JP2007031258A - Low melting glass, sealing composition and sealing paste - Google Patents
Low melting glass, sealing composition and sealing paste Download PDFInfo
- Publication number
- JP2007031258A JP2007031258A JP2005283566A JP2005283566A JP2007031258A JP 2007031258 A JP2007031258 A JP 2007031258A JP 2005283566 A JP2005283566 A JP 2005283566A JP 2005283566 A JP2005283566 A JP 2005283566A JP 2007031258 A JP2007031258 A JP 2007031258A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- sealing
- cuo
- low
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 132
- 238000007789 sealing Methods 0.000 title claims abstract description 106
- 238000002844 melting Methods 0.000 title claims abstract description 65
- 239000000203 mixture Substances 0.000 title claims abstract description 60
- 230000008018 melting Effects 0.000 title claims abstract description 45
- 239000000945 filler Substances 0.000 claims abstract description 22
- 239000011214 refractory ceramic Substances 0.000 claims abstract description 18
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 11
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 8
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052716 thallium Inorganic materials 0.000 claims abstract description 5
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 33
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 30
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 24
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 14
- 239000013078 crystal Substances 0.000 claims description 13
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 7
- 229910052878 cordierite Inorganic materials 0.000 claims description 6
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052906 cristobalite Inorganic materials 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 229910052905 tridymite Inorganic materials 0.000 claims description 5
- 229910021489 α-quartz Inorganic materials 0.000 claims description 5
- 229910000505 Al2TiO5 Inorganic materials 0.000 claims description 4
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052863 mullite Inorganic materials 0.000 claims description 4
- 239000011224 oxide ceramic Substances 0.000 claims description 4
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 claims description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 4
- 229910001887 tin oxide Inorganic materials 0.000 claims description 4
- 229910052845 zircon Inorganic materials 0.000 claims description 4
- 229910000166 zirconium phosphate Inorganic materials 0.000 claims description 4
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 claims description 4
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 4
- 229910000500 β-quartz Inorganic materials 0.000 claims description 4
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 claims description 3
- 229910000174 eucryptite Inorganic materials 0.000 claims description 3
- 229910052644 β-spodumene Inorganic materials 0.000 claims description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 38
- 229910052697 platinum Inorganic materials 0.000 abstract description 19
- 229910052797 bismuth Inorganic materials 0.000 abstract description 14
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 10
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 229910052700 potassium Inorganic materials 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 24
- 230000000694 effects Effects 0.000 description 11
- 238000010304 firing Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 230000003628 erosive effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000001354 calcination Methods 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 5
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 5
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229940116411 terpineol Drugs 0.000 description 5
- 238000004017 vitrification Methods 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- -1 Co 2 O 3 Inorganic materials 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 229940117955 isoamyl acetate Drugs 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000005394 sealing glass Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001621 bismuth Chemical class 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
Description
本発明は封着用組成物に関し、特に実質的に鉛、タリウム、カドミウムおよびバナジウムの各成分(以下、鉛成分等とする。)を含まないものであって、プラズマディスプレイパネル(以下、PDPとする。)のような平面ディスプレイに使用されるものである。なお、本明細書で使用する単なる「%」表示は、「質量%」を意味するものとする。 The present invention relates to a sealing composition, and particularly does not substantially contain lead, thallium, cadmium and vanadium components (hereinafter referred to as lead components), and is a plasma display panel (hereinafter referred to as PDP). .) Is used for flat displays. The simple “%” notation used in this specification means “% by mass”.
従来、PDPの外周部シールなどに代表される封着用組成物はPbO−SiO2−B2O3系等の鉛系ガラス粉末と耐火性セラミック粉末などのフィラーからなる鉛系材料が一般的であったが、近年環境上の観点から鉛成分等を含まずに低温で封着できる組成物の開発が求められている。 Conventionally, a sealing composition typified by an outer peripheral seal of a PDP is generally a lead-based material composed of a lead-based glass powder such as PbO—SiO 2 —B 2 O 3 and a filler such as a refractory ceramic powder. However, in recent years, development of a composition that can be sealed at a low temperature without containing a lead component or the like has been demanded from an environmental viewpoint.
鉛成分等を含まない低融点ガラスとしては、リン酸系ガラス、硼珪酸系ガラス、アルカリ珪酸系ガラスおよびビスマス系ガラスなどが知られている。その中で低温での焼成が可能で、化学的耐久性が優れている点からビスマス系ガラスが着目されている。 Known examples of low-melting glass that does not contain a lead component include phosphate glass, borosilicate glass, alkali silicate glass, and bismuth glass. Among them, bismuth-based glass has attracted attention because it can be fired at a low temperature and has excellent chemical durability.
これまでに開発されてきたビスマス系ガラスは、熱膨張係数が90〜110×10-7/℃であり、ディスプレイやその付属部品(平面バックライトなど)の封着に使用されるガラスの熱膨張係数(70〜80×10-7/℃)に合わせるために低膨張の耐火性セラミックフィラーを配合したものであった。 Bismuth glass that has been developed so far has a coefficient of thermal expansion of 90 to 110 × 10 −7 / ° C., and the thermal expansion of glass used for sealing displays and their accessories (such as flat backlights). In order to match the coefficient (70 to 80 × 10 −7 / ° C.), a low expansion refractory ceramic filler was blended.
しかし、ビスマス系ガラスで低融点ガラス成分中に含まれるZnO量が少ないと熱膨張係数が110×10-7/℃以上と大きく、これを下げるためにさらに大量の耐火性セラミックフィラーを配合するため材料の粘度が上昇し500℃未満で封着ができなくなるという問題があった(特許文献1)。 However, if the amount of ZnO contained in the low melting point glass component in the bismuth glass is small, the thermal expansion coefficient is as large as 110 × 10 −7 / ° C. or more, and in order to lower this, a larger amount of refractory ceramic filler is blended. There was a problem that the viscosity of the material increased and sealing could not be performed at less than 500 ° C. (Patent Document 1).
逆に、ZnOが多く含まれる低融点ガラスも開発されているが、Bi2O3の含有量が多くAl2O3が含有されていないため、低融点ガラスの化学的耐久性が低下するという問題があった(特許文献2)。 Conversely, a low melting point glass containing a large amount of ZnO has also been developed, but the chemical durability of the low melting point glass is lowered because the content of Bi 2 O 3 is large and Al 2 O 3 is not contained. There was a problem (Patent Document 2).
一方、PDPの製造において封着用組成物をペースト化したシール部材は、封着部分が流れ過ぎたり、泡の発生を抑えたりするため、さらには、リブ、蛍光体および電極など他の部材への熱的なダメージを抑えるために、封着温度は500℃以下(好ましくは480℃以下)で焼成していた。しかし、これら他の部材もシール部材の封着と同様に焼成処理によって製造が行われており、個別に焼成すると工程が長くなって製造コストが高くなるという問題があった。この対策として、近年複数の部材を同時に焼成して工程を短縮化する方向にあり、シール部材についてもこれら部材と組み合わせて脱脂および仮焼き付け(以下仮焼成とする)が同時に行われるようになった。すなわち、他の部材の封着温度とシール部材の仮焼成温度とが同じ温度となっていた。 On the other hand, the sealing member formed by pasting the sealing composition in the production of the PDP suppresses the generation of bubbles due to excessive flow of the sealing portion. Further, the sealing member is applied to other members such as ribs, phosphors and electrodes. In order to suppress thermal damage, the sealing temperature was baked at 500 ° C. or lower (preferably 480 ° C. or lower). However, these other members are also manufactured by a baking process in the same manner as the sealing of the sealing member, and there has been a problem that if the baking is performed individually, the process becomes longer and the manufacturing cost increases. In recent years, as a countermeasure, a plurality of members are simultaneously fired to shorten the process, and the seal member is also degreased and pre-baked (hereinafter referred to as pre-baking) in combination with these members. . That is, the sealing temperature of the other member and the temporary firing temperature of the sealing member were the same temperature.
したがって、シール部材の焼成温度は上記の理由から、リブ、蛍光体および電極など他の部材の焼成温度より下げる必要があった。その結果シール部材の封着温度は、仮焼成温度よりも低温となり、このような使用方法でも流動性が損なわれること無く封着が可能である低融点ガラスが求められ始めてきた。従来の鉛系ガラスでは、封着可能温度域(低融点ガラスを非晶質ガラスで使用するときには、低融点ガラスが結晶化することなく封着することのできる温度範囲をいう。)が広かったため、上記の要求特性を満足していた。 Therefore, the firing temperature of the seal member has to be lower than the firing temperature of other members such as ribs, phosphors, and electrodes for the above reasons. As a result, the sealing temperature of the sealing member is lower than the pre-baking temperature, and low melting point glass that can be sealed without impairing fluidity even by such a method of use has begun to be demanded. The conventional lead-based glass has a wide sealing temperature range (when the low-melting glass is used as an amorphous glass, it means a temperature range in which the low-melting glass can be sealed without crystallization). The above required characteristics were satisfied.
しかし、このビスマス系ガラスは低温で封着が可能であっても封着可能な温度域が狭く、仮焼成温度がこの封着可能温度域を超えると、Bi2O3とそのガラス成分に含まれるB2O3やZnO等によって、結晶を生じ易く本焼成時に封着温度で封着できない問題点があった。
また、ビスマス系ガラスは他の低融点ガラスよりも500℃以上では流動性に優れており、500℃以上で仮焼成すると、シール部材の封着部分が流動し過ぎて中心に窪みが発生し、封着後にこの部分が空洞となり残留泡として残ったり接着面が変形したりして気密性が維持できなくなるという問題もあった。
However, this bismuth-based glass has a narrow sealing temperature range even if it can be sealed at a low temperature. If the pre-baking temperature exceeds this sealing possible temperature range, it is included in Bi 2 O 3 and its glass component. B 2 O 3 , ZnO, etc. are prone to crystal formation and cannot be sealed at the sealing temperature during the main firing.
