JP2007039773A - Aluminum alloy plate to be formed and manufacturing method therefor - Google Patents
Aluminum alloy plate to be formed and manufacturing method therefor Download PDFInfo
- Publication number
- JP2007039773A JP2007039773A JP2005227789A JP2005227789A JP2007039773A JP 2007039773 A JP2007039773 A JP 2007039773A JP 2005227789 A JP2005227789 A JP 2005227789A JP 2005227789 A JP2005227789 A JP 2005227789A JP 2007039773 A JP2007039773 A JP 2007039773A
- Authority
- JP
- Japan
- Prior art keywords
- orientation
- aluminum alloy
- temperature
- alloy plate
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
この発明は、自動車のボディシートやボディパネルなどの自動車用の部材、部品、その他船舶、航空機等の部材、部品、さらには各種建築材料、構造材料、そのほか各種機械器具、家電製品やその部品等の素材として、成形加工および塗装焼付けを施して使用されるAl−Mg−Si系もしくはAl−Mg−Si−Cu系のアルミニウム合金板およびその製造方法に関するものであり、成形性、特にヘム加工性(ヘム曲げ性)が良好であるとともに、塗装焼付け後に適度の強度が付与され、かつ室温(常温)での経時変化が少ない成形加工用アルミニウム合金板およびその製造方法に関するものである。 The present invention relates to automobile parts and parts such as body sheets and body panels of automobiles, other parts and parts of ships, aircrafts, etc., as well as various building materials, structural materials, other various machinery and equipment, home appliances and parts thereof, etc. The present invention relates to Al-Mg-Si-based or Al-Mg-Si-Cu-based aluminum alloy sheets used for forming and painting and baking, and a method for producing the same. The present invention relates to an aluminum alloy sheet for forming and having a good (hem bendability), suitable strength after baking, and little change with time at room temperature (room temperature), and a method for producing the same.
従来自動車のボディシートとしては、主として冷延鋼板を使用することが多かったが、最近では車体軽量化等の観点から、アルミニウム合金圧延板を使用することが多くなっている。ところで自動車のボディシートはプレス加工を施して使用するところから、成形加工性が優れていること、また成形加工時におけるリューダースマークが発生しないことが要求され、また適度な強度を有することも不可欠で、塗装焼付けを施して使用するのが通常であるため、塗装焼付け後に適度な強度が得られることが要求される。そしてまた成形性が良好であることが要求されるのはもちろんであるが、自動車用ボディシートとしては、アウターパネルとインナーパネルとを接合して一体化させるためなどに、ヘム加工(曲げ加工の一種)を施して使用することが多いところから、成形性のうちでも特にヘム加工性が優れていることが強く望まれる。 Conventionally, as a body sheet of an automobile, a cold-rolled steel sheet has been mainly used, but recently, an aluminum alloy rolled sheet is frequently used from the viewpoint of reducing the weight of the vehicle body. By the way, since car body sheets are used after being pressed, it is required that they have excellent molding processability, that there are no Ruders marks during molding, and that they have adequate strength. Thus, since it is usually used after being baked, it is required to obtain an appropriate strength after baking. Of course, it is required that the moldability is good, but as a body sheet for an automobile, hem processing (bending processing) is used for joining and integrating the outer panel and the inner panel. Since it is often used after being subjected to one type), it is strongly desired that the hemmability is particularly excellent among the moldability.
従来このような自動車用ボディシート向けのアルミニウム合金としては、Al−Mg系合金のほか、時効性を有するAl−Mg−Si系合金もしくはAl−Mg−Si−Cu系合金が主として使用されている。これらの時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金は、塗装焼付け前の成形加工時においては比較的強度が低くて成形性が優れている一方、塗装焼付け時の加熱によって時効されて塗装焼付け後の強度が高くなる利点を有するほか、リューダースマークが発生しにくい等の長所を有する。 Conventionally, as an aluminum alloy for an automobile body sheet, in addition to an Al—Mg alloy, an Al—Mg—Si alloy or an Al—Mg—Si—Cu alloy having aging properties is mainly used. . These aging Al-Mg-Si alloys and aging Al-Mg-Si-Cu alloys have relatively low strength and excellent formability during molding before coating baking, while coating baking. In addition to the advantage that it is aged by heating at the time and the strength after baking is increased, it also has the advantage that the Ruders mark is less likely to occur.
なお、ヘム加工性などの曲げ加工性向上に関する従来技術としては、Mg2Si化合物の粒径と数、あるいは粒界析出物、第2相粒子の分散密度などを制御する特許文献1や特許文献2の技術、また結晶粒界の方位差が15°以下あるいは20°以下の結晶粒界の割合を規制する特許文献3や特許文献4の技術、さらには集合組織の{200}面あるいは{400}面の積分強度を規制する特許文献5や特許文献6等がある。また発明者等も既に特許文献7、8に示される提案を行っている。 As the prior art relating to the bending workability improvement, such hemmability, particle size and the number of Mg 2 Si compound or grain boundary precipitates, Patent Document 1 and Patent Document that controls the dispersion density of the second phase particles 2 and the techniques of Patent Document 3 and Patent Document 4 that regulate the proportion of crystal grain boundaries whose orientation difference between crystal grain boundaries is 15 ° or less or 20 ° or less, or the {200} plane or {400 of the texture. } There are Patent Document 5 and Patent Document 6 that regulate the integrated intensity of the surface. The inventors have already made proposals shown in Patent Documents 7 and 8.
前述のような自動車ボディシート向けの時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板を用いた従来の製造方法により得られた板では、最近の自動車用ボディシートに要求される特性を充分に満足させることは困難であった。 The plate obtained by the conventional manufacturing method using the aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates for automobile body seats as described above is required for recent automobile body seats. It has been difficult to fully satisfy the properties obtained.
すなわち、最近ではコストの一層の低減や材質の一層の向上等のために、自動車用ボディシートについては、従来よりも高性能でありながら低コストで製造する技術の開発が強く要求されている。しかしながら低コストを図りながらも、適度な強度と成形性(特にヘム加工性)、室温経時変化の抑制性能などの種々の要求性能を満足させる点については、従来の一般的な製造方法によって得られたAl−Mg−Si系、Al−Mg−Si−Cu系合金板では未だ不充分であった。 That is, recently, in order to further reduce the cost and further improve the material, there has been a strong demand for the development of a technology for manufacturing an automobile body seat at a low cost while having higher performance than before. However, while satisfying various required performances such as moderate strength and formability (especially heme workability) and room temperature aging suppression performance while achieving low cost, it can be obtained by conventional conventional manufacturing methods. Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates are still insufficient.
ここで、低コスト化の方策としては製造工程の一部を省くことが最も簡単であるが、従来の製造プロセスの一部を単純に省略しただけでは、低コストは図られても上記の諸性能のうちのいくつかの性能の低下が懸念されることは当然である。 Here, the simplest way to reduce costs is to omit a part of the manufacturing process. However, simply omitting a part of the conventional manufacturing process can reduce the cost. Of course, some of the performance may be degraded.
またここで、成形加工、特にヘム加工は、曲げ内径が1mm以下の180°曲げという苛酷な曲げ加工であるため、良好なヘム加工性とプレス成形性とを両立させることが困難であるという問題があり、特に他の性能を損なわずにかつ低コストで良好なヘム加工性とプレス成形性とを両立させることは極めて困難であった。 Here, since the forming process, particularly the hem process, is a severe bending process of 180 ° bending with a bending inner diameter of 1 mm or less, it is difficult to achieve both good hem processability and press formability. In particular, it was extremely difficult to achieve both good hemmability and press formability at low cost without impairing other performance.
さらに従来の製造方法では、熱間圧延後から溶体化処理までの間に結晶粒微細化などのために冷間圧延を行なうことが必須であり、このこともコスト低減の障害となっていた。 Furthermore, in the conventional manufacturing method, it is indispensable to perform cold rolling in order to refine crystal grains between hot rolling and solution treatment, and this has also been an obstacle to cost reduction.
また塗装焼付けについては、省エネルギおよび生産性の向上、さらには高温に曝されることが好ましくない樹脂等の材料との併用などの観点から、最近では従来よりも焼付け温度を低温化し、また焼付け時間も短時間化する傾向が強まっている。しかしながら塗装焼き付け後の強度を重視する場合、従来の一般的な製法により得られた時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板の場合、低温・短時間の塗装焼付け処理では、塗装焼付け時の硬化(焼付け硬化)が不足し、塗装焼付け後に充分な高強度が得難くなる問題があった。 Also, with regard to paint baking, from the viewpoints of energy saving and productivity improvement, and combined use with materials such as resins that are not preferred to be exposed to high temperatures, recently, the baking temperature has been made lower than before and baking has been performed. There is an increasing tendency to shorten the time. However, in the case of aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates obtained by a conventional general manufacturing method when the strength after coating baking is important, low-temperature and short-time coating baking In the treatment, there is a problem that curing at the time of coating baking (baking curing) is insufficient, and it becomes difficult to obtain sufficient high strength after baking.
一方、自動車のインナーパネルに使用されるアルミニウム合金板については、塗装焼付け後の高強度を必ずしも必要としないことがあり、この場合には高強度の代わりに、一層の高成形性が求められることがあるが、従来の一般的な製法により得られた時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板の場合、このような高成形性の要求を満足し得ない問題がある。 On the other hand, aluminum alloy sheets used for automobile inner panels may not necessarily require high strength after paint baking. In this case, higher formability is required instead of high strength. However, in the case of aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates obtained by a conventional general manufacturing method, there is a problem that such high formability requirements cannot be satisfied. There is.
すなわち従来の一般的な製法により得られた時効性Al−Mg−Si系、Al−Mg−Si−Cu系合金板では、板製造後に室温に放置した場合に自然時効により硬化が生じやすくなり、そのため成形性、特にヘム加工性が阻害されがちとなるという問題が生じている。 That is, in the aging Al-Mg-Si-based and Al-Mg-Si-Cu-based alloy plates obtained by a conventional general manufacturing method, when left at room temperature after the plate production, hardening is likely to occur due to natural aging. For this reason, there is a problem that moldability, particularly hemmability, tends to be hindered.
また前記各特許文献のうち、特許文献1、特許文献2では、均質化処理とその後の冷却速度などの規制によって、化合物分散状態、特にMg2Siの粒径と数、あるいは粒界析出物、第2相粒子の分散状態などを調整することにより曲げ加工性などを改善することが提案されているが、これらの特許文献1、2の方法では、化合物分散状態について上述のような調整を行ったとしても、最近の曲げ性に対する厳しい要求を充分に満足させることは困難であった。またいずれの場合も冷間圧延工程が必要であり、製造コストが割高とならざるを得ない。 Of the above-mentioned patent documents, in Patent Documents 1 and 2, the compound dispersion state, particularly the particle size and number of Mg 2 Si, or the grain boundary precipitates are controlled by the regulation such as the homogenization treatment and the subsequent cooling rate. Although it has been proposed to improve the bending workability by adjusting the dispersion state of the second phase particles, etc., in the methods of these Patent Documents 1 and 2, the compound dispersion state is adjusted as described above. Even so, it has been difficult to fully satisfy the recent strict requirements for bendability. In either case, a cold rolling process is necessary, and the manufacturing cost is inevitably high.
一方特許文献3、特許文献4においては、結晶粒間の方位差が15°以下あるいは20°以下である結晶粒界の割合を規制することにより曲げ加工性などを改善することが提案されており、また特許文献5、特許文献6においては、集合組織制御として、{200}面と{400}面の積分強度を規制してフラットヘム加工性を改善することが提案されており、さらに本願出願人等による特許文献7では、キューブ方位密度、ND回転キューブ方位密度と耳率を規制してヘム加工性を改善することを提案している。確かにこれらの提案の方法では、曲げ加工性についてはある程度の改善効果が図られるが、本発明者等が、さらに実験・検討を重ねた結果、いずれの方法の場合も、圧延板のあらゆる方向の曲げ性がすべて改善されるわけではないことが判明した。例えば、圧延方向に対し平行な方向、あるいは圧延方向に対し直交する方向の曲げ性の改善が図られても、圧延方向に対し45°をなす方向の曲げ性は改善されず、いわゆる曲げ異方性という問題が生じてしまうことが判明した。 On the other hand, in Patent Document 3 and Patent Document 4, it is proposed to improve bending workability by regulating the ratio of crystal grain boundaries in which the orientation difference between crystal grains is 15 ° or less or 20 ° or less. In Patent Document 5 and Patent Document 6, it is proposed that the integrated strength of the {200} plane and the {400} plane is regulated to improve flat hem workability as texture control. In Patent Document 7 by humans and others, it is proposed to improve the hem workability by regulating the cube orientation density, the ND rotating cube orientation density, and the ear rate. Certainly, with these proposed methods, a certain degree of improvement in bending workability can be achieved, but as a result of further experiments and examinations by the present inventors, any direction of the rolled sheet can be obtained with either method. It was found that not all the bendability was improved. For example, even if the bendability in the direction parallel to the rolling direction or the direction perpendicular to the rolling direction is improved, the bendability in the direction of 45 ° with respect to the rolling direction is not improved. It turns out that the problem of gender arises.
上記の曲げ異方性に関しては、本願出願人等による特許文献8においては、板厚方向でのキューブ方位密度を制御することにより改善する方法を提案している。この改善方法は確かに効果はあるが、未だ充分とは言えないのが実情であり、また冷間圧延工程が必要であるため、製造コストが割高となる欠点がある。 Regarding the above bending anisotropy, Patent Document 8 by the present applicant proposes a method for improving the bending anisotropy by controlling the cube orientation density in the plate thickness direction. Although this improvement method is surely effective, it is not sufficient yet, and since a cold rolling process is necessary, there is a drawback that the manufacturing cost is high.
この発明は以上の事情を背景としてなされたもので、適度な焼付け硬化性を有し、塗装焼付け時における強度上昇が適切な範囲内にあり、しかも板製造後の室温での経時的な変化が少なく、長期間放置した場合でも自然時効による硬化に起因する成形性の低下も少なく、さらには良好な成形加工性、特に良好な曲げ加工性(とりわけヘム加工性)を有すると同時に、曲げ異方性も少ない成形加工用アルミニウム合金板を提供するとともに、そのような優れた性能を有する成形加工用アルミニウム合金板を、量産的規模で確実かつ安定して低コストで製造し得る方法を提供することを目的とするものである。 This invention was made against the background described above, has moderate bake hardenability, has an appropriate increase in strength during paint baking, and changes over time at room temperature after plate production. Even when left for a long period of time, there is little decrease in formability due to hardening due to natural aging. Furthermore, it has good formability, especially good bendability (especially heme workability) and bending anisotropy. To provide an aluminum alloy sheet for forming that has low properties and a method for manufacturing such an aluminum alloy sheet for forming that has such excellent performance reliably and stably at a low cost on a mass production scale. It is intended.
前述のような課題を解決するべく本発明者等が種々実験・検討を重ねた結果、Al−Mg−Si系もしくはAl−Mg−Si−Cu系合金の最終板の組織として、特定の方位、特にキューブ方位(立方体方位)の結晶方位密度を高めると同時に、キューブ方位のみならず、{011}<211>方位密度と、{123}<634>方位密度と、{112}<111>方位密度との合計をも適切に規制することによって、プレス加工性を損なうことなく、曲げ加工性、特にヘム加工性を向上させ得ると同時に、その異方性(曲げ異方性)を小さくすることができ、また適切な焼付け硬化性、耐室温経時変化性を得ることができることを見出した。そしてまたこのような優れた性能を有する成形加工用アルミニウム合金板を量産的規模で確実かつ安定して低コストで製造し得るプロセス条件を見出し、この発明をなすに至ったのである。 As a result of repeated experiments and examinations by the present inventors to solve the above-mentioned problems, as a structure of the final plate of Al-Mg-Si-based or Al-Mg-Si-Cu-based alloy, a specific orientation, In particular, while increasing the crystal orientation density of the cube orientation (cube orientation), not only the cube orientation but also the {011} <211> orientation density, {123} <634> orientation density, and {112} <111> orientation density By appropriately regulating the total of the above, bending workability, particularly hemming workability can be improved without impairing press workability, and the anisotropy (bending anisotropy) can be reduced. It was also found that appropriate bake hardenability and room temperature aging resistance can be obtained. Further, the present inventors have found a process condition capable of manufacturing an aluminum alloy sheet for forming having such excellent performance on a mass-production scale reliably, stably and at low cost, and has made the present invention.
具体的には、請求項1の発明の成形加工用アルミニウム合金板は、Al−Mg−Si系もしくはAl−Mg−Si−Cu系合金からなるアルミニウム合金が素材とされ、キューブ方位密度が、ランダム結晶方位を有する試料の10倍以上で、かつ{011}<211>方位と{123}<634>方位と{112}<111>方位の各方位密度の合計が、ランダム結晶方位を有する試料の4倍以上であり、さらに0°、90°耳率が5%以上、結晶粒度がASTMナンバーで4以上であることを特徴とするものである。 Specifically, the aluminum alloy sheet for forming according to the invention of claim 1 is made of an aluminum alloy made of an Al—Mg—Si or Al—Mg—Si—Cu alloy, and the cube orientation density is random. More than 10 times the sample having a crystal orientation, and the sum of the orientation densities of the {011} <211>, {123} <634>, and {112} <111> orientations It is 4 times or more, and further, 0 °, 90 ° ear ratio is 5% or more, and the crystal grain size is 4 or more by ASTM number.
また請求項2の発明の成形加工用アルミニウム合金板は、Mg0.2〜1.5%、Si0.3〜2.0%を含有し、かつMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、Fe0.03〜0.5%、Ti0.005〜0.2%、Zn0.03〜2.5%のうちから選ばれた1種または2種以上を含有し、さらにCuが2.0%以下に規制され、残部がAlおよび不可避的不純物よりなるアルミニウム合金が素材とされ、キューブ方位密度が、ランダム結晶方位を有する試料の10倍以上で、かつ{011}<211>方位と{123}<634>方位と{112}<111>方位の各方位密度の合計が、ランダム結晶方位を有する試料の4倍以上であり、さらに0°、90°耳率が5%以上、結晶粒度がASTMナンバーで4以上であることを特徴とするものである。 The aluminum alloy sheet for forming according to the invention of claim 2 contains Mg 0.2 to 1.5%, Si 0.3 to 2.0%, Mn 0.03 to 0.6%, Cr 0.01 to One or two selected from 0.4%, Zr 0.01-0.4%, Fe 0.03-0.5%, Ti 0.005-0.2%, Zn 0.03-2.5% It contains more than seeds, Cu is controlled to 2.0% or less, the balance is made of an aluminum alloy consisting of Al and inevitable impurities, and the cube orientation density is 10 times or more that of a sample having a random crystal orientation. And the sum of the orientation densities of the {011} <211>, {123} <634>, and {112} <111> orientations is at least four times that of a sample having a random crystal orientation, and is further 0 °. 90 ° ear rate is 5% or more, grain size is ASTM 4 or more.
さらに請求項3の発明の成形加工用アルミニウム合金板の製造方法は、請求項1もしくは請求項2に記載の成形加工用アルミニウム合金板を製造するにあたり、鋳塊に対し、480℃以上で均質処理を施した後、冷却し、次いで300℃以上の温度で熱間圧延を開始し、最終製品板の板厚まで熱間圧延を行なって100〜350℃の範囲内の温度で熱間圧延を終了させ、得られた熱間圧延板に対し、480℃以上の温度で溶体化処理を施して100℃/min以上の平均冷却速度で室温まで冷却することを特徴とするものである。 Furthermore, the manufacturing method of the aluminum alloy plate for forming according to the invention of claim 3 is the homogeneous treatment at 480 ° C. or higher with respect to the ingot when the aluminum alloy plate for forming according to claim 1 or claim 2 is manufactured. After cooling, it is cooled, and then hot rolling is started at a temperature of 300 ° C. or higher, hot rolling is performed up to the thickness of the final product plate, and the hot rolling is finished at a temperature within a range of 100 to 350 ° C. The obtained hot-rolled sheet is subjected to a solution treatment at a temperature of 480 ° C. or higher and cooled to room temperature at an average cooling rate of 100 ° C./min or higher.
またさらに請求項4の発明の成形加工用アルミニウム合金板の製造方法は、請求項3に記載の成形加工用アルミニウム合金板の製造方法において、前記溶体化処理の後、100℃/min以上の平均冷却速度で50℃以上150℃未満の温度まで冷却し、続いてこの温度範囲内で1時間以上の安定化処理を行うことを特徴とするものである。 Furthermore, the method for producing an aluminum alloy plate for forming according to the invention of claim 4 is the method for producing an aluminum alloy plate for forming according to claim 3, wherein after the solution treatment, an average of 100 ° C./min or more is obtained. It is characterized by cooling to a temperature of 50 ° C. or more and less than 150 ° C. at a cooling rate, and subsequently performing a stabilization treatment for 1 hour or more within this temperature range.
そしてまた請求項5の発明の成形加工用アルミニウム合金板の製造方法は、請求項3に記載の成形加工用アルミニウム合金板の製造方法において、前記溶体化処理の後、100℃/min以上の平均冷却速度で50℃未満の温度まで冷却し、続いて室温で放置した後、50℃以上150℃未満の温度範囲内で1時間以上の安定化処理を行うことを特徴とするものである。 And the manufacturing method of the aluminum alloy plate for shaping | molding of invention of Claim 5 is a manufacturing method of the aluminum alloy plate for shaping | molding processing of Claim 3, After the said solution treatment, it is an average of 100 degrees C / min or more. After cooling to a temperature of less than 50 ° C. at a cooling rate, and then allowing to stand at room temperature, stabilization treatment is performed for 1 hour or more within a temperature range of 50 ° C. or more and less than 150 ° C.
この発明による成形加工用アルミニウム合金板は、成形性、特にヘム加工性が優れていると同時に、曲げ異方性も少なく、しかも塗装焼付け後の強度を適切に調整でき、また室温での経時変化も少なく、したがって塗装後にプレス加工やヘム加工を施して使用される自動車用ボディシート等に最適である。またこの発明の成形加工用アルミニウム合金板の製造方法によれば、上述のように優れた性能を有する成形加工用アルミニウム合金板を、量産的規模においても低コストで確実かつ安定して製造することができる。 The aluminum alloy sheet for forming according to the present invention has excellent formability, particularly hemmability, has little bending anisotropy, and can appropriately adjust strength after baking, and changes with time at room temperature. Therefore, it is most suitable for automotive body seats that are used after press coating or hem processing. In addition, according to the method for manufacturing a forming aluminum alloy plate of the present invention, the forming alloy alloy plate having excellent performance as described above can be manufactured reliably and stably at a low cost even on a mass production scale. Can do.
この発明の成形加工用アルミニウム合金板は、基本的にはAl−Mg−Si系合金もしくはAl−Mg−Si−Cu系合金であれば良く、その具体的な成分組成は特に制約されるものではないが、通常は請求項2で規定するような成分組成の合金、すなわちMg0.2〜1.5%、Si0.3〜2.0%を含有し、かつMn0.03〜0.6%、Cr0.01〜0.4%、Zr0.01〜0.4%、Fe0.03〜0.5%、Ti0.005〜0.2%、Zn0.03〜2.5%のうちから選ばれた1種または2種以上を含有し、さらにCuが2.0%以下に規制され、残部がAlおよび不可避的不純物よりなるアルミニウム合金を素材とすることが好ましい。 The aluminum alloy plate for forming according to the present invention may basically be an Al-Mg-Si alloy or an Al-Mg-Si-Cu alloy, and its specific composition is not particularly limited. Although not usually, an alloy having a component composition as defined in claim 2, that is, Mg 0.2-1.5%, Si 0.3-2.0%, and Mn 0.03-0.6%, Selected from Cr 0.01-0.4%, Zr 0.01-0.4%, Fe 0.03-0.5%, Ti 0.005-0.2%, Zn 0.03-2.5% It is preferable to use an aluminum alloy containing one or two or more kinds, further Cu being regulated to 2.0% or less, and the balance being Al and inevitable impurities.
このような請求項2で規定する素材合金の成分組成の限定理由について説明する。 The reason for limiting the component composition of the material alloy defined in claim 2 will be described.
Mg:
Mgはこの発明で対象としている系の合金で基本となる合金元素であって、Siと共同して強度向上に寄与する。Mg量が0.2%未満では塗装焼付け時に析出硬化によって強度向上に寄与するG.P.ゾーンの生成量が少なくなるため、充分な強度向上が得られず、一方1.5%を越えれば、粗大なMg−Si系の金属間化合物が生成され、キューブ方位密度を高めるために不利となり、成形性、特に曲げ加工性が低下するから、Mg量は0.2〜1.5%の範囲内とした。なお最終板の成形性、特に曲げ加工性をより良好にするためには、Mg量は0.3〜0.9%の範囲内が好ましい。
Mg:
Mg is an alloy element that is a basic alloy of the system targeted by the present invention, and contributes to strength improvement in cooperation with Si. If the amount of Mg is less than 0.2%, G. contributes to strength improvement by precipitation hardening during baking. P. Since the amount of zone formation decreases, sufficient strength improvement cannot be obtained. On the other hand, if it exceeds 1.5%, coarse Mg-Si based intermetallic compounds are generated, which is disadvantageous for increasing cube orientation density. Further, since the formability, particularly the bending workability is lowered, the amount of Mg is set in the range of 0.2 to 1.5%. In order to improve the formability of the final plate, particularly bending workability, the Mg content is preferably in the range of 0.3 to 0.9%.
Si:
Siもこの発明の系の合金で基本となる合金元素であって、Mgと共同して強度向上に寄与する。またSiは、鋳造時に金属Siの晶出物として生成され、その金属Si粒子の周囲が加工によって変形されて、溶体化処理の際に再結晶核の生成サイトとなるため、再結晶組織の微細化にも寄与する。Si量が0.3%未満では上記の効果が充分に得られず、一方2.0%を越えれば粗大なSi粒子や粗大なMg−Si系の金属間化合物が生じて、キューブ方位密度を高めるために不利となり、成形性、特に曲げ加工性の低下を招く。したがってSi量は0.3〜2.0%の範囲内とした。なおプレス成形性と曲げ加工性とのより良好なバランスを得るためには、Si量は0.5〜1.3%の範囲内が好ましい。
Si:
Si is also an alloy element that is fundamental in the alloy of the present invention, and contributes to strength improvement in cooperation with Mg. In addition, Si is produced as a crystallized product of metal Si at the time of casting, and the periphery of the metal Si particles is deformed by processing and becomes a recrystallization nucleus generation site during solution treatment. It also contributes to If the amount of Si is less than 0.3%, the above effects cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, coarse Si particles and coarse Mg-Si intermetallic compounds are produced, and the cube orientation density is reduced. It is disadvantageous to increase, and the formability, particularly bending workability, is reduced. Therefore, the Si amount is set in the range of 0.3 to 2.0%. In order to obtain a better balance between press formability and bending workability, the Si content is preferably in the range of 0.5 to 1.3%.
Mn、Cr、Zr、Fe、Ti、Zn:
これらの元素は、強度向上や結晶粒微細化、あるいは時効性(焼付け硬化性)の向上や表面処理性の向上に有効であり、いずれか1種または2種以上を添加する。これらのうちMn、Cr、Zrは強度向上と結晶粒の微細化および組織の安定化に効果がある元素であるが、Mnの含有量が0.03%未満、もしくはCrの含有量が0.01%未満、またはZrの含有量が0.01%未満では、上記の効果が充分に得られず、一方Mnの含有量が0.6%を越えるか、あるいはCr、Zrの含有量がそれぞれ0.4%を越えれば、上記の効果が飽和するばかりでなく、多数の金属間化合物が生成されて成形性、特にヘム加工性に悪影響を及ぼすおそれがあり、したがってMnは0.03〜0.6%の範囲内、Cr、Zrはそれぞれ0.01〜0.4%の範囲内とした。またFeも強度向上と結晶粒微細化に有効な元素であるが、その含有量が0.03%未満では充分な効果が得られず、一方0.5%を越えれば、キューブ方位密度を高める上において不利となって、成形性、特に曲げ加工性が低下するおそれがあり、したがってFe量は0.03〜0.5%の範囲内とした。さらにTiも強度向上と鋳塊組織の微細化に有効な元素であるが、その含有量が0.005%未満では充分な効果が得られず、一方0.2%を越えればTi添加の効果が飽和するばかりでなく、粗大な晶出物が生じるおそれがあるから、Ti量は0.005〜0.2%の範囲内とした。またZnは時効性向上を通じて強度向上に寄与するとともに表面処理性の向上に有効な元素であるが、Znの添加量が0.03%未満では上記の効果が充分に得られず、一方2.5%を越えれば成形性が低下するから、Zn量は0.03〜2.5%の範囲内とした。
Mn, Cr, Zr, Fe, Ti, Zn:
These elements are effective for improving the strength, refining crystal grains, improving aging (bake hardenability), and improving surface treatment properties, and one or more of these elements are added. Among these, Mn, Cr, and Zr are elements that are effective in improving the strength, refining crystal grains, and stabilizing the structure. However, the Mn content is less than 0.03% or the Cr content is less than 0.03. If the content is less than 01% or the content of Zr is less than 0.01%, the above effects cannot be obtained sufficiently, while the content of Mn exceeds 0.6%, or the contents of Cr and Zr are respectively If it exceeds 0.4%, not only the above effects are saturated, but also a large number of intermetallic compounds may be produced, which may adversely affect moldability, particularly hemmability, and therefore Mn is 0.03 to 0. Within the range of 0.6%, Cr and Zr were each within the range of 0.01 to 0.4%. Fe is also an element effective for strength improvement and grain refinement, but if its content is less than 0.03%, sufficient effects cannot be obtained, while if it exceeds 0.5%, the cube orientation density is increased. There is a disadvantage in that the moldability, particularly the bending workability, may be lowered, and therefore the Fe content is set in the range of 0.03 to 0.5%. Furthermore, Ti is an element effective for improving the strength and refining the ingot structure, but if its content is less than 0.005%, a sufficient effect cannot be obtained, while if it exceeds 0.2%, the effect of adding Ti In addition to being saturated, there is a possibility that coarse crystallized matter may be formed, so the Ti content is set in the range of 0.005 to 0.2%. Zn is an element that contributes to improvement of strength through improvement of aging and is effective for improvement of surface treatment. However, if the amount of Zn is less than 0.03%, the above effect cannot be obtained sufficiently. If the content exceeds 5%, the moldability deteriorates, so the Zn content is set in the range of 0.03 to 2.5%.
Cu:
Cuは強度向上および成形性向上のために添加されることがある元素であるが、その量が1.5%を越えれば耐食性(耐粒界腐食性、耐糸錆性)が劣化するから、Cuの含有量は2.0%以下に規制することとした。なお、より耐食性の改善を図りたい場合はCu量は1.0%以下が好ましく、さらに特に耐食性を重視する場合は、Cu量は0.05%以下に規制することが望ましい。
Cu:
Cu is an element that may be added to improve strength and formability, but if its amount exceeds 1.5%, corrosion resistance (intergranular corrosion resistance, yarn rust resistance) deteriorates. The Cu content was regulated to 2.0% or less. In addition, when it is desired to further improve the corrosion resistance, the Cu content is preferably 1.0% or less, and when the corrosion resistance is particularly important, it is desirable to regulate the Cu content to 0.05% or less.
以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良い。 In addition to the above elements, basically, Al and inevitable impurities may be used.
なお上記のMn、Cr、Zr、Fe、Ti、Znの含有量範囲は、それぞれ積極的に添加する場合の範囲として示したものであり、いずれも下限値より少ない量を不純物として含有する場合を排除するものではない。特に0.03%未満のFeは、通常のアルミ地金を用いれば不可避的に含有されるのが通常である。 In addition, said Mn, Cr, Zr, Fe, Ti, Zn content range is shown as the range in the case of adding each positively, and the case where all contain less than a lower limit as an impurity. It is not excluded. In particular, Fe of less than 0.03% is usually inevitably contained if a normal aluminum ingot is used.
また時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金においては、高温時効促進元素あるいは室温時効抑制元素であるAg、In、Cd、Be、あるいはSnを微量添加することがあるが、この発明の場合も微量添加であればこれらの元素の添加も許容され、それぞれ0.3%以下であれば特に所期の目的を損なうことはない。 In addition, in an aging Al—Mg—Si alloy or an aging Al—Mg—Si—Cu alloy, a trace amount of Ag, In, Cd, Be, or Sn which is a high temperature aging promoting element or a room temperature aging inhibiting element is added. However, even in the case of the present invention, addition of these elements is permissible as long as it is added in a trace amount.
なおまた、一般のAl合金においては、鋳塊組織の微細化のために前述のTiと同時にBを添加することもあり、BをTiとともに添加することによって、鋳塊組織の微細化と安定化の効果が一層顕著となる。そしてこの発明の場合、Tiとともに500ppm以下のBを添加することは許容される。 In addition, in general Al alloys, B may be added simultaneously with the above-mentioned Ti to refine the ingot structure. By adding B together with Ti, the ingot structure is refined and stabilized. The effect becomes more prominent. In the case of this invention, it is permissible to add 500 ppm or less of B together with Ti.
さらに、鋳塊組織の微細化にはV、Scの添加も効果があるとされており、この発明の場合も微量のVもしくはScを添加しても良く、V0.03〜0.3%、Sc0.01〜0.2%の範囲内であれば特に支障はない。 Furthermore, it is said that the addition of V and Sc is effective for refining the ingot structure. In the case of this invention, a small amount of V or Sc may be added. If it is in the range of Sc 0.01 to 0.2%, there is no particular problem.
さらにこの発明の成形加工用アルミニウム合金板において、良好な曲げ加工性、特に良好なヘム加工性を得ると同時に、曲げ異方性を小さく抑制するためには、合金の成分組成を前述のように調整するばかりでなく、最終板であるアルミニウム合金板の集合組織、特に結晶方位密度を適切に抑制することが極めて重要である。 Furthermore, in the aluminum alloy sheet for forming according to the present invention, in order to obtain good bending workability, particularly good hemming workability, and at the same time to suppress bending anisotropy, the alloy composition is set as described above. In addition to adjustment, it is extremely important to appropriately suppress the texture of the final aluminum alloy sheet, particularly the crystal orientation density.
ここで、この発明において最終板の結晶方位密度を規制しているのは、粒界の性質(小角か大角か)を制御するためばかりでなく、アルミニウム合金の塑性変形に伴なう結晶のすべり変形全体を制御することを主目的としている。そして特に曲げ加工中に交差すべりが生じやすいような結晶方位の集積度を高めることが極めて重要であり、そのようにすることによって、加工による転位密度の増加を抑えて、加工硬化を抑制することが可能となるのである。さらにその結果、ヘム加工の際において、加工硬化の抑制により割れ限界強度に達するまで材料の大歪変形が可能となる。ここで、すべり変形挙動を、比較的ランダムな結晶方位を有する従来の材料、言い換えれば比較的交差すべりが生じ難い従来材料と大きく異ならしめるためには、結晶方位の集積が必要である。一方実際の材料では、種々の結晶方位が存在するが、本発明者等が鋭意検討を重ねた結果、種々の結晶方位のうちでも特にキューブ方位の方位密度、すなわちキューブ方位の理想方位である(001)<100>方位の方位密度を高めることによって、すべり変形挙動を、従来材料とは大きく異ならしめることができることを見出した。すなわち、キューブ方位密度を高めることによって、加工変形中における交差すべりが活発となり、加工硬化が抑制され、曲げ加工性が改善されるのである。 Here, in the present invention, the crystal orientation density of the final plate is regulated not only for controlling the grain boundary property (small angle or large angle) but also for the slip of crystals accompanying plastic deformation of the aluminum alloy. Its main purpose is to control the entire deformation. In particular, it is extremely important to increase the degree of accumulation of crystal orientations that are likely to cause cross-slip during bending. By doing so, the increase in dislocation density due to processing is suppressed, and work hardening is suppressed. Is possible. Further, as a result, during hem processing, large strain deformation of the material is possible until the crack limit strength is reached by suppressing work hardening. Here, in order to make the slip deformation behavior greatly different from that of a conventional material having a relatively random crystal orientation, in other words, a conventional material that hardly causes cross-slip, it is necessary to accumulate crystal orientations. On the other hand, there are various crystal orientations in the actual material, but as a result of extensive studies by the present inventors, the orientation density of the cube orientation, that is, the ideal orientation of the cube orientation, in particular, among the various crystal orientations ( 001) It has been found that by increasing the orientation density of the <100> orientation, the sliding deformation behavior can be made significantly different from that of the conventional material. That is, by increasing the cube orientation density, cross-sliding during work deformation becomes active, work hardening is suppressed, and bending workability is improved.
一方、単純にキューブ方位密度を高めるだけでは、むしろ曲げ異方性が顕著となって材料特性のバランスが低下するおそれがある。そこで本発明者等がさらに実験・検討を重ねたところ、キューブ方位密度を高めるだけではなく、キューブ方位以外の特に{011}<211>方位、{123}<634>方位、および{112}<111>方位、以上3方位の各結晶方位密度の合計をも適切に規制することによって、曲げ加工性を向上させると同時に、曲げ異方性を確実かつ安定して小さくし得ることを見出した。 On the other hand, if the cube orientation density is simply increased, the bending anisotropy is rather prominent and the balance of material properties may be reduced. Therefore, the present inventors conducted further experiments and examinations. As a result, not only the cube orientation density was increased, but also the {011} <211> orientation, {123} <634> orientation, and {112} < It has been found that by properly regulating the total crystal orientation density of the 111> orientation and the above three orientations, the bending workability can be improved and the bending anisotropy can be reliably and stably reduced.
すなわち、上記の{011}<211>方位、{123}<634>方位、{112}<111>方位の合計を、ランダム結晶方位を有する試料の4倍以上とすることにより、曲げ加工性と曲げ異方性とを同時に改善し得るのである。 That is, by making the total of the above {011} <211> orientation, {123} <634> orientation, and {112} <111> orientation at least four times that of a sample having a random crystal orientation, The bending anisotropy can be improved at the same time.
ここでこの発明において、キューブ方位密度を規制するのみならず、{011}<211>方位、{123}<634>方位、{112}<111>方位の各方位密度の合計をも規制している理由は、キューブ方位によってもたらされた曲げ異方性を低減するためである。 Here, in the present invention, not only the cube orientation density is regulated, but also the sum of the orientation densities of {011} <211> orientation, {123} <634> orientation, and {112} <111> orientation is regulated. The reason for this is to reduce the bending anisotropy caused by the cube orientation.
さらにこの発明による成形加工用アルミニウム合金板では、板全体にわたって0°耳、90°耳の耳率が5%以上であることも重要である。すなわち、前述のようにこの発明では、良好な曲げ加工性を確保しかつ曲げ異方性を抑制するために、キューブ方位密度および{011}<211>方位、{123}<634>方位、{112}<111>方位の各方位密度の合計を規定しているが、それ以外の結晶方位の方位密度もある程度は曲げ加工性に影響を与える。しかしながら実際上は、これらの方位以外のすべての結晶方位の方位密度を厳密に規定することは困難である。一方、板のカッピング試験で絞ったカップの耳率によれば、材料の結晶方位をマクロ的に評価することができる。そこでこの発明では、キューブ方位や前述の3方位以外の結晶方位の方位密度の影響を、0°耳、90°耳で評価、規制することとした。具体的には、圧延方向を基準にカップの0°、90°耳率が5%未満では、たとえ前述のキューブ方位密度および前述の3方位の方位密度の合計の条件が満足されていても、良好な曲げ加工性、曲げ異方性が得られないおそれがある。そこでこの発明では耳率に関して前述のように規制することとした。なお0°、90°耳率は、上記の範囲内でも特に10%以上が望ましい。 Further, in the aluminum alloy plate for forming according to the present invention, it is also important that the ear rate of the 0 ° ear and the 90 ° ear is 5% or more over the entire plate. That is, as described above, in the present invention, in order to ensure good bending workability and suppress bending anisotropy, cube orientation density and {011} <211> orientation, {123} <634> orientation, { 112} The total orientation density of <111> orientations is defined, but the orientation density of other crystal orientations also affects bending workability to some extent. However, in practice, it is difficult to strictly define the orientation density of all crystal orientations other than these orientations. On the other hand, the crystal orientation of the material can be macroscopically evaluated based on the ear ratio of the cup squeezed by the plate cupping test. Therefore, in the present invention, the influence of the orientation density of the crystal orientation other than the cube orientation and the above-mentioned three orientations is evaluated and regulated by the 0 ° ear and the 90 ° ear. Specifically, the 0 ° of the cup based on the rolling direction, the 90 ° ear ratio is less than 5%, even if the above-mentioned cube orientation density and the above-mentioned total orientation density of the three orientations are satisfied, Good bending workability and bending anisotropy may not be obtained. Therefore, in the present invention, the ear rate is regulated as described above. The 0 ° and 90 ° ear ratios are particularly preferably 10% or more even within the above range.
さらにこの発明の成形加工用アルミニウム合金板では、結晶粒度をASTMナンバーで4.0以上とする必要があり、好ましくはASTMナンバーで6.0以上とする。すなわち、曲げ加工性を向上させるとともに、プレス成形時の肌荒れ(外観欠陥)を防止するためには、結晶粒度を細かくする必要があり、結晶粒度をASTMナンバーで4.0以上、好ましくは6.0以上とすることにより、曲げ加工性を向上させるとともに、プレス成形時における肌荒れによる外観不良の発生を防止することが可能となる。 Further, in the aluminum alloy plate for forming according to the present invention, the crystal grain size needs to be 4.0 or more in terms of ASTM number, preferably 6.0 or more in terms of ASTM number. That is, in order to improve the bending workability and prevent rough skin (appearance defects) during press molding, it is necessary to make the crystal grain size fine, and the crystal grain size is 4.0 or more, preferably 6. By setting it to 0 or more, it is possible to improve the bending workability and to prevent appearance defects due to rough skin during press molding.
次にこの発明の成形加工用アルミニウム合金板の製造方法について説明する。 Next, a method for producing the aluminum alloy plate for forming according to the present invention will be described.
先ず前述のような成分組成の合金を常法にしたがって溶製し、DC鋳造法等の通常の鋳造法によって鋳造する。 First, an alloy having the above-described component composition is melted according to a conventional method, and cast by a normal casting method such as a DC casting method.
得られた鋳塊に対しては、480℃以上の温度で均質化処理を施す。このように均質化処理条件を規定した理由は次の通りである。 The resulting ingot is homogenized at a temperature of 480 ° C. or higher. The reason why the conditions for the homogenization treatment are defined in this way is as follows.
すなわち均質化処理は、鋳塊の添加元素の偏析を除去したり、鋳塊のセル・結晶粒の境界に存在する粗大な第2相粒子、晶出物などを母相に固溶させる効果があり、製品板の性能のばらつきの低減、さらには熱間圧延工程、溶体化処理工程と有機的に結び付けて所要の結晶方位を得るにも重要な工程である。この均質化処理の温度が480℃未満では、上述の効果が不充分となる。なお均質化処理温度の上限は特に規制しないが、共晶融解を避けるために、590℃以下での処理が好ましい。なおまた均質化処理の時間は特に規定しないが、通常は1〜24hが望ましい。 In other words, the homogenization treatment has the effect of removing segregation of the additive elements in the ingot, and dissolving the coarse second phase particles and crystallized substances present at the boundaries between the ingot cells and crystal grains in the matrix. In addition, it is an important process for obtaining a required crystal orientation by organically coupling with a reduction in performance variation of the product plate and further organically connecting with a hot rolling process and a solution treatment process. If the homogenization temperature is less than 480 ° C., the above-described effects are insufficient. The upper limit of the homogenization treatment temperature is not particularly limited, but treatment at 590 ° C. or lower is preferable in order to avoid eutectic melting. In addition, the time for the homogenization treatment is not particularly specified, but usually 1 to 24 hours is desirable.
均質化処理後には熱間圧延を行なうが、この熱間圧延は、次の(1)〜(3)の条件を満たすように行なう必要がある。
(1) 熱間圧延開始温度が300℃以上の温度であること。
(2) 熱間圧延終了温度が100〜350℃の範囲内であること。
(3) 熱間圧延により所要の最終板厚(製品板の板厚)まで圧延すること。したがって熱間圧延の後に冷間圧延を行なわないこと。
Although hot rolling is performed after the homogenization treatment, this hot rolling needs to be performed so as to satisfy the following conditions (1) to (3).
(1) The hot rolling start temperature is 300 ° C or higher.
(2) The hot rolling end temperature is in the range of 100 to 350 ° C.
(3) Rolling to the required final thickness (product thickness) by hot rolling. Therefore, do not perform cold rolling after hot rolling.
先ず(1)の条件、すなわち熱間圧延開始温度を300℃以上にすることは、熱間圧延の生産性確保とエッジ割れ防止を図るために不可欠な条件である。熱間圧延開始温度が300℃未満では、熱間圧延自体が困難となり、生産性の低下ばかりでなく、エッジ割れのおそれもある。なお熱間圧延開始温度の上限は特に規制しないが、共晶融解を避けるため、通常は590℃以下の温度とすることが望ましい。なおまた、表面品質、熱間圧延組織の微細化を重視する場合は、熱間圧延の開始温度を340〜550℃の範囲内とすることが好ましい。 First, the condition (1), that is, setting the hot rolling start temperature to 300 ° C. or higher is an indispensable condition for ensuring the productivity of hot rolling and preventing edge cracking. If the hot rolling start temperature is less than 300 ° C., the hot rolling itself becomes difficult, and not only the productivity is lowered, but also there is a risk of edge cracking. The upper limit of the hot rolling start temperature is not particularly limited, but it is usually desirable to set the temperature to 590 ° C. or lower in order to avoid eutectic melting. In addition, when emphasizing surface quality and refinement of the hot rolled structure, it is preferable to set the hot rolling start temperature within a range of 340 to 550 ° C.
(2)の条件は、(1)の条件と合わせて熱間圧延中の材料の再結晶を制御し、所要の結晶方位密度を得るために不可欠な条件である。さらに、冷間圧延工程を実施しないこの発明のプロセスにおいては、熱間圧延終了温度を低く抑えて熱間ひずみを蓄えることが、溶体化処理時の結晶粒微細化を図る上で極めて重要である。熱間圧延終了温度が100℃未満では、板表面品質の劣化を招き、一方350℃を越えれば、溶体化処理時に結晶粒の粗大化を招くおそれがあるから、熱間圧延終了温度は100〜350℃の範囲内とした。なお板表面品質と結晶粒微細化を重視する場合は、熱間圧延終了温度を180〜280℃の範囲内とすることが好ましい。 The condition (2) is an indispensable condition for controlling the recrystallization of the material during hot rolling in combination with the condition (1) to obtain a required crystal orientation density. Further, in the process of the present invention in which the cold rolling process is not performed, it is extremely important to keep the hot rolling end temperature low and store hot strain in order to refine the crystal grains during the solution treatment. . If the hot rolling end temperature is less than 100 ° C., the plate surface quality is deteriorated. On the other hand, if the hot rolling end temperature exceeds 350 ° C., the crystal grains may be coarsened during the solution treatment. It was set within the range of 350 ° C. When emphasizing plate surface quality and crystal grain refinement, it is preferable to set the hot rolling end temperature within the range of 180 to 280 ° C.
(3)の条件もこの発明にとって極めて重要である。この発明のプロセスでは、熱間圧延により所要の最終板厚(製品板厚)を得ることを前提に、冷間圧延なしで熱間圧延の後に直ちに溶体化処理を行なって最終板を得ることが重要である。また、熱間圧延板を冷間圧延なしで直接溶体化処理することにより、容易に所定のキューブ方位密度と前記3方位の合計方位密度を得ることが可能となる。そしてまた、冷間圧延工程を必要としないため、生産性が高く、材料の製造コストの低減が得られる。 The condition (3) is also extremely important for the present invention. In the process of this invention, on the premise that the required final plate thickness (product plate thickness) is obtained by hot rolling, the final plate can be obtained by performing solution treatment immediately after hot rolling without cold rolling. is important. Moreover, it is possible to easily obtain a predetermined cube orientation density and the total orientation density of the three orientations by directly solution-treating the hot-rolled sheet without cold rolling. And since a cold rolling process is not required, productivity is high and the reduction of the manufacturing cost of material is obtained.
ここで、上述のような熱間圧延条件のうちいずれか一つの条件でも外れれば、所要の結晶方位密度条件を満たす最終板が得難くなり、最終板の諸特性が低下するおそれがある。 Here, if any one of the above hot rolling conditions is not satisfied, it is difficult to obtain a final plate that satisfies a required crystal orientation density condition, and various properties of the final plate may be deteriorated.
上述のようにして所要の板厚とした後には、冷間圧延を行なうことなく直ちに480℃以上の温度で溶体化処理を行なう。この溶体化処理は、Mg2Si、単体Si等をマトリックスに固溶させ、これにより焼付け硬化性を付与して塗装焼付け後の強度向上を図るために重要な工程である。またこの工程は、Mg2Si、単体Si粒子等の固溶により第2相粒子の分布密度を低下させて、延性と曲げ性を向上させるためにも寄与し、さらには再結晶により最終的に所要の結晶方位を得て、良好な成形性(曲げ加工性、曲げ異方性、プレス成形性)を得るためにも重要な工程である。 After obtaining the required plate thickness as described above, solution treatment is immediately performed at a temperature of 480 ° C. or higher without performing cold rolling. This solution treatment is an important process for solid-dissolving Mg 2 Si, elemental Si, etc. in the matrix, thereby imparting bake hardenability and improving the strength after baking. This process also contributes to lowering the distribution density of the second phase particles by solid solution of Mg 2 Si, simple substance Si particles, etc., improving ductility and bendability, and finally by recrystallization. This is an important process for obtaining a desired crystal orientation and obtaining good formability (bending workability, bending anisotropy, press formability).
溶体化処理温度が480℃未満の場合、室温での経時変化の抑制に対しては有利と考えられるが、その場合Mg2Si、Siなどの固溶量が少なくなって、充分な焼付け硬化性が得られなくなるばかりでなく、延性と曲げ性も悪化するから、溶体化処理温度は480℃以上とする必要がある。なお特に溶体化効果を重視する場合は、溶体化処理温度は500℃以上とすることが好ましい。一方溶体化処理温度の上限は特に規定しないが、共晶融解のおそれや再結晶粒粗大化等を考慮して、通常は580℃以下とすることが望ましい。また溶体化処理の時間は特に規制しないが、通常は5分を越えれば溶体化効果が飽和し、経済性を損なうばかりではなく、結晶粒粗大化のおそれもあるから、溶体化処理の時間は5分以内が望ましい。 When the solution treatment temperature is less than 480 ° C., it is considered advantageous for suppressing the change over time at room temperature, but in this case, the amount of solid solution of Mg 2 Si, Si, etc. is reduced and sufficient bake hardenability is obtained. Not only cannot be obtained, but ductility and bendability are also deteriorated, so the solution treatment temperature must be 480 ° C. or higher. In particular, when emphasizing the solution effect, the solution treatment temperature is preferably 500 ° C. or higher. On the other hand, the upper limit of the solution treatment temperature is not particularly specified, but it is usually desirable to set the temperature to 580 ° C. or lower in consideration of eutectic melting and recrystallization grain coarsening. The solution treatment time is not particularly limited, but usually the solution treatment effect is saturated if it exceeds 5 minutes, and not only the economic efficiency is impaired, but also the crystal grain coarsening may occur. Within 5 minutes is desirable.
溶体化処理後には、100℃/min以上の冷却速度で冷却(焼入れ)する。ここで、溶体化処理後の冷却速度が100℃/min未満では、冷却中にMg2Siあるいは単体Siが粒界に多量に析出してしまい、成形性、特にヘム加工性が低下すると同時に、焼付け硬化性が低下して塗装焼付け時の充分な強度向上が望めなくなる。 After the solution treatment, cooling (quenching) is performed at a cooling rate of 100 ° C./min or more. Here, if the cooling rate after the solution treatment is less than 100 ° C./min, Mg 2 Si or simple substance Si precipitates in the grain boundary during cooling, and at the same time, the formability, in particular the heme workability decreases, The bake hardenability is lowered, and a sufficient improvement in strength during paint baking cannot be expected.
上述のような480℃以上の温度での溶体化処理の後の100℃/min以上の冷却速度での冷却は、常温(室温;通常は50℃未満)まで行なっても良い。すなわち、特に塗装焼付け後の強度および室温での耐経時変化性をそれほど厳しく要求しない用途において、製造コストを重視する場合には、溶体化処理後、100℃/min以上の冷却速度で常温(室温)まで冷却するという簡素なプロセスを適用して低コスト化を図れば良い。 The cooling at a cooling rate of 100 ° C./min or higher after the solution treatment at a temperature of 480 ° C. or higher as described above may be performed to room temperature (room temperature; usually less than 50 ° C.). That is, particularly in applications where the strength after baking and the aging resistance at room temperature are not so strict, when manufacturing costs are important, after solution treatment, at a cooling rate of 100 ° C./min or more at room temperature (room temperature It is only necessary to reduce the cost by applying a simple process of cooling to).
しかしながら通常は、請求項4で規定しているように、480℃以上の温度での溶体化処理の後には、100℃/min以上の冷却速度で50℃以上150℃未満の温度域内まで冷却(焼入れ)して、50℃未満の温度域(室温)まで温度降下しないうちに、その温度範囲内(50〜150℃未満)で安定化処理を行うことが望ましい。この安定化処理における50〜150℃未満の温度域での保持時間は、通常は1時間以上保持することが望ましく、またその温度範囲内で1時間以上かけて冷却(徐冷)してもよい。 However, normally, as defined in claim 4, after solution treatment at a temperature of 480 ° C. or higher, cooling to a temperature range of 50 ° C. or higher and lower than 150 ° C. at a cooling rate of 100 ° C./min or higher ( It is desirable to perform the stabilization treatment within the temperature range (less than 50 to 150 ° C.) before the temperature is lowered to a temperature range (room temperature) less than 50 ° C. after quenching. In this stabilization treatment, the holding time in the temperature range of less than 50 to 150 ° C. is usually preferably maintained for 1 hour or longer, and may be cooled (slowly cooled) over 1 hour or longer within the temperature range. .
このように溶体化処理して50〜150℃未満の温度域に焼入れた後、50℃未満の温度域まで冷却することなくそのまま50〜150℃未満の温度で安定化処理を行う理由は次の通りである。 The reason for performing the stabilization treatment at a temperature of 50 to less than 150 ° C. without cooling to a temperature range of less than 50 ° C. after the solution treatment and quenching to a temperature range of less than 50 to 150 ° C. is as follows. Street.
すなわち、溶体化処理後、特に100℃/min以上の平均冷却速度で50℃未満の室温に冷却した場合には、室温クラスターが生成される。この室温クラスターは強度に寄与するG.P.ゾーンに移行しにくいため、塗装焼付け硬化性に不利となる。一方、溶体化処理後に150℃以上の温度範囲に冷却してそのまま保持した場合には、G.P.ゾーンあるいは安定相が生成され、成形前の素材強度が高くなり過ぎて、ヘム曲げ性やプレス加工等の成形性が劣化する。したがってヘム加工性、プレス加工性と塗装焼付け硬化性、および耐室温経時変化性のバランスの観点から、上述のような条件の溶体化処理−焼入れ−安定化処理を行なうことが望ましい。 That is, after solution treatment, a room temperature cluster is generated particularly when cooling to room temperature below 50 ° C. at an average cooling rate of 100 ° C./min or more. This room temperature cluster contributes to strength. P. Since it is difficult to shift to the zone, it is disadvantageous for paint bake hardenability. On the other hand, when the solution is cooled to a temperature range of 150 ° C. or higher and kept as it is after the solution treatment, P. Zones or stable phases are generated, the strength of the material before molding becomes too high, and the formability such as hem bendability and press working deteriorates. Therefore, it is desirable to perform solution treatment-quenching-stabilization treatment under the above conditions from the viewpoint of balance between hemmability, press workability, paint bake hardenability, and room temperature aging resistance.
なお塗装焼付け硬化性を特に必要としない用途や、塗装焼付け硬化性を積極的に抑制する一方で耐経時変化性とプレス成形性の向上を重視する用途においては、溶体化処理後、100℃/min以上の冷却速度で50℃未満の温度域まで焼入れてから、室温(常温)で保持した後、改めて50〜150℃未満の温度域で1時間以上の安定化処理を行っても良い。なおこの場合の安定化処理前の室温保持期間は特に規定しないが、生産性の観点から通常は15日以内であることが好ましい。 In applications where paint bake curability is not particularly required, or in applications where the bake hardenability is actively suppressed while emphasizing improvement in aging resistance and press formability, 100 ° C / After quenching to a temperature range of less than 50 ° C. at a cooling rate of min or more, and holding at room temperature (room temperature), a stabilization treatment for 1 hour or more may be performed again at a temperature range of less than 50 to 150 ° C. In this case, the room temperature holding period before the stabilization treatment is not particularly defined, but it is usually preferably within 15 days from the viewpoint of productivity.
以下にこの発明の実施例を比較例とともに記す。なお以下の実施例は、この発明の効果を説明するためのものであり、実施例記載のプロセスおよび条件がこの発明の技術的範囲を制限するものではない。 Examples of the present invention will be described below together with comparative examples. The following examples are for explaining the effects of the present invention, and the processes and conditions described in the examples do not limit the technical scope of the present invention.
表1に示すこの発明の成分組成範囲内の合金記号A1〜A4の合金について、それぞれ常法にしたがって溶製し、DC鋳造によりスラブに鋳造した。 Alloys of alloy symbols A1 to A4 within the component composition range of the present invention shown in Table 1 were melted in accordance with conventional methods and cast into slabs by DC casting.
得られた各スラブに対して550℃、6hの条件で均質化処理を施した。均質化処理後は、熱間圧延に供した。熱間圧延条件について、表2の製造プロセス番号1〜8に示す。また得られた各熱間圧延板について、そのミクロ組織を光学顕微鏡により調べたので、その結果も表2中に示す。 Each obtained slab was homogenized at 550 ° C. for 6 hours. After the homogenization treatment, it was subjected to hot rolling. The hot rolling conditions are shown in production process numbers 1 to 8 in Table 2. Moreover, since the microstructure was investigated with the optical microscope about each obtained hot rolled sheet, the result is also shown in Table 2.
さらに各熱間圧延板について、表3に示す処理を行なった。すなわち熱間圧延板に対して冷間圧延を施すことなくそのまま溶体化処理を施すか、または冷間圧延を行なってから溶体化処理を施し、さらに溶体化処理後は安定化処理を施した(但し一部のものは安定化処理なし)。なお溶体化処理後の冷却(焼入れ)の速度は、いずれも約220℃/minである。ここで、製造プロセス番号1、8は、溶体化処理後の焼入れを50℃未満の温度(室温)まで行なって、その後に安定化処理を行なわなかった例、また製造プロセス番号2、3、5、6は、溶体化処理後の焼入れを50℃以上150℃未満の温度域にとどめ、引続いて安定化処理を行なった例、さらに製造プロセス番号4、7は、溶体化処理後の焼入れを50℃未満の温度まで行なって、室温放置後、改めて安定化処理を行なった例である。 Further, the treatment shown in Table 3 was performed on each hot-rolled sheet. That is, a solution treatment is performed as it is without performing a cold rolling on a hot-rolled sheet, or a solution treatment is performed after performing a cold rolling, and further a stabilization treatment is performed after the solution treatment ( However, some of them are not stabilized.) The cooling (quenching) speed after solution treatment is about 220 ° C./min. Here, production process numbers 1 and 8 are examples in which quenching after solution treatment was performed to a temperature of less than 50 ° C. (room temperature) and then stabilization treatment was not performed, and production process numbers 2, 3, 5 , 6 is an example in which quenching after solution treatment is limited to a temperature range of 50 ° C. or more and less than 150 ° C., followed by stabilization treatment. Further, manufacturing process numbers 4 and 7 are quenching after solution treatment. This is an example in which the stabilization treatment was performed again after the temperature was lowered to less than 50 ° C. and left at room temperature.
以上のようにして最終的に得られた各アルミニウム合金板(製品板)について、次のようにして集合組織(結晶方位密度)を調べた。 The texture (crystal orientation density) of each aluminum alloy plate (product plate) finally obtained as described above was examined as follows.
すなわち、厚さ1mmの板について、NaOH水溶液で表面から板厚中央に向けて板厚1/4の深さまでエッチングしたものを測定サンプルとした。X線回折のシェルツ反射法により、{100}、{110}、{111}の不完全極点図を測定し、これらをもとに三次元結晶方位解析(ODF)行なって調べた。またこれらの解析においては、アルミニウム粉末から作られたランダム結晶方位を有する試料を測定して得たデータを{100}、{110}、{111}極点図の解析の際に使う規格化ファイルとし、これによりランダム方位を有する試料に対する倍数としてキューブの理想方位{001}<100>、圧延集合組織に属する{011}<211>、{123}<634>、{112}<111>方位密度を求めた。なお、通常は上記方位を中心に一定角度を持つ方位分散が存在するため、この発明では、上記方位廻りの15°回転範囲の中にある最大方位密度を採ってそれぞれ上記方位密度の代表値とした。なおまた、この発明において結晶方位密度は全て三次元結晶方位解析(ODF)に基くものである。 That is, a 1 mm thick plate etched with a NaOH aqueous solution from the surface toward the center of the plate thickness to a depth of ¼ plate thickness was used as a measurement sample. The incomplete pole figures of {100}, {110}, and {111} were measured by the X-ray diffraction Schertz reflection method, and based on these, three-dimensional crystal orientation analysis (ODF) was performed and examined. In these analyses, the data obtained by measuring a sample having a random crystal orientation made from aluminum powder is used as a standardized file for analysis of {100}, {110}, {111} pole figures. Thus, the ideal orientation of the cube {001} <100>, {011} <211>, {123} <634>, {112} <111> orientation density belonging to the rolling texture as multiples of the sample having a random orientation Asked. In general, since there is azimuth dispersion having a certain angle centered on the azimuth, in the present invention, the maximum azimuth density in the 15 ° rotation range around the azimuth is taken and a representative value of the azimuth density is obtained. did. In this invention, the crystal orientation density is all based on three-dimensional crystal orientation analysis (ODF).
さらに前述のようにして得られた各最終板について、室温経時変化を考慮して製造後30日、180日室温放置した後、それぞれ2%ストレッチ後、170℃×20分の塗装焼付け(ベーク)処理を施し、かつその焼付け前と後の各板について圧延方向(RD)に対する0°、45°、90°の各方向につき引張試験を行なって、機械的強度として各方向の0.2%耐力値を測定した。また同じく焼付け前の板について、カップ絞り試験による耳率を調べるとともに、ヘム加工試験によるヘム加工性評価と、ポンチ張出し試験による張出し高さの測定を行なった。 Further, each final plate obtained as described above was allowed to stand at room temperature for 30 days and 180 days after production in consideration of room temperature aging, and after 2% stretching, 170 ° C. × 20 minutes baking (baking). Each plate before and after baking is subjected to a tensile test in each direction of 0 °, 45 °, and 90 ° with respect to the rolling direction (RD), and the mechanical strength is 0.2% proof stress in each direction. The value was measured. Similarly, for the plate before baking, the ear rate was examined by a cup squeeze test, the hem workability was evaluated by a hem processing test, and the overhang height was measured by a punch overhang test.
ここで各試験の具体的手法を次に示す。 Here, the specific method of each test is shown below.
最終板の結晶粒度:
板の圧延方向と平行な断面においてEBSP(EBSD)法によってマッピングした画像をもとにASTMナンバーを測定した。なおこの判定にあたっては、ミスオリエンテーション5°以上の境界線を結晶粒界とみなした。
Final grain size:
The ASTM number was measured based on an image mapped by the EBSP (EBSD) method in a cross section parallel to the rolling direction of the plate. In this determination, a boundary line with a misorientation of 5 ° or more was regarded as a crystal grain boundary.
耳率測定:
板に潤滑油を塗布した後、ポンチ径φ32mm、ブランク径φ62mm、シワ押さえ100kgの条件でカップに絞り、そのカップの耳率を調べた。なおここで耳率の方向は、圧延方向を基準にした0°方向、90°方向で示す。
Ear rate measurement:
After the lubricating oil was applied to the plate, the cup was squeezed under the conditions of a punch diameter of 32 mm, a blank diameter of 62 mm, and a wrinkle presser of 100 kg, and the ear ratio of the cup was examined. Here, the direction of the ear rate is indicated by a 0 ° direction and a 90 ° direction based on the rolling direction.
ヘム加工性の評価:
材料の圧延方向(RD)に対して板面内0°、45°、90°3方向に曲げ試験片を採取し、7%ストレッチしてから、180°に密着曲げを行ない、目視により割れの発生の有無を観察した。ここで○印は割れ無しを、また×印は割れ有りを示す。
Hem processability evaluation:
Bending specimens are collected in the direction of 0 °, 45 °, 90 ° 3 in the plate surface with respect to the rolling direction (RD) of the material, stretched 7%, then tightly bent at 180 ° and visually cracked. The presence or absence of occurrence was observed. Here, a circle indicates that there is no crack, and a cross indicates that there is a crack.
張出し試験:
200mm×200mmの大きさの1mm板の両面にマスキングフィルムを貼り、さらに潤滑を高めるため、ワックスを塗った状態で張出し試験に供し、最大張出し高さを調べた。なおポンチとしては球頭ポンチ径100mmのものを使用した。
Overhang test:
A masking film was pasted on both sides of a 1 mm plate having a size of 200 mm × 200 mm, and in order to further improve lubrication, it was subjected to a bulge test in a state where wax was applied, and the maximum bulge height was examined. A punch having a ball head punch diameter of 100 mm was used.
以上の各測定結果、試験結果を表4、表5に示す。 The above measurement results and test results are shown in Tables 4 and 5.
製造プロセス番号1〜5は、いずれも合金成分組成がこの発明で規定する範囲内であって、かつ製造プロセス条件もこの発明で規定する範囲内であり、最終板の結晶方位密度条件等も全てこの発明で規定する条件を満たしたものであるが、これらの場合は、ヘム加工性が優れ、適切な焼付け硬化性が得られ、さらに張出し高さが高く、曲げ異方性も小さいことが確認された。 Production process numbers 1 to 5 are all within the range defined by the present invention for the alloy component composition, and the production process conditions are also within the range defined by the present invention. The conditions specified in this invention are satisfied. In these cases, it is confirmed that hemmability is excellent, appropriate bake hardenability is obtained, the overhang height is high, and the bending anisotropy is small. It was done.
これに対し製造プロセス番号6〜8は、合金の成分組成はこの発明で規定する範囲内であるが、製造プロセス条件のいずれかがこの発明の範囲外であって、結晶方位密度、結晶粒度条件等のいずれかがこの発明で規定する条件を満たさなかったものである。これらのうち、製造プロセス番号6の場合は、結晶粒度が粗く、ヘム加工性が劣るとともに、張出し高さも低かった。製造プロセス番号7の場合は、曲げ異方性があって、45°方向のヘム加工性が劣り、張出し高さも低かった。また製造プロセス番号8の場合は、冷間圧延を実施したため微細な結晶粒が得られたが、耐リジング性が悪いばかりでなく、ヘム加工性が劣っており、さらに張出し高さも低かった。 On the other hand, in the production process numbers 6 to 8, the alloy component composition is within the range specified in the present invention, but any of the production process conditions is out of the scope of the present invention, and the crystal orientation density, the crystal grain size condition Or the like did not satisfy the conditions defined in the present invention. Among these, in the case of production process number 6, the crystal grain size was coarse, the hemmability was inferior, and the overhang height was low. In the case of manufacturing process number 7, there was bending anisotropy, the hemmability in the 45 ° direction was inferior, and the overhang height was low. In the case of production process number 8, fine rolling was performed because cold rolling was performed, but not only the ridging resistance was poor, but the hemming property was inferior, and the overhang height was also low.
Claims (5)
鋳塊に対し、480℃以上で均質処理を施した後、冷却し、次いで300℃以上の温度で熱間圧延を開始し、最終製品板の板厚まで熱間圧延を行なって100〜350℃の範囲内の温度で熱間圧延を終了させ、得られた熱間圧延板に対し、480℃以上の温度で溶体化処理を施して100℃/min以上の平均冷却速度で室温まで冷却することを特徴とする、成形加工用アルミニウム合金板の製造方法。 In producing the aluminum alloy sheet for forming according to claim 1 or 2,
The ingot is subjected to a homogenous treatment at 480 ° C. or higher, then cooled, and then hot rolling is started at a temperature of 300 ° C. or higher, and hot rolling is performed until the final product plate thickness reaches 100 to 350 ° C. The hot rolling is terminated at a temperature within the range of, and the obtained hot rolled sheet is subjected to a solution treatment at a temperature of 480 ° C. or higher and cooled to room temperature at an average cooling rate of 100 ° C./min or higher. A method for producing an aluminum alloy plate for forming, characterized in that
前記溶体化処理の後、100℃/min以上の平均冷却速度で50℃以上150℃未満の温度まで冷却し、続いてこの温度範囲内で1時間以上の安定化処理を行うことを特徴とする、成形加工用アルミニウム合金板の製造方法。 In the manufacturing method of the aluminum alloy plate for shaping | molding of Claim 3,
After the solution treatment, it is cooled to a temperature of 50 ° C. or higher and lower than 150 ° C. at an average cooling rate of 100 ° C./min or higher, and then a stabilization treatment is performed for 1 hour or longer within this temperature range. The manufacturing method of the aluminum alloy plate for shaping | molding processing.
前記溶体化処理の後、100℃/min以上の平均冷却速度で50℃未満の温度まで冷却し、続いて室温で放置した後、50℃以上150℃未満の温度範囲内で1時間以上の安定化処理を行うことを特徴とする、成形加工用アルミニウム合金板の製造方法。 In the manufacturing method of the aluminum alloy plate for shaping | molding of Claim 3,
After the solution treatment, after cooling to a temperature of less than 50 ° C. at an average cooling rate of 100 ° C./min or more, and then allowing to stand at room temperature, stable for 1 hour or more within a temperature range of from 50 ° C. to less than 150 ° C. The manufacturing method of the aluminum alloy plate for shaping | molding processing characterized by performing a heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005227789A JP4634249B2 (en) | 2005-08-05 | 2005-08-05 | Aluminum alloy plate for forming and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005227789A JP4634249B2 (en) | 2005-08-05 | 2005-08-05 | Aluminum alloy plate for forming and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007039773A true JP2007039773A (en) | 2007-02-15 |
JP4634249B2 JP4634249B2 (en) | 2011-02-16 |
Family
ID=37798037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005227789A Expired - Fee Related JP4634249B2 (en) | 2005-08-05 | 2005-08-05 | Aluminum alloy plate for forming and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4634249B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008231475A (en) * | 2007-03-19 | 2008-10-02 | Furukawa Sky Kk | Aluminum alloy plate for forming and method for producing the same |
JP2009041045A (en) * | 2007-08-06 | 2009-02-26 | Nippon Steel Corp | Aluminum alloy plate excellent in paint bake hardenability and method for producing the same |
JP2009108342A (en) * | 2007-10-26 | 2009-05-21 | Furukawa Sky Kk | Aluminum alloy plate for forming, and its manufacturing method |
JP2009256722A (en) * | 2008-04-16 | 2009-11-05 | Furukawa-Sky Aluminum Corp | Aluminum alloy sheet for forming, and its manufacturing method |
JP2011021235A (en) * | 2009-07-15 | 2011-02-03 | Furukawa-Sky Aluminum Corp | Aluminum alloy sheet to be formed superior in deep drawability and bending workability |
WO2013118734A1 (en) * | 2012-02-10 | 2013-08-15 | 株式会社神戸製鋼所 | Aluminum alloy sheet for connecting components and manufacturing process therefor |
JP2013177675A (en) * | 2012-02-10 | 2013-09-09 | Kobe Steel Ltd | Aluminum alloy sheet for connecting components and manufacturing process therefor |
JP5330590B1 (en) * | 2012-12-19 | 2013-10-30 | 株式会社神戸製鋼所 | Aluminum alloy plate for bus bar and manufacturing method thereof |
JP2018154869A (en) * | 2017-03-16 | 2018-10-04 | 株式会社神戸製鋼所 | Aluminum alloy sheet excellent in press moldability, ridging mark property and bh property |
WO2022098044A1 (en) * | 2020-11-06 | 2022-05-12 | 한국생산기술연구원 | Aluminum alloy busbar for electrical wiring, and method for manufacturing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08325663A (en) * | 1995-05-31 | 1996-12-10 | Kobe Steel Ltd | Aluminum alloy sheet excellent in press formability and its production |
JP2003518192A (en) * | 1999-03-01 | 2003-06-03 | アルキャン・インターナショナル・リミテッド | Manufacturing method of 6000 series aluminum alloy plate |
JP2004027253A (en) * | 2002-06-21 | 2004-01-29 | Furukawa Sky Kk | Aluminum alloy sheet for forming and method of manufacturing the same |
JP2005146375A (en) * | 2003-11-18 | 2005-06-09 | Furukawa Sky Kk | Aluminum alloy sheet for forming, and method for producing the same |
JP2005171295A (en) * | 2003-12-09 | 2005-06-30 | Furukawa Sky Kk | Aluminum alloy plate for forming and method for producing the same |
-
2005
- 2005-08-05 JP JP2005227789A patent/JP4634249B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08325663A (en) * | 1995-05-31 | 1996-12-10 | Kobe Steel Ltd | Aluminum alloy sheet excellent in press formability and its production |
JP2003518192A (en) * | 1999-03-01 | 2003-06-03 | アルキャン・インターナショナル・リミテッド | Manufacturing method of 6000 series aluminum alloy plate |
JP2004027253A (en) * | 2002-06-21 | 2004-01-29 | Furukawa Sky Kk | Aluminum alloy sheet for forming and method of manufacturing the same |
JP2005146375A (en) * | 2003-11-18 | 2005-06-09 | Furukawa Sky Kk | Aluminum alloy sheet for forming, and method for producing the same |
JP2005171295A (en) * | 2003-12-09 | 2005-06-30 | Furukawa Sky Kk | Aluminum alloy plate for forming and method for producing the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008231475A (en) * | 2007-03-19 | 2008-10-02 | Furukawa Sky Kk | Aluminum alloy plate for forming and method for producing the same |
JP2009041045A (en) * | 2007-08-06 | 2009-02-26 | Nippon Steel Corp | Aluminum alloy plate excellent in paint bake hardenability and method for producing the same |
JP2009108342A (en) * | 2007-10-26 | 2009-05-21 | Furukawa Sky Kk | Aluminum alloy plate for forming, and its manufacturing method |
JP2009256722A (en) * | 2008-04-16 | 2009-11-05 | Furukawa-Sky Aluminum Corp | Aluminum alloy sheet for forming, and its manufacturing method |
JP2011021235A (en) * | 2009-07-15 | 2011-02-03 | Furukawa-Sky Aluminum Corp | Aluminum alloy sheet to be formed superior in deep drawability and bending workability |
WO2013118734A1 (en) * | 2012-02-10 | 2013-08-15 | 株式会社神戸製鋼所 | Aluminum alloy sheet for connecting components and manufacturing process therefor |
JP2013177675A (en) * | 2012-02-10 | 2013-09-09 | Kobe Steel Ltd | Aluminum alloy sheet for connecting components and manufacturing process therefor |
JP5330590B1 (en) * | 2012-12-19 | 2013-10-30 | 株式会社神戸製鋼所 | Aluminum alloy plate for bus bar and manufacturing method thereof |
JP2018154869A (en) * | 2017-03-16 | 2018-10-04 | 株式会社神戸製鋼所 | Aluminum alloy sheet excellent in press moldability, ridging mark property and bh property |
WO2022098044A1 (en) * | 2020-11-06 | 2022-05-12 | 한국생산기술연구원 | Aluminum alloy busbar for electrical wiring, and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP4634249B2 (en) | 2011-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5113318B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP4939091B2 (en) | Manufacturing method of aluminum alloy plate with excellent bending workability | |
JP4634249B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP3845312B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP4200086B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP3849095B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP5367250B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP2009173972A (en) | Aluminum alloy sheet having excellent ridging mark property upon forming | |
JP4200082B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP2008231475A (en) | Aluminum alloy plate for forming and method for producing the same | |
JP2003268475A (en) | Aluminum alloy sheet for forming and method of manufacturing the same | |
JPH083702A (en) | Production of aluminum alloy sheet material excellent in formability and heating hardenability | |
JP4164437B2 (en) | Method for producing aluminum alloy sheet for forming | |
JP4602195B2 (en) | Method for producing aluminum alloy sheet for forming | |
WO2018003709A1 (en) | Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same | |
JP5415016B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP2004010982A (en) | Aluminum alloy sheet having excellent bending workability and press formability | |
JP6581347B2 (en) | Method for producing aluminum alloy plate | |
JP2004027253A (en) | Aluminum alloy sheet for forming and method of manufacturing the same | |
TW202120707A (en) | Aluminum alloy material | |
JP4798943B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP4263073B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP4807484B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP2005139494A (en) | Aluminum alloy sheet for forming, and its production method | |
JP2011144410A (en) | METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100506 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20100507 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100507 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4634249 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |