JP2007144359A - Method for carrying catalyst on honeycomb structure body - Google Patents
Method for carrying catalyst on honeycomb structure body Download PDFInfo
- Publication number
- JP2007144359A JP2007144359A JP2005345016A JP2005345016A JP2007144359A JP 2007144359 A JP2007144359 A JP 2007144359A JP 2005345016 A JP2005345016 A JP 2005345016A JP 2005345016 A JP2005345016 A JP 2005345016A JP 2007144359 A JP2007144359 A JP 2007144359A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- honeycomb structure
- component
- supporting
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 227
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000011148 porous material Substances 0.000 claims abstract description 59
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 26
- 239000000470 constituent Substances 0.000 claims abstract description 23
- 239000002243 precursor Substances 0.000 claims abstract description 17
- 238000001035 drying Methods 0.000 claims abstract description 13
- 238000005192 partition Methods 0.000 claims description 17
- 238000000746 purification Methods 0.000 claims description 12
- 239000004071 soot Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 238000004108 freeze drying Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 239000010970 precious metal Substances 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 8
- 238000001879 gelation Methods 0.000 abstract description 2
- 238000007789 sealing Methods 0.000 abstract 2
- 238000000638 solvent extraction Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 29
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 15
- 229910052697 platinum Inorganic materials 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910001593 boehmite Inorganic materials 0.000 description 3
- 230000023402 cell communication Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 3
- IKNCGYCHMGNBCP-UHFFFAOYSA-N propan-1-olate Chemical compound CCC[O-] IKNCGYCHMGNBCP-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910002706 AlOOH Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- -1 sialon Chemical compound 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、自動車用、建設機械用、及び産業用定置エンジン、並びに燃焼機器等から排出される排ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOX)、及び硫黄酸化物(SOX)等の被浄化成分の浄化や、ディーゼルエンジンからの微粒子を除去するためのフィルタに好適に用いられるハニカム触媒体を製造する際において、触媒担体としてのハニカム構造体に触媒を担持するハニカム構造体の触媒の担持方法に関する。 The present invention is a carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NO x ) contained in exhaust gas discharged from automobiles, construction machinery, industrial stationary engines, combustion equipment, and the like, In manufacturing a honeycomb catalyst body suitably used for purification of components to be purified such as sulfur oxide (SO x ) and a filter for removing fine particles from a diesel engine, a honeycomb structure as a catalyst carrier is used. The present invention relates to a catalyst supporting method for a honeycomb structure supporting a catalyst.
現在、各種エンジン等から排出される排ガスを浄化するために、ハニカム構造体を触媒担体として使用した触媒体(ハニカム触媒体)が用いられている。このハニカム触媒体は、図6に示すように、ハニカム構造体11のセル3を形成する隔壁4の表面に触媒層15が担持された構造を有するものである。また、図4及び図5に示すように、このハニカム触媒体60を用いて排ガスを浄化するに際しては、一の端面2a側からハニカム触媒体60のセル3に排ガスを流入させ、隔壁4表面の触媒層(図示せず)に排ガスを接触させ、次いで、他の端面2bの側から外部へと流出させることにより行われる(例えば、特許文献1参照)。
Currently, a catalyst body (honeycomb catalyst body) using a honeycomb structure as a catalyst carrier is used in order to purify exhaust gas discharged from various engines and the like. As shown in FIG. 6, this honeycomb catalyst body has a structure in which a
従来、ハニカム構造体に触媒を担持する場合には、触媒となる原料粉末を別途合成して触媒粉末を得、得られた触媒粉末をスラリー化して、ハニカム構造体に含浸させ、その後乾燥することによって行われていた。この触媒粉末には、触媒として機能するアルミナやチタニア、金属成分等が含まれている。
しかしながら、上記した従来の触媒の担持方法は、触媒粉末を構成する粒子の粒子径が大きい場合に、ハニカム構造体の小細孔内に触媒粉末が入らず担持されないという問題があった。 However, the conventional catalyst loading method described above has a problem that the catalyst powder does not enter the small pores of the honeycomb structure and is not loaded when the particle size of the particles constituting the catalyst powder is large.
また、ハニカム構造体に触媒粉末を含浸させた後に乾燥する際に、水の移動と共に触媒成分(触媒粉末)が、ハニカム構造体の細孔内から隔壁表面に移動してしまうため、触媒の担持が不均一になり、圧損上昇を招いたり、有効に利用されない触媒が生じてしまうという問題もあった。 Also, when the honeycomb structure is impregnated with the catalyst powder and dried, the catalyst component (catalyst powder) moves from the pores of the honeycomb structure to the partition wall surface along with the movement of water. There is also a problem that the catalyst becomes non-uniform, resulting in an increase in pressure loss and a catalyst that is not effectively used.
さらには、一旦、合成した触媒粉末は、触媒として良好な組成・細孔分布を実現することができるが、この触媒粉末をスラリー化してハニカム構造体に含浸させ、その後乾燥する工程を経ることにより、触媒に構造変化が起こり、担持後の触媒が良好な組成・細孔分布にならないという問題がある。 Furthermore, once synthesized catalyst powder can achieve a good composition and pore distribution as a catalyst, this catalyst powder is slurried and impregnated into a honeycomb structure, and then dried. However, there is a problem that structural changes occur in the catalyst, and the supported catalyst does not have a good composition and pore distribution.
本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、触媒として良好な組成・細孔分布が実現された触媒を、ハニカム構造体の細孔内に均一に担持することが可能なハニカム構造体の触媒の担持方法を提供することにある。 The present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide a catalyst having a good composition and fine pore distribution as a catalyst and to make a fine structure of the honeycomb structure. An object of the present invention is to provide a catalyst supporting method for a honeycomb structure that can be uniformly supported in pores.
本発明者らは上記課題を達成すべく鋭意検討した結果、触媒の貴金属を除く構成成分の中で触媒の前記構成成分全体に占める体積の割合が50体積%以上となる一の成分を、前駆体状態又はゾル状態にて、ハニカム構造体の細孔内に含浸させ、細孔内に含浸させた一の成分をゲル化させ、このゲル化させた一の成分を乾燥することにより、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have determined that one component having a volume ratio of 50% by volume or more in the entire component of the catalyst, excluding the precious metal of the catalyst, is a precursor. By impregnating the pores of the honeycomb structure in a body state or a sol state, gelling one component impregnated in the pores, and drying the gelled one component, the above problem Has been found to be possible to achieve the present invention.
即ち、本発明によれば、以下に示すハニカム構造体の触媒の担持方法が提供される。 That is, according to the present invention, the following method for supporting a catalyst for a honeycomb structure is provided.
[1] 二つの端面間を連通する複数のセルが形成されるように配置された、多数の細孔を有する多孔質の隔壁と、前記セルをいずれかの前記端面において目封止するように配置された目封止部とを備えたハニカム構造体に触媒を担持するハニカム構造体の触媒の担持方法であって、前記触媒の貴金属を除く構成成分の中で前記触媒の構成成分全体に占める体積の割合が50体積%以上となる一の成分を、前駆体状態又はゾル状態にて、前記ハニカム構造体の前記細孔内に含浸させ、含浸させた前記一の成分をゲル化させ、ゲル化させた前記一の成分を乾燥する工程を含むハニカム構造体の触媒の担持方法。 [1] A porous partition wall having a large number of pores arranged so that a plurality of cells communicating between two end faces are formed, and the cells are plugged at any one of the end faces. A catalyst supporting method for a honeycomb structure in which a catalyst is supported on a honeycomb structure having a plugged portion disposed therein, and occupies the entire constituent components of the catalyst among the constituent components excluding the noble metal of the catalyst One component having a volume ratio of 50% by volume or more is impregnated into the pores of the honeycomb structure in a precursor state or a sol state, the impregnated one component is gelled, and the gel A method for supporting a catalyst of a honeycomb structure, comprising a step of drying the one component that has been made into a solid.
[2] ゲル化させた前記一の成分を乾燥する方法が、凍結乾燥である前記[1]に記載のハニカム構造体の触媒の担持方法。 [2] The method for supporting the catalyst of the honeycomb structure according to [1], wherein the method for drying the one component that has been gelled is freeze-drying.
[3] 前記一の成分を、前駆体状態又はゾル状態にて、前記ハニカム構造体の前記細孔内に含浸させる際に、前記一の成分を含む溶液中に、前記触媒の構成成分全体に占める体積の割合が50体積%未満の他の成分、及び/又は前記貴金属からなる触媒の構成成分を含む溶液を用いる前記[1]又は[2]に記載のハニカム構造体の触媒の担持方法。 [3] When the one component is impregnated into the pores of the honeycomb structure in a precursor state or a sol state, the entire component of the catalyst is added to the solution containing the one component. The method for supporting a catalyst of a honeycomb structure according to the above [1] or [2], wherein a solution containing another component having a volume ratio of less than 50% by volume and / or a constituent component of the catalyst made of the noble metal is used.
[4] 前記一の成分を前記ハニカム構造体の前記細孔内に含浸させて乾燥した後、前記触媒の構成成分全体に占める体積の割合が50体積%未満の他の成分、及び/又は前記貴金属からなる触媒の構成成分を含む溶液を用いて、前記触媒の構成成分全体に占める体積の割合が50体積%未満の前記他の成分、及び/又は前記貴金属からなる触媒の構成成分を前記ハニカム構造体の前記細孔内に含浸させ、含浸させた成分を乾燥する前記[1]又は[2]に記載のハニカム構造体の触媒の担持方法。 [4] After impregnating the one component into the pores of the honeycomb structure and drying, the other component having a volume ratio of less than 50% by volume of the total component of the catalyst, and / or the Using a solution containing a constituent component of a catalyst made of a noble metal, the other component having a volume ratio of less than 50% by volume in the total constituent components of the catalyst and / or a constituent component of the catalyst made of the noble metal are added to the honeycomb. The method for supporting a catalyst of a honeycomb structure according to the above [1] or [2], wherein the pores of the structure are impregnated and the impregnated components are dried.
[5] 前記触媒として、ガソリンエンジン排ガス浄化用三元触媒、炭化水素、一酸化炭素、又はススの浄化用酸化触媒、NOX選択還元用SCR触媒、NOX吸蔵触媒、三元浄化機能とススの浄化機能を有する四元触媒、及び燃焼排ガス中の酸化物系有害成分を浄化するために用いられる触媒からなる群より選択される少なくとも一種の触媒を用いる前記[1]〜[4]のいずれかに記載のハニカム構造体の触媒の担持方法。
[5] Three-way catalyst for purifying gasoline engine exhaust gas, oxidation catalyst for hydrocarbon, carbon monoxide or soot purification, SCR catalyst for NO x selective reduction, NO x storage catalyst, three-way purification function and soot Any one of the above [1] to [4], wherein at least one catalyst selected from the group consisting of a quaternary catalyst having a purification function and a catalyst used for purifying oxide-based harmful components in combustion exhaust gas is used. A method for supporting a catalyst for a honeycomb structure according to
[6] 前記ハニカム構造体が、セラミックスを主成分とする材料、又は焼結金属からなる前記[1]〜[5]のいずれかに記載のハニカム構造体の触媒の担持方法。 [6] The catalyst supporting method for a honeycomb structure according to any one of [1] to [5], wherein the honeycomb structure is made of a material mainly composed of ceramics or a sintered metal.
[7] 前記ハニカム構造体が、ディーゼルパティキュレートフィルタである前記[1]〜[6]のいずれかに記載のハニカム構造体の触媒の担持方法。 [7] The method for supporting a catalyst of the honeycomb structure according to any one of [1] to [6], wherein the honeycomb structure is a diesel particulate filter.
本発明のハニカム構造体の触媒の担持方法によれば、触媒として良好な組成・細孔分布が実現された触媒を、ハニカム構造体の細孔内に均一に担持することができる。このため、従来、触媒の担持が困難であった、細孔径の小さいなハニカム構造体に対しても良好に触媒を担持することができる。 According to the method for supporting a catalyst of a honeycomb structure of the present invention, a catalyst having a good composition and pore distribution as a catalyst can be uniformly supported in the pores of the honeycomb structure. For this reason, the catalyst can be favorably supported even on a honeycomb structure having a small pore diameter, which has conventionally been difficult to support the catalyst.
また、本発明のハニカム構造体の触媒の担持方法によれば、細孔内に均一に触媒を担持することができるために、得られるハニカム触媒体の圧力損失を小さくすることができる。 In addition, according to the catalyst supporting method of the honeycomb structure of the present invention, the catalyst can be uniformly supported in the pores, so that the pressure loss of the resulting honeycomb catalyst body can be reduced.
以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。 BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.
図1は、本発明のハニカム構造体の触媒の担持方法の一の実施形態よって触媒が担持されたハニカム構造体(ハニカム触媒体)を模式的に示す正面図であり、図2は、図1のハニカム構造体を模式的に示す断面図である。また、図3は、図1のハニカム構造体の部分拡大図である。本実施形態のハニカム構造体の触媒の担持方法(以下、単に触媒担持方法ということがある)は、図1〜図3に示すように、二つの端面2a,2b間を連通する複数のセル3が形成されるように配置された、多数の細孔25を有する多孔質の隔壁4と、セル3をいずれかの端面2a,2bにおいて目封止するように配置された目封止部10とを備えたハニカム構造体1に触媒5を担持するハニカム構造体の触媒の担持方法である。なお、図1における符号20は、ハニカム構造体の外壁を示している。
FIG. 1 is a front view schematically showing a honeycomb structure (honeycomb catalyst body) on which a catalyst is supported according to an embodiment of the catalyst supporting method of the honeycomb structure of the present invention. FIG. 2 is a cross-sectional view schematically showing the honeycomb structure. FIG. FIG. 3 is a partially enlarged view of the honeycomb structure of FIG. As shown in FIGS. 1 to 3, the honeycomb structure catalyst supporting method of the present embodiment (hereinafter sometimes simply referred to as a catalyst supporting method) includes a plurality of
ハニカム構造体1に触媒5を担持したハニカム触媒体1aは、一方の端面2aの側から所定のセル3内に流入した流体(例えば、排気ガス)を、隔壁4の細孔内を経由させ、細孔25内に担持した触媒5によって浄化し、浄化した流体を所定のセル3に隣接するセル3を通過させて他方の端面2aの側から排出するものである。本実施の形態の触媒担持方法は、触媒担体としてのみの機能を有するハニカム構造体だけでなく、ハニカム構造体の多孔質の隔壁によってディーゼルエンジンからの微粒子を除去するためのディーゼルパティキュレートフィルタに対しても良好に触媒を担持することができる。
The honeycomb catalyst body 1a carrying the
本実施の形態のハニカム構造体の触媒担持方法は、このハニカム構造体1に触媒5を担持する際に、触媒の貴金属を除く構成成分の中で触媒の構成成分全体に占める体積の割合が50体積%以上となる一の成分を、前駆体状態又はゾル状態にて、ハニカム構造体の細孔内に含浸させ、含浸させた一の成分をゲル化させ、ゲル化させた一の成分を乾燥工程を含むハニカム構造体の触媒の担持方法である。
In the catalyst supporting method of the honeycomb structure according to the present embodiment, when the
このように構成することによって、担持する触媒の合成と担持とを同時に行うことができ、さらに、触媒の貴金属を除く構成成分全体に占める体積の割合が50体積%以上となる一の成分は、アルコキシド等の前駆体状態又はゾル状態にて、ハニカム構造体の細孔内に含浸させるため、触媒として良好な組成・細孔分布が実現された触媒を細孔内に均一に担持することができる。 By comprising in this way, the synthesis | combination and carrying | support of the catalyst to carry | support can be performed simultaneously, Furthermore, the ratio of the volume which occupies for the whole component except a noble metal of a catalyst becomes 50 volume% or more, In order to impregnate the pores of the honeycomb structure in a precursor state or sol state such as alkoxide, a catalyst having a good composition and pore distribution as a catalyst can be uniformly supported in the pores. .
また、本実施形態のハニカム構造体の触媒担持方法によって得られるハニカム触媒体は、圧力損失が小さくなる。特に、スス等を含む排ガスを浄化する場合には、圧力損失の低減が顕著として現れる。例えば、スス3g/L貯めた状態では、触媒担持したハニカム触媒体の圧力損失の上昇が、触媒を担持する前のハニカム構造体に対して50%以下となる。 Further, the honeycomb catalyst body obtained by the catalyst supporting method for the honeycomb structure of the present embodiment has a small pressure loss. In particular, when purifying exhaust gas containing soot or the like, a reduction in pressure loss appears prominently. For example, in a state where 3 g / L of soot is stored, the increase in pressure loss of the honeycomb catalyst body carrying the catalyst is 50% or less with respect to the honeycomb structure before carrying the catalyst.
以下、本実施形態のハニカム構造体の触媒担持方法について、各工程毎にさらに詳細に説明する。まず、触媒の貴金属を除く構成成分の中で触媒の構成成分全体に占める体積の割合が50体積%以上となる一の成分を、前駆体状態又はゾル状態にする。 Hereinafter, the catalyst supporting method for the honeycomb structure of the present embodiment will be described in more detail for each step. First, of the constituent components excluding the noble metal of the catalyst, one component having a volume ratio of 50% by volume or more in the entire constituent components of the catalyst is made into a precursor state or a sol state.
本実施の形態のハニカム構造体の触媒担持方法にて担持する触媒としては、ガソリンエンジン排ガス浄化用三元触媒、炭化水素、一酸化炭素、又はススの浄化用酸化触媒、NOX選択還元用SCR触媒、NOX吸蔵触媒、三元浄化機能とススの浄化機能を有する四元触媒、及び燃焼排ガス中の酸化物系有害成分を浄化するために用いられる触媒からなる群より選択される少なくとも一種の触媒を挙げることができる。 As the catalyst to be supported by the catalyst supporting method of the honeycomb structure of the present embodiment, the three-way catalyst for gasoline engine exhaust gas purification, hydrocarbons, carbon monoxide, or soot purifying oxidation catalyst, NO X selective reduction for SCR catalyst, NO X storage catalyst, a three-way purification function and soot four yuan catalyst having a purification function, and at least one selected from the group consisting of catalysts used for purifying oxide harmful components in the combustion exhaust gas Mention may be made of catalysts.
なお、上記した触媒の貴金属を除く構成成分の中で触媒の構成成分全体に占める体積の割合が50体積%以上となる一の成分とは、例えば、ガソリンエンジン排ガス浄化用三元触媒として代表的な白金(Pt)−ロジウム(Rh)/アルミナ−セリア触媒中のアルミナや、炭化水素酸化用触媒である白金(Pt)/チタニア中のチタニア、パラジウム(Pd)/シリカ触媒中のシリカ等の成分を挙げることができる。 In addition, among the constituent components excluding the noble metal of the catalyst described above, one component having a volume ratio of 50% by volume or more with respect to the total constituent components of the catalyst is representative of, for example, a three-way catalyst for purifying gasoline engine exhaust gas Such as alumina in platinum (Pt) -rhodium (Rh) / alumina-ceria catalyst, platinum (Pt) as a catalyst for hydrocarbon oxidation / titania in titania, silica in palladium (Pd) / silica catalyst Can be mentioned.
また、本発明にいう前駆体状態とは、化学的な意味で本来触媒として使われる化合物にまで反応が進行していない化合物の状態のことで、例えば、無水アルコール溶媒中のアルコキシドと、水との加水分解反応における、無水アルコール中のアルコキシドの状態のことをいう。 In addition, the precursor state referred to in the present invention is a state of a compound in which the reaction does not proceed to a compound that is originally used as a catalyst in a chemical sense. For example, an alkoxide in an anhydrous alcohol solvent, water, This refers to the state of alkoxide in anhydrous alcohol in the hydrolysis reaction.
例えば、一の成分がアルミナである場合には、無水イソプロパノール溶液中に溶解したアルミニウムイソプロポキシドの状態を前駆体状態とすることができ、また、一の成分がチタニアである場合には、水中に溶解した四塩化チタンの状態を前駆体状態とすることができる。 For example, when one component is alumina, the state of aluminum isopropoxide dissolved in anhydrous isopropanol solution can be a precursor state, and when one component is titania, The state of titanium tetrachloride dissolved in the precursor can be a precursor state.
また、本発明にいうゾル状態とは、一の成分がコロイドなどの微粒子の状態で液体中に分散していて流動性のある状態であることをいい、例えば、一の成分がアルミナである場合には、溶媒中に分散するべーマイト・ゾル(AlOOH)を挙げることができる。 The sol state referred to in the present invention means that one component is in a state of fine particles such as a colloid and dispersed in a liquid and in a fluid state. For example, when one component is alumina. May include boehmite sol (AlOOH) dispersed in a solvent.
次に、前駆体状態又はゾル状態の一の成分を、触媒担体としてのハニカム構造体の細孔内に含浸させる。含浸の方法としては、例えば、ハニカム構造体を、前駆体状態又はゾル状態の一の成分を含む溶液に浸漬し、ハニカム構造体の細孔内に溶液を侵入させる方法を挙げることができる。 Next, one component of the precursor state or the sol state is impregnated in the pores of the honeycomb structure as a catalyst carrier. Examples of the impregnation method include a method in which the honeycomb structure is immersed in a solution containing one component in a precursor state or a sol state, and the solution enters the pores of the honeycomb structure.
本実施の形態のハニカム構造体の触媒担持方法に使用するハニカム構造体は、例えば、従来公知のディーゼルパティキュレートフィルタ(DPF)の製造方法に準じた製造方法に従って、製造することができる。 The honeycomb structure used in the catalyst supporting method of the honeycomb structure of the present embodiment can be manufactured, for example, according to a manufacturing method according to a conventionally known method for manufacturing a diesel particulate filter (DPF).
ハニカム構造体を構成する材料としては特に制限はないが、例えば、セラミックスを主成分とする材料、又は焼結金属等を好適例として挙げることができる。また、ハニカム構造体が、セラミックスを主成分とする材料からなるものである場合に、このセラミックスとしては、炭化珪素、コージェライト、アルミナタイタネート、サイアロン、ムライト、窒化珪素、リン酸ジルコニウム、ジルコニア、チタニア、アルミナ、若しくはシリカ、又はこれらを組み合わせたものを好適例として挙げることができる。特に、炭化珪素、コージェライト、ムライト、窒化珪素、アルミナ等のセラミックスが、耐アルカリ特性上好適である。なかでも酸化物系のセラミックスは、コストの点でも好ましい。 Although there is no restriction | limiting in particular as a material which comprises a honeycomb structure, For example, the material which has ceramics as a main component, or a sintered metal etc. can be mentioned as a suitable example. Further, when the honeycomb structure is made of a material mainly composed of ceramics, the ceramics include silicon carbide, cordierite, alumina titanate, sialon, mullite, silicon nitride, zirconium phosphate, zirconia, Titania, alumina, silica, or a combination thereof can be cited as a suitable example. In particular, ceramics such as silicon carbide, cordierite, mullite, silicon nitride, and alumina are preferable in terms of alkali resistance. Of these, oxide ceramics are preferable from the viewpoint of cost.
担体として用いるハニカム構造体の形状は特に制限はなく、従来公知のディーゼルパティキュレートフィルタ(DPF)に使用されるハニカム構造体を好適に用いることができる。例えば、使用するハニカム触媒体のセルの密度(セル密度)は、0.775〜155個/cm2(5〜1000cpsi)であることが好ましく、3.1〜77.5個/cm2(20〜500cpsi)であることが更に好ましく、4.65〜46.5個/cm2(30〜300cpsi)であることが特に好ましい。セル密度が0.775個/cm2未満であると、得られるハニカム触媒体の排ガスとの接触効率が不足する傾向にある。一方、セル密度が155個/cm2超であると、圧力損失が増大する傾向にある。なお、「cpsi」は「cells per square inch」の略であり、1平方インチ当りのセル数を表す単位である。10cpsiは、約1.55個/cm2である。 There is no restriction | limiting in particular in the shape of the honeycomb structure used as a support | carrier, The honeycomb structure used for a conventionally well-known diesel particulate filter (DPF) can be used suitably. For example, the cell density (cell density) of the honeycomb catalyst body to be used is preferably 0.775 to 155 cells / cm 2 (5 to 1000 cpsi), and 3.1 to 77.5 cells / cm 2 (20 -500 cpsi) is more preferable, and 4.65-46.5 pieces / cm 2 (30-300 cpsi) is particularly preferable. When the cell density is less than 0.775 cells / cm 2 , the contact efficiency of the resulting honeycomb catalyst body with the exhaust gas tends to be insufficient. On the other hand, when the cell density exceeds 155 cells / cm 2 , the pressure loss tends to increase. Note that “cpsi” is an abbreviation for “cells per square inch” and is a unit representing the number of cells per square inch. 10 cpsi is about 1.55 / cm 2 .
また、このハニカム構造体の、40〜800℃における、セルの連通方向の熱膨張係数は、1.0×10-6/℃未満であることが好ましく、0〜0.8×10-6/℃であることが更に好ましく、0〜0.5×10-6/℃であることが特に好ましい。40〜800℃におけるセルの連通方向の熱膨張係数が1.0×10-6/℃未満であると、高温の排ガスに晒される際の熱応力を低く抑えることができ、熱応力による破壊を防止することができる。 In addition, the thermal expansion coefficient of the honeycomb structure in the cell communication direction at 40 to 800 ° C. is preferably less than 1.0 × 10 −6 / ° C., and preferably 0 to 0.8 × 10 −6 / More preferably, it is 0 degreeC, and it is especially preferable that it is 0-0.5 * 10 < -6 > / degreeC. When the thermal expansion coefficient in the direction of cell communication at 40 to 800 ° C. is less than 1.0 × 10 −6 / ° C., the thermal stress when exposed to high-temperature exhaust gas can be kept low, and destruction due to thermal stress can be prevented. Can be prevented.
触媒が担持された状態における隔壁の平均細孔径は、5〜500μmであることが好ましく、10〜200μmであることが更に好ましい。平均細孔径が5μm未満であると、圧力損失が大きすぎて不適である。一方、平均細孔径が500μm超であると、排ガスと触媒層との接触面積を十分に確保し難くなる傾向にある。なお、本明細書にいう「細孔径」は、画像解析によって測定される物性値である。具体的には、隔壁断面のSEM写真を、隔壁厚さを「t」とした場合に、縦×横=t×tの視野について少なくとも20視野観察する。次いで、観察したそれぞれの視野内で、空隙中の最大直線距離を計測し、全ての視野について計測した最大直線距離の平均値を「平均細孔径」とした。 The average pore diameter of the partition walls in the state where the catalyst is supported is preferably 5 to 500 μm, and more preferably 10 to 200 μm. If the average pore diameter is less than 5 μm, the pressure loss is too large, which is not suitable. On the other hand, when the average pore diameter is more than 500 μm, it tends to be difficult to ensure a sufficient contact area between the exhaust gas and the catalyst layer. The “pore diameter” in the present specification is a physical property value measured by image analysis. Specifically, the SEM photograph of the partition cross section is observed at least 20 fields with respect to the field of length × width = t × t, where the partition wall thickness is “t”. Next, within each observed visual field, the maximum linear distance in the void was measured, and the average value of the maximum linear distances measured for all visual fields was defined as “average pore diameter”.
また、ハニカム構造体のセルの連通方向に垂直な面で径方向に切断した断面の形状は、設置しようとする排気系の内形状に適した形状であることが好ましい。具体的には、円、楕円、長円、台形、三角形、四角形、六角形、又は左右非対称な異形形状を挙げることができる。なかでも、円、楕円、長円が好ましい。 In addition, the shape of the cross section cut in the radial direction on the plane perpendicular to the cell communication direction of the honeycomb structure is preferably a shape suitable for the inner shape of the exhaust system to be installed. Specific examples include a circle, an ellipse, an ellipse, a trapezoid, a triangle, a quadrangle, a hexagon, and a deformed shape that is asymmetrical to the left and right. Of these, a circle, an ellipse, and an ellipse are preferable.
また、本実施の形態のハニカム構造体の触媒担持方法においては、一の成分を、前駆体状態又はゾル状態にて、ハニカム構造体の細孔内に含浸させる際に、この一の成分を含む溶液中に、触媒の貴金属を除く構成成分全体に占める体積の割合が50体積%未満の他の成分、及び/又は貴金属からなる触媒の構成成分(以下、「貴金属成分」ということがある)を含む溶液を用いてもよい。このように構成することによって、他の成分及び/又は貴金属成分を、一の成分と同時に細孔内に含浸させることができるため、触媒の担持工程を簡略化することができる。勿論、一の成分のみを含む溶液中にハニカム構造体を浸漬させてもよい。 Further, in the catalyst supporting method of the honeycomb structure of the present embodiment, one component is included when impregnating the pores of the honeycomb structure in the precursor state or the sol state. In the solution, other components with a volume ratio of less than 50% by volume based on the total components other than the noble metal of the catalyst and / or components of the catalyst made of noble metal (hereinafter sometimes referred to as “noble metal component”) A containing solution may be used. By comprising in this way, since the other component and / or noble metal component can be impregnated in the pores simultaneously with the one component, the catalyst supporting step can be simplified. Of course, the honeycomb structure may be immersed in a solution containing only one component.
次に、必要に応じて、ハニカム構造体の細孔内に含浸させた一の成分のゾル化を進行させる。例えば、上記したアルミニウム・イソ・プロポキシドを含む脱水イソプロパノール溶液を用いた場合には、溶液が水分と反応して加水分解を生じてベーマイトゾルを生成する。このため、上記溶液に脱イオン水を数滴添加したり、また、上記溶液からハニカム構造体を取り出して、大気中の水分と反応させたりすることにより、細孔内に含浸させた一の成分のゾル化を進行させることができる。 Next, if necessary, solification of one component impregnated in the pores of the honeycomb structure is advanced. For example, when a dehydrated isopropanol solution containing the above-described aluminum, iso, propoxide is used, the solution reacts with moisture to cause hydrolysis to generate boehmite sol. For this reason, one component impregnated in the pores by adding a few drops of deionized water to the above solution, or taking out the honeycomb structure from the above solution and reacting with moisture in the atmosphere. Can be allowed to proceed.
また、四塩化チタンを水等の溶液に溶解した溶液を用いた場合には、80℃程度に溶液を煮沸することにより、ゾル化を進行させることができる。 Moreover, when using the solution which melt | dissolved titanium tetrachloride in solutions, such as water, sol-ization can be advanced by boiling a solution at about 80 degreeC.
なお、ゾル化を行う方法については、一の成分の種類や使用する溶媒の種類に応じて、適宜選択することができる。 In addition, the method for solification can be appropriately selected depending on the type of one component and the type of solvent used.
ゾル化を行う際には、例えば、ゾル化の過程をコントロールすることにより、担持される触媒層の細孔分布を調整することも可能となる。 When performing the solification, for example, the pore distribution of the supported catalyst layer can be adjusted by controlling the solation process.
次に、ゾル化させた一の成分をゲル化することにより液体や空気を含んだまま固まった状態に進行させる。具体的なゲル化方法としては、各種乾燥法が好適である。この乾燥については、従来の触媒担持方法において、触媒スラリーを乾燥する方法と同様の方法を用いることができるが、本実施の形態のハニカム構造体の触媒担持方法においては、凍結乾燥によって乾燥を行うことが好ましい。このような凍結乾燥を行うことにより、乾燥時における、ゲル化した触媒成分(一の成分等)の細孔内での移動を抑制することができ、前駆体状態又はゾル状態にて均一に含浸させた状態を良好に保持することができる。 Next, the sol-formed one component is gelled to advance into a solidified state containing liquid or air. As a specific gelation method, various drying methods are suitable. For this drying, in the conventional catalyst supporting method, a method similar to the method of drying the catalyst slurry can be used. However, in the catalyst supporting method of the honeycomb structure of the present embodiment, drying is performed by freeze drying. It is preferable. By performing such freeze-drying, the migration of the gelled catalyst component (one component, etc.) in the pores during drying can be suppressed, and the precursor or sol state is impregnated uniformly. The held state can be maintained well.
次に、上記の一の成分をハニカム構造体の細孔内に含浸させる工程において、溶液中に含まれなかった他の成分や貴金属からなる触媒の構成成分(貴金属成分)がある場合には、触媒の貴金属を除く構成成分全体に占める体積の割合が50体積%未満の他の成分、及び/又は貴金属からなる触媒の構成成分を含む溶液を用いて、触媒の構成成分全体に占める体積の割合が50体積%未満の他の成分、及び/又は貴金属成分をハニカム構造体の細孔内に含浸させ、含浸させた成分を乾燥する。 Next, in the step of impregnating the pores of the above-mentioned one component into the pores of the honeycomb structure, when there are other components not included in the solution or a constituent component of the catalyst made of a noble metal (noble metal component), The proportion of the volume in the total constituent components of the catalyst using a solution containing the constituent components of the catalyst composed of the other constituents of less than 50% by volume and / or the noble metal in the total constituent components excluding the noble metal of the catalyst. Is impregnated in the pores of the honeycomb structure with other components and / or noble metal components of less than 50% by volume, and the impregnated components are dried.
なお、ハニカム構造体の細孔内に一の成分を含浸させる際に、一の成分を含む溶液中に、予め触媒の貴金属を除く構成成分全体に占める体積の割合が50体積%未満の他の成分、及び/又は貴金属成分を含む溶液を用いた場合には、それらの成分については、一の成分と同時に含浸及び乾燥が行われているため、別途細孔内に含浸させる必要はない。 In addition, when impregnating one component into the pores of the honeycomb structure, the proportion of the volume in the total constituent components excluding the precious metal of the catalyst in the solution containing the one component is less than 50% by volume. When a solution containing a component and / or a noble metal component is used, since these components are impregnated and dried simultaneously with one component, it is not necessary to impregnate the pores separately.
次に、細孔内の触媒の構成成分(即ち、一の成分、触媒の構成成分によっては、他の成分や貴金属成分)を合成して触媒を生成する。以上のようにして、ハニカム構造体に触媒を担持することができる。特に、本実施の形態の触媒担持方法は、従来、その小細孔内への触媒の担持が困難であったディーゼルパティキュレートフィルタ等に対しても良好に触媒を担持することができる。 Next, a catalyst component is generated by synthesizing the catalyst components in the pores (that is, one component, or another component or noble metal component depending on the catalyst component). As described above, the catalyst can be supported on the honeycomb structure. In particular, the catalyst loading method of the present embodiment can load the catalyst well even on a diesel particulate filter or the like, which has conventionally been difficult to load the catalyst in its small pores.
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、各種物性値の測定方法、及び諸特性の評価方法を以下に示す。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In addition, the measuring method of various physical-property values and the evaluation method of various characteristics are shown below.
[触媒担持位置の同定]:触媒担持位置の同定は、触媒を担持したハニカム構造体(ハニカム触媒体)を切り出し、断面観察結果の組成分布画像を解析することにより触媒の量と位置を決定した。担持後の触媒の均一性として、隔壁の厚み方向の中心付近と、隔壁の表面付近(隔壁表面から10μm程度の部位)の触媒の担持量を比較し、担持量の差が20%未満の場合には「差なし」と判定し、担持量の差が20%以上の場合には「差あり」と判定した。 [Identification of catalyst loading position]: The catalyst loading position was identified by cutting out the honeycomb structure (honeycomb catalyst body) carrying the catalyst and analyzing the composition distribution image of the cross-sectional observation result to determine the amount and position of the catalyst. . The uniformity of the catalyst after loading is compared with the amount of catalyst loaded near the center in the thickness direction of the partition and near the surface of the partition (about 10 μm from the surface of the partition). Was judged as “no difference”, and when the difference in the amount carried was 20% or more, it was judged as “difference”.
[圧力損失測定]:ハニカム触媒体による圧力損失への影響は、ススを貯めた状態で顕著に表れるため、ススが付着した状態にて圧力損失を評価した。測定方法としては、予め触媒を担持する前のハニカム構造体と、触媒を担持した後のハニカム構造体(ハニカム触媒体)に、ススを3g/L担持させておき、それぞれのハニカム構造体又はハニカム触媒体を室温条件下、2.0m3/minの流速で空気を流通させることにより、圧力損失を測定した。圧力損失の評価は、触媒を担持する前のハニカム構造体の圧力損失をP1とし、触媒を担持した後のハニカム構造体(ハニカム触媒体)の圧力損失をP2とし、得られた圧力損失P1及びP2から、下記式(1)に従って「圧力損失増加率(%)」を算出した。圧力損失増加率が50%未満であった場合を「○」、50%以上であった場合を「×」と判定した。
圧力損失増加率(%)={(P2−P1)/P1}×100・・・(1)
[Pressure loss measurement]: Since the influence of the honeycomb catalyst body on the pressure loss appears remarkably when the soot is stored, the pressure loss was evaluated in a state where the soot was attached. As a measurement method, 3 g / L of soot was supported on the honeycomb structure before supporting the catalyst in advance and the honeycomb structure (honeycomb catalyst body) after supporting the catalyst, and each honeycomb structure or honeycomb was supported. Pressure loss was measured by flowing air through the catalyst body at room temperature under a flow rate of 2.0 m 3 / min. The pressure loss was evaluated by setting the pressure loss of the honeycomb structure before supporting the catalyst as P 1 and the pressure loss of the honeycomb structure (honeycomb catalyst body) after supporting the catalyst as P 2. From “P 1” and “P 2 ”, the “pressure loss increase rate (%)” was calculated according to the following formula (1). The case where the pressure loss increase rate was less than 50% was judged as “◯”, and the case where it was 50% or more was judged as “x”.
Pressure loss increase rate (%) = {(P 2 −P 1 ) / P 1 } × 100 (1)
(実施例1)
直径144mm、長さ152mmのハニカム構造体(隔壁厚さ:12mil(0.3048mm)、セル密度:300cpsi(46.5個/cm2)、気孔率:55%、平均細孔径:15μm、目封じ深さ:10mm)を用意した。まず、触媒の構成原料としてのアルミナ(一の成分)源として、アルミニウム・イソ・プロポキシドを含む脱水イソプロパノール溶液を生成し、この溶液に用意したハニカム構造体を浸漬した後でそのまま取り出し、大気中の水分と触れることにより加水分解し、一の成分をゾル化した。
Example 1
Honeycomb structure having a diameter of 144 mm and a length of 152 mm (partition wall thickness: 12 mil (0.3048 mm), cell density: 300 cpsi (46.5 cells / cm 2 ), porosity: 55%, average pore diameter: 15 μm, plugging Depth: 10 mm) was prepared. First, a dehydrated isopropanol solution containing aluminum, iso, propoxide is generated as an alumina (one component) source as a constituent material of the catalyst, and the prepared honeycomb structure is immersed in this solution and then taken out as it is in the atmosphere. It was hydrolyzed by contact with water, and one component was made into a sol.
次に、加水分解により生成したベーマイトゾルを含むハニカム構造体を凍結乾燥してゲル化した後、大気中・500℃にて仮焼することによりアルミナの担持を終了した。次に、貴金属として白金を担持するために、上記のアルミナを担持したハニカム構造体へ、予め所定濃度に調製したジニトロジアンミン白金硝酸水溶液を含浸させ、常温で乾燥した。その後、アルミナと白金とを含むハニカム構造体を300℃にて仮焼することにより、白金・アルミナを担持したハニカム構造体(ハニカム触媒体)を作製した。各触媒成分の担持量を表1に示す。 Next, the honeycomb structure including the boehmite sol generated by hydrolysis was freeze-dried and gelled, and then calcined in the atmosphere at 500 ° C. to finish loading alumina. Next, in order to support platinum as a noble metal, the above honeycomb structure supporting alumina was impregnated with a dinitrodiammine platinum nitric acid aqueous solution prepared in advance at a predetermined concentration and dried at room temperature. Thereafter, the honeycomb structure containing alumina and platinum was calcined at 300 ° C. to prepare a honeycomb structure (honeycomb catalyst body) supporting platinum / alumina. The amount of each catalyst component supported is shown in Table 1.
(実施例2)
アルミニウム・イソ・プロポキシドを含む脱水イソプロパノール溶液中にハニカム構造体を浸漬した後、溶液中に脱イオン水を数滴添加することにより加水分解して一の成分をゾル化した以外は、実施例1と同様な方法にて、白金・アルミナを担持したハニカム構造体(ハニカム触媒体)を作製した。各触媒成分の担持量を表1に示す。
(Example 2)
Example except that the honeycomb structure was immersed in a dehydrated isopropanol solution containing aluminum, iso, propoxide, and then hydrolyzed by adding a few drops of deionized water to the solution to form one component in sol. 1 was used to prepare a honeycomb structure (honeycomb catalyst body) carrying platinum / alumina. The amount of each catalyst component supported is shown in Table 1.
(実施例3)
直径191mm、長さ170mmのハニカム構造体(隔壁厚さ:12mil(0.3048mm)、セル密度:300cpsi(46.5個/cm2)、気孔率:60%、平均細孔径:19μm、目封じ深さ:10mm)を用意した。まず、触媒の構成原料としてのチタニア(一の成分)源として、四塩化チタンと、白金(貴金属成分)源として塩化白金酸とを、水と、を含む溶液を生成し、この溶液に用意したハニカム構造体を浸漬した。その後、この溶液を80℃にて煮沸することにより一の成分をゾル化した。チタニアと白金とを含有するハニカム構造体を凍結乾燥してゲル化した後、大気中・300℃にて仮焼することにより、白金・チタニアを担持したハニカム構造体(ハニカム触媒体)を作製した。各触媒成分の担持量を表1に示す。なお、1milは、1000分の1インチであり、0.0254mmである。
(Example 3)
Honeycomb structure having a diameter of 191 mm and a length of 170 mm (partition wall thickness: 12 mil (0.3048 mm), cell density: 300 cpsi (46.5 / cm 2 ), porosity: 60%, average pore diameter: 19 μm, plugging Depth: 10 mm) was prepared. First, a solution containing titanium tetrachloride as a titania (one component) source as a constituent material of the catalyst, chloroplatinic acid as a platinum (noble metal component) source, and water was prepared, and this solution was prepared. The honeycomb structure was immersed. Thereafter, this solution was boiled at 80 ° C. to make one component into a sol. A honeycomb structure containing titania and platinum was freeze-dried and gelled, and then calcined in the atmosphere at 300 ° C. to prepare a honeycomb structure (honeycomb catalyst body) carrying platinum / titania. . The amount of each catalyst component supported is shown in Table 1. Note that 1 mil is one thousandth of an inch and 0.0254 mm.
(比較例1)
直径144mm、長さ152mmのハニカム構造体(隔壁厚さ:12mil(0.3048mm)、セル密度:300cpsi(46.5個/cm2)、気孔率:55%、平均細孔径:15μm、目封じ深さ:10mm)を用意した。まず、活性アルミナと、貴金属成分としてジニトロジアンミン白金硝酸と水とを混合の後、湿式粉砕して触媒コート液を調製した。用意したハニカム構造体を、この触媒コート液に含浸することにより触媒をコートし、乾燥することにより白金・アルミナを担持したハニカム構造体(ハニカム触媒体)を作製した。各触媒成分の担持量を表1に示す。
(Comparative Example 1)
Honeycomb structure having a diameter of 144 mm and a length of 152 mm (partition wall thickness: 12 mil (0.3048 mm), cell density: 300 cpsi (46.5 cells / cm 2 ), porosity: 55%, average pore diameter: 15 μm, plugging Depth: 10 mm) was prepared. First, activated alumina, dinitrodiammine platinum nitric acid as a noble metal component and water were mixed and then wet pulverized to prepare a catalyst coating solution. The prepared honeycomb structure was impregnated with this catalyst coating solution to coat the catalyst and dried to prepare a honeycomb structure (honeycomb catalyst body) carrying platinum / alumina. The amount of each catalyst component supported is shown in Table 1.
表1に示す結果から明らかなように、実施例1〜3の触媒担持方法によって触媒が担持されたハニカム構造体(ハニカム触媒体)は、触媒担持位置の同定結果において全て差なしと判定されるものであり、触媒を均一に担持することができた。また、圧力損失測定においても、圧力損失増加率が50%未満であり、圧力損失が低減されていることが分かった。一方、従来の触媒担持方法によって触媒が担持された比較例1のハニカム構造体(ハニカム触媒体)は、触媒担持位置の同定結果は担持量の差が20%以上となり、さらに圧力損失増加率は50%以上であった。 As is apparent from the results shown in Table 1, all the honeycomb structures (honeycomb catalyst bodies) on which the catalysts are supported by the catalyst supporting methods of Examples 1 to 3 are determined to have no difference in the identification results of the catalyst supporting positions. The catalyst could be supported uniformly. Also in the pressure loss measurement, it was found that the pressure loss increase rate was less than 50%, and the pressure loss was reduced. On the other hand, the honeycomb structure (honeycomb catalyst body) of Comparative Example 1 in which the catalyst is supported by the conventional catalyst supporting method has a difference in supported amount of 20% or more as a result of identifying the catalyst supporting position, and the pressure loss increase rate is It was 50% or more.
本発明のハニカム構造体の担持方法は、触媒として良好な組成・細孔分布を実現された触媒を、ハニカム構造体の細孔内に均一に担持することができることから、例えば、自動車用、建設機械用、及び産業用定置エンジン、並びに燃焼機器等から排出される排ガスに含まれる被浄化成分の浄化に使用するハニカム触媒体や、ディーゼルエンジンからの微粒子を除去するためのフィルタを製造する方法に好適に用いることができる。 The method for supporting a honeycomb structure of the present invention can uniformly support a catalyst having a good composition and pore distribution as a catalyst in the pores of the honeycomb structure. A method for manufacturing a honeycomb catalyst body used for purification of components to be purified contained in exhaust gas discharged from mechanical and industrial stationary engines and combustion equipment, and a filter for removing particulates from a diesel engine It can be used suitably.
1:ハニカム構造体、1a:ハニカム触媒体、2a,2b:端面、3:セル、4:隔壁、5:触媒、10:目封止部、11:ハニカム構造体、15:触媒層、20:外壁、25:細孔、60:ハニカム触媒体。 1: honeycomb structure, 1a: honeycomb catalyst body, 2a, 2b: end face, 3: cell, 4: partition, 5: catalyst, 10: plugged portion, 11: honeycomb structure, 15: catalyst layer, 20: Outer wall, 25: pore, 60: honeycomb catalyst body.
Claims (7)
前記触媒の貴金属を除く構成成分の中で前記触媒の構成成分全体に占める体積の割合が50体積%以上となる一の成分を、前駆体状態又はゾル状態にて、前記ハニカム構造体の前記細孔内に含浸させ、含浸させた前記一の成分をゲル化させ、ゲル化させた前記一の成分を乾燥する工程を含むハニカム構造体の触媒の担持方法。 A porous partition wall having a large number of pores arranged so as to form a plurality of cells communicating between two end faces, and arranged so as to plug the cells at any of the end faces. A method for supporting a catalyst in a honeycomb structure in which a catalyst is supported in a honeycomb structure having a plugging portion,
Among the constituent components excluding the precious metal of the catalyst, one component having a volume ratio of 50% by volume or more in the total constituent components of the catalyst is added in the precursor state or the sol state in the fine structure of the honeycomb structure. A method for supporting a catalyst of a honeycomb structure, comprising the steps of impregnating pores, gelling the impregnated one component, and drying the gelled one component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005345016A JP2007144359A (en) | 2005-11-30 | 2005-11-30 | Method for carrying catalyst on honeycomb structure body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005345016A JP2007144359A (en) | 2005-11-30 | 2005-11-30 | Method for carrying catalyst on honeycomb structure body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007144359A true JP2007144359A (en) | 2007-06-14 |
Family
ID=38206398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005345016A Pending JP2007144359A (en) | 2005-11-30 | 2005-11-30 | Method for carrying catalyst on honeycomb structure body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007144359A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011183360A (en) * | 2010-03-11 | 2011-09-22 | Ngk Insulators Ltd | Honeycomb catalyst body |
US10071369B2 (en) | 2014-07-07 | 2018-09-11 | Toyota Jidosha Kabushiki Kaisha | Method of making a particulate filter carry a catalyst |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0515779A (en) * | 1991-07-16 | 1993-01-26 | Toyota Motor Corp | Preparation of catalyst for purifying exhaust gas |
JPH08325015A (en) * | 1994-12-21 | 1996-12-10 | Eniricerche Spa | Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier |
JP2004105787A (en) * | 2002-09-13 | 2004-04-08 | Babcock Hitachi Kk | Manufacturing method for catalyst for cleaning exhaust gas |
JP2005152774A (en) * | 2003-11-25 | 2005-06-16 | Cataler Corp | Particulate filter catalyst and its manufacturing method |
JP2005305417A (en) * | 2004-03-26 | 2005-11-04 | Ngk Insulators Ltd | Honeycomb filter having catalytic function and manufacturing method therefor |
-
2005
- 2005-11-30 JP JP2005345016A patent/JP2007144359A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0515779A (en) * | 1991-07-16 | 1993-01-26 | Toyota Motor Corp | Preparation of catalyst for purifying exhaust gas |
JPH08325015A (en) * | 1994-12-21 | 1996-12-10 | Eniricerche Spa | Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier |
JP2004105787A (en) * | 2002-09-13 | 2004-04-08 | Babcock Hitachi Kk | Manufacturing method for catalyst for cleaning exhaust gas |
JP2005152774A (en) * | 2003-11-25 | 2005-06-16 | Cataler Corp | Particulate filter catalyst and its manufacturing method |
JP2005305417A (en) * | 2004-03-26 | 2005-11-04 | Ngk Insulators Ltd | Honeycomb filter having catalytic function and manufacturing method therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011183360A (en) * | 2010-03-11 | 2011-09-22 | Ngk Insulators Ltd | Honeycomb catalyst body |
US8603942B2 (en) | 2010-03-11 | 2013-12-10 | Ngk Insulators, Ltd. | Honeycomb catalyst body |
US10071369B2 (en) | 2014-07-07 | 2018-09-11 | Toyota Jidosha Kabushiki Kaisha | Method of making a particulate filter carry a catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109219478B (en) | Exhaust gas purifying filter | |
JP4971166B2 (en) | Honeycomb catalyst body, precoat carrier for manufacturing honeycomb catalyst body, and method for manufacturing honeycomb catalyst body | |
JP5073303B2 (en) | Catalytic converter and manufacturing method of catalytic converter | |
JP4275406B2 (en) | Catalyst support filter | |
JP4814886B2 (en) | Honeycomb catalyst body and method for manufacturing honeycomb catalyst body | |
KR100641549B1 (en) | Catalyst and method for preparation thereof | |
JP4819814B2 (en) | Honeycomb structure and honeycomb catalyst body | |
EP2133148B1 (en) | Exhaust-gas converting filter and production process for the same | |
JP5313658B2 (en) | Ceramic structure and manufacturing method thereof | |
CN107282043B (en) | Catalyst for exhaust gas purification | |
JP2007289926A (en) | Honeycomb structure and honeycomb catalytic body | |
JP7228065B2 (en) | Catalyst-coated gasoline particulate filter and its manufacturing method | |
JPWO2007026803A1 (en) | Honeycomb structure and honeycomb catalyst body | |
JPWO2007094379A1 (en) | Honeycomb structure and honeycomb catalyst body | |
JP7211893B2 (en) | Exhaust gas purifier | |
EP3689454B1 (en) | Honeycomb catalyst | |
JP2018171615A (en) | Catalyst for purifying exhaust gas | |
BR112017020231B1 (en) | exhaust gas purification catalyst and method for producing an exhaust gas purification catalyst | |
CN111132761A (en) | Catalyst body for exhaust gas purification | |
JP2006007117A (en) | Exhaust gas purifying structure and exhaust gas purifying method using it | |
JP4907756B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2021143625A (en) | Exhaust emission control device | |
BRPI0706869A2 (en) | EXHAUST GAS PURIFICATION CATALYST | |
JP2007144359A (en) | Method for carrying catalyst on honeycomb structure body | |
CN112041065A (en) | Method for producing exhaust gas purifying catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101026 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110301 |