In addition, bismuth-based glass is excellent in fluidity at 500 ° C. or higher than other low melting glass, and when pre-baked at 500 ° C. or higher, the sealing portion of the sealing member flows too much and a depression is generated at the center. After sealing, there was a problem that this part became a cavity and remained as residual bubbles or the adhesive surface was deformed, so that the airtightness could not be maintained.
さらに、大量生産のためには、原料の投入から成形までを連続して行う連続熔融炉で熔融することが好ましい。しかし、通常ビスマス系ガラスは、鉛系ガラスと同様に均質なガラスを得るためには、1000℃以上に加熱して熔融する必要があるが、炉材に耐火煉瓦を使用した場合、このビスマス系ガラスは侵食性が強いために、煉瓦表面からの熔出分(例えばアルカリ金属酸化物やジルコニアなど)が増加し、これがガラスの結晶核になって仮焼成時にガラスの結晶化を引起こすという問題があった。また、このガラスは熔融中粘度が極めて低く、かつ表面張力が小さいため、操業中に侵食によって広がった煉瓦の継ぎ目部分からガラスが漏出し、長期間安定してガラスが熔融できないという問題もあった。
上記したように、製造工程の短縮に伴って、シール部材も仮焼成の段階で本来封着を行うための温度を超える温度に一旦加熱されるようになってしまった。従来の鉛系材料では仮焼成後、その次の本焼成で仮焼成温度よりも低温で封着が可能であった。しかし、これまでに開発されていたビスマス系ガラスは、特に、PDP等の平面ディスプレイでは仮焼成の温度よりも低温で封着できるガラスが見出されておらず、たとえ封着は可能であっても封着強度が弱かったり封着後に残留する泡が増加したりして、良好な封着ができるガラスが見出されていなかった。 As described above, along with the shortening of the manufacturing process, the sealing member is once heated to a temperature exceeding the temperature for originally performing the sealing in the pre-baking stage. Conventional lead-based materials can be sealed at a temperature lower than the pre-baking temperature in the next main baking after pre-baking. However, bismuth-based glasses that have been developed so far have not been found for glass that can be sealed at a temperature lower than the pre-baking temperature, especially in flat displays such as PDPs, and sealing is possible. However, no glass has been found that can provide a good seal because the sealing strength is weak or the foam remaining after sealing is increased.
また、白金や白金−ロジウム等の合金を表面に被覆した熔融炉でも、白金等の劣化(侵食や亀裂)が激しく長期間安定して量産できる連続熔融炉として十分ではなかった。 Further, even a melting furnace whose surface is coated with an alloy such as platinum or platinum-rhodium is not sufficient as a continuous melting furnace that can be mass-produced stably for a long period of time due to deterioration (erosion and cracking) of platinum and the like.
そこで本発明は、上記従来の封着用組成物における問題点を解消し、封着温度以上で仮焼成しても結晶化することなく仮焼成以下の温度で封着が可能であり、かつ白金や白金−ロジウム等の材質で長期間安定してガラスが熔融できるビスマス系ガラスの低融点ガラスおよびこのガラスを用いた封着用組成物ならびに封着用ペーストを提供することを目的とする。 Therefore, the present invention eliminates the problems in the above conventional sealing composition, can be sealed at a temperature below the pre-baking without crystallization even if pre-baked above the sealing temperature, and platinum or An object of the present invention is to provide a low melting point glass of bismuth-based glass which can be stably melted for a long period of time with a material such as platinum-rhodium, a sealing composition using this glass, and a sealing paste.
本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、以下に示すガラス組成を含有する低融点ガラスの粉末と耐火性セラミックスフィラーを含有する組成物が上記課題を解決することを見出し、この知見に基づいて本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that a composition containing a low-melting-point glass powder containing a glass composition shown below and a refractory ceramic filler solves the above-mentioned problems. Based on this finding, the present invention has been completed.
すなわち、本発明の請求項1に対応する発明は、実質的に鉛成分等を含有せず、質量%表示で、Bi2O3 70〜90%、ZnO 5〜15%、B2O3 2〜8%、Al2O3 0.1〜5%、SiO2 0.01〜2%、CeO2 0.1〜5%、CuO 0.01〜5%、Fe2O3 0.01〜0.2%、CuO+Fe2O3 0.05〜5%、を含有し、かつLi2O、Na2O、K2O等のアルカリ金属酸化物及びMgO、CaO、BaO、SrO等のアルカリ土類金属酸化物の合計量が0.1%未満であることを特徴とした。 That is, the invention corresponding to claim 1 of the present invention substantially does not contain a lead component or the like, and is expressed in mass%, Bi 2 O 3 70 to 90%, ZnO 5 to 15%, B 2 O 3 2. ~8%, Al 2 O 3 0.1~5 %, SiO 2 0.01~2%, CeO 2 0.1~5%, CuO 0.01~5%, Fe 2 O 3 0.01~0 2%, CuO + Fe 2 O 3 0.05-5%, and alkali metal oxides such as Li 2 O, Na 2 O, K 2 O and alkaline earths such as MgO, CaO, BaO, SrO The total amount of metal oxide is less than 0.1%.
請求項2に対応する発明は、実質的に鉛成分等を含有せず、質量%表示で、Bi2O3 70〜90%、ZnO 5〜15%、B2O3 2〜8%、Al2O3 0.1〜5%、SiO2 0.01〜2%、CeO2 0.1〜5%、CuO 0.01〜4.99%、Fe2O3 0.01〜0.2%、CuO+Fe2O3 0.05〜5%、を含有し、かつLi2O、Na2O、K2O等のアルカリ金属酸化物及びMgO、CaO、BaO、SrO等のアルカリ土類金属酸化物の合計量が0.1%未満であることを特徴とした。 The invention corresponding to claim 2 contains substantially no lead component, etc., and is expressed in mass%, Bi 2 O 3 70 to 90%, ZnO 5 to 15%, B 2 O 3 2 to 8%, Al 2 O 3 0.1-5%, SiO 2 0.01-2%, CeO 2 0.1-5%, CuO 0.01-4.99%, Fe 2 O 3 0.01-0.2% CuO + Fe 2 O 3 0.05 to 5%, and alkali metal oxides such as Li 2 O, Na 2 O and K 2 O and alkaline earth metal oxides such as MgO, CaO, BaO and SrO The total amount was less than 0.1%.
請求項3に対応する発明は、請求項1または2に対応する発明の低融点ガラスにおいて、モル比でAl2O3/Bi2O3=0.01〜0.1であり、かつ(CuO+Fe2O3)/Bi2O3=0.01〜0.05の関係を満たすものである。 The invention corresponding to claim 3 is the low-melting glass of the invention corresponding to claim 1 or 2, wherein Al 2 O 3 / Bi 2 O 3 = 0.01 to 0.1 in terms of molar ratio and (CuO + Fe 2 O 3 ) / Bi 2 O 3 = 0.01 to 0.05.
請求項4に対応する発明は、請求項1ないし3のいずれかに対応する発明の低融点ガラスにおいて、仮焼成しても結晶化することなくこの仮焼成以下の温度で封着を可能とした。 The invention corresponding to claim 4 is the low melting point glass of the invention corresponding to any one of claims 1 to 3, and can be sealed at a temperature equal to or lower than this pre-baked without crystallizing even if pre-fired. .
請求項5に対応する発明は、請求項1ないし4のいずれかに対応する発明の低融点ガラスの粉末60〜99体積%と、ジルコン、コージェライト、チタン酸アルミニウム、アルミナ、ムライト、シリカ(水晶、α-クォーツ、石英ガラス、クリストバライト、トリジマイトなど)、酸化錫系セラミック、β−ユークリプタイト、β−スポジュメン、リン酸ジルコニウム系セラミックおよびβ−石英固溶体からなる群より選ばれる1種以上の耐火性セラミックスフィラーの粉末1〜40体積%とを配合した封着用組成物である。 The invention corresponding to claim 5 is a low melting point glass powder of 60 to 99% by volume of the invention corresponding to any one of claims 1 to 4, zircon, cordierite, aluminum titanate, alumina, mullite, silica (quartz) , Α-quartz, quartz glass, cristobalite, tridymite, etc.), one or more refractories selected from the group consisting of tin oxide ceramics, β-eucryptite, β-spodumene, zirconium phosphate ceramics and β-quartz solid solution It is the sealing composition which mix | blended 1-40 volume% of the powder of a ceramic ceramic filler.
請求項6に対応する発明は、請求項5に記載の組成物に、ビヒクルを混合して得られる封着用ペーストである。 The invention corresponding to claim 6 is a sealing paste obtained by mixing a vehicle with the composition of claim 5.
本発明の封着用組成物を構成する低融点ガラスの各成分の限定理由を以下に説明する。 The reason for limitation of each component of the low melting glass which comprises the sealing composition of this invention is demonstrated below.
Bi2O3は本発明のガラスの網目を形成する酸化物であり、70〜90%の範囲で含有することが好ましい。Bi2O3が70%未満の場合、低融点ガラスの軟化点が高くなり低温封着が可能な封着用組成物として使用できなくなる。また90%を超えると、ガラス化しなくなる上に熱膨張係数が高くなりすぎる。Bi2O3の含有量は、荷重軟化点、熱膨張係数等を考慮すると、より好ましくは75〜85重量%である。ここで、荷重軟化点とは、当該ガラスを粉末状にした試料を示差熱分析装置(DTA)を用いて10℃/分の速度で昇温して得られる熱収支曲線の第二番目の変曲点が示す温度である。 Bi 2 O 3 is an oxide that forms the network of the glass of the present invention, and is preferably contained in the range of 70 to 90%. When Bi 2 O 3 is less than 70%, the softening point of the low-melting glass becomes high and it cannot be used as a sealing composition capable of low-temperature sealing. On the other hand, if it exceeds 90%, it will not vitrify and the thermal expansion coefficient will be too high. The content of Bi 2 O 3 is more preferably 75 to 85% by weight in consideration of the load softening point, the thermal expansion coefficient, and the like. Here, the load softening point is the second variation of the heat balance curve obtained by raising the temperature of the glass-coated sample at a rate of 10 ° C./min using a differential thermal analyzer (DTA). The temperature indicated by the inflection point.
ZnOは熱膨張係数を下げ、かつ荷重軟化点を下げる成分であり、5〜15%の範囲で含有させることが好ましい。ZnOが5%未満ではガラス化が困難であり、また15%を超えると低融点ガラス成形時の安定性が悪く失透が発生しやすくなり、ガラスが得られなくなるおそれがある。ZnOの含有量はガラスの安定性等を考慮すると、より好ましくは7〜12%である。 ZnO is a component that lowers the thermal expansion coefficient and lowers the load softening point, and is preferably contained in the range of 5 to 15%. If ZnO is less than 5%, vitrification is difficult, and if it exceeds 15%, the stability at the time of molding a low-melting-point glass is poor and devitrification is likely to occur, and glass may not be obtained. The ZnO content is more preferably 7 to 12% in consideration of the stability of the glass and the like.
Al2O3は熱膨張係数を下げ、かつ仮焼成時の低融点ガラスの安定性を向上させる成分であり、0.1〜5%の範囲で含有させることが好ましい。Al2O3が0.1%未満の場合、500℃以上の仮焼成時に低融点ガラス中に結晶核または結晶が析出してしまい、仮焼成よりも低温で封着することができなくなる。また、5%を超えるとガラスの粘性が上がり、低融点ガラス中にAl2O3が未熔融物として残るおそれがある。熱膨張係数、ガラスの安定性、熔融性等を考慮すると、より好ましくは0.5〜2%である。 Al 2 O 3 is a component that lowers the coefficient of thermal expansion and improves the stability of the low-melting glass during temporary firing, and is preferably contained in the range of 0.1 to 5%. When Al 2 O 3 is less than 0.1%, crystal nuclei or crystals are precipitated in the low-melting glass at the time of calcining at 500 ° C. or higher, and cannot be sealed at a temperature lower than that at the calcining. On the other hand, if it exceeds 5%, the viscosity of the glass increases, and Al 2 O 3 may remain as an unmelted material in the low-melting glass. Considering the thermal expansion coefficient, the stability of the glass, the meltability, etc., it is more preferably 0.5 to 2%.
また、低融点ガラスの封着可能温度域を広げ、封着予定温度以上で仮焼成しても結晶を発生させないためには、モル比でAl2O3/Bi2O3=0.01〜0.1であることが好ましい。前記モル比が0.01未満では仮焼成時に低融点ガラス中に結晶核または結晶が析出してしまい、仮焼成よりも低温で封着することができなくなる。また、前記モル比が0.1を超えるとガラスの粘度が上昇する上に1200℃でガラスを熔融してもAl2O3が完全に熔融しなくなる。Al2O3/Bi2O3が上記の範囲であれば封着予定温度以上で仮焼成してもガラスが結晶化することなく安定したガラスネットワークを形成することが可能である。 Further, in order to expand the temperature range where low-melting glass can be sealed and to generate crystals even if pre-baked at a temperature higher than the expected sealing temperature, Al 2 O 3 / Bi 2 O 3 = 0.01- 0.1 is preferable. When the molar ratio is less than 0.01, crystal nuclei or crystals are precipitated in the low-melting glass at the time of pre-baking and cannot be sealed at a temperature lower than that of pre-baking. On the other hand, when the molar ratio exceeds 0.1, the viscosity of the glass increases, and even when the glass is melted at 1200 ° C., Al 2 O 3 is not completely melted. If Al 2 O 3 / Bi 2 O 3 is in the above range, a stable glass network can be formed without crystallizing the glass even if pre-baking at a temperature higher than the expected sealing temperature.
SiO2は発明者らの検討の結果、仮焼成での封着用組成物の過度な流動を抑え、封着後の残留泡を低減する上で必須な成分であり、さらにガラス熔融時の耐火物の侵食を抑制する効果がある。また、熱膨張係数を下げ、仮焼成時の低融点ガラスの安定性を向上させる効果があり、0.01〜2%の範囲で含有させることが好ましい。SiO2が0.01%未満の場合、500℃以上の仮焼成時に過度な流動が抑えられず、また熔融時の耐火物が侵食されやすくなる。2%を超えるとガラスの粘性が上がり、500℃以下での封着が困難となる上、ガラスの熔融温度が上昇するため耐火物の劣化を早めてしまう。熱膨張係数、ガラスの安定性、熔融性等を考慮すると、より好ましくは0.1〜1.5%である。 As a result of the inventors' investigation, SiO 2 is an essential component for suppressing excessive flow of the sealing composition during temporary firing and reducing residual foam after sealing, and further refractory during glass melting Has the effect of suppressing the erosion. Moreover, there exists an effect which reduces a thermal expansion coefficient and improves the stability of the low melting glass at the time of temporary baking, and it is preferable to make it contain in 0.01 to 2% of range. When SiO 2 is less than 0.01%, an excessive flow is not suppressed at the time of pre-baking at 500 ° C. or more, and a refractory during melting is easily eroded. If it exceeds 2%, the viscosity of the glass increases, sealing at 500 ° C. or lower becomes difficult, and the melting temperature of the glass increases, so that the deterioration of the refractory is accelerated. Considering the thermal expansion coefficient, glass stability, meltability, etc., it is more preferably 0.1 to 1.5%.
B2O3はガラスの骨格を形成してガラス化が可能となる範囲を広げる成分であり、2〜8%含有させることが好ましい。B2O3が2%未満の場合ガラス化が困難となり、8%を超えると軟化点が高くなりすぎ、封着時に荷重をかけたとしても低温で封着することが困難となる。B2O3の含有量は、熱膨張係数、ガラスの安定性、荷重軟化点等を考慮すると、3〜7%であることがより好ましい。 B 2 O 3 is a component that forms a glass skeleton and widens the range in which vitrification is possible, and is preferably contained in an amount of 2 to 8%. If B 2 O 3 is less than 2%, vitrification becomes difficult, and if it exceeds 8%, the softening point becomes too high, and even if a load is applied during sealing, sealing at low temperatures becomes difficult. The content of B 2 O 3 is more preferably 3 to 7% in consideration of the thermal expansion coefficient, glass stability, load softening point, and the like.
さらに、低融点ガラスを安定に得るためには、ZnOに対するB2O3の関係が、モル比でB2O3/ZnO=0.4〜1.0の関係を満たすことが好ましい。前記モル比が0.4未満および1.0を超えると熔融後のガラス中に失透が発生しガラス化が困難となる。さらに好ましくは0.5〜0.9の関係を満たすことである。 Furthermore, in order to obtain a low melting point glass stably, it is preferable that the relationship of B 2 O 3 with respect to ZnO satisfies the relationship of B 2 O 3 /ZnO=0.4 to 1.0 in terms of molar ratio. When the molar ratio is less than 0.4 and exceeds 1.0, devitrification occurs in the glass after melting, and vitrification becomes difficult. More preferably, the relationship of 0.5 to 0.9 is satisfied.
Fe2O3は、粘性を殆ど増大させることなく、封着時での結晶化を抑制して封着可能温度域を広げるために必須な成分であるが、過剰に添加するとガラス化範囲が狭くなるためその含有量は0.01〜0.2%が好ましい。 Fe 2 O 3 is an essential component for expanding the sealable temperature range by suppressing crystallization at the time of sealing without almost increasing the viscosity, but when added excessively, the vitrification range becomes narrow. Therefore, the content is preferably 0.01 to 0.2%.
CuOはガラスの粘度を下げ、特に低温側での封着可能温度域を広げる上で必須な成分であり、その含有量は0.01〜5%または0.01〜4.99%、好ましくは0.1〜3%または0.1〜1.99%であり、さらに好ましくは0.1〜1.5%または0.1〜1.49%である。CuOが5%または4.99%を超えると結晶の析出速度が大きくなって高温側での封着可能温度域を広げる効果がなく、0.01%未満では低温側での封着可能温度域を広げる効果がない。なお、電子部品用途では蛍光体を劣化させることがあるため過剰な添加を避けることが好ましい。 CuO is an essential component for lowering the viscosity of the glass, especially for expanding the temperature range where sealing is possible on the low temperature side, and its content is 0.01 to 5% or 0.01 to 4.99%, preferably It is 0.1 to 3% or 0.1 to 1.99%, more preferably 0.1 to 1.5% or 0.1 to 1.49%. When CuO exceeds 5% or 4.99%, the precipitation rate of crystals increases and there is no effect of expanding the temperature range that can be sealed on the high temperature side, and when it is less than 0.01%, the temperature range that can be sealed on the low temperature side. There is no effect to spread. In addition, it is preferable to avoid excessive addition since the phosphor may be deteriorated in electronic parts.
また、CuOおよびFe2O3は480℃以下でガラスの流動性を高め、かつ仮焼成時でのガラスを安定化させるための必須成分であり、その合量が0.05〜5%であることが好ましい。0.05%未満では上記の効果が得られず、また5%より高いとガラスが不安定となり高温側での封着可能温度域が狭くなり結晶化しやすくなる。より好ましい範囲は0.1〜2%であり、さらに好ましい範囲は0.1〜1.5である。 Further, CuO and Fe 2 O 3 are essential components for improving the fluidity of the glass at 480 ° C. or less and stabilizing the glass at the time of temporary firing, and the total amount thereof is 0.05 to 5%. It is preferable. If it is less than 0.05%, the above effect cannot be obtained, and if it is more than 5%, the glass becomes unstable and the temperature range at which sealing can be performed on the high temperature side becomes narrow and crystallization tends to occur. A more preferable range is 0.1 to 2%, and a further preferable range is 0.1 to 1.5.
さらに、封着可能温度域を広げ、封着予定温度以上での仮焼成時の結晶化抑制と仮焼成温度以下の温度での封着可能な粘度を両立させるためには、Bi2O3に対するFe2O3およびCuOの関係が、モル比で(CuO+Fe2O3)/Bi2O3=0.01〜0.05の関係を満たすことが好ましい。前記モル比が0.01未満では、荷重をかけても低温での封着に十分なガラスの流動性が得られず、また前記モル比が0.05を超えると封着可能温度域が狭くなり封着予定温度以上でガラスが結晶化してしまい、本発明の目的とする低融点ガラスが得られない。CuおよびFeは価数変化を起し易い元素であり、上記範囲内で添加することによってガラスの粘度が下がり、かつ加熱中に自らの価数変化によりBiの価数変化を抑えガラスが結晶化しないという効果がある。 Moreover, expanding the sealable temperature range, in order to achieve both sealable viscosity at the crystallization-inhibitor and the temporary baking temperature below the temperature during false firing at sealing predetermined temperature or higher, for Bi 2 O 3 The relationship between Fe 2 O 3 and CuO preferably satisfies the relationship (CuO + Fe 2 O 3 ) / Bi 2 O 3 = 0.01 to 0.05 in terms of molar ratio. If the molar ratio is less than 0.01, glass fluidity sufficient for sealing at low temperatures cannot be obtained even when a load is applied, and if the molar ratio exceeds 0.05, the sealable temperature range is narrow. As a result, the glass is crystallized at a temperature higher than the expected sealing temperature, and the low-melting glass targeted by the present invention cannot be obtained. Cu and Fe are elements that are likely to cause valence changes. When added within the above range, the viscosity of the glass decreases, and the valence change during heating suppresses the valence change of Bi, and the glass crystallizes. There is an effect of not.
CeO2はガラス組成中のBi2O3がガラス融解中に金属ビスマスとして析出することを抑制し、ガラスの流動性を安定化させる効果があるので、その含有量は0.1〜5%である。0.1%未満では上記の効果が得られず、5%以上ではガラスの粘度が上がり目的とする480℃以下での封着が困難となる。好ましくは0.1〜3%であり、さらに好ましくは0.1〜1.5%である。 CeO 2 has the effect of suppressing Bi 2 O 3 in the glass composition from precipitating as metal bismuth during glass melting and stabilizing the fluidity of the glass, so its content is 0.1 to 5%. is there. If the content is less than 0.1%, the above effect cannot be obtained. If the content is 5% or more, the viscosity of the glass is increased and it becomes difficult to seal at 480 ° C. or less. Preferably it is 0.1 to 3%, More preferably, it is 0.1 to 1.5%.
また、Li2O、Na2O、K2O等のアルカリ金属酸化物およびMgO、CaO、BaOおよびSrO等のアルカリ土類金属酸化物が0.1%以上含まれると仮焼成温度480℃以上で結晶化して封着ができなくなるばかりか、PDP等の平面ディスプレイの表示素子内部を加熱減圧する際に、前記内部にアルカリ金属元素やアルカリ土類金属元素が拡散し、紫外線を発生させるために封入される混合ガスに干渉し、紫外線発生量を低下させたり、仮焼成時に封着用組成物と接触している誘電体や電極材料に、上記元素の一部が移動し誘電率が変化したり、導電性が悪化したりする虞がある。さらに、白金や白金を主成分とする合金で製作したルツボでビスマス系ガラスを熔融したとき、これら耐火物が加速的に劣化(侵食や亀裂)しやすくなることを見出した。これらの問題点を解決するためにはガラス原料中のアルカリ金属酸化物およびアルカリ土類金属酸化物を合計で0.1%未満にすることが好ましく、さらに0.01%以下にすることが望ましい。 Further, when an alkali metal oxide such as Li 2 O, Na 2 O and K 2 O and an alkaline earth metal oxide such as MgO, CaO, BaO and SrO are contained in an amount of 0.1% or more, the preliminary firing temperature is 480 ° C. or more. In order to generate ultraviolet rays, the alkali metal element or alkaline earth metal element diffuses inside the display element of a flat display such as a PDP by heating and depressurizing. Interfering with the mixed gas to be sealed, reducing the amount of ultraviolet rays generated, or moving part of the above elements to the dielectric or electrode material that is in contact with the sealing composition at the time of prefiring to change the dielectric constant There is a possibility that the conductivity is deteriorated. Furthermore, it has been found that when bismuth-based glass is melted with a crucible made of platinum or an alloy containing platinum as a main component, these refractories are likely to be accelerated (eroded or cracked). In order to solve these problems, the total of alkali metal oxides and alkaline earth metal oxides in the glass raw material is preferably less than 0.1%, more preferably 0.01% or less. .
また、上記以外の組成として3%以内の範囲で、Ag2O、Co2O3、MoO3、Nb2O3、Ta2O5、Ga2O3、Sb2O3、WO3、P2O5、SnOx(x=1又は2)、Cs2Oなどを含有させることができるが、環境問題の観点から鉛、タリウム、カドミウム、バナジウム等毒性の強い成分の添加は避けなければならない。 In addition, the composition other than the above is within 3% within a range of Ag 2 O, Co 2 O 3 , MoO 3 , Nb 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , Sb 2 O 3 , WO 3 , P 2 O 5 , SnO x (x = 1 or 2), Cs 2 O and the like can be contained, but addition of highly toxic components such as lead, thallium, cadmium, vanadium must be avoided from the viewpoint of environmental problems.
以上の組成を有するガラスは、ガラス転移点が400℃以下と低く、良好な流動性を示す非晶質のガラスである。また30〜300℃における熱膨張係数が90×10-7/℃以上110×10-7/℃以下であり、これと適合する高膨張材料については、耐火性セラミックスフィラーを配合することなく封着することが可能である。 The glass having the above composition is an amorphous glass having a low glass transition point of 400 ° C. or less and showing good fluidity. In addition, the thermal expansion coefficient at 30 to 300 ° C. is 90 × 10 −7 / ° C. or more and 110 × 10 −7 / ° C. or less, and high expansion material suitable for this is sealed without blending a refractory ceramic filler. Is possible.
一方、熱膨張係数の適合しない材料からなる各種パッケージや表示デバイスの封着を行う場合、被封着物との熱膨張係数差を是正するために、耐火性セラミックスフィラーを混合して使用することが可能である。また機械的強度が不足する場合も耐火性セラミックスフィラーを使用することができる。 On the other hand, when sealing various packages and display devices made of materials that do not conform to the thermal expansion coefficient, it is necessary to use a mixture of refractory ceramic fillers to correct the difference in thermal expansion coefficient from the material to be sealed. Is possible. A fire-resistant ceramic filler can also be used when mechanical strength is insufficient.
耐火性セラミックスフィラーを混合する場合、その混合割合は低融点ガラス粉末60〜99体積%と耐火性セラミックスフィラー1〜40体積%であることが好ましい。両者の割合をこのように限定した理由は、耐火性セラミックスフィラーが1体積%より少ないとその効果がなく、40体積%より多くなると流動性が悪くなるためである。 When mixing the refractory ceramic filler, the mixing ratio is preferably 60 to 99% by volume of the low-melting glass powder and 1 to 40% by volume of the refractory ceramic filler. The reason for limiting the ratio of the two in this way is that if the refractory ceramic filler is less than 1% by volume, the effect is not achieved, and if it exceeds 40% by volume, the fluidity is deteriorated.
耐火性セラミックスフィラーとしては、ジルコン、コージェライト、チタン酸アルミニウム、アルミナ、ムライト、シリカ(水晶、α-クオーツ、石英ガラス、クリストバライト、トリジマイトなど)、酸化錫系セラミック、β−ユークリプタイト、β−スポジュメン、リン酸ジルコニウム系セラミックおよびβ−石英固溶体からなる群より選ばれる少なくとも1種を使用することが好ましい。特にAl2O3やSiO2を主成分とするフィラーは仮焼成時にAl2O3やSiO2の一部がガラスに溶出して仮焼成時の結晶化を抑えるという効果がある。 Examples of the refractory ceramic filler include zircon, cordierite, aluminum titanate, alumina, mullite, silica (quartz, α-quartz, quartz glass, cristobalite, tridymite, etc.), tin oxide ceramic, β-eucryptite, β- It is preferable to use at least one selected from the group consisting of spodomen, zirconium phosphate ceramics and β-quartz solid solution. Particularly filler mainly composed of Al 2 O 3 or SiO 2 is part of the Al 2 O 3 or SiO 2 at the time of calcination has the effect of suppressing the crystallization during calcination eluting the glass.
ただし、これら成分が溶出し過ぎるとガラス粘度を高め封着ができなくなるため、これらフィラーの比表面積は5m2/g以下、好ましくは3m2/g以下とする。この比表面積の値はJIS R 1626に規定されている気体吸着BET法で測定した場合のものである。また、耐熱顔料としてFe−Co−Cr複合酸化物系等の黒色顔料を用いることも可能である。 However, if these components are eluted too much, the glass viscosity is increased and sealing becomes impossible. Therefore, the specific surface area of these fillers is 5 m 2 / g or less, preferably 3 m 2 / g or less. The value of the specific surface area is measured by the gas adsorption BET method specified in JIS R 1626. Moreover, it is also possible to use black pigments, such as a Fe-Co-Cr complex oxide type, as a heat-resistant pigment.
本発明で使用するビヒクルとは、例えば、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、オキシエチルセルロース、ベンジルセルロース、プロピルセルロース、ニトロセルロース等を例えば、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したものや、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリテート、2−ヒドロオキシエチルメタアクリレート等のアクリル系樹脂を例えば、メチルエチルケトン、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したものが挙げられる。 The vehicle used in the present invention is, for example, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, propyl cellulose, nitrocellulose, etc. dissolved in a solvent such as terpineol, butyl carbitol acetate, ethyl carbitol acetate, etc. And acrylic resins such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl methacrylate, for example, methyl ethyl ketone, terpineol, butyl carbitol acetate, ethyl carbitol acetate, etc. And those dissolved in these solvents.
封着用ガラスペーストの粘度は、基板に塗布する装置に適応した粘度にあわせればよく、樹脂と溶剤の割合、およびビヒクルと封着用組成物の割合により調整できる。 The viscosity of the sealing glass paste may be adjusted to the viscosity suitable for the apparatus applied to the substrate, and can be adjusted by the ratio of the resin and the solvent and the ratio of the vehicle and the sealing composition.
封着用ガラスペーストには、消泡剤、分散剤などのように、ガラスペーストで公知の添加物を加えることができる。 Known additives can be added to the glass paste for sealing, such as an antifoaming agent and a dispersing agent.
封着用ガラスペーストの製造には、攪拌翼を備えた回転式の混合機や、ロールミル、ボールミルなどの公知の方法を用いることができる。 For the production of the sealing glass paste, a known method such as a rotary mixer equipped with a stirring blade, a roll mill, a ball mill or the like can be used.
本発明のビスマス系ガラス組成物は、鉛成分等を含有しないため、環境問題を引起こす心配がない。また封着可能温度域が広く封着温度以上で仮焼成しても結晶化することなく封着を行うことが可能となりPDPの量産工程で実施されている複数の部材と同時焼成が可能となる。 Since the bismuth-based glass composition of the present invention does not contain a lead component or the like, there is no fear of causing environmental problems. In addition, the sealable temperature range is wide and it is possible to perform sealing without crystallizing even if pre-baking above the sealing temperature, and simultaneous baking with a plurality of members carried out in the mass production process of PDP is possible. .
また、本発明の低融点ガラスはアルカリ金属酸化物やアルカリ土類金属酸化物成分を合計で0.1%未満とし、かつSiO2を必須成分とすることで熔融時の耐火物への侵食を抑制できるので、白金や白金−ロジウム等の耐火物で熔融しても劣化が殆ど認められず、量産において安定した操業を行うことができる。また、アルカリ金属酸化物およびアルカリ土類金属酸化物の混入を抑えたことにより、封着後の蛍光体の発色不良、誘電体の誘電率変化および電極の導電性の低下を生じることがない。 In addition, the low melting point glass of the present invention is less than 0.1% in total of alkali metal oxides and alkaline earth metal oxide components, and has SiO 2 as an essential component to prevent erosion of the refractory during melting. Since it can suppress, even if it fuse | melts with refractories, such as platinum and platinum- rhodium, almost no deterioration is recognized and it can operate stably in mass production. Further, by suppressing the mixing of alkali metal oxide and alkaline earth metal oxide, there is no occurrence of defective color development of the phosphor after sealing, a change in dielectric constant of the dielectric, and a decrease in conductivity of the electrode.
本発明の低融点ガラスは、実質的に鉛成分等を含有せず、質量%表示で、Bi2O3 70〜90%、ZnO 5〜15%、B2O3 2〜8%、Al2O3 0.1〜5%、SiO2 0.01〜2%、CeO2 0.1〜5%、CuO 0.01〜5%、Fe2O3 0.01〜0.2%、CuO+Fe2O3 0.05〜5%、を含有し、かつLi2O、Na2O、K2O等のアルカリ金属酸化物およびMgO、CaO、BaO、SrO等のアルカリ土類金属酸化物の合計量を0.1%未満としたものである。 The low melting point glass of the present invention substantially does not contain a lead component or the like, and is expressed by mass%, Bi 2 O 3 70 to 90%, ZnO 5 to 15%, B 2 O 3 2 to 8%, Al 2. O 3 0.1-5%, SiO 2 0.01-2%, CeO 2 0.1-5%, CuO 0.01-5%, Fe 2 O 3 0.01-0.2%, CuO + Fe 2 O 3 0.05 to 5%, contains, and the total amount of Li 2 O, Na 2 O, an alkali metal oxide K 2 O, etc., and MgO, CaO, BaO, alkaline earth metal oxides such as SrO Is less than 0.1%.
そして、上記した組成範囲となるように原料を混合してバッチ原料とし、このバッチ原料を白金ルツボに入れ1000〜1200℃に調整した炉内に投入し、30〜90分間熔融した。そして、熔融されたガラスは、水冷ローラでシート状に成形しボールミルで粉砕後、目開き150メッシュの篩を通過したものを低融点ガラスとした。 Then, the raw materials were mixed so as to be in the composition range described above to obtain a batch raw material, and this batch raw material was put in a platinum crucible and put in a furnace adjusted to 1000 to 1200 ° C. and melted for 30 to 90 minutes. The melted glass was formed into a sheet shape with a water-cooled roller, pulverized with a ball mill, and then passed through a 150-mesh sieve to obtain a low-melting glass.
この低融点ガラス60〜99体積%と、ジルコン、コージェライト、チタン酸アルミニウム、アルミナ、ムライト、シリカ(水晶、α-クオーツ、石英ガラス、クリストバライト、トリジマイトなど)、酸化錫系セラミック、β−ユークリプタイト、β−スポジュメン、リン酸ジルコニウム系セラミックおよびβ−石英固溶体から選ばれる1種以上の耐火性セラミックフィラーの粉末1〜40体積%とを混合して封着用組成物を調製した。そして、この封着用組成物をガラス軟化点以下で分解する有機系ビヒクル等でペースト化して被封着物に塗布しやすいようにする。また、予め封着用組成物を被接着部の形状に成形した後に用いても良い。 60% to 99% by volume of this low melting glass, zircon, cordierite, aluminum titanate, alumina, mullite, silica (crystal, α-quartz, quartz glass, cristobalite, tridymite, etc.), tin oxide ceramic, β-eucrypt A sealing composition was prepared by mixing 1 to 40% by volume of a powder of one or more refractory ceramic fillers selected from tight, β-spodumene, zirconium phosphate ceramic and β-quartz solid solution. Then, the sealing composition is made into a paste with an organic vehicle or the like that decomposes below the glass softening point so that it can be easily applied to an object to be sealed. Moreover, you may use, after shape | molding the composition for sealing previously in the shape of a to-be-adhered part.
以下、本発明の実施例および比較例を表1ないし3を参照して詳細に説明する。 Hereinafter, examples and comparative examples of the present invention will be described in detail with reference to Tables 1 to 3.
(実施例1)表1に示すように、Bi2O3 82.46%、B2O3 5.68%、ZnO 10.67%、SiO2 0.15%、CeO2 0.20%、Al2O3 0.64%、Fe2O3 0.10%、CuO 0.10%となるように、原料を調合してバッチ原料とする。このバッチ原料を白金ルツボに入れ1100℃に調整された熔融炉内に投入して、50分間熔融した。そして、熔融ガラスは水冷ローラによりシート状に成形し、目開き150メッシュの篩を通過したものを低融点ガラスとした。 Example 1 As shown in Table 1, Bi 2 O 3 82.46%, B 2 O 3 5.68%, ZnO 10.67%, SiO 2 0.15%, CeO 2 0.20%, The raw materials are prepared so as to be 0.62% Al 2 O 3 , 0.10% Fe 2 O 3, and 0.10% CuO to obtain a batch raw material. This batch raw material was put into a platinum crucible, put into a melting furnace adjusted to 1100 ° C., and melted for 50 minutes. The molten glass was formed into a sheet shape with a water-cooled roller, and the glass having passed through a 150-mesh sieve was used as the low melting glass.
この低融点ガラスのAl2O3/Bi2O3のモル比は、0.035、(Fe2O3+CuO)/Bi2O3のモル比は、0.011、B2O3/ZnOのモル比は0.62とした。 The low melting point glass has a Al 2 O 3 / Bi 2 O 3 molar ratio of 0.035, a (Fe 2 O 3 + CuO) / Bi 2 O 3 molar ratio of 0.011, and B 2 O 3 / ZnO. The molar ratio was 0.62.
この低融点ガラス 77体積%に、耐火性セラミックスフィラーとしてコージェライト 23体積%を加え封着用組成物とした。なお、コージェライトの比表面積は3m2/g以下であった。この封着用組成物のガラス転移点、荷重軟化点および軟化点は、示差熱分析装置(DTA)により求め、ガラス転移点が354℃、荷重軟化点が379℃、軟化点が403℃であった。 To 77% by volume of this low-melting glass, 23% by volume of cordierite was added as a refractory ceramic filler to obtain a sealing composition. The specific surface area of cordierite was 3 m 2 / g or less. The glass transition point, load softening point, and softening point of this sealing composition were determined by a differential thermal analyzer (DTA). The glass transition point was 354 ° C, the load softening point was 379 ° C, and the softening point was 403 ° C. .
また、この封着用組成物のフローボタン径は21mm、500℃での仮焼成後の封着温度は460℃、熱膨張係数は71×10-7/℃であった。これらの測定方法を以下に示す。 The sealing composition had a flow button diameter of 21 mm, a sealing temperature after calcination at 500 ° C. of 460 ° C., and a thermal expansion coefficient of 71 × 10 −7 / ° C. These measuring methods are shown below.
フローボタン径:封着時の組成物の流動性を示すもので、封着用組成物の試料粉末(6.0g)を、直径12.7mmの円柱状に荷重50〜100kg/cm2で加圧成形後、480℃で10分間保持したとき、封着用組成物が流動した直径である。このフローボタン径は17mm以上26mm以下が望ましい。17mm未満であるとガラスの組成物が十分軟化せず被封着物と接着しない。26mmより大きいとガラスが流動し過ぎて封着後に空洞による残留泡が形成されたり、接着面が変形したりする。 Flow button diameter: This indicates the fluidity of the composition at the time of sealing, and a sample powder (6.0 g) of the sealing composition is pressed into a cylindrical shape having a diameter of 12.7 mm with a load of 50 to 100 kg / cm 2. It is the diameter which the composition for sealing flowed when it hold | maintained for 10 minutes at 480 degreeC after shaping | molding. The flow button diameter is desirably 17 mm or greater and 26 mm or less. If the thickness is less than 17 mm, the glass composition is not sufficiently softened and does not adhere to the object to be sealed. If it is larger than 26 mm, the glass will flow too much and, after sealing, residual bubbles will be formed due to cavities, or the bonding surface will be deformed.
熱膨張係数:封着用組成物をアルミナ製の容器に充填して490℃で10分間焼成後除冷し、これを長さ15mm、直径5mmの円柱状に研磨して、圧縮荷重法(株式会社リガク熱機械分析装置8310)により昇温速度10℃/分の条件で伸びの量を測定し、30〜300℃の平均熱膨張係数を算出した。 Coefficient of thermal expansion: The sealing composition is filled in an alumina container, baked at 490 ° C. for 10 minutes, cooled, and then polished into a cylindrical shape having a length of 15 mm and a diameter of 5 mm. The amount of elongation was measured with a temperature increase rate of 10 ° C./min using a Rigaku thermomechanical analyzer 8310), and an average coefficient of thermal expansion of 30 to 300 ° C. was calculated.
ガラスペーストの作成は、以下に示すようにビヒクルと封着用組成物とを混合して行った。 The glass paste was prepared by mixing the vehicle and the sealing composition as shown below.
ビヒクル:樹脂にエチルセルロース3%および、溶剤にテルピネオール20%、ブチルカルビトールアセテート72%、酢酸イソアミル5%を60℃に加熱しながら2時間攪拌して調製した。 Vehicle: 3% ethyl cellulose as a resin, 20% terpineol as a solvent, 72% butyl carbitol acetate and 5% isoamyl acetate were stirred for 2 hours while heating to 60 ° C.
ペースト:封着用組成物に、ビヒクルを質量比86対14で加え、ロールミルで混合して封着用ペーストを得た。ペーストの粘度をB型粘度計(Brookfield社製HDBVII+)で測定したところ55Pa・sであった。 Paste: A sealing paste was obtained by adding a vehicle to the sealing composition at a mass ratio of 86:14 and mixing with a roll mill. When the viscosity of the paste was measured with a B-type viscometer (HDBVII + manufactured by Brookfield), it was 55 Pa · s.
封着温度は次のようにして測定した。先ず上記で得られたペーストを、ガラス基板(旭硝子株式会社製:PD−200)上に厚さ400〜500μm、幅3mmで塗布した試料基板を準備する。この試料基板を仮焼成温度に設定された電気炉中で仮焼成後、この試料基板の上に他のガラス基板を合わせて封着用組成物の塗布面積に対し500g/cm2の荷重を掛けて焼成してガラス基板同士の間隔が200μm以下で接着が可能な温度を示した。 The sealing temperature was measured as follows. First, a sample substrate is prepared by applying the paste obtained above on a glass substrate (Asahi Glass Co., Ltd .: PD-200) with a thickness of 400 to 500 μm and a width of 3 mm. After pre-baking this sample substrate in an electric furnace set to the pre-baking temperature, another glass substrate is put on this sample substrate and a load of 500 g / cm 2 is applied to the coating area of the sealing composition. A temperature at which bonding was possible when the distance between the glass substrates after baking was 200 μm or less was shown.
白金の侵食性は白金ルツボに原料を投入して20回熔融し、5回ごとに白金ルツボのガラスが接触していた部分を顕微鏡で確認した。 The erodibility of platinum was obtained by charging the platinum crucible with a raw material and melting it 20 times. The portion where the glass of the platinum crucible was in contact every 5 times was confirmed with a microscope.
以上の結果から、この実施例1の封着用組成物は、500℃で仮焼成してもガラス中に結晶が析出せず、仮焼成後、460℃でガラス基板を封着することができた。また、ガラス中にアルカリ金属成分(Li2O、Na2OおよびK2O)、アルカリ土類金属成分(MgO、CaO、BaO、SrO)を含有していないので、白金の侵食も見られなかった。 From the above results, the sealing composition of Example 1 was able to seal the glass substrate at 460 ° C. after the pre-baking without crystals being precipitated in the glass even when pre-baking at 500 ° C. . Moreover, since the glass does not contain alkali metal components (Li 2 O, Na 2 O and K 2 O) and alkaline earth metal components (MgO, CaO, BaO, SrO), platinum erosion is not observed. It was.
(実施例2〜18)
実施例2〜18は、実施例1と同様な方法によって封着用組成物を調製した実施例である。
(Examples 2 to 18)
Examples 2 to 18 are examples in which sealing compositions were prepared by the same method as in Example 1.
表1および2に示すように、原料を調合してバッチ原料とした以外は、実施例1と同じ方法でガラスを熔融し、水冷ローラによりシート状に成形し、目開き150メッシュの篩を通過したものを低融点ガラスとした。 As shown in Tables 1 and 2, the glass was melted in the same manner as in Example 1 except that the raw materials were mixed into batch raw materials, formed into a sheet by a water-cooled roller, and passed through a sieve with 150 mesh openings. This was used as a low melting glass.
この低融点ガラスのAl2O3/Bi2O3のモル比は0.028〜0.086、(CuO+Fe2O3)/Bi2O3のモル比は0.010〜0.047、B2O3/ZnOのモル比は0.62〜0.80となっている。この低融点ガラスと耐火性セラミックスフィラーを混合した封着用組成物を、500〜550℃の仮焼成温度で焼成しても全てのガラス中に結晶の析出は見られなかった。また、低融点ガラスの荷重軟化点は378〜409℃であるので、耐火性セラミックスフィラーを混合して封着用組成物としても、十分に480℃以下で流動させることが可能である。実際には、表1および2に示すように、この封着用組成物のフローボタン径を測定したところ17〜24mmであった。 The low melting point glass has a Al 2 O 3 / Bi 2 O 3 molar ratio of 0.028 to 0.086, a (CuO + Fe 2 O 3 ) / Bi 2 O 3 molar ratio of 0.010 to 0.047, B The molar ratio of 2 O 3 / ZnO is 0.62 to 0.80. Even when the sealing composition in which the low-melting glass and the refractory ceramic filler were mixed was fired at a temporary firing temperature of 500 to 550 ° C., no crystal deposition was observed in all the glasses. Moreover, since the load softening point of low melting glass is 378-409 degreeC, it can be made to flow fully at 480 degrees C or less also as a sealing composition by mixing a refractory ceramic filler. Actually, as shown in Tables 1 and 2, when the flow button diameter of the sealing composition was measured, it was 17 to 24 mm.
この封着用組成物を実施例2〜5、15〜17は実施例1と同じ方法で、実施例6〜10、18は当該組成物と、樹脂にニトロセルロース3%、溶剤にテルピネオール20%、ブチルカルビトールアセテート72%、酢酸イソアミル5%を80℃に加熱しながら2時間攪拌して調製したビヒクルを、実施例11〜14は当該組成物と、樹脂にメチルメタアクリレート3%、溶剤にテルピネオール30%、ブチルカルビトールアセテート67%を70℃に加熱しながら2時間攪拌して調製したビヒクルを、質量比86対14で加え、ロールミルで混合して封着用ペーストを得た。ペーストの粘度をB型粘度計で測定したところ54〜74Pa・sであった。 In this sealing composition, Examples 2 to 5, 15 to 17 were the same method as Example 1, Examples 6 to 10 and 18 were the composition, 3% nitrocellulose for resin, 20% terpineol for solvent, A vehicle prepared by stirring 2 hours while heating butyl carbitol acetate 72% and isoamyl acetate 5% to 80 ° C., Examples 11 to 14 are the composition, 3% methyl methacrylate as resin, and terpineol as solvent. A vehicle prepared by stirring 30% and 67% butyl carbitol acetate while stirring at 70 ° C. for 2 hours was added at a mass ratio of 86:14 and mixed with a roll mill to obtain a sealing paste. When the viscosity of the paste was measured with a B-type viscometer, it was 54 to 74 Pa · s.
またこのペーストを用いて封着温度を評価したところ、いずれも440〜480℃の範囲で基板の接着が可能であった。 Moreover, when the sealing temperature was evaluated using this paste, it was possible to bond the substrates in the range of 440 to 480 ° C.
TMAを用いてこの封着用組成物の熱膨張係数を、測定したところ68〜75×10-7/℃となり、PDPに用いられているガラスの熱膨張係数に非常に近く封着後に歪が生じることがない。 When the thermal expansion coefficient of this sealing composition was measured using TMA, it was 68 to 75 × 10 −7 / ° C., which was very close to the thermal expansion coefficient of the glass used for PDP and was distorted after sealing. There is nothing.
また、本発明では全ての実施例で15回熔融しても白金ルツボに劣化は観察されなかった。さらに、アルカリ金属成分やアルカリ土類金属成分を全く含有しない実施例1〜14については、20回目の熔融後でも白金ルツボに劣化や侵食が観察されなかった。 In the present invention, no deterioration was observed in the platinum crucible even after fusing 15 times in all examples. Further, in Examples 1 to 14 containing no alkali metal component or alkaline earth metal component, no deterioration or erosion was observed in the platinum crucible even after the 20th melting.
なお、耐火性セラミックスフィラーにおいて、表1および2にはシリカに含まれる成分の内で石英ガラスを用いたものしか表示していないが、他の水晶、α−クォーツ、クリストバライトおよびトリジマイトでも同様な効果が得られた。また、使用した耐火性セラミックスフィラーの比表面積は表示していないがいずれも比表面積は5m2/g以下であった。 In addition, in the refractory ceramic filler, Tables 1 and 2 show only those using silica glass among the components contained in silica, but the same effect is obtained with other quartz, α-quartz, cristobalite and tridymite. was gotten. Moreover, although the specific surface area of the used refractory ceramic filler is not indicated, the specific surface area of each was 5 m 2 / g or less.
(比較例1)
比較例1はAl2O3、Fe2O3およびCuOを含有していない例である。得られた封着用組成物は480℃で仮焼成したときに結晶化してしまい、封着することができなかった。
(Comparative Example 1)
Comparative Example 1 is an example not containing Al 2 O 3 , Fe 2 O 3 and CuO. The obtained sealing composition crystallized when pre-baked at 480 ° C. and could not be sealed.
(比較例2)
比較例2はAl2O3を含有していない例である。得られた封着用組成物は480℃で仮焼成したときに結晶化してしまい、封着することができなかった。
(Comparative Example 2)
Comparative Example 2 is an example not containing Al 2 O 3 . The obtained sealing composition crystallized when pre-baked at 480 ° C. and could not be sealed.
(比較例3)
比較例3はFe2O3を含有していない例である。得られた封着用組成物は480℃で仮焼成したときに結晶化してしまい、封着することができなかった。
(Comparative Example 3)
Comparative Example 3 is an example not containing Fe 2 O 3 . The obtained sealing composition crystallized when pre-baked at 480 ° C. and could not be sealed.
(比較例4)
比較例4はCuOを含有していない例である。得られた封着用組成物は480℃で僅かに結晶化しており封着することができなかった。
(Comparative Example 4)
Comparative Example 4 is an example not containing CuO. The resulting sealing composition was slightly crystallized at 480 ° C. and could not be sealed.
(比較例5)
比較例5は(Fe2O3+CuO)/Bi2O3のモル比が(Fe2O3+CuO)/Bi2O3>0.05となっている例である。得られた封着用組成物は480℃で仮焼成したときに結晶化してしまい、封着することができなかった。
(Comparative Example 5)
Comparative Example 5 is an example in which a (Fe 2 O 3 + CuO) / molar ratio of Bi 2 O 3 is (Fe 2 O 3 + CuO) / Bi 2 O 3> 0.05. The obtained sealing composition crystallized when pre-baked at 480 ° C. and could not be sealed.
(比較例6)
比較例4はAl2O3/Bi2O3のモル比がAl2O3/Bi2O3の<0.01となっている例である。得られた封着用組成物は480℃で仮焼成したときに結晶化してしまい、封着することができなかった。
(Comparative Example 6)
Comparative Example 4 is an example in which the molar ratio of Al 2 O 3 / Bi 2 O 3 is in the <0.01 Al 2 O 3 / Bi 2 O 3. The obtained sealing composition crystallized when pre-baked at 480 ° C. and could not be sealed.
(比較例7)
比較例7はAl2O3/Bi2O3のモル比がAl2O3/Bi2O3>0.1となっている例である。得られた封着用組成物は550℃で仮焼成しても結晶化しないが低融点ガラスの粘度が上昇し、480℃のフローボタンで16mm未満と流動性が悪く封着することができなかった。またガラスを熔融するために熔融温度を1250℃に上げる必要があり、15回目の熔融後に白金ルツボを観察したところ、底部に僅かな侵食が見られた。
(Comparative Example 7)
Comparative Example 7 is an example in which the molar ratio of Al 2 O 3 / Bi 2 O 3 is in the Al 2 O 3 / Bi 2 O 3> 0.1. The resulting sealing composition did not crystallize even when pre-baked at 550 ° C., but the viscosity of the low-melting glass was increased, and the flow button of 480 ° C. was less than 16 mm and the fluidity was poor and could not be sealed. . Further, in order to melt the glass, it is necessary to raise the melting temperature to 1250 ° C. When the platinum crucible was observed after the 15th melting, slight erosion was observed at the bottom.
(比較例8)
比較例8はSiO2の添加量が2%を超えた例である。得られた封着用組成物は570℃で仮焼成しても結晶化しないが低融点ガラスの粘度が高く、480℃のフローボタンで16mm未満と流動性が悪く封着することができなかった。またガラスを熔融するために熔融温度を1250℃に上げる必要があり、15回目の熔融後に白金ルツボを観察したところ、底部に僅かな侵食が見られた。
(Comparative Example 8)
In Comparative Example 8, the amount of SiO 2 added exceeded 2%. The obtained sealing composition did not crystallize even when pre-baked at 570 ° C., but the viscosity of the low-melting glass was high, and the flow button at 480 ° C. was less than 16 mm, and the fluidity was poor and could not be sealed. Further, in order to melt the glass, it is necessary to raise the melting temperature to 1250 ° C. When the platinum crucible was observed after the 15th melting, slight erosion was observed at the bottom.
(比較例9)
比較例9はSiO2を含まない例である。得られた封着用組成物は500℃で仮焼成しても結晶化せず、430℃で封着できたが封着面中央部付近に仮焼成時に生じた窪みによると思われる筋状の残留泡が生じ封着材料として適さないものであった。また、15回目の熔融後に白金ルツボを観察したところ、底部に僅かな侵食が見られた。
(Comparative Example 9)
Comparative Example 9 is an example not containing SiO 2 . The resulting sealing composition did not crystallize even when pre-baked at 500 ° C., and could be sealed at 430 ° C., but a streak-like residue probably due to a dent generated during pre-baking near the center of the sealing surface Foam was generated and it was not suitable as a sealing material. Further, when the platinum crucible was observed after the 15th melting, slight erosion was observed at the bottom.
(比較例10)
比較例10はB2O3/ZnOのモル比が1以上となっている例である。この比較例では熔融して得られたガラス中にすでに結晶が析出しており、低融点ガラスを得ることができなかった。
(Comparative Example 10)
Comparative Example 10 is an example in which the molar ratio of B 2 O 3 / ZnO is 1 or more. In this comparative example, crystals were already deposited in the glass obtained by melting, and a low-melting glass could not be obtained.
(比較例11)
比較例11はアルカリ土類金属成分(CaOおよびBaO)の合計量が0.1%を超えて含む例である。得られた封着用組成物はいずれも480℃の仮焼成で結晶化して封着ができなかった。また、10回目の熔融後に白金ルツボを観察したところ、底部に僅かな侵食が見られ、15〜20回目にルツボ底部に亀裂が発生し、ガラスの熔融が継続できなかった。
(Comparative Example 11)
Comparative Example 11 is an example in which the total amount of alkaline earth metal components (CaO and BaO) exceeds 0.1%. All of the obtained sealing compositions were crystallized by calcination at 480 ° C. and could not be sealed. Further, when the platinum crucible was observed after the tenth melting, a slight erosion was observed at the bottom, and a crack occurred at the bottom of the crucible 15 to 20, and the melting of the glass could not be continued.
本発明の封着用組成物は550℃を超える温度では結晶化するものもあるので、550℃を超える高温で封着可能な部材の無鉛結晶化ガラスとして使用することができる。 Since the sealing composition of the present invention may be crystallized at a temperature exceeding 550 ° C., it can be used as a lead-free crystallized glass of a member that can be sealed at a high temperature exceeding 550 ° C.
Claims (6)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283566A JP4815975B2 (en) | 2005-06-23 | 2005-09-29 | Low melting glass, sealing composition and sealing paste |
TW094138289A TW200624402A (en) | 2004-11-12 | 2005-11-01 | Low melting glass, sealing composition and sealing paste |
US11/262,746 US7291573B2 (en) | 2004-11-12 | 2005-11-01 | Low melting glass, sealing composition and sealing paste |
CN 200510120355 CN1772676B (en) | 2004-11-12 | 2005-11-08 | Low melting glass, sealing composition and sealing paste |
KR1020050107774A KR20060052610A (en) | 2004-11-12 | 2005-11-11 | Low melting glass, sealing composition and sealing paste |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005183616 | 2005-06-23 | ||
JP2005183616 | 2005-06-23 | ||
JP2005283566A JP4815975B2 (en) | 2005-06-23 | 2005-09-29 | Low melting glass, sealing composition and sealing paste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007031258A true JP2007031258A (en) | 2007-02-08 |
JP4815975B2 JP4815975B2 (en) | 2011-11-16 |
Family
ID=37790949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005283566A Active JP4815975B2 (en) | 2004-11-12 | 2005-09-29 | Low melting glass, sealing composition and sealing paste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4815975B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007176726A (en) * | 2005-12-27 | 2007-07-12 | Nihon Yamamura Glass Co Ltd | Bismuth-based lead-free glass |
JP2008127240A (en) * | 2006-11-21 | 2008-06-05 | Nippon Electric Glass Co Ltd | Bismuth-based glass composition and bismuth-based sealing material |
JP2008297199A (en) * | 2007-05-30 | 2008-12-11 | Schott Ag | Low-melting lead-free solder glass and uses thereof |
KR100880373B1 (en) | 2007-07-06 | 2009-01-28 | 주식회사 케이디엘 | Manufacturing method and composition of flit in one united exhausting pipe of flat panel display device |
JP2009057238A (en) * | 2007-08-31 | 2009-03-19 | Nippon Electric Glass Co Ltd | Sealing material |
JP2009073729A (en) * | 2007-08-31 | 2009-04-09 | Nippon Electric Glass Co Ltd | Sealing material |
WO2009107428A1 (en) * | 2008-02-28 | 2009-09-03 | 日本電気硝子株式会社 | Sealing material for organic el display |
JP2009227566A (en) * | 2008-02-28 | 2009-10-08 | Nippon Electric Glass Co Ltd | Sealing material for organic el display |
WO2009128527A1 (en) * | 2008-04-18 | 2009-10-22 | 日本電気硝子株式会社 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
JP2010013332A (en) * | 2008-07-07 | 2010-01-21 | Nippon Electric Glass Co Ltd | Bismuth-based glass composition and sealing material |
JP2010047441A (en) * | 2008-08-21 | 2010-03-04 | Nippon Electric Glass Co Ltd | Sealing material for organic el display |
WO2010067848A1 (en) * | 2008-12-12 | 2010-06-17 | 旭硝子株式会社 | Sealing glass, glass member having sealing material layer, and electronic device and method for producing the same |
US8133829B2 (en) | 2008-03-28 | 2012-03-13 | Asahi Glass Company, Limited | Frit |
CN102939270A (en) * | 2010-06-14 | 2013-02-20 | 旭硝子株式会社 | Sealing material paste, and process for production of electronic device using same |
JP2013177308A (en) * | 2013-05-28 | 2013-09-09 | Nippon Electric Glass Co Ltd | Crystalline bismuth-based material |
US8871348B2 (en) | 2009-07-24 | 2014-10-28 | Nippon Electric Glass Co. Ltd. | Glass substrate with conductive film for solar cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003095697A (en) * | 2001-09-18 | 2003-04-03 | Nihon Yamamura Glass Co Ltd | Sealing composition |
JP2004142982A (en) * | 2002-10-23 | 2004-05-20 | Matsushita Electric Ind Co Ltd | Magnetic recording head and gap-bonding glass for the same |
JP2004238273A (en) * | 2002-03-29 | 2004-08-26 | Matsushita Electric Ind Co Ltd | Bismuth-based glass composition, and magnetic head and plasma display panel using it as sealing member |
-
2005
- 2005-09-29 JP JP2005283566A patent/JP4815975B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003095697A (en) * | 2001-09-18 | 2003-04-03 | Nihon Yamamura Glass Co Ltd | Sealing composition |
JP2004238273A (en) * | 2002-03-29 | 2004-08-26 | Matsushita Electric Ind Co Ltd | Bismuth-based glass composition, and magnetic head and plasma display panel using it as sealing member |
JP2004142982A (en) * | 2002-10-23 | 2004-05-20 | Matsushita Electric Ind Co Ltd | Magnetic recording head and gap-bonding glass for the same |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007176726A (en) * | 2005-12-27 | 2007-07-12 | Nihon Yamamura Glass Co Ltd | Bismuth-based lead-free glass |
JP2008127240A (en) * | 2006-11-21 | 2008-06-05 | Nippon Electric Glass Co Ltd | Bismuth-based glass composition and bismuth-based sealing material |
JP2008297199A (en) * | 2007-05-30 | 2008-12-11 | Schott Ag | Low-melting lead-free solder glass and uses thereof |
US7799712B2 (en) * | 2007-05-30 | 2010-09-21 | Schott Ag | Low-melting lead-free solder glass and uses thereof |
KR100880373B1 (en) | 2007-07-06 | 2009-01-28 | 주식회사 케이디엘 | Manufacturing method and composition of flit in one united exhausting pipe of flat panel display device |
JP2009057238A (en) * | 2007-08-31 | 2009-03-19 | Nippon Electric Glass Co Ltd | Sealing material |
JP2009073729A (en) * | 2007-08-31 | 2009-04-09 | Nippon Electric Glass Co Ltd | Sealing material |
WO2009107428A1 (en) * | 2008-02-28 | 2009-09-03 | 日本電気硝子株式会社 | Sealing material for organic el display |
JP2009227566A (en) * | 2008-02-28 | 2009-10-08 | Nippon Electric Glass Co Ltd | Sealing material for organic el display |
JP2014012634A (en) * | 2008-02-28 | 2014-01-23 | Nippon Electric Glass Co Ltd | Glass substrate with dry film for organic el display |
JP2014001134A (en) * | 2008-02-28 | 2014-01-09 | Nippon Electric Glass Co Ltd | Method of manufacturing an organic el display |
US8133829B2 (en) | 2008-03-28 | 2012-03-13 | Asahi Glass Company, Limited | Frit |
WO2009128527A1 (en) * | 2008-04-18 | 2009-10-22 | 日本電気硝子株式会社 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
JP2010013332A (en) * | 2008-07-07 | 2010-01-21 | Nippon Electric Glass Co Ltd | Bismuth-based glass composition and sealing material |
JP2010047441A (en) * | 2008-08-21 | 2010-03-04 | Nippon Electric Glass Co Ltd | Sealing material for organic el display |
WO2010067848A1 (en) * | 2008-12-12 | 2010-06-17 | 旭硝子株式会社 | Sealing glass, glass member having sealing material layer, and electronic device and method for producing the same |
JP5413373B2 (en) * | 2008-12-12 | 2014-02-12 | 旭硝子株式会社 | Laser sealing glass material, glass member with sealing material layer, and electronic device and manufacturing method thereof |
US8871348B2 (en) | 2009-07-24 | 2014-10-28 | Nippon Electric Glass Co. Ltd. | Glass substrate with conductive film for solar cell |
CN102939270A (en) * | 2010-06-14 | 2013-02-20 | 旭硝子株式会社 | Sealing material paste, and process for production of electronic device using same |
CN102939270B (en) * | 2010-06-14 | 2015-11-25 | 旭硝子株式会社 | Sealing material is stuck with paste and is used its manufacture method of electron device |
JP2013177308A (en) * | 2013-05-28 | 2013-09-09 | Nippon Electric Glass Co Ltd | Crystalline bismuth-based material |
Also Published As
Publication number | Publication date |
---|---|
JP4815975B2 (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4815975B2 (en) | Low melting glass, sealing composition and sealing paste | |
JP4774721B2 (en) | Low melting glass, sealing composition and sealing paste | |
US7291573B2 (en) | Low melting glass, sealing composition and sealing paste | |
JP3827987B2 (en) | Lead-free glass frit | |
JP4826137B2 (en) | Bismuth-based lead-free glass composition | |
JP4930897B2 (en) | Bi2O3-B2O3 sealing material | |
JP5083706B2 (en) | Bismuth-based glass composition and bismuth-based sealing material | |
JP5212884B2 (en) | Bismuth-based sealing material and bismuth-based paste material | |
JP2009256183A (en) | Frit | |
WO2019225335A1 (en) | Glass composition and sealing material | |
JP7090838B2 (en) | Glass composition and sealing material | |
JP4556624B2 (en) | Sealing powder and sealing paste | |
JP2006335584A (en) | Bismuth-based lead-free sealing material | |
JP2008098147A (en) | Plane display device | |
JP3748533B2 (en) | Low melting glass and method for producing the same | |
JP5083704B2 (en) | Bismuth sealing material | |
JP5232395B2 (en) | Glass paste composition and sealing method | |
JP4941880B2 (en) | Bismuth-based glass composition and bismuth-based sealing material | |
JP2006143480A (en) | Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL | |
JP2007161524A (en) | Bismuth-based glass composition | |
JP6816538B2 (en) | Silver phosphoric acid-based glass composition and sealing material | |
WO2020235284A1 (en) | Glass composition and sealing material | |
KR101008201B1 (en) | Lead-free frit composition for flat display panel sealing | |
JP7385169B2 (en) | Glass compositions and sealing materials | |
JP3904488B2 (en) | Sealing glass for display panel and display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071029 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090722 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110815 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4815975 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |