態の成分濃度測定装置10の実装例を説明する。図5(A)及び図5(B)に本実施の形態の成分濃度測定装置10の実装例を示す。図5(A)は本実施の形態の成分濃度測定装置10により、被検体1としての左手の人差し指の成分濃度を測定している状態を、指先方向から見た図であり、図5(B)に示す破線Yにおける断面の概念図である。但し、図の理解を容易にするために、被検体1は、断面ではなく、外形を示している。一方、図5(B)は成分濃度測定装置10を図5(A)に示す破線Xにおける断面を図5(A)の左方向から見た概念図である。但し、図の理解を容易にするために、被検体1は、断面ではなく、外形を示している。
Here, an implementation example of the component
図5(A)において、音波検出部筐体91に設けられた音波検出部71は粘着性ゴム73を介して被検体1に接している。一方、半円筒状の保護筐体92の内部には温度検出部61、加熱部62及び冷却部63が設けられ、温度検出部61、加熱部62及び冷却部63は、半円筒状で柔軟な材料で作製された導熱材93を介して被検体1に接している。さらに、導熱材93と被検体1の間に緩衝材が設けられてもよい。また、第1の光源11、第2の光源12、変調信号発生部21、180°移相回路22及び合波部31よりなる光出射部51は保護筐体92の頂上部分の中に貫通して設けられ、変調光32は導熱材93の導熱材空孔94を通じて出射される。
In FIG. 5A, the sound
ここで、本実施形態の成分濃度測定装置10の動作による各部の具体的な機能について説明する。
Here, a specific function of each part by the operation of the component
図6は、第1の光及び第2の光の混合光と第2の光の単一光の出射タイミング、そのときの被検体の温度及び被検体で発生する音波の大きさを示した概略図である。図6において、横軸は時間を、左側の縦軸は音波の大きさを、右側の縦軸は温度を示している。各軸は、任意の値を示している。 FIG. 6 schematically shows the emission timing of the single light of the mixed light of the first light and the second light and the second light, the temperature of the subject at that time, and the magnitude of the sound wave generated in the subject. FIG. In FIG. 6, the horizontal axis represents time, the left vertical axis represents the magnitude of sound waves, and the right vertical axis represents temperature. Each axis shows an arbitrary value.
本実施形態では、図4の混合光単一光出射手段としての第1の光源11及び第2の光源12は、異なる2波長の光、即ち、第1の光の波長を前述の測定原理に従って被検体1の測定対象の成分及び水の吸光度特性から選定された波長λ1に設定し、及び第2の光の波長を前述の測定原理に従って被検体1の測定対象の成分及び水の吸光度特性から選定された波長λ2に設定する。そして、第1の光源11及び第2の光源12は、第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被検体1に向けて出射する。つまり、第1の光源11及び第2の光源12は、図6で示される混合光(白丸)と単一光(黒丸)とを交互に出射する。ここで、第1の光および第2の光の波長は、所定の温度T0における水が同じ吸光度を示す異なる2波長に設定する。この場合、所定の温度を先に決定し、決定した温度における水が同じ吸光度を示す異なる2波長に第1の光および第2の光の波長を設定することとしてもよいし、第1の光および第2の光の波長を先に設定し、決定した波長の温度−吸光度特性のグラフ(図3)から両グラフの交点の位置の温度を所定の温度T0とすることとしてもよい。
In the present embodiment, the first light source 11 and the second
このように出射した第1の光及び第2の光、又は第2の光が被検体1に照射されると被検体1から音波が発生し、音波検出部71は、被検体1から発生する音波を検出する。ここで、音波検出部71により検出される音波のうち前述の第1の光及び第2の光の混合光により発生する音波は、第1の音波により発生する第1の音波と第2の光により発生する第2の音波の差の音波である。
When the subject 1 is irradiated with the first light and the second light or the second light emitted in this way, a sound wave is generated from the
第1の光及び第2の光の混合光と第2の光の単一光を交互に複数回、被検体1に向けて出射すると、被検体1における光の被照射部位の温度は、図6の温度曲線105に示すように光の出射開始時点0secから上昇する。ここで、図3で説明したように、被検体1の温度と被検体1の成分のうち水の吸光度との関係が線形であるため、複数回出射する光のうち所定の1波長の光である第2の光により被検体1から発生する音波の大きさ(図6)をモニタすることによって、間接的に被検体1の温度変化量の空間的分布を測定することができる。
When the mixed light of the first light and the second light and the single light of the second light are alternately emitted toward the subject 1 a plurality of times, the temperature of the irradiated portion of the light in the
このように、本実施形態に係る成分濃度測定装置10は、被検体1の温度変化量の空間的分布を正確に測定できるため、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に測定することができる。また、間接的に被検体1の温度を測定し、かつ空間的分布を計測する他の手段と比較して、別途特殊な温度測定器や煩雑な手順が不要であるため、低コストを実現することができる。
As described above, since the component
また、第1の光源11及び第2の光源12は、第1の光及び第2の光の混合光により被検体1から発生する図6の音波の大きさ102が所定の大きさsf以下となるまで、混合光と単一光とを交互に出射することが望ましい。ここで、所定の大きさsfは、例えば、雑音信号のRMS値とすることができる。また、混合光と単一光と交互に出射すると各光の出射タイミングは非連続となる。この場合、音波の検出時間が長ければ、相対的に連続に近づくため、成分濃度測定装置10は、検出時間と各光の出射タイミングとを調整することにより、所定の大きさsfを略0とすることもできる。
Further, the first light source 11 and the second
被検体1の成分のうち水の吸光度は、図3で説明したように被検体1の温度に依存する。そのため、互いに異なる2つの波長を選択して第1の光及び第2の光の波長を設定すると、第1の光及び第2の光の混合光により被検体1から発生する図6の音波の大きさ102は、被検体1の所定の温度(例えば、波長1382nmの光、波長1608nmの光に設定した場合の温度T0−2)からの上昇に比例して下降する。そして、被検体1の温度が成分濃度Mに依存したある温度Teとなると音波の大きさ102は、所定の値sf以下に至り、やがて上昇に転じる。図6では、出射開始時点0secから約7秒後に音波の大きさ102が略0となっていることを示している。図4の被検体1の温度は、図6の温度曲線105のように、光の出射終了時点15secまで上昇し、出射終了時点15sec以降次の出射開始時点30secから出射終了時点45secまで再度上昇する。ここで、温度曲線105は、出射開始時点0secの直後に急勾配で上昇した後に、勾配を緩め、環境温度と平衡する或る飽和温度に漸近する。成分濃度測定には、この漸近しつつある、勾配の小さい温度領域を用いることが望ましい。
The absorbance of water among the components of the subject 1 depends on the temperature of the subject 1 as described in FIG. Therefore, when two different wavelengths are selected and the wavelengths of the first light and the second light are set, the sound wave of FIG. 6 generated from the
従って、本実施形態の成分濃度測定装置10は、第1の光源11及び第2の光源12が、図6の第1の光及び第2の光の混合光により発生する音波の大きさ102が所定の大きさsf以下となるまで、交互に光を出射することにより、図4の被検体1から発生する混合光により発生する音波の大きさ102が所定の大きさsf以下となるまでの被検体1の温度の空間的分布を間接的に測定することができる。
Therefore, in the component
温度保持手段としての温度制御部65は、被検体1の温度に応じて加熱部62又は冷却部63を制御して被検体1の温度を図6の所定の温度T0に保持し、第2の光源12は、所定の温度における被検体1に所定の1波長の光である第2の光を出射する。
The
被検体1の温度が、例えば、図6に示すTsと所定の温度T0より高い場合、所定の温度T0に保持するため、成分濃度測定装置10は、温度制御部65により冷却部63を駆動させて被検体1を冷却する。一方、被検体1の温度が、所定の温度T0より低い場合、所定の温度T0に保持するため、成分濃度測定装置10は、温度制御部65により加熱部62を駆動させて被検体1を加熱する。これにより、本実施形態に係る成分濃度測定装置10は、温度制御部65が被検体1の温度を強制的に所定の温度T0にして、音波検出部71により所定の温度T0における被検体1から発生する音波を測定することができる。
For example, when the temperature of the subject 1 is higher than T s and the predetermined temperature T 0 shown in FIG. 6, the component
第1成分濃度算出手段としての成分濃度算出部81は、第2の光源12からの所定の1波長の光である第2の光の単一光により被検体1から発生する音波のうち第1の光源11及び第2の光源12からの異なる2波長の光である第1の光及び第2の光の混合光により被検体1から発生する図6の音波の大きさ102が所定の大きさsf以下となったときに相当する音波の大きさs2(Te)及び第2の光源12からの所定の1波長の光である第2の光の単一光により被検体1から発生する音波の大きさs2(T0)から成分濃度を算出することが望ましい。
The component
本実施形態の成分濃度測定装置10は、音波検出部71が、第1の光源11及び第2の光源12の出射する第1の光及び第2の光の混合光により発生する音波の大きさ102が所定の値以下となるまで第2の光源12からの第2の光の単一光により発生する音波の大きさ101を検出する。ここで、図6の混合光により発生する音波の大きさ102が所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、成分濃度算出部81は、混合光より発生する音波の大きさ102が所定の大きさ以下となったときに相当する音波の大きさs2(Te)及び単一光により発生する音波の大きさs2(T0)から、数式(8)により成分濃度を算出できる。
In the component
ここで、単一光により発生する音波の大きさ101は、図6の黒丸に示すように直線で変化する。そのため、音波の大きさ101が連続であれば、混合光により発生する音波の大きさ102が所定の大きさsf以下となったときの単一光により発生する音波の大きさ101の実測値を用いることができる。一方、単一光により発生する音波の大きさ101が不連続である場合や音波の大きさ101の測定精度を向上させるために、単一光により発生する音波の大きさ101を最小2乗近似により近似して単一光により発生する音波の大きさ101を算出して用いることとしてもよい。
Here, the
このように測定した音波の大きさ101から成分濃度を算出することによって、本実施形態に係る成分濃度測定装置10は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。
By calculating the component concentration from the
また、成分濃度算出部81は、第2の光源12からの所定の1波長の光である第2の光の単一光により被検体1から発生する音波の大きさ101の推移から被検体1の温度を測定する音波推移温度測定手段としての機能を有することが望ましい。
In addition, the
本実施形態の成分濃度測定装置10は、図6の第2の光により発生する音波の大きさ101の推移から被検体1の温度を推定する。ここで、音波の大きさ101の推移は、被検体1の温度に対して線形に変化することから、成分濃度算出部81は、複数回の第2の光の被検体1への出射により被検体1の温度の変化と共に変化する音波の大きさ101に基づいて所定の近似計算から第1の光及び第2の光の混合光により発生する音波の大きさ102が所定の大きさ以下となったときに相当する音波の大きさs2(Te)を推定することができる。ここで、上記の近似計算は、例えば、図6の黒丸の載る直線を最小2乗法により近似する近時計算を適用できる。そして、成分濃度算出部81は、図3で説明した温度−吸光度特性のグラフの傾きから図6の温度曲線105を得ることができる。なお、被検体1の温度を推定するに際して、被検体1の初期の温度T0を検出する必要があるが、成分濃度算出部81は、温度検出部61により温度制御部65を介して温度T0を検出することとする。このようにして、本実施形態に係る成分濃度測定装置10は、1波長の光である第2の光の単一光により発生する音波の大きさ101の推移から被検体1の温度の空間的分布を間接的に得ることができる。
The component
また、第2成分濃度算出部としての成分濃度算出部81は、図6の第2の光により発生する音波の大きさ101の推移から測定する温度のうち第1の光源11及び第2の光源12から出射される第1の光及び第2の光の混合光により被検体1から発生する音波の大きさ102が所定の大きさsf以下となったときの温度Te及び所定の温度T0から成分濃度を算出することが望ましい。
In addition, the component
本実施形態の成分濃度測定装置10は、音波検出部71により第1の光源11及び第2の光源12の出射する第1の光及び第2の光の混合光により発生する音波の大きさ102が所定の値以下となるまで第2の光の単一光により発生する音波の大きさ101を測定する。ここで、図6の混合光により発生する音波の大きさ102が所定の値sf以下のとき、s1−s2は略0とみなすことができる。そのため、成分濃度算出部81は、混合光より発生する音波の大きさ102が所定の大きさsf以下となったときの温度Te及び所定の温度T0から、数式(7)により成分濃度を算出できる。従って、本実施形態に係る成分濃度測定装置10は、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。なお、本実施形態では、音波の大きさs2の推移から温度Teを推定することとしているが、非接触かつ特定位置の体表温度を計測するサーモグラフのような装置を用いれば、第1の光及び第2の光の混合光により発生する音波の大きさが所定の大きさ以下となったときの温度Teを直接測定して、式(7)から成分濃度Mを算出することもできる。
In the component
次に、本実施形態に係る成分濃度測定装置10の制御方法について図3、図4、図6を参照して説明する。
Next, a control method of the component
本実施形態に係る成分濃度測定装置10の制御方法では、成分濃度測定装置10の第1の光源11及び第2の光源12が、異なる2波長の光、即ち、第1の光の波長及び第2の光の波長を、前述の測定原理に従って被検体1の測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に設定する。そして、成分濃度測定装置10は、単一音波強度測定手順として次の動作を行う。第1の光源11及び第2の光源12は、第1の光及び第2の光の混合光と第2の光の単一光とを複数回交互に出射すると共に、音波検出部71は、被検体1から発生する音波の大きさ101、102を測定する。
In the control method of the component
本実施形態に係る成分濃度測定装置10の制御方法では、単一音波強度測定手順において混合光及び単一光を複数回交互に出射することにより、図6の第2の光の単一光により発生する音波の大きさ101の推移から、被検体1の温度変化量の空間的分布を正確に測定できるため、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に測定することができる。また、間接的に被検体1の温度を測定し、かつ空間的分布を計測する他の手段と比較して、別途特殊な温度測定器や煩雑な手順が不要であるため、低コストを実現することができる。
In the control method of the component
また、単一音波強度測定手順において図4の第1の光源11及び第2の光源12は、異なる2波長の光である第1の光及び第2の光の混合光により被検体1から発生する図6の音波の大きさ102が所定の大きさsf以下となるまで、混合光及び単一光を交互に出射することが望ましい。
Further, in the single sound intensity measurement procedure, the first light source 11 and the second
第1の光及び第2の光の混合光により被検体1から発生する音波の大きさ102は、被検体1の所定の温度からの上昇と共に下降する。そして、音波の大きさ102は、所定の値以下に至り、やがて上昇に転じる。そのため、本実施形態に係る成分濃度測定装置10の制御方法は、単一音波強度測定手順において図6の音波の大きさ102が所定の大きさ以下となるまで、混合光及び単一光を交互に光を出射することにより、被検体1から発生する音波の大きさ102が所定の大きさsf以下となるまでの被検体1の温度の空間的分布を間接的に測定することができる。
The
また、本実施形態の成分濃度測定装置10の制御方法では、温度制御部65が被検体1の温度を図6の所定の温度T0に保持し、第2の光源12が所定の1波長の光である第2の光の単一光を出射し、音波検出部71が被検体1から発生する音波の大きさを測定する所定温度音波強度測定手順を単一音波強度測定手順の前にさらに有することが望ましい。
Further, in the control method of the component
本実施形態の成分濃度測定装置10の制御方法では、所定温度音波強度測定手順において被検体1の温度を強制的に図6の所定の温度T0にして、所定の温度T0における被検体1から発生する音波を測定することができる。
In the control method of the constituent
また、本実施形態の成分濃度測定装置10の制御方法では、成分濃度算出部81が、単一音波強度測定手順において第2の光源12からの所定の1波長の光である第2の光の単一光により被検体1から発生する音波の大きさのうち第1の光源11及び第2の光源12からの異なる2波長の光である第1の光及び第2の光の混合光により被検体1から発生する図6の音波の大きさ102が所定の大きさsf以下となったときに相当する音波の大きさs2(Te)及び所定温度音波強度測定手順において測定される音波の大きさから成分濃度を算出する第1成分濃度算出手順をさらに有することが望ましい。
Moreover, in the control method of the component
図6の混合光により発生する音波の大きさ102が所定の値以下のとき、s1−s2は略0とみなすことができる。そのため、第1成分濃度算出手順において成分濃度算出部81は、図6の混合光より発生する音波の大きさ102が所定の大きさsf以下となったときに相当する音波の大きさs2(Te)及び単一光により発生する音波の大きさs2(T0)から、数式(8)により成分濃度を算出できる。従って、本実施形態の成分濃度測定装置10の制御方法では、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。
When the
また、本実施形態の成分濃度測定装置10の制御方法では、音波推移温度測定手段としての成分濃度算出部81が、単一音波強度測定手順において第1の第2の光源12からの所定の1波長の光である第2の光の単一光により被検体1から発生する図6の音波の大きさ101の推移から温度を測定する音波推移温度測定手順をさらに有することが望ましい。
Moreover, in the control method of the component
音波の大きさ101の推移は、被検体1の温度に対して線形に変化することから、音波推移温度測定手順において成分濃度算出部81は、複数回の第2の光の被検体1への出射により被検体1の温度変化と共に変化する音波の大きさ101に基づいて所定の近似計算から第1の光及び第2の光の混合光により発生する音波の大きさ102が所定の大きさ以下となったときに相当する音波の大きさs2(Te)を推定することができる。なお、上記の所定の近似計算は、前述の通りである。これにより、本実施形態の成分濃度測定装置10の制御方法では、単一光の光により発生する音波の大きさ101の推移から被検体1の温度の空間的分布を間接的に得ることができる。
Since the transition of the
また、本実施形態の成分濃度測定装置10の制御方法では、成分濃度算出部81が音波推移温度測定手順において測定する温度のうち単一音波強度測定手順において第1の光源11及び第2の光源12からの異なる2波長の光である第1の光及び第2の光の混合光により被検体1から発生する図6の音波の大きさ102が所定の大きさsf以下となったときの温度Te及び所定の温度T0から成分濃度を算出する第2成分濃度算出手順をさらに有することが望ましい。
Further, in the control method of the component
図6の混合光により発生する音波の大きさ102が所定の値sf以下のとき、s1−s2は略0とみなすことができる。そのため、第2成分濃度算出手順において成分濃度算出部81は、混合光より発生する音波の大きさ102が所定の大きさsf以下となったときの温度Te及び所定の温度T0から、数式(7)により成分濃度を算出できる。従って、本実施形態の成分濃度測定装置10の制御方法では、温度変化量による音波強度の変化の影響を少なくして成分濃度を正確に算出することができる。
When the
また、本実施形態の成分濃度測定装置10の制御方法では、単一音波強度測定手順の前に、波長制御部41が、第1の光源11及び第2の光源12に異なる2波長の光を同一周波数で逆位相の信号により電気的に強度変調させて図6の所定の温度T0の水に出射させ、音波強度測定手段の測定する水から発生する音波の大きさが零になるように第1の光源11及び第2の光源12の異なる2波長の光の波長を調整する波長調整手順をさらに有することが望ましい。
Moreover, in the control method of the component
波長制御部41により第1の光源11及び第2の光源12の出射する第1の光の波長と第2の光の波長いずれか、又は両方を調整することにより、第1の光の波長及び第2の光の波長を、前述の測定原理に従って所定の温度における測定対象の成分及び水の吸光度特性から選定された波長λ1及び波長λ2に正確に一致させることができる。従って、本実施形態の成分濃度測定装置10の制御方法では、被検体1の測定対象の成分濃度を正確に測定することができる。
By adjusting either or both of the wavelength of the first light and the wavelength of the second light emitted from the first light source 11 and the second
また、本実施形態の成分濃度測定装置10の制御方法では、所定温度音波強度測定手順において、第2の光源12が異なる2波長の光のうち所定の1波長の光を出射し、音波検出部71が音波の大きさを測定することが望ましい。
Moreover, in the control method of the component
本実施形態の成分濃度測定装置10の制御方法では、混合光単一光出射手段としての第1の光源11及び第2の光源12の一方である第2の光源12が単一光出射手段を兼ねることにより、簡易な構成で1波の光を被検体1に出射することができる。
In the control method of the component
本発明の成分濃度測定方法、成分濃度測定装置及び成分濃度測定装置制御方法は、日常の健康管理や美容上のチェックに利用することができる。また、人間の生体ばかりでなく、動物の生体についても健康管理に利用することができる。さらに、液体中の成分濃度を測定する分野、例えば果実の糖度測定にも適用することができる。 The component concentration measurement method, component concentration measurement device, and component concentration measurement device control method of the present invention can be used for daily health management and cosmetic checks. Moreover, not only a human living body but also an animal living body can be used for health management. Furthermore, the present invention can be applied to the field of measuring the concentration of components in a liquid, for example, sugar content measurement of fruits.
1:被検体
5:校正用検体
10:成分濃度測定装置
11:第1の光源
12:第2の光源
21:変調信号発生部
22:180°移相回路
31:合波部
32:変調光
41:波長制御部
51:光出射部
61:温度検出部
62:加熱部
63:冷却部
65:温度制御部
71:音波検出部
73:粘着性ゴム
81:成分濃度算出部
91:音波検出部筐体
92:保護筺体
93:導熱材
94:導熱材空孔
101:音波の大きさ
102:音波の大きさ
103:音波の大きさ
104:音波の大きさ
105:温度曲線
601:第1の光源
604:駆動回路
605:第2の光源
608:駆動回路
609:合波部
610:被検体
613:超音波検出器
616:パルス光源
617:チョッパ板
618:モータ
619:音響センサ
620:波形観測器
621:周波数解析器
1: subject 5: calibration sample 10: component concentration measuring device 11: first light source 12: second light source 21: modulation signal generator 22: 180 ° phase shift circuit 31: multiplexer 32: modulation light 41 : Wavelength control unit 51: Light emitting unit 61: Temperature detection unit 62: Heating unit 63: Cooling unit 65: Temperature control unit 71: Sound wave detection unit 73: Adhesive rubber 81: Component concentration calculation unit 91: Sound wave detection unit housing 92: Protection housing 93: Heat conducting material 94: Heat conducting material hole 101: Sound wave size 102: Sound wave size 103: Sound wave size 104: Sound wave size 105: Temperature curve 601: First light source 604: Drive circuit 605: second light source 608: drive circuit 609: multiplexer 610: subject 613: ultrasonic detector 616: pulse light source 617: chopper plate 618: motor 619: acoustic sensor 620: waveform observer 621: frequency Analyzer
Claims (30)
前記被測定物から発生する音波の大きさを測定する音波強度測定手段と、を備え、
前記混合光単一光出射手段は、前記異なる2波長の光及び前記所定の1波長の光を複数回交互に出射することを特徴とする成分濃度測定装置。 Two different wavelengths of light having the same absorbance by water at a predetermined temperature are electrically intensity-modulated with a signal having the same frequency and opposite phase and emitted to the object to be measured, and one predetermined wavelength of the two different wavelengths of light is emitted. A mixed light single light emitting means for electrically modulating the intensity of the light and emitting it to the object to be measured;
A sound intensity measuring means for measuring the magnitude of sound waves generated from the object to be measured,
The mixed light single light emitting means alternately emits the light of the two different wavelengths and the light of the predetermined one wavelength a plurality of times.
前記所定の1波長の光を電気的に強度変調して前記被測定物に出射する単一光出射手段と、をさらに備え、
前記単一光出射手段は、前記温度保持手段により保持される前記所定の温度における前記被測定物に前記所定の1波長の光を出射することを特徴とする請求項17又は18に記載の成分濃度測定装置。 Temperature holding means for holding the temperature of the object to be measured at the predetermined temperature;
A single light emitting means for electrically modulating the intensity of the predetermined wavelength of light and emitting it to the object to be measured;
The component according to claim 17 or 18, wherein the single light emitting means emits the light having the predetermined wavelength to the object to be measured at the predetermined temperature held by the temperature holding means. Concentration measuring device.
前記被検体から発生する音波の大きさを測定する音波強度測定手段と、を備え、
前記混合光単一光出射手段は、前記異なる2波長の光及び前記所定の1波長の光を複数回交互に出射することを特徴とする成分濃度測定装置。 Two different wavelengths of light having the same absorbance by water at a predetermined temperature are emitted after being intensity-modulated with signals having the same frequency and opposite phase, and one of the two different wavelengths of light is emitted. Mixed light single light emitting means for emitting light with modulated intensity,
Sound intensity measuring means for measuring the magnitude of sound waves generated from the subject,
The mixed light single light emitting means alternately emits the light of the two different wavelengths and the light of the predetermined one wavelength a plurality of times.
前記所定の1波長の光を電気的に強度変調して前記被検体に出射する単一光出射手段と、をさらに備え、
前記単一光出射手段は、前記温度保持手段により保持される前記所定の温度における前記被検体に前記所定の1波長の光を出射することを特徴とする請求項23又は24に記載の成分濃度測定装置。 Temperature holding means for holding the temperature of the subject at the predetermined temperature;
A single light emitting means for electrically modulating the intensity of the predetermined wavelength of light and emitting it to the subject;
25. The component concentration according to claim 23 or 24, wherein the single light emitting unit emits the light having the predetermined wavelength to the subject at the predetermined temperature held by the temperature holding unit. measuring device.
18. The single light emitting means emits the light having the predetermined one wavelength out of the two different wavelengths of light of the mixed light single light emitting means, and outputs the light after intensity modulation. 30. The component concentration measuring apparatus according to any one of 1 to 29.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005348179A JP4441479B2 (en) | 2005-12-01 | 2005-12-01 | Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005348179A JP4441479B2 (en) | 2005-12-01 | 2005-12-01 | Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007155397A true JP2007155397A (en) | 2007-06-21 |
JP4441479B2 JP4441479B2 (en) | 2010-03-31 |
Family
ID=38239982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005348179A Expired - Fee Related JP4441479B2 (en) | 2005-12-01 | 2005-12-01 | Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4441479B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007259915A (en) * | 2006-03-27 | 2007-10-11 | Nippon Telegr & Teleph Corp <Ntt> | Component concentration measuring device |
JP2009136329A (en) * | 2007-12-03 | 2009-06-25 | Nippon Telegr & Teleph Corp <Ntt> | Component concentration measuring instrument and control method thereof |
JP2009219800A (en) * | 2008-03-18 | 2009-10-01 | Nippon Telegr & Teleph Corp <Ntt> | Apparatus and method for measuring concentration of component |
WO2013008447A1 (en) * | 2011-07-14 | 2013-01-17 | パナソニック株式会社 | Analysis device and analysis method |
JP2014079559A (en) * | 2012-09-26 | 2014-05-08 | Meiji Univ | Parameter measuring device, parameter measuring method, and program |
JP2014183894A (en) * | 2013-03-22 | 2014-10-02 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for measuring temperature |
JP7438774B2 (en) | 2020-02-05 | 2024-02-27 | アズビル株式会社 | measuring device |
-
2005
- 2005-12-01 JP JP2005348179A patent/JP4441479B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007259915A (en) * | 2006-03-27 | 2007-10-11 | Nippon Telegr & Teleph Corp <Ntt> | Component concentration measuring device |
JP4490386B2 (en) * | 2006-03-27 | 2010-06-23 | 日本電信電話株式会社 | Component concentration measuring device |
JP2009136329A (en) * | 2007-12-03 | 2009-06-25 | Nippon Telegr & Teleph Corp <Ntt> | Component concentration measuring instrument and control method thereof |
JP2009219800A (en) * | 2008-03-18 | 2009-10-01 | Nippon Telegr & Teleph Corp <Ntt> | Apparatus and method for measuring concentration of component |
WO2013008447A1 (en) * | 2011-07-14 | 2013-01-17 | パナソニック株式会社 | Analysis device and analysis method |
JP2014079559A (en) * | 2012-09-26 | 2014-05-08 | Meiji Univ | Parameter measuring device, parameter measuring method, and program |
JP2014183894A (en) * | 2013-03-22 | 2014-10-02 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for measuring temperature |
JP7438774B2 (en) | 2020-02-05 | 2024-02-27 | アズビル株式会社 | measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP4441479B2 (en) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1346684B1 (en) | Apparatus and method for non-invasively measuring bio-fluid concentrations by using photoacoustic spectroscopy | |
US6484044B1 (en) | Apparatus and method for detecting a substance | |
JP4755016B2 (en) | Component concentration measuring device | |
JP6108902B2 (en) | Processing apparatus, photoacoustic apparatus, processing method, and program | |
JP4914388B2 (en) | Component concentration measuring device | |
JP2009142320A (en) | Component concentration measuring apparatus | |
JP4418447B2 (en) | Calibration phantom and component concentration measuring device calibration method | |
JP4444227B2 (en) | Component concentration measuring apparatus and component concentration measuring method | |
JP4901432B2 (en) | Component concentration measuring device | |
JP4441479B2 (en) | Component concentration measurement method, component concentration measurement device, and component concentration measurement device control method | |
JP5400483B2 (en) | Component concentration analyzer and component concentration analysis method | |
JP4412666B2 (en) | Component concentration measuring apparatus and component concentration measuring apparatus control method | |
JP4531632B2 (en) | Biological component concentration measuring apparatus and biological component concentration measuring apparatus control method | |
JP4902508B2 (en) | Component concentration measuring apparatus and component concentration measuring apparatus control method | |
JP4477568B2 (en) | Component concentration measuring apparatus and component concentration measuring apparatus control method | |
JP4945422B2 (en) | Component concentration measuring device | |
JP4773390B2 (en) | Component concentration measuring device | |
JP4945415B2 (en) | Component concentration measuring apparatus and component concentration measuring apparatus control method | |
JP4412667B2 (en) | Component concentration measuring device | |
JP6080004B2 (en) | Parameter measuring apparatus, parameter measuring method, and program | |
JP4914332B2 (en) | Component concentration measuring device | |
JP5345439B2 (en) | Component concentration analyzer and component concentration analysis method | |
JP2007037871A (en) | Component concentration measuring apparatus and component concentration measuring apparatus control method | |
JP4490385B2 (en) | Component concentration measuring device | |
JP2008125543A (en) | Constituent concentration measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091029 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20091113 |
|
TRDD | Decision of grant or rejection written | ||
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100108 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4441479 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |