JP2007039843A - Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber - Google Patents
Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber Download PDFInfo
- Publication number
- JP2007039843A JP2007039843A JP2005226122A JP2005226122A JP2007039843A JP 2007039843 A JP2007039843 A JP 2007039843A JP 2005226122 A JP2005226122 A JP 2005226122A JP 2005226122 A JP2005226122 A JP 2005226122A JP 2007039843 A JP2007039843 A JP 2007039843A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- spun yarn
- oxidized
- fabric
- thermoplastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 132
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 45
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 45
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 45
- 239000004917 carbon fiber Substances 0.000 title claims description 45
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 42
- 239000002759 woven fabric Substances 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000003763 carbonization Methods 0.000 claims abstract description 14
- 238000002156 mixing Methods 0.000 claims abstract description 14
- 238000009941 weaving Methods 0.000 claims abstract description 14
- 239000004744 fabric Substances 0.000 claims description 56
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000011261 inert gas Substances 0.000 claims description 7
- 238000009987 spinning Methods 0.000 abstract description 19
- 238000000034 method Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract 1
- 230000000704 physical effect Effects 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229920002239 polyacrylonitrile Polymers 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- -1 polyethylene terephthalate Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000002788 crimping Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
Images
Landscapes
- Inorganic Fibers (AREA)
- Woven Fabrics (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
本発明は、表面毛羽の少ない炭素繊維織物の製造方法、並びに、この炭素繊維織物製造用の酸化繊維紡績糸、及び酸化繊維織物の製造方法に関する。 The present invention relates to a method for producing a carbon fiber fabric with less surface fluff, an oxidized fiber spun yarn for producing the carbon fiber fabric, and a method for producing an oxidized fiber fabric.
酸化繊維は不溶融性、難燃性を有し、必要に応じ、高温の不活性ガス雰囲気下で、炭素化され、断熱材、不燃材、導電材、強化材等さまざまな用途に応用されている。特に、炭素化された繊維(炭素繊維)は、その柔軟性、加工性、成型性等の繊維形態の特徴を活かせる電極材として注目され、高分子電解質型燃料電池に応用されている。 Oxidized fiber has infusibility and flame retardancy, and is carbonized in a high-temperature inert gas atmosphere as needed, and applied to various applications such as heat insulating materials, non-combustible materials, conductive materials, and reinforcing materials. Yes. In particular, carbonized fibers (carbon fibers) are attracting attention as electrode materials that can utilize the characteristics of the fiber form such as flexibility, processability, and moldability, and are applied to polymer electrolyte fuel cells.
高分子電解質型燃料電池の電極材に用いる炭素繊維材料としては、特に薄型のシート状で、強度があり、電気抵抗値が低く、柔軟性がある炭素繊維材料の要望が多く、種々の炭素繊維構造体が開発されている。 As the carbon fiber material used for the electrode material of the polymer electrolyte fuel cell, there is a great demand for a carbon fiber material having a particularly thin sheet shape, strength, low electrical resistance, and flexibility, and various carbon fibers. A structure has been developed.
高分子電解質型燃料電池用の炭素繊維構造体としては、(1)C/Cペーパー(シート状の炭素繊維強化炭素材料)、(2)炭素繊維不織布、(3)炭素繊維フィラメント織物、並びに、(4)炭素繊維紡績糸織物などが例示される。 Carbon fiber structures for polymer electrolyte fuel cells include (1) C / C paper (sheet-like carbon fiber reinforced carbon material), (2) carbon fiber nonwoven fabric, (3) carbon fiber filament fabric, and (4) Carbon fiber spun yarn fabric and the like are exemplified.
これら構造体のうちでも炭素繊維紡績糸織物は、C/Cペーパーに比べると柔軟性がある。炭素繊維不織布に比べると強度が高い。炭素繊維フィランメント織物に比べると嵩高で、厚さ方向への繊維配列度が高い為、ガス透過性及び通電性に優れている等の特徴がある。 Among these structures, carbon fiber spun yarn fabric is more flexible than C / C paper. Higher strength than carbon fiber nonwoven fabric. Compared to carbon fiber filaments, they are bulky and have a high degree of fiber alignment in the thickness direction, so they have excellent gas permeability and electrical conductivity.
これらの特徴を活かすと共に、更なる課題改善の検討もなされている(例えば、特許文献1、2参照)。特に、特許文献2では表面毛羽発生量低減の検討がなされ、ある程度の改善が得られた。しかし、特許文献2での検討にも拘らず表面毛羽発生量低減はまだ充分とは言えず、より充分な改善の必要がある。
本発明者は、上記問題を解決するために種々検討しているうちに、炭素繊維織物製造用の原料である酸化繊維が、一般の熱可塑性繊維(ナイロン、ポリエステル、ポリオレフィン系等)に比べ繊維強度や伸度が低く、紡績加工性に劣ることに上記問題は起因していると考えた。 While the present inventor has made various studies in order to solve the above problems, the oxidized fiber, which is a raw material for producing a carbon fiber fabric, is a fiber compared to a general thermoplastic fiber (nylon, polyester, polyolefin, etc.). It was considered that the above problems were caused by low strength and elongation and inferior spinning workability.
一般の有機繊維・熱可塑性繊維は繊維特性には優れるが、大気中の高温雰囲気では、燃焼・焼失する。しかし、不活性雰囲気下では、高温時に溶融・分解し、一部タール分として、残存する。即ち、ある程度の炭素化収率を有する。 General organic fibers / thermoplastic fibers are excellent in fiber characteristics, but burn and burn out in a high temperature atmosphere in the atmosphere. However, in an inert atmosphere, it melts and decomposes at a high temperature and remains as a part of tar. That is, it has a certain carbonization yield.
以上の酸化繊維の特性と熱可塑性繊維の特徴を生かし、熱可塑性繊維は不活性ガス中でタール分としての残存分を炭素繊維同士の結着剤として有効に利用でき、酸化繊維と熱可塑性繊維とを所定の条件で混合紡績されてなる紡績糸は、その紡績工程において紡績性に優れ、製織工程において織物加工性に優れ、高強度であることを知得した。 Taking advantage of the above-mentioned characteristics of oxidized fibers and the characteristics of thermoplastic fibers, thermoplastic fibers can be effectively used as a binder between carbon fibers using the remaining amount of tar as a binder in an inert gas. Oxidized fibers and thermoplastic fibers It has been found that a spun yarn obtained by mixing and spinning under a predetermined condition is excellent in spinnability in the spinning process, excellent in fabric processability in the weaving process, and high in strength.
この酸化繊維紡績糸を製織、加圧熱処理、炭素化処理することにより賦形性の良い、薄い、表面毛羽の少ない炭素繊維織物が得られることを知得し、本発明を完成するに到った。 Knowing that weaving, pressurizing heat treatment, and carbonization treatment of this oxidized fiber spun yarn yields a carbon fiber woven fabric with good shapeability and thinness with less surface fluff, and the present invention is completed. It was.
従って、本発明の目的とするところは、上記問題を解決した、熱可塑性繊維混合酸化繊維紡績糸、並びに、酸化繊維織物及び炭素繊維織物の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a thermoplastic fiber-mixed oxidized fiber spun yarn and a method for producing an oxidized fiber fabric and a carbon fiber fabric that solve the above problems.
上記目的を達成する本発明は、以下に記載するものである。 The present invention for achieving the above object is described below.
〔1〕 酸化繊維と熱可塑性繊維とが混合紡績されてなる紡績糸であって、熱可塑性繊維の炭素化収率が0.5質量%以上、熱可塑性繊維の繊度が0.5〜10.0dtex、酸化繊維の繊度が0.5〜3.4dtex、紡績糸中の熱可塑性繊維の混合率が7〜45質量%、紡績糸の乾強度が16mN/dtex以上、紡績糸のより数150〜900回/mである熱可塑性繊維混合酸化繊維紡績糸。 [1] A spun yarn obtained by mixing and spinning oxidized fibers and thermoplastic fibers, wherein the carbonization yield of the thermoplastic fibers is 0.5 mass% or more, and the fineness of the thermoplastic fibers is 0.5 to 10. 0 dtex, oxide fiber fineness of 0.5 to 3.4 dtex, thermoplastic fiber mixing ratio of spun yarn of 7 to 45% by mass, spun yarn dry strength of 16 mN / dtex or more, spun yarn twist of several hundred to fifty Thermoplastic fiber mixed oxidized fiber spun yarn of 900 times / m.
〔2〕 〔1〕に記載の紡績糸を製織して得た紡績糸織物を100〜350℃、0.5〜100MPaで加圧熱処理することを特徴とする、目付が100〜350g/m2、嵩密度が0.40〜0.95g/cm3の酸化繊維織物の製造方法。 [2] A fabric weight obtained by weaving the spun yarn according to [1] is subjected to pressure heat treatment at 100 to 350 ° C. and 0.5 to 100 MPa, and has a basis weight of 100 to 350 g / m 2. A method for producing an oxidized fiber fabric having a bulk density of 0.40 to 0.95 g / cm 3 .
〔3〕 〔2〕に記載の酸化繊維織物を不活性ガス中、1000〜2800℃の温度で熱処理することを特徴とする、目付が60〜210g/m2、厚さが0.14〜0.6mm、嵩密度が0.25〜0.55g/cm3の炭素繊維織物の製造方法。 [3] The oxidized fiber woven fabric according to [2] is heat-treated in an inert gas at a temperature of 1000 to 2800 ° C., and has a basis weight of 60 to 210 g / m 2 and a thickness of 0.14 to 0 A method for producing a carbon fiber fabric having a diameter of 0.6 mm and a bulk density of 0.25 to 0.55 g / cm 3 .
本発明の酸化繊維紡績糸は、酸化繊維と熱可塑性繊維とを所定の条件で混合紡績されてなるので、それを得るための紡績工程においては紡績性に優れ、それを製織して酸化繊維織物を得る製織工程においては織物加工性に優れ、それ自体は高強度である。 The oxidized fiber spun yarn of the present invention is obtained by mixing and spinning oxidized fiber and thermoplastic fiber under predetermined conditions. Therefore, in the spinning process for obtaining it, the spun yarn is excellent in spinnability, and weaved it to give oxidized fiber fabric. In the weaving process to obtain a woven fabric, it is excellent in fabric processability and itself has high strength.
本発明の炭素繊維織物は、上記酸化繊維紡績糸を製織、加圧熱処理、炭素化処理してなるので、賦形性が良い、薄く、表面毛羽が少ない織物である。 The carbon fiber woven fabric of the present invention is a woven fabric having good shapeability, thinness and less surface fluff since the oxidized fiber spun yarn is woven, pressure heat treated, and carbonized.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の熱可塑性繊維混合酸化繊維紡績糸は、酸化繊維中に熱可塑性繊維が混合紡績されてなる紡績糸であって、乾強度が16mN/dtex以上である。乾強度が16mN/dtex未満の場合は、織物加工時に糸切れ生じ易い。得られる織物の品位が低下する。 The thermoplastic fiber-mixed oxidized fiber spun yarn of the present invention is a spun yarn obtained by mixing and spinning thermoplastic fibers in an oxidized fiber, and has a dry strength of 16 mN / dtex or more. When the dry strength is less than 16 mN / dtex, yarn breakage is likely to occur during textile processing. The quality of the resulting fabric is reduced.
本発明の熱可塑性繊維混合酸化繊維紡績糸は、より数が150〜900回/mである。より数が150回/m未満の場合は、紡績糸強度低下、織物加工が困難、毛羽発生し易い。より数が900回/mを超える場合は、紡績糸の加工性低下、単繊維切れを生じ、毛羽が発生し易い。 The thermoplastic fiber-mixed oxidized fiber spun yarn of the present invention has a number of 150 to 900 times / m. If the number is less than 150 times / m, the spun yarn strength decreases, fabric processing is difficult, and fluff is likely to occur. If the number exceeds 900 times / m, the processability of the spun yarn is reduced, the single fiber is cut, and fluff is likely to occur.
本発明の熱可塑性繊維混合酸化繊維紡績糸の太さは、170〜1000dtex/本が好ましい。糸の太さが170dtex未満の場合は、紡績糸強度が低下する。製織が困難になる。糸の太さが1000dtex/本を超える場合は、所期の厚さの炭素繊維織物が作製できない。薄くできない。 As for the thickness of the thermoplastic fiber mixed oxidized fiber spun yarn of this invention, 170-1000 dtex / book is preferable. When the thickness of the yarn is less than 170 dtex, the spun yarn strength decreases. Weaving becomes difficult. When the thickness of the yarn exceeds 1000 dtex / piece, a carbon fiber fabric having a desired thickness cannot be produced. Can not be thinned.
この熱可塑性繊維混合酸化繊維紡績糸を構成する各材料を製造方法と共に説明する。 Each material which comprises this thermoplastic fiber mixed oxidation fiber spun yarn is demonstrated with a manufacturing method.
[熱可塑性繊維]
本発明の熱可塑性繊維混合酸化繊維紡績糸中の熱可塑性繊維の混合率は7〜45質量%である。7質量%未満の場合は、紡績性改善効果認められない。炭素化処理時の賦形性及び強度向上効果認められない。45質量%を超える場合は、炭素化時に強度低下、表面毛羽発生が顕著となる。
[Thermoplastic fibers]
The mixing ratio of the thermoplastic fiber in the thermoplastic fiber-mixed oxidized fiber spun yarn of the present invention is 7 to 45% by mass. When the amount is less than 7% by mass, the effect of improving the spinning property is not recognized. No formability and strength improvement effect during carbonization treatment. When it exceeds 45 mass%, strength reduction and carbon fluff generation become remarkable during carbonization.
熱可塑性繊維の種類は、ナイロン6、ナイロン66等のナイロン系繊維、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタラート、ポリブチレンテレフタラート、ポリアリレート繊維、ポリ乳酸繊維等のポリエステル系繊維、ポリアクリロニトリル(PAN)等のアクリル系繊維、ポリプロピレン(PP)、ポリエチレン等のポリオレフィン系繊維など従来公知のいずれの熱可塑性繊維でも用いられる。 The types of thermoplastic fibers are nylon fibers such as nylon 6 and nylon 66, polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate, polyarylate fiber, polyester fiber such as polylactic acid fiber, and polyacrylonitrile. Any conventionally known thermoplastic fibers such as acrylic fibers such as (PAN) and polyolefin fibers such as polypropylene (PP) and polyethylene can be used.
熱可塑性繊維の炭素化収率は0.5質量%以上である。 The carbonization yield of the thermoplastic fiber is 0.5% by mass or more.
熱可塑性繊維の繊度は、0.5〜10dtexであり、1.0〜5.0dtexが好ましい。0.5dtex未満の場合は、開繊性が悪く、酸化繊維との均質な混合が難しい。10.0dtexを超える場合は、強度の高い紡績糸が得られない。 The fineness of the thermoplastic fiber is 0.5 to 10 dtex, and preferably 1.0 to 5.0 dtex. If it is less than 0.5 dtex, the spreadability is poor, and homogeneous mixing with oxidized fibers is difficult. If it exceeds 10.0 dtex, a spun yarn with high strength cannot be obtained.
熱可塑性繊維のクリンプ率は8〜20%が好ましい。この範囲外の場合は、紡績性が低く、糸切れ発生が多く。開繊性が悪く、酸化繊維との均質な混合が難しい。 The crimp rate of the thermoplastic fiber is preferably 8 to 20%. Outside this range, spinnability is low and yarn breakage often occurs. The spreadability is poor, and homogeneous mixing with oxidized fibers is difficult.
熱可塑性繊維のクリンプ数は3〜7ヶ/cmが好ましい。3ヶ/cm未満の場合は、絡合がおきにくく、紡績糸加工が難しい。7ヶ/cmを超える場合は、単繊維強度が低下し、繊維切れを生じ易い。 The number of crimps of the thermoplastic fiber is preferably 3 to 7 / cm. If it is less than 3 pieces / cm, entanglement is difficult to occur and spun yarn processing is difficult. When it exceeds 7 pieces / cm, the single fiber strength is lowered, and fiber breakage tends to occur.
熱可塑性繊維の乾強度は、20〜80mN/dtexが好ましい。熱可塑性繊維の乾伸度は、25〜50%が好ましい。乾強度が20mN/dtex未満の場合又は乾伸度が25%未満の場合は、酸化繊維との混合時の特性向上の寄与が低下する。 The dry strength of the thermoplastic fiber is preferably 20 to 80 mN / dtex. The dry elongation of the thermoplastic fiber is preferably 25 to 50%. When the dry strength is less than 20 mN / dtex, or when the dry elongation is less than 25%, the contribution to improving the characteristics at the time of mixing with the oxidized fiber is lowered.
熱可塑性繊維の平均綿長は、35〜100mmが好ましい。35mm未満の場合は、絡みがないため、紡績糸強度が低下する。100mmを超える場合は、繊維の均一分散性低下に伴い紡績困難である。 The average cotton length of the thermoplastic fiber is preferably 35 to 100 mm. In the case of less than 35 mm, there is no entanglement, and the spun yarn strength decreases. When it exceeds 100 mm, it is difficult to spin as the uniform dispersibility of the fiber decreases.
[酸化繊維]
酸化繊維の原料となるプリカーサー繊維の種類は、PAN系、ピッチ系、フェノール系、レーヨン系など従来公知のいずれの繊維でも用いられる。なお、紡績加工を行う上では、強伸度の比較的高いPAN系繊維が最も好適である。
[Oxidized fiber]
Any of the conventionally known fibers such as PAN-based, pitch-based, phenol-based, and rayon-based can be used as the precursor fiber used as the raw material for the oxidized fiber. In the spinning process, a PAN-based fiber having a relatively high strength and elongation is most preferable.
例えばPAN系酸化繊維は、PAN系繊維を空気中、高温で処理することにより環化反応を生じさせ、酸素結合量を増加させて不融化、難燃化させる耐炎化処理によって得られる。 For example, PAN-based oxidized fibers are obtained by a flameproofing treatment in which PAN-based fibers are treated in air at a high temperature to cause a cyclization reaction and increase the amount of oxygen bonds to make them infusible and flame-retardant.
酸化繊維の繊度は、0.5〜3.5dtexであり、1.0〜3.2dtexがより好ましい。0.5dtex未満の場合は、開繊性が悪く、酸化繊維との均質な混合が難しい。3.5dtexを超える場合は、強度の高い紡績糸が得られない。 The fineness of the oxidized fiber is 0.5 to 3.5 dtex, and more preferably 1.0 to 3.2 dtex. If it is less than 0.5 dtex, the spreadability is poor, and homogeneous mixing with oxidized fibers is difficult. When it exceeds 3.5 dtex, a spun yarn with high strength cannot be obtained.
酸化繊維の平均綿長は、35〜150mmが好ましい。35mm未満の場合は、絡みがないため、紡績糸強度が低下する。150mmを超える場合は、繊維の均一分散性低下に伴い紡績が困難になる。 The average cotton length of the oxidized fiber is preferably 35 to 150 mm. In the case of less than 35 mm, there is no entanglement, and the spun yarn strength decreases. If it exceeds 150 mm, spinning becomes difficult as the uniform dispersibility of the fibers decreases.
酸化繊維の限界酸素指数(LOI)は、30〜60が好ましい。30未満の場合は、炭素化時に強度劣化、炭素繊維の微粉末発生し易い。60を超える場合は、紡績加工時の紡績糸の強度が低下する。 The limiting oxygen index (LOI) of the oxidized fiber is preferably 30-60. If it is less than 30, strength deterioration and carbon fiber fine powder are likely to occur during carbonization. When it exceeds 60, the strength of the spun yarn at the time of spinning processing is lowered.
酸化繊維の乾強度は、5mN/dtex以上が好ましい。乾強度が高いほど紡績性が向上する。5mN/dtex未満では、繊維切れが多発し紡績加工が難しい。 The dry strength of the oxidized fiber is preferably 5 mN / dtex or more. The higher the dry strength, the better the spinnability. If it is less than 5 mN / dtex, fiber breakage occurs frequently and spinning is difficult.
酸化繊維の乾伸度は、5〜30%が好ましい。乾伸度が高いほど紡績性が向上する。5%未満では、繊維切れが多発し紡績加工が難しい。 The dry elongation of the oxidized fiber is preferably 5 to 30%. The higher the dry elongation, the better the spinnability. If it is less than 5%, fiber breakage frequently occurs and spinning is difficult.
酸化繊維のクリンプ数は、2.4〜5.0ヶ/cmが好ましい。2.4ヶ/cm未満の場合は、紡績加工時、紡績糸強度低下する。5.0ヶ/cmを超える場合は、クリンプ処理時クリンプ切れが多発する。 The number of crimps of the oxidized fiber is preferably 2.4 to 5.0 / cm. If it is less than 2.4 pieces / cm, the spun yarn strength decreases during spinning. When it exceeds 5.0 pcs / cm, the crimp breakage frequently occurs during the crimping process.
酸化繊維のクリンプ率は、8〜16%が好ましい。8%未満の場合は、紡績加工時、紡績糸強度が低下する。16%を超える場合は、クリンプ処理時クリンプ切れが多発する。 The crimp rate of the oxidized fiber is preferably 8 to 16%. If it is less than 8%, the spun yarn strength decreases during spinning. If it exceeds 16%, crimping frequently occurs during crimping.
[製織]
次に、この酸化繊維紡績糸を製織して、酸化繊維紡績糸織物を作製する。織り形態については平織り、綾織り、朱子織り、杉綾織り等のいずれでもよいが、賦形性の観点より平織りが最も好ましい。
[Weaving]
Next, the oxidized fiber spun yarn is woven to produce an oxidized fiber spun yarn fabric. The weaving form may be any of plain weave, twill weave, satin weave, cedar weave, etc., but plain weave is most preferable from the viewpoint of formability.
酸化繊維紡績糸の打込み本数は、特に限定されないが20〜60本/24.5mmが好ましい。 The number of oxidized fiber spun yarns to be driven is not particularly limited, but is preferably 20 to 60 / 24.5 mm.
[加圧熱処理]
本発明の酸化繊維織物は、上記紡績糸織物を加圧熱処理することにより得られる。上記熱可塑性繊維の熱的特性により最適条件は多少異なるが、下記範囲にて行われる。
[Pressure heat treatment]
The oxidized fiber fabric of the present invention can be obtained by subjecting the spun yarn fabric to pressure heat treatment. The optimum conditions are somewhat different depending on the thermal characteristics of the thermoplastic fibers, but the following conditions are employed.
加圧熱処理雰囲気は、空気中などの酸化性雰囲気中で行う。 The pressure heat treatment atmosphere is performed in an oxidizing atmosphere such as air.
加圧熱処理時の温度は、好ましくは100〜350℃、更に好ましくは110〜250℃である。100℃未満の場合は、織物への賦形性向上、強度向上、薄層化等の効果が得られない。350℃を超える場合は、繊維性能が劣化する。蓄熱又は発火等のトラブルを生ずる危険性がある。 The temperature during the pressure heat treatment is preferably 100 to 350 ° C, more preferably 110 to 250 ° C. When the temperature is less than 100 ° C., effects such as improvement of formability to fabric, improvement of strength, and thinning cannot be obtained. When it exceeds 350 ° C., the fiber performance deteriorates. There is a risk of causing problems such as heat storage or ignition.
加圧熱処理時の圧力は、好ましくは0.5〜100MPa、更に好ましくは2〜50MPaである。0.5MPa未満の場合は、織物への賦形性向上、強度向上、薄層化等の効果が得られない。100MPaを超える場合は、繊維性能が劣化する。 The pressure during the pressure heat treatment is preferably 0.5 to 100 MPa, more preferably 2 to 50 MPa. In the case of less than 0.5 MPa, effects such as improvement of formability to fabric, improvement of strength, and thinning cannot be obtained. If it exceeds 100 MPa, the fiber performance deteriorates.
加圧熱処理時間は、上記加圧熱処理温度に0.1秒〜5分保持することが好ましい。 The pressure heat treatment time is preferably maintained at the pressure heat treatment temperature for 0.1 seconds to 5 minutes.
加圧熱処理後の酸化繊維織物の目付は、100〜350g/m2が好ましい。100g/m2未満の場合は、織物強度が低下する。350g/m2を超える場合は、所期厚さの薄層織物が作製困難である。目付の調整は、紡績糸の太さ及び打込み本数により行うことができる。 The basis weight of the oxidized fiber fabric after the pressure heat treatment is preferably 100 to 350 g / m 2 . If it is less than 100 g / m 2 , the fabric strength is lowered. When it exceeds 350 g / m 2 , it is difficult to produce a thin-layer woven fabric having a desired thickness. The basis weight can be adjusted by the thickness of the spun yarn and the number of driven yarns.
加圧熱処理後の酸化繊維織物の厚さは、0.15〜0.50mmが好ましい。0.15mm未満の場合は、織物強度が低下する。0.50mmを超える場合は、所期の炭素繊維織物の厚さに作れない。 The thickness of the oxidized fiber fabric after the pressure heat treatment is preferably 0.15 to 0.50 mm. In the case of less than 0.15 mm, the fabric strength decreases. When it exceeds 0.50 mm, it cannot be made to the thickness of the intended carbon fiber fabric.
[炭素化処理]
本発明の炭素繊維織物は、上記酸化繊維織物を炭素化処理することにより得られる。即ち、上記酸化繊維織物を次に記載する炭素化条件で炭素化処理することにより、表面毛羽の少ない下記物性の炭素繊維織物が製造される。
[Carbonization treatment]
The carbon fiber fabric of the present invention can be obtained by carbonizing the oxidized fiber fabric. That is, the above-described oxidized fiber fabric is carbonized under the following carbonization conditions to produce a carbon fiber fabric having the following physical properties with less surface fluff.
炭素化は、窒素、ヘリウム、アルゴン等の不活性雰囲気下、1000〜2800℃で行う。なお、昇温下で炭素化する場合の昇温速度は200℃/min以下が好ましい。1000℃未満の場合は、炭素繊維の固有の特性、すなわち耐熱性、強度保持性、電気伝導性等が発現されない。2800℃を超える場合は、繊維強度劣化に伴い、微粉末が多く発生する。最高温度での滞留時間は0.5〜20分が好ましい。 Carbonization is performed at 1000 to 2800 ° C. in an inert atmosphere such as nitrogen, helium, or argon. In addition, the temperature increase rate in the case of carbonization under temperature increase is preferably 200 ° C./min or less. When the temperature is lower than 1000 ° C., the inherent characteristics of the carbon fiber, that is, heat resistance, strength retention, electrical conductivity and the like are not exhibited. When the temperature exceeds 2800 ° C., a large amount of fine powder is generated as the fiber strength deteriorates. The residence time at the maximum temperature is preferably 0.5 to 20 minutes.
炭素化時には、織物中の酸化繊維は重量換算で50〜60%、繊維の形態を保ち残留する。一方熱可塑性繊維は、溶融しかつ重量換算で0.5〜10%残留し、炭素繊維間を繋ぎとめる効果(バインダー効果)がある。この効果により、炭素繊維織物の賦形性、及び強度が向上するとともに、薄い、表面毛羽の少ない炭素繊維織物を得ることができる。 At the time of carbonization, the oxidized fiber in the woven fabric remains in the form of fiber by 50 to 60% in terms of weight. On the other hand, the thermoplastic fiber melts and remains in an amount of 0.5 to 10% in terms of weight, and has an effect of binding carbon fibers (binder effect). By this effect, the shapeability and strength of the carbon fiber fabric can be improved, and a thin carbon fiber fabric with less surface fluff can be obtained.
炭素繊維織物の厚さは0.15〜0.60mmが好ましい。0.15mm未満の場合は、織物強度が低下する。0.60mmを超える場合は、厚さ方向の通電性が低下し、表面毛羽が増大する。 The thickness of the carbon fiber fabric is preferably 0.15 to 0.60 mm. In the case of less than 0.15 mm, the fabric strength decreases. When it exceeds 0.60 mm, the electrical conductivity in the thickness direction decreases and the surface fluff increases.
炭素繊維織物の目付けは60〜210g/m2が好ましい。60g/m2未満の場合は、織物強度が低下する。210g/m2を超える場合は、所期厚さの薄層織物が作製困難であり、電気抵抗値が増加する。 Basis weight of the carbon fiber woven fabric is preferably 60~210g / m 2. When it is less than 60 g / m 2 , the fabric strength is lowered. When it exceeds 210 g / m 2 , it is difficult to produce a thin-layer woven fabric with a desired thickness, and the electrical resistance value increases.
炭素繊維織物の嵩密度は0.25〜0.55g/m3が好ましい。0.25g/m3未満の場合は、織物強度が低下し、通電性が低下する。0.55g/m3を超える場合は、織物強度が低下し、表面毛羽が増大する。 The bulk density of the carbon fiber fabric is preferably 0.25 to 0.55 g / m 3 . If it is less than 0.25 g / m 3 , the strength of the fabric is lowered and the electrical conductivity is lowered. When it exceeds 0.55 g / m 3 , the fabric strength decreases and the surface fluff increases.
炭素繊維織物の電気抵抗値は4.0mΩ以下が好ましい。4mΩを超える場合は、通電性が低く、応用が難しい。 The electric resistance value of the carbon fiber fabric is preferably 4.0 mΩ or less. If it exceeds 4 mΩ, the conductivity is low and application is difficult.
炭素繊維織物の強度は25〜80N/cmが好ましい。25N/cm未満の場合は、取扱性が低下する。80N/cmを超える場合は、作製が困難である。 The strength of the carbon fiber fabric is preferably 25 to 80 N / cm. When it is less than 25 N / cm, the handleability is lowered. If it exceeds 80 N / cm, it is difficult to produce.
以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、各物性の測定は次の方法によった。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Each physical property was measured by the following method.
[酸化繊維のLOI:限界酸素指数]
酸素と窒素の混合気体中にサンプルを配置し、燃焼・発火開始する酸素濃度(容積%)をLOIとする。
[LOI of oxidized fibers: limiting oxygen index]
The sample is placed in a mixed gas of oxygen and nitrogen, and the oxygen concentration (volume%) at which combustion and ignition start is LOI.
[酸化繊維混入率]
紡績時の混打綿等の混合工程での投入重量比より算出する。
[Oxidized fiber mixing rate]
It is calculated from the input weight ratio in the mixing process of the blended cotton and the like during spinning.
[繊維特性:繊度、乾強度、乾伸度、クリンプ数、クリンプ率、平均繊維長]
JIS L 1015に基づいて測定している。
[Fiber properties: fineness, dry strength, dry elongation, number of crimps, crimp rate, average fiber length]
Measured based on JIS L 1015.
[紡績糸の太さ]
紡績糸を長さ10m、各5本を120℃、1時間乾燥させ、得られた質量より算出する。
[Thickness of spun yarn]
The spun yarn is 10 m in length, each of the five yarns is dried at 120 ° C. for 1 hour, and the calculated mass is calculated.
[紡績糸のより数]
10cm長さを取り出し、倍率20倍の拡大鏡を用いてより数を測定し、m当たりに換算する。
[Number of spun yarn]
Take out a length of 10 cm, measure the number using a magnifier with a magnification of 20 times, and convert it per m.
[紡績糸強力]
紡績糸をつかみ間隔100mmとし、引っ張り速度30mm/minで引っ張ったときの破断強力を紡績糸強力(N/本)とする。
[Strong yarn strength]
The breaking strength when the spun yarn is held at a grip interval of 100 mm and pulled at a pulling speed of 30 mm / min is defined as spun yarn strength (N / piece).
[織物厚さ]
直径5mmの円形圧板で厚さ方向に1.2Nの荷重(61.9kPa)を負荷したときの厚さを測定する。
[Weaving thickness]
The thickness when a 1.2 N load (61.9 kPa) is applied in the thickness direction with a circular pressure plate having a diameter of 5 mm is measured.
[織物目付け]
200mm×250mm織物を120℃で1時間乾燥した後の質量値より算出する。
[Weaving basis weight]
It is calculated from the mass value after drying a 200 mm × 250 mm woven fabric at 120 ° C. for 1 hour.
[織物強度]
幅50mm、長さ120mm以上のサンプルを、チャック間距離100mmの冶具に固定し、速度30mm/minで引っ張った時の破断強度を10mmに換算した値である。
[Textile strength]
This is a value obtained by converting the breaking strength when a sample having a width of 50 mm and a length of 120 mm or more is fixed to a jig having a distance between chucks of 100 mm and pulled at a speed of 30 mm / min to 10 mm.
[電気抵抗値]
2枚の50mm角(厚さ10mm)の金メッキした電極で、炭素繊維紡績糸織物を電極が全面接触するように挟み、荷重10kPaを織物の厚さ方向かけたときの厚さ方向の電気抵抗値を測定する。
[Electric resistance value]
Two 50mm square (thickness 10mm) gold-plated electrodes are sandwiched between carbon fiber spun yarn fabrics so that the electrodes are in full contact with each other, and the electric resistance value in the thickness direction when a load of 10kPa is applied in the thickness direction of the fabric. Measure.
[表面毛羽測定方法]
炭素繊維織物を幅50mm、長さ200mmに切り出す。図1に示すように、この切り出した炭素繊維織物2を外径8mm(曲率半径4mm)の金属製パイプ4に半周巻きつける。巻きつけた炭素繊維織物の端部側6を、質量約80g(厚さ10mm×幅30mm×長さ35mm)の金属板8で抑える。半周巻きつけた炭素繊維織物の最頂部の稜線部分10に沿って0.5mm以上の長さの毛羽数を測定する。
[Surface fluff measurement method]
A carbon fiber fabric is cut into a width of 50 mm and a length of 200 mm. As shown in FIG. 1, the cut-out carbon fiber fabric 2 is wound around a metal pipe 4 having an outer diameter of 8 mm (curvature radius of 4 mm) half a turn. The end side 6 of the wound carbon fiber fabric is held down by a metal plate 8 having a mass of about 80 g (
測定は光学顕微鏡(倍率50倍)を用いて稜線部分を写真撮影する。測定点を5箇所として毛羽数を数え、その平均値を算出する。 For the measurement, a photo is taken of the ridge portion using an optical microscope (50 times magnification). The number of fluffs is counted at five measurement points, and the average value is calculated.
[実施例1〜5]
表1の条件で酸化繊維と熱可塑性繊維とを混合紡績し、表1に示す物性の紡績糸(単糸)を作製した。この紡績糸を用い、表1の条件で製織して平織物を作製し、表1の条件で加圧熱処理後、表1に示す物性の酸化繊維織物を得た。この織物を、不活性ガス中、表1に示す昇温勾配、昇温後到達した最高温度(表1では温度と表示)、最高温度での滞留時間(表1では時間と表示)で炭素化処理した。
[Examples 1 to 5]
Oxidized fibers and thermoplastic fibers were mixed and spun under the conditions shown in Table 1 to produce spun yarn (single yarn) having the physical properties shown in Table 1. Using this spun yarn, weaving was carried out under the conditions shown in Table 1 to produce a plain woven fabric. After pressurizing heat treatment under the conditions shown in Table 1, oxidized fiber woven fabrics having physical properties shown in Table 1 were obtained. This fabric is carbonized in an inert gas at the temperature ramp shown in Table 1, the maximum temperature reached after the temperature rise (shown as temperature in Table 1), and the residence time at the maximum temperature (shown as time in Table 1). Processed.
その結果、表1に示すように実施例1〜5のいずれにおいても表面毛羽量の少ない良好な物性の炭素繊維織物が得られた。 As a result, as shown in Table 1, a carbon fiber woven fabric having good physical properties with a small amount of surface fluff was obtained in any of Examples 1 to 5.
[比較例1〜5]
表2の条件で酸化繊維と熱可塑性繊維とを混合紡績したが、比較例4では紡績時に繊維切断が発生し、紡績糸が作れなかった。比較例1〜3及び5については、表2に示す物性の紡績糸(単糸)が得られた。
[Comparative Examples 1-5]
Oxidized fiber and thermoplastic fiber were mixed and spun under the conditions shown in Table 2, but in Comparative Example 4, fiber cutting occurred during spinning, and a spun yarn could not be made. For Comparative Examples 1 to 3 and 5, spun yarn (single yarn) having the physical properties shown in Table 2 was obtained.
この紡績糸を用い、表2の条件で製織したが、比較例1、2では紡績糸強度が低いため織物が作れなかった。比較例3、5については、表2に示す物性の平織物が得られ、これを表2の条件で加圧熱処理後、表2に示す物性の酸化繊維織物を得た。この織物を、不活性ガス中、表2に示す昇温勾配、昇温後到達した最高温度(表2では温度と表示)、最高温度での滞留時間(表2では時間と表示)で炭素化処理した。 Using this spun yarn, weaving was performed under the conditions shown in Table 2. However, in Comparative Examples 1 and 2, the spun yarn strength was low, so a woven fabric could not be made. For Comparative Examples 3 and 5, plain woven fabrics having the physical properties shown in Table 2 were obtained. After pressure heat treatment under the conditions shown in Table 2, oxidized fiber woven fabrics having physical properties shown in Table 2 were obtained. This fabric is carbonized in an inert gas with the temperature gradient shown in Table 2, the maximum temperature reached after temperature increase (indicated as temperature in Table 2), and the residence time at the maximum temperature (indicated as time in Table 2). Processed.
その結果、表2に示すように比較例3、5のいずれにおいても表面毛羽量が多く、良好な物性の炭素繊維織物は得られなかった。 As a result, as shown in Table 2, the amount of surface fluff was large in any of Comparative Examples 3 and 5, and a carbon fiber fabric with good physical properties could not be obtained.
表2中×で示す箇所が本発明の構成から逸脱している。 The part shown by x in Table 2 deviates from the configuration of the present invention.
[比較例6〜7及び実施例6]
表3の条件で酸化繊維と熱可塑性繊維とを混合紡績し、表3に示す物性の紡績糸(単糸)を作製した。この紡績糸を用い、表3の条件で製織して平織物を作製し、表3の条件で加圧熱処理後、表3に示す物性の酸化繊維織物を得た。この織物を、不活性ガス中、表3に示す昇温勾配、昇温後到達した最高温度(表3では温度と表示)、最高温度での滞留時間(表3では時間と表示)で炭素化処理した。
[Comparative Examples 6 to 7 and Example 6]
Oxidized fibers and thermoplastic fibers were mixed and spun under the conditions shown in Table 3 to produce spun yarn (single yarn) having the physical properties shown in Table 3. Using this spun yarn, weaving was carried out under the conditions shown in Table 3 to prepare a plain woven fabric. After pressurizing heat treatment under the conditions shown in Table 3, an oxidized fiber woven fabric having physical properties shown in Table 3 was obtained. This fabric is carbonized in an inert gas at the temperature ramp shown in Table 3, the maximum temperature reached after temperature rise (shown as temperature in Table 3), and the residence time at the maximum temperature (shown as time in Table 3). Processed.
その結果、表3に示すように実施例6においては表面毛羽量の少ない良好な物性の炭素繊維織物が得られたが、比較例6〜7においては表面毛羽量が多く、良好な物性の炭素繊維織物は得られなかった。 As a result, as shown in Table 3, a carbon fiber woven fabric having good physical properties with a small amount of surface fluff was obtained in Example 6, whereas in Comparative Examples 6 to 7, carbon having a large amount of surface fluff and good physical properties was obtained. No fiber fabric was obtained.
表3中×で示す箇所が本発明の構成から逸脱している。 The part shown by x in Table 3 deviates from the configuration of the present invention.
2 炭素繊維織物
4 金属製パイプ
6 端部側
8 金属板
10 稜線部分
2 Carbon fiber fabric 4 Metal pipe 6 End side 8
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005226122A JP2007039843A (en) | 2005-08-04 | 2005-08-04 | Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005226122A JP2007039843A (en) | 2005-08-04 | 2005-08-04 | Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007039843A true JP2007039843A (en) | 2007-02-15 |
Family
ID=37798095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005226122A Withdrawn JP2007039843A (en) | 2005-08-04 | 2005-08-04 | Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007039843A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012202003A (en) * | 2011-03-25 | 2012-10-22 | Toho Tenax Co Ltd | Carbon fiber yarn fabric, carbon fiber precursor yarn fabric, and method for manufacturing the carbon fiber yarn fabric |
WO2013077087A1 (en) * | 2011-11-21 | 2013-05-30 | 津田駒工業株式会社 | Carbon fiber base material and carbon fiber reinforced plastic |
-
2005
- 2005-08-04 JP JP2005226122A patent/JP2007039843A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012202003A (en) * | 2011-03-25 | 2012-10-22 | Toho Tenax Co Ltd | Carbon fiber yarn fabric, carbon fiber precursor yarn fabric, and method for manufacturing the carbon fiber yarn fabric |
WO2013077087A1 (en) * | 2011-11-21 | 2013-05-30 | 津田駒工業株式会社 | Carbon fiber base material and carbon fiber reinforced plastic |
JP2013108194A (en) * | 2011-11-21 | 2013-06-06 | Tsudakoma Corp | Carbon fiber base material and carbon fiber-reinforced plastic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060257720A1 (en) | Conductive carbonaceous fiber woven cloth and solid polymer-type fuel cell | |
US20050260909A1 (en) | Carbonic fiber woven fabric, carbonic fiber woven fabric roll, gas diffusion layer material for solid polymer fuel cell, method for producing carbonic fiber woven fabric and method for producing gas diffusion layer material for solid polymer fuel cell | |
US5503929A (en) | Linear carbonaceous fiber with improved elongability | |
JP2008201005A (en) | Carbon fiber sheet and its manufacturing method | |
JP4863443B2 (en) | Carbon fiber mixed oxidized fiber felt, carbon fiber felt, and manufacturing method thereof | |
JP2006104643A (en) | Blended felt and carbon fiber felt | |
JP2007039843A (en) | Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber | |
JP3976580B2 (en) | High density flame resistant non-woven fabric, carbon non-woven fabric and production method thereof | |
JP2008169490A (en) | Method for producing carbonized fabric and carbonized fabric obtained by the method | |
JP2004003043A (en) | Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same | |
JP4283010B2 (en) | Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same | |
JP2003045443A (en) | Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method | |
JP4632043B2 (en) | Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof | |
JP4282964B2 (en) | Carbon fiber woven fabric | |
JP4002426B2 (en) | Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same | |
JP2008169493A (en) | Method for producing carbonized fabric and carbonized fabric obtained by the method | |
JP3442061B2 (en) | Flat carbon fiber spun yarn woven structural material | |
JP2004111341A (en) | Manufacturing method of carbon fiber woven fabric or nonwoven fabric for fuel cell gas diffusion layer | |
JP3934974B2 (en) | High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof | |
JP2004084136A (en) | Method for producing carbonaceous fiber-woven fabric and gas diffusion layer material for solid polymer type fuel cell | |
JP3993151B2 (en) | Method for producing carbon fiber woven fabric and method for producing gas diffusion layer material for polymer electrolyte fuel cell | |
JP4190768B2 (en) | Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same | |
JP2004084147A (en) | Carbonaceous fiber woven cloth | |
JP4333106B2 (en) | Method for producing carbon fiber woven fabric | |
JP2003227054A (en) | Woven fabric of spun yarn of polyacrylonitrile-based oxidized fiber, woven fabric of spun yarn of carbon fiber, and method for producing woven fabric of spun yarn of carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080520 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20101202 |