Nothing Special   »   [go: up one dir, main page]

JP2007007565A - Reinforcing structure for hydrogen-permeable film, and its manufacturing method - Google Patents

Reinforcing structure for hydrogen-permeable film, and its manufacturing method Download PDF

Info

Publication number
JP2007007565A
JP2007007565A JP2005192316A JP2005192316A JP2007007565A JP 2007007565 A JP2007007565 A JP 2007007565A JP 2005192316 A JP2005192316 A JP 2005192316A JP 2005192316 A JP2005192316 A JP 2005192316A JP 2007007565 A JP2007007565 A JP 2007007565A
Authority
JP
Japan
Prior art keywords
hydrogen permeable
reinforcing structure
film
hydrogen
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005192316A
Other languages
Japanese (ja)
Inventor
Isamu Yasuda
勇 安田
Yoshinori Shirasaki
義則 白崎
Tatsuya Tsuneki
達也 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2005192316A priority Critical patent/JP2007007565A/en
Publication of JP2007007565A publication Critical patent/JP2007007565A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • ing And Chemical Polishing (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing structure for a hydrogen-permeable film which, itself has a simple structure, has airtightness and adhesiveness, and has an excellent handling performance of the hydrogen-permeable film in manufacturing, and to provide its manufacturing method. <P>SOLUTION: The reinforcing structure for the hydrogen-permeable film and its manufacturing method is characterized in that the reinforcing structure for the hydrogen-permeable film is disposed with a hydrogen-permeable foil film on one side surface of a metal frame body having a vertically penetrating opening. On the one side surface of the metal frame body is sequentially provided with a diffusion prevention layer and an intermediate layer, thereafter the hydrogen-permeable foil film is joined to the intermediate layer. Then selective etching is performed from the metal plate side to expose the hydrogen-permeable foil film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素透過膜補強構造体及びその作製方法に関し、より具体的には上下に貫通した開口を有する金属製枠体の片面周面にPd、Pd合金等の水素透過性箔膜を配してなる水素透過膜補強構造体及びその作製方法に関する。   The present invention relates to a hydrogen permeable membrane reinforcing structure and a method for manufacturing the same, and more specifically, a hydrogen permeable foil membrane such as Pd or Pd alloy is disposed on one surface of a metal frame having an opening penetrating vertically. The present invention relates to a hydrogen permeable membrane reinforcing structure and a manufacturing method thereof.

例えば、水素の製造方法の一つである炭化水素の水蒸気改質法で得られる改質ガスには主成分である水素のほか、CO、CO2等の副生成分や余剰H2Oが含まれている。このため改質ガスを、例えば燃料電池の燃料としてそのまま使用したのでは電池性能を阻害してしまう。燃料電池のうちPAFCで用いる水素ガス中のCOは1vol%、PEFCでは100volppmが限度であり、これらを越えると電池性能が著しく劣化する。このためそれら副生成分や余剰H2Oは燃料電池に導入する前に除去する必要がある。 For example, the reformed gas obtained by the steam reforming method of hydrocarbons, which is one of the methods for producing hydrogen, contains by-products such as CO and CO 2 and surplus H 2 O in addition to hydrogen as the main component. It is. For this reason, if the reformed gas is used as it is, for example, as fuel for a fuel cell, the cell performance is impaired. Of the fuel cells, CO in hydrogen gas used in PAFC is limited to 1 vol%, and PEFC is limited to 100 vol ppm. For this reason, these by-products and surplus H 2 O must be removed before being introduced into the fuel cell.

そのような高純度の水素を得るための水素の精製法の一つとして水素透過膜法がある。水素透過膜法は、Pd、Pd合金等の水素透過性箔膜すなわち水素透過膜が水素以外のガスは透過せず、水素のみを選択的に透過する特性を利用するものである。水素含有ガスを水素透過膜に通すことで水素が選択的に透過して分離精製される。この場合、水素透過膜の膜厚は0.5〜20μm程度というように極薄のシート(箔)であるため、水素透過膜を支持するための枠体が必要である。   One hydrogen purification method for obtaining such high-purity hydrogen is a hydrogen permeable membrane method. In the hydrogen permeable membrane method, a hydrogen permeable foil membrane such as Pd or Pd alloy, that is, a hydrogen permeable membrane does not permeate gases other than hydrogen, but utilizes a characteristic of selectively permeating only hydrogen. By passing the hydrogen-containing gas through the hydrogen permeable membrane, hydrogen is selectively permeated and separated and purified. In this case, since the film thickness of the hydrogen permeable membrane is an extremely thin sheet (foil) such as about 0.5 to 20 μm, a frame for supporting the hydrogen permeable membrane is necessary.

図9〜10は、特開2001−276558号公報(以下、558号公報と言う)に開示された図で、図9は水素ガス分離ユニットの構造を説明するための分解斜視図、図10はそのユニットを組み込んだ水素ガス分離体の概略斜視図である。図9中、31は展張枠(枠体)で、ステンレス鋼等で構成される。展張枠31は、クラッド切板の周囲部分101と中央部分102となる部分にマスキングし、開口Sとなる部分をエッチング処理して、周囲部分101と中央部分102を残して形成される。32はPd合金箔などの水素ガス分離性を有する材料(水素透過性箔膜)、33は金属支持板、bは細孔である。こうして構成される水素ガス分離ユニットは、図10のとおり、金属支持板33の面が内側になるように、その周囲をレーザー溶接などでケース34に固定化して水素ガス分離体とされる。35は精製水素取出管である。   9 to 10 are figures disclosed in Japanese Patent Laid-Open No. 2001-276558 (hereinafter referred to as 558), FIG. 9 is an exploded perspective view for explaining the structure of the hydrogen gas separation unit, and FIG. It is a schematic perspective view of the hydrogen gas separator incorporating the unit. In FIG. 9, reference numeral 31 denotes an extension frame (frame body), which is made of stainless steel or the like. The stretch frame 31 is formed by masking the portions to be the peripheral portion 101 and the central portion 102 of the clad cut plate, etching the portion to be the opening S, and leaving the peripheral portion 101 and the central portion 102. 32 is a hydrogen gas separating material (hydrogen permeable foil film) such as Pd alloy foil, 33 is a metal support plate, and b is a pore. As shown in FIG. 10, the hydrogen gas separation unit configured in this manner is fixed to the case 34 by laser welding or the like so that the surface of the metal support plate 33 is on the inside to form a hydrogen gas separator. Reference numeral 35 denotes a purified hydrogen take-out pipe.

また、特開2004−142355号公報(以下、355号公報と言う)においては、558号公報のような水素ガス分離ユニットでは、Pd合金膜などの水素透過層に、分離機能を害してしまいかねないピンホールの発生などの問題があるとし、これを解決するとして、エッチング加工時に水素透過層に悪影響を与えないような、支持層とAg等の中間層と透過層を複数層積層した積層体を用いてエッチング処理する開口積層体の製造方法が提案されている。図11は355号公報に開示された図である。   In Japanese Patent Application Laid-Open No. 2004-142355 (hereinafter referred to as “355”), a hydrogen gas separation unit such as 558 may impair the separation function on a hydrogen-permeable layer such as a Pd alloy membrane. In order to solve the problem such as the occurrence of pinholes that are not present, a laminate in which a support layer, an intermediate layer such as Ag, and a transmission layer are laminated so as not to adversely affect the hydrogen transmission layer during etching processing There has been proposed a method of manufacturing an opening laminate that is etched using a metal. FIG. 11 is a diagram disclosed in Japanese Patent No. 355.

図11において、支持層46のうち、中間層48との接合予定面を活性化処理し、また、中間層48のうち、支持層46との接合予定面を活性化処理する。そして両層を積層する。図11(a)はこの2層積層体を示している。この積層体の中間層48側の面に水素透過層44が積層される。図11(b)はこの3層積層体を示している。次に、3層積層体にエッチング加工を施して、3層積層体の周辺部を残し、中央部に開口をあける。エッチング加工に際して、支持層46の材質、中間層48の材質、エッチング液などを適切に選定することで、中間層48をエッチングストップとして機能させる。図11(c)はこの状態を示している。そして、さらに中間層48をエッチング加工をして図11(d)の状態とする。支持層46はエッチング処理後、透過層44を支持する枠体となる。   In FIG. 11, the surface to be bonded to the intermediate layer 48 in the support layer 46 is activated, and the surface to be bonded to the support layer 46 in the intermediate layer 48 is activated. Then, both layers are laminated. FIG. 11A shows this two-layer laminate. A hydrogen permeable layer 44 is laminated on the surface of the laminated body on the intermediate layer 48 side. FIG. 11B shows this three-layer laminate. Next, the three-layer laminate is etched to leave a peripheral portion of the three-layer laminate, and an opening is formed in the central portion. In the etching process, the intermediate layer 48 functions as an etching stop by appropriately selecting the material of the support layer 46, the material of the intermediate layer 48, the etching solution, and the like. FIG. 11C shows this state. Further, the intermediate layer 48 is etched to obtain the state shown in FIG. The support layer 46 becomes a frame that supports the transmission layer 44 after the etching process.

特開2001−276558号公報JP 2001-276558 A 特開2004−142355号公報JP 2004-142355 A

ところで、558号公報や355号公報に記載の技術で、Pd合金箔を用いて水素透過膜モジュールを作製する場合に重要であるのが、水素透過性箔膜のハンドリング性、つまり取り扱いの容易さと接合時の気密性の確保である。これを実現するために、558号公報では、ステンレス鋼板と水素透過性箔膜とをクラッド接合し、ステンレス鋼/水素透過性箔膜間の気密性を確保する。その後、ステンレス鋼の選択エッチングにより水素透過部を設け、ステンレス鋼枠−Pd膜接合体を得る。この形態は、ステンレス鋼枠での補強がなされているため、膜としての取り扱いが容易で、かつステンレス鋼/水素透過性箔膜間の気密性も確保されているため、この後の支持層への接合工程でも高い歩留まり率が期待できる。   By the way, in the technique described in 558 and 355, it is important to manufacture a hydrogen permeable membrane module using Pd alloy foil. Ensuring airtightness at the time of joining. In order to realize this, in Japanese Patent No. 558, a stainless steel plate and a hydrogen permeable foil film are clad-bonded to ensure airtightness between the stainless steel / hydrogen permeable foil film. Thereafter, a hydrogen permeable portion is provided by selective etching of stainless steel to obtain a stainless steel frame-Pd membrane assembly. Since this form is reinforced with a stainless steel frame, it is easy to handle as a membrane, and the airtightness between the stainless steel / hydrogen permeable foil membrane is ensured. Even in this bonding process, a high yield rate can be expected.

しかし、ステンレス鋼板と水素透過性箔膜とを直接接触させた接合体を炭化水素の水蒸気改質条件等の高温下(500〜700℃)で使用すると、互いの成分が相互拡散し、水素透過性箔膜を変質させるため、膜の強度、気密性及び水素透過性能を著しく低下させるという問題があった。また、558号公報にあるように、中間層としてAg等を挿入しても、例えばPd合金系の膜材料を用いた場合には、Ag自体が膜成分に固溶し、その後同様にPd合金膜とステンレス鋼板が相互拡散することが予想され、上記問題を解決することはできない。   However, when a joined body in which a stainless steel plate and a hydrogen permeable foil film are in direct contact with each other is used under a high temperature (500 to 700 ° C.) such as a hydrocarbon steam reforming condition, the components mutually diffuse and hydrogen permeation occurs. In order to alter the conductive foil film, there has been a problem that the film strength, gas tightness and hydrogen permeation performance are remarkably lowered. Further, as disclosed in Japanese Patent No. 558, even if Ag or the like is inserted as an intermediate layer, for example, when a Pd alloy-based film material is used, Ag itself is dissolved in the film component, and thereafter, Pd alloy It is expected that the film and the stainless steel plate will diffuse to each other, and the above problem cannot be solved.

本発明は、上記のような欠点がなく、構造自体簡単で且つ水素透過膜である水素透過性箔膜の取り扱いも容易な水素透過膜補強構造体及びその作製方法を提供することを目的とするものである。   An object of the present invention is to provide a hydrogen permeable membrane reinforcing structure that does not have the above-described drawbacks, has a simple structure, and is easy to handle a hydrogen permeable foil membrane that is a hydrogen permeable membrane, and a method for manufacturing the same. Is.

本発明は、(1)上下に貫通した開口を有する金属製枠体の片面に水素透過性箔膜を配してなる水素透過膜補強構造体である。そして、金属製板体の片面に順次拡散防止層及び中間層を設けた後、該中間層に水素透過性箔膜を接合し、次いで金属製板体側から選択エッチングを行い水素透過性箔膜を露出させてなることを特徴とする。ここで、金属製枠体の片面とは、金属製枠体の上下両面のうちの一方の面を意味し、この点以下同じである。   The present invention is (1) a hydrogen permeable membrane reinforcing structure in which a hydrogen permeable foil membrane is arranged on one side of a metal frame having an opening penetrating vertically. Then, after sequentially providing a diffusion preventing layer and an intermediate layer on one side of the metal plate, a hydrogen permeable foil membrane is bonded to the intermediate layer, and then selective etching is performed from the metal plate side to form a hydrogen permeable foil membrane. It is characterized by being exposed. Here, the one side of the metal frame means one side of the upper and lower surfaces of the metal frame, and the same applies in this respect.

本発明は、(2)上下に貫通した開口を有する金属製枠体の片面に水素透過性箔膜を配してなる水素透過膜補強構造体の作製方法である。そして、金属製板体の片面に順次拡散防止層及び中間層を設けた後、該中間層に水素透過性箔膜を接合し、次いで金属製板体側から選択エッチングを行い水素透過性箔膜を露出させることを特徴とする。本発明(2)は本発明(1)の水素透過膜補強構造体の作製方法に相当している。   The present invention is (2) a method for producing a hydrogen permeable membrane reinforcing structure in which a hydrogen permeable foil membrane is disposed on one side of a metal frame having openings extending vertically. Then, after sequentially providing a diffusion preventing layer and an intermediate layer on one side of the metal plate, a hydrogen permeable foil membrane is bonded to the intermediate layer, and then selective etching is performed from the metal plate side to form a hydrogen permeable foil membrane. It is exposed. The present invention (2) corresponds to the method for producing the hydrogen permeable membrane reinforcing structure of the present invention (1).

本発明は、(3)上下に貫通した開口を有する金属製枠体の片面に水素透過性箔膜を配してなる水素透過膜補強構造体である。そして、金属製板体の片面に順次第一の中間層、拡散防止層及び第二の中間層を設けた後、第二の中間層に水素透過性箔膜を接合し、次いで、金属製板体側から選択エッチングを行い水素透過性箔膜を露出させてなることを特徴とする。   The present invention is (3) a hydrogen permeable membrane reinforcing structure in which a hydrogen permeable foil membrane is arranged on one side of a metal frame having openings that penetrate vertically. And after providing a 1st intermediate | middle layer, a diffusion prevention layer, and a 2nd intermediate | middle layer sequentially on the single side | surface of a metal plate body, a hydrogen-permeable foil film | membrane is joined to the 2nd intermediate | middle layer, and then a metal plate The hydrogen permeable foil film is exposed by selective etching from the body side.

本発明は、(4)上下に貫通した開口を有する金属製枠体の片面に水素透過性箔膜を配してなる水素透過膜補強構造体の作製方法である。そして、金属製板体の片面に順次拡散防止層及び中間層を設けた後、該中間層に水素透過性箔膜を接合し、次いで金属製板体側から選択エッチングを行い水素透過性箔膜を露出させることを特徴とする。本発明(4)は本発明(3)の水素透過膜補強構造体の作製方法に相当している。   The present invention is (4) a method for producing a hydrogen permeable membrane reinforcing structure in which a hydrogen permeable foil membrane is disposed on one side of a metal frame having openings that penetrate vertically. Then, after sequentially providing a diffusion preventing layer and an intermediate layer on one side of the metal plate, a hydrogen permeable foil membrane is bonded to the intermediate layer, and then selective etching is performed from the metal plate side to form a hydrogen permeable foil membrane. It is exposed. The present invention (4) corresponds to the method for producing the hydrogen permeable membrane reinforcing structure of the present invention (3).

従来技術では、558号公報のように、気密性及び膜のハンドリング性確保のために水素透過性箔膜とステンレス鋼板(金属製枠体)を直接クラッド接合していたが、各々の成分の相互拡散により、水素透過性箔膜に多大なダメージを与えるという問題があった。これに対して、本発明によれば、両者の間に拡散防止層及び中間層を介在させることにより、気密性、密着性及び作製時のハンドリング性を確保した上で、各々の成分の相互拡散を防止することができる。また、その中間層に加えて、ステンレス鋼板(金属製枠体)と拡散防止層との間に中間層を介在せることにより、金属製枠体と拡散防止層との間の接合強度を高めることができる。   In the prior art, as disclosed in Japanese Patent No. 558, a hydrogen-permeable foil film and a stainless steel plate (metal frame) are directly clad-bonded to ensure airtightness and film handling properties. Due to the diffusion, there is a problem that the hydrogen permeable foil film is greatly damaged. On the other hand, according to the present invention, by interposing a diffusion preventing layer and an intermediate layer between them, the mutual diffusion of each component is ensured while ensuring airtightness, adhesion, and handling during production. Can be prevented. In addition to the intermediate layer, the intermediate layer is interposed between the stainless steel plate (metal frame) and the diffusion prevention layer, thereby increasing the bonding strength between the metal frame and the diffusion prevention layer. Can do.

〈本発明(1)〜(2)の態様〉
本発明(1)〜(2)においては、金属製枠体と水素透過性箔膜との間に拡散防止層と中間層を設ける。図1〜2はこの態様を説明する図である。図1(a)〜(g)はその作製過程を説明する図、図2(a)〜(b)はその作製過程における図1(f)〜(g)の斜視図である。図1〜2において、1は金属製板体、2は拡散防止層、3は中間層、4は水素透過性箔膜すなわち水素透過膜である。水素透過性箔膜は、水素含有ガスから水素を選択的に透過して分離精製する。
<Aspects of the present invention (1) to (2)>
In the present invention (1) to (2), a diffusion preventing layer and an intermediate layer are provided between the metal frame and the hydrogen permeable foil film. 1 and 2 are diagrams for explaining this aspect. 1A to 1G are diagrams for explaining the manufacturing process, and FIGS. 2A to 2B are perspective views of FIGS. 1F to 1G in the manufacturing process. 1-2, 1 is a metal plate body, 2 is a diffusion preventing layer, 3 is an intermediate layer, and 4 is a hydrogen permeable foil film, that is, a hydrogen permeable film. The hydrogen permeable foil membrane selectively separates and purifies hydrogen by selectively permeating hydrogen from the hydrogen-containing gas.

図1(a)は金属製板体1を示している。金属製板体1の構成材料は、エッチング加工が可能で、エッチング処理後の枠面に形成された部材、すなわち拡散防止層2、中間層3、水素透過性箔膜4を十分に支持し得る強度等を有する金属であればよく、その例としてはステンレス鋼、ニッケル、ニッケル基合金、銅合金、鉄基合金(鉄ニッケル合金等)などが挙げられる。   FIG. 1A shows a metal plate 1. The constituent material of the metal plate 1 can be etched, and can sufficiently support the members formed on the frame surface after the etching process, that is, the diffusion preventing layer 2, the intermediate layer 3, and the hydrogen permeable foil film 4. Any metal having strength and the like may be used, and examples thereof include stainless steel, nickel, nickel-base alloy, copper alloy, iron-base alloy (iron-nickel alloy, etc.), and the like.

金属製板体1は、後述選択エッチング処理後、上下に貫通した開口を有する金属製枠体1となるので、金属製板体1の構成材料はそのまま金属製枠体1の構成材料となる。   Since the metal plate body 1 becomes the metal frame body 1 having an opening penetrating vertically after the selective etching process described later, the constituent material of the metal plate body 1 becomes the constituent material of the metal frame body 1 as it is.

金属製板体1の片面に拡散防止層2を設ける。図1(b)はこの状態を示している。拡散防止層2の形成の仕方としては、デイップコート法、スプレー吹き付け法、印刷法、アークイオンプレーティング法、蒸着法などによって行うことができる。このうち印刷法は、金属製板体1が平板であるので特に有用である。拡散防止層2の厚さはその目的、すなわち金属製枠体1の成分と中間層3及び水素透過性箔膜4との相互拡散防止を達成し得る範囲で適宜選定することができる。その範囲は好ましくは0.05〜1μmである。   A diffusion prevention layer 2 is provided on one side of the metal plate 1. FIG. 1B shows this state. The diffusion preventing layer 2 can be formed by dip coating, spraying, printing, arc ion plating, vapor deposition, or the like. Among these, the printing method is particularly useful because the metal plate 1 is a flat plate. The thickness of the diffusion preventing layer 2 can be appropriately selected within the range where the purpose, that is, the mutual diffusion prevention between the components of the metal frame 1 and the intermediate layer 3 and the hydrogen permeable foil film 4 can be achieved. The range is preferably 0.05 to 1 μm.

拡散防止層2の構成材料としては、高融点金属またはセラミックスが用いられる。このうち高融点金属は、融点が1800℃以上の金属であり、その例としてはZr、Mo、Ta、W、Cr、Hf、Nb、Ruなどが挙げられる。また、セラミックスは、Ti、Si、Al、Mg、Ca、Y、Zr、Hfの群から選択される一種以上の元素とN、C、O、Bの群から選択される一種以上の元素とからなる化合物であり、その例としてはTiN、TiC、TiO2、TiB、Si34、SiC、SiO2、AlN、Al23、MgO、CaO、AlSiOX、Y23、ZrO2、TiAlN、MgO・Al23、2MgO・SiO2などが挙げられる。これらセラミックスは、単層で拡散防止層とするほか、例えばAl23層とZrO2層というように複数層積層して拡散防止層とする場合もある。 A refractory metal or ceramic is used as a constituent material of the diffusion preventing layer 2. Among them, the high melting point metal is a metal having a melting point of 1800 ° C. or higher, and examples thereof include Zr, Mo, Ta, W, Cr, Hf, Nb, Ru, and the like. The ceramic is composed of one or more elements selected from the group of Ti, Si, Al, Mg, Ca, Y, Zr, and Hf and one or more elements selected from the group of N, C, O, and B. Examples thereof are TiN, TiC, TiO 2 , TiB, Si 3 N 4 , SiC, SiO 2 , AlN, Al 2 O 3 , MgO, CaO, AlSiO X , Y 2 O 3 , ZrO 2 , TiAlN, MgO.Al 2 O 3 , 2MgO.SiO 2 and the like can be mentioned. These ceramics may be used as a diffusion prevention layer as a single layer or as a diffusion prevention layer by laminating a plurality of layers such as an Al 2 O 3 layer and a ZrO 2 layer.

次いで、拡散防止層2の面に対して中間層3を配置して3層積層体とする。図1(c)はこの状態を示している。中間層3は、拡散防止層2と水素透過膜4との間の接合強度を高めるための層であり、拡散防止層2の面に対してメッキ法や蒸着法、アークイオンプレーティング法、その他適宜の方法により層状に塗布することにより行うことができる。   Next, the intermediate layer 3 is disposed on the surface of the diffusion preventing layer 2 to form a three-layer laminate. FIG. 1C shows this state. The intermediate layer 3 is a layer for increasing the bonding strength between the diffusion preventing layer 2 and the hydrogen permeable film 4. The surface of the diffusion preventing layer 2 is plated, vapor deposited, arc ion plating, etc. It can carry out by apply | coating to layer form by an appropriate method.

中間層3の構成材料としては、Au、Ag、Cu、Al、Ti、Ni、Co、Pt、Pd、Rh、Ruなどが用いられる。それら金属の二種以上を組み合わせてもよい。中間層3の厚さは拡散防止層2と水素透過性箔膜4との密着性を確保し得る範囲で適宜選択することができる。その範囲は0.05〜20μm、好ましくは0.1〜10μmである。   As the constituent material of the intermediate layer 3, Au, Ag, Cu, Al, Ti, Ni, Co, Pt, Pd, Rh, Ru, or the like is used. Two or more of these metals may be combined. The thickness of the intermediate layer 3 can be appropriately selected as long as the adhesion between the diffusion preventing layer 2 and the hydrogen permeable foil film 4 can be secured. The range is 0.05 to 20 μm, preferably 0.1 to 10 μm.

そして、図1(e)のように、この3層積層体の中間層3側の面に水素透過性箔膜4を配置、接合する。この配置作業は、3層積層体の中間層3側の全面に水素透過性箔膜を貼り付けるだけでよいので、容易に配置することができる。   And as shown in FIG.1 (e), the hydrogen permeable foil film | membrane 4 is arrange | positioned and joined to the surface at the side of the intermediate | middle layer 3 of this three-layer laminated body. Since this arrangement | positioning operation only needs to stick a hydrogen-permeable foil film on the whole surface by the side of the intermediate | middle layer 3 of a three-layer laminated body, it can arrange | position easily.

水素透過性箔膜4は、水素を選択的に透過する機能を有する材料で構成された箔膜であれば特に限定はなく、その例として下記(1)〜(6)が挙げられる。
(1)Pd膜
(2)Pd合金膜
(3)5族金属(V、NbまたはTa)と6族金属(Cr、Mo、W)その他の金属との合金膜
(4)Pd合金膜の多層膜(すなわちPd合金膜自体の多層膜)
(5)Pd膜と、5族金属(V、NbまたはTa)と6族金属(Cr、Mo、W)その他の金属との合金膜と、の多層膜
(6)Pd合金膜と、5族金属(V、NbまたはTa)と6族金属(Cr、Mo、W)その他の金属との合金膜と、の多層膜
このうち、(2)Pd合金膜はPdと他の金属との合金膜であり、Pdと合金化する金属としてはAu、Ag、Cu、Pt、Rh、Ru、Ir、Ce、Sm、Tb、Dy、Ho、Er、Yb、Y、Gdが挙げられる。それら金属の二種以上を組み合わせてPdと合金化してもよい。
これらの材料からなる箔膜は、圧延法、イオンプレーティング法、メッキ法など各種手法により作製される。
The hydrogen permeable foil film 4 is not particularly limited as long as it is a foil film made of a material having a function of selectively transmitting hydrogen, and examples thereof include the following (1) to (6).
(1) Pd film (2) Pd alloy film (3) Alloy film of Group 5 metal (V, Nb or Ta) and Group 6 metal (Cr, Mo, W) or other metals (4) Multilayer of Pd alloy film Film (ie, multilayer film of Pd alloy film itself)
(5) Multi-layer film of Pd film, alloy film of Group 5 metal (V, Nb or Ta) and Group 6 metal (Cr, Mo, W) or other metal (6) Pd alloy film and Group 5 Multilayer film of metal (V, Nb or Ta) and group 6 metal (Cr, Mo, W) or other metal alloy film Among them, (2) Pd alloy film is an alloy film of Pd and other metal Examples of the metal alloyed with Pd include Au, Ag, Cu, Pt, Rh, Ru, Ir, Ce, Sm, Tb, Dy, Ho, Er, Yb, Y, and Gd. Two or more of these metals may be combined and alloyed with Pd.
A foil film made of these materials is produced by various methods such as a rolling method, an ion plating method, and a plating method.

水素透過性箔膜は穴のない緻密な膜であることが必要であるが、本発明においては拡散防止層2を介しているので、水素透過性箔膜自体を薄膜化できる。その厚さは1〜100μmの範囲、好ましくは5〜50μmの範囲、より好ましくは5〜30μmの範囲で選ぶことができる。例えばPdやPd合金は高価であるが、薄膜化により、コスト低減が可能であり、また水素透過速度の向上が可能となる。水素透過性箔膜は、そのように極薄の膜であるため、取り扱いが非常に困難であるが、本発明によれば、そのような水素透過性箔膜を中間層3の全面に配置するので容易に配置でき、また冷間圧延法、熱間圧延法、拡散接合法などにより、容易に接合することができる。   The hydrogen permeable foil film needs to be a dense film having no holes, but since the diffusion preventing layer 2 is interposed in the present invention, the hydrogen permeable foil film itself can be thinned. The thickness can be selected in the range of 1 to 100 μm, preferably in the range of 5 to 50 μm, more preferably in the range of 5 to 30 μm. For example, Pd and Pd alloys are expensive, but the cost can be reduced and the hydrogen permeation rate can be improved by reducing the film thickness. Since the hydrogen permeable foil membrane is such an extremely thin film, it is very difficult to handle, but according to the present invention, such a hydrogen permeable foil membrane is disposed on the entire surface of the intermediate layer 3. Therefore, it can arrange | position easily and can join easily by a cold rolling method, a hot rolling method, a diffusion bonding method, etc.

こうして形成した3層積層体と水素透過性箔膜を一体化した積層体のうち、金属製板体1の周縁上面、すなわち水素透過膜4を支持する枠となる部分にマスキングをする。マスキングは、金属製板体1の当該周縁上面にPVA−重クロム酸水溶液などのレジスト液を施し、乾燥することにより行う。レジスト液の施工にはロールコート法、スピンコート法、ディップ引き上げ法などが適用できる。レジスト膜の厚さは、エッチング工程の際に当該周縁上面を保護できる厚さであればよく、例えば5〜10μm程度とする。図1(f)はそのようにしてマスキングをした状態を示し、図2(a)にその状態を斜視図として示している。   Masking is performed on the peripheral upper surface of the metal plate 1, that is, the portion that serves as a frame for supporting the hydrogen permeable membrane 4 in the laminate obtained by integrating the three-layer laminate and the hydrogen permeable foil membrane thus formed. Masking is performed by applying a resist solution such as a PVA-bichromic acid aqueous solution to the peripheral upper surface of the metal plate 1 and drying it. For the application of the resist solution, a roll coating method, a spin coating method, a dip pulling method, or the like can be applied. The thickness of the resist film only needs to be a thickness that can protect the upper surface of the peripheral edge during the etching process, and is, for example, about 5 to 10 μm. FIG. 1 (f) shows a state where masking is performed in this manner, and FIG. 2 (a) shows the state as a perspective view.

そして、選択エッチング、すなわちマスキング部分を除く部分をエッチングする。エッチング処理でのエッチング液としては、塩化第2鉄水溶液などが用いられる。この処理において、マスキングしない金属製板体1の露出部分から、拡散防止層2、中間層3へと選択的にエッチングされ、図1(g)中Sとして示すように凹部すなわち開口が形成される。図2(b)は凹部Sを形成した状態の斜視図で、図2(b)中A−A線断図が図1(g)に相当する。金属製板体1は当該選択エッチング後金属製枠体1となる。   Then, selective etching, that is, a portion excluding the masking portion is etched. As an etching solution in the etching process, a ferric chloride aqueous solution or the like is used. In this process, the exposed portion of the metal plate 1 that is not masked is selectively etched into the diffusion preventing layer 2 and the intermediate layer 3 to form a recess, that is, an opening as indicated by S in FIG. . FIG. 2B is a perspective view showing a state in which the concave portion S is formed, and a sectional view taken along line AA in FIG. 2B corresponds to FIG. The metal plate 1 becomes the metal frame 1 after the selective etching.

この開口Sを有する積層体が本発明(1)の水素透過膜補強構造体に相当し、その作製工程が本発明(2)に相当している。この水素透過膜補強構造体は、図1(g)、図2(b)のとおり、上下に貫通した開口Sを有する金属製枠体1の片面〔図1(g)、図2(b)で言えば下面〕と、この面に対応する水素透過性箔膜4の周縁上面との間に拡散防止層2と中間層3が介在しており、開口Sの底部に水素透過性箔膜4が露出した形になっている。   The laminate having the opening S corresponds to the hydrogen permeable membrane reinforcing structure of the present invention (1), and the manufacturing process thereof corresponds to the present invention (2). As shown in FIGS. 1 (g) and 2 (b), this hydrogen permeable membrane reinforcing structure has one side of a metal frame 1 having an opening S penetrating vertically (FIGS. 1 (g) and 2 (b)). The diffusion preventing layer 2 and the intermediate layer 3 are interposed between the lower surface] and the peripheral upper surface of the hydrogen permeable foil film 4 corresponding to this surface, and the hydrogen permeable foil film 4 at the bottom of the opening S. Is exposed.

〈本発明(3)〜(4)の態様〉
本発明(3)〜(4)においては、金属製枠体と拡散防止層との間に中間層を設け且つ拡散中間層と水素透過膜との間に中間層を設ける。図3はこの態様を説明する図である。水素透過膜補強構造体を図3(a)〜(h)の順序で形成し、図3(h)の構造とする。図3において、21は金属製板体、22は中間層、23は拡散防止層、24は中間層、25は水素透過性箔膜である。ここで本態様では、中間層22を第一の中間層、中間層24を第二の中間層と言う。
<Aspects of the present invention (3) to (4)>
In the present invention (3) to (4), an intermediate layer is provided between the metal frame and the diffusion preventing layer, and an intermediate layer is provided between the diffusion intermediate layer and the hydrogen permeable membrane. FIG. 3 is a diagram for explaining this aspect. The hydrogen permeable membrane reinforcing structure is formed in the order shown in FIGS. 3A to 3H to obtain the structure shown in FIG. In FIG. 3, 21 is a metal plate, 22 is an intermediate layer, 23 is a diffusion prevention layer, 24 is an intermediate layer, and 25 is a hydrogen permeable foil film. In this embodiment, the intermediate layer 22 is referred to as a first intermediate layer, and the intermediate layer 24 is referred to as a second intermediate layer.

図3のとおり、金属製板体21と拡散防止層23との間に第一の中間層22を設け、拡散防止層23と水素透過性箔膜25との間に第二の中間層24を設ける。このうち、第一の中間層22は、金属製板体21と拡散防止層23との間の接合強度を高めるための層である。第一の中間層22は、金属製板体21の面に対してメッキ法や蒸着法、アークイオンプレーティング法、その他適宜の方法により層状に塗布することにより形成することができる。   As shown in FIG. 3, a first intermediate layer 22 is provided between the metal plate 21 and the diffusion prevention layer 23, and a second intermediate layer 24 is provided between the diffusion prevention layer 23 and the hydrogen permeable foil film 25. Provide. Among these, the first intermediate layer 22 is a layer for increasing the bonding strength between the metal plate 21 and the diffusion preventing layer 23. The first intermediate layer 22 can be formed by coating the surface of the metal plate body 21 in a layered manner by a plating method, a vapor deposition method, an arc ion plating method, or other appropriate methods.

第一の中間層22の構成材料としては、Au、Ag、Cu、Ni、Co、Pt、Pd、Rh、Ruが用いられる。それら金属は、二種以上を例えば合金として組み合わせた形で用いてもよい。第二の中間層24は、前述〈本発明(1)〜(2)の態様〉における中間層3に相当するもので、中間層3と同じ材料が用いられる。金属製枠体21、拡散防止層23、水素透過性箔膜25の構成材料についても、前述〈本発明(1)〜(2)の態様〉における金属製枠体1、拡散防止層2、水素透過性箔膜4と同じである。   As the constituent material of the first intermediate layer 22, Au, Ag, Cu, Ni, Co, Pt, Pd, Rh, and Ru are used. These metals may be used in the form of a combination of two or more, for example, as an alloy. The second intermediate layer 24 corresponds to the intermediate layer 3 in the above-described <Aspects of the present invention (1) to (2)>, and the same material as the intermediate layer 3 is used. Regarding the constituent materials of the metal frame 21, the diffusion preventing layer 23, and the hydrogen permeable foil film 25, the metal frame 1, the diffusion preventing layer 2, and the hydrogen in the above-described <aspects of the present invention (1) to (2)>. The same as the permeable foil film 4.

そして、前述〈本発明(1)〜(2)の態様〉において、図1〜2を基に説明したのと同様にして、図3(h)の構造とする。すなわち、図3(d)に示すように第一の中間層22を含む4層積層体を形成する。こうして形成した4層積層体と水素透過性箔膜25を図3(f)のように一体化する。この積層体のうち、金属製板体21の周縁上面、すなわち水素透過膜25を支持する枠となる部分にマスキングをし、そしてマスキング部分を除く部分をエッチングする。金属製板体21は当該選択エッチング後金属製枠体21となる。こうして凹部すなわち開口Sを形成する。図3(h)中Sとして示す部分である。   And in the above-mentioned <mode of this invention (1)-(2)>, it is set as the structure of FIG.3 (h) similarly to having demonstrated based on FIGS. 1-2. That is, as shown in FIG. 3D, a four-layer laminate including the first intermediate layer 22 is formed. The four-layer laminate thus formed and the hydrogen permeable foil film 25 are integrated as shown in FIG. In this laminated body, masking is performed on the peripheral upper surface of the metal plate 21, that is, a portion that becomes a frame for supporting the hydrogen permeable film 25, and a portion other than the masking portion is etched. The metal plate body 21 becomes the metal frame body 21 after the selective etching. In this way, a recess, that is, an opening S is formed. This is a portion indicated as S in FIG.

この開口Sを有する積層体が本発明(3)の水素透過膜補強構造体に相当し、その作製工程が本発明(4)に相当している。この水素透過膜補強構造体は、図3(h)のとおり、上下に貫通した開口Sを有する金属製枠体21の片面〔図3(h)で言えば下面〕と、この面に対応する水素透過性箔膜4の周縁上面との間に第一の中間層22と拡散防止層23と第二の中間層24が介在しており、開口Sの底部に水素透過性箔膜4が露出した形になっている。   The laminated body having the opening S corresponds to the hydrogen permeable membrane reinforcing structure of the present invention (3), and the manufacturing process corresponds to the present invention (4). As shown in FIG. 3H, this hydrogen permeable membrane reinforcing structure corresponds to one surface (the lower surface in FIG. 3H) of the metal frame 21 having an opening S penetrating vertically, and this surface. The first intermediate layer 22, the diffusion preventing layer 23, and the second intermediate layer 24 are interposed between the peripheral upper surface of the hydrogen permeable foil film 4, and the hydrogen permeable foil film 4 is exposed at the bottom of the opening S. It has a shape.

以下、実施例に基づき本発明をさらに詳しく説明するが、本発明が実施例に限定されないことはもちろんである。本実施例では、558号公報に開示された手法により比較例としての水素透過膜補強構造体(以下“比較例水素透過膜補強構造体”と言う)を作製し、また、図1(a)〜(g)のようにして本発明による水素透過膜補強構造体(以下“実施例水素透過膜補強構造体”と言う)を作製し、それぞれについて加熱試験を実施した。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, it cannot be overemphasized that this invention is not limited to an Example. In this example, a hydrogen permeable membrane reinforcing structure as a comparative example (hereinafter referred to as a “comparative example hydrogen permeable membrane reinforcing structure”) was prepared by the method disclosed in Japanese Patent No. 558, and FIG. A hydrogen permeable membrane reinforcing structure according to the present invention (hereinafter referred to as “Example hydrogen permeable membrane reinforcing structure”) according to the present invention was prepared as in (g), and a heating test was performed on each.

〈比較例水素透過膜補強構造体の作製〉
図4(a)に示す工程で作製した。金属製板体1として、厚さ0.1mmのステンレス鋼板(SUS430系)を用い、この片面にPd−Ag合金の水素透過性箔膜4を貼付した後、冷間圧接法により圧接して2層構造体を得た。こうして得た2層構造体のステンレス鋼板側の面の周縁上面に厚さ10μmのマスキングをした。マスキングは、PVA−重クロム酸水溶液をロールコート法により塗布した後、乾燥することで行った。次いで、塩化第2鉄水溶液を用いてエッチング処理した。エッチング処理により、ステンレス鋼板面のうち、マスキングしないステンレス鋼板の露出部分をエッチングして凹部Sを有する開口積層体を得た。
<Production of comparative example hydrogen permeable membrane reinforced structure>
It was fabricated by the process shown in FIG. A stainless steel plate (SUS430 series) having a thickness of 0.1 mm is used as the metal plate 1, and a hydrogen permeable foil film 4 of Pd—Ag alloy is pasted on one side thereof, and then pressed by a cold pressure welding method. A layer structure was obtained. Masking with a thickness of 10 μm was performed on the peripheral upper surface of the surface on the stainless steel plate side of the two-layer structure thus obtained. Masking was performed by applying a PVA-bichromic acid aqueous solution by a roll coating method and then drying. Next, etching was performed using a ferric chloride aqueous solution. By etching, the exposed portion of the stainless steel plate not masked on the stainless steel plate surface was etched to obtain an opening laminate having a recess S.

〈実施例水素透過膜補強構造体の作製〉
金属製板体1として、厚さ0.05mmのステンレス鋼板(SUS430系)を用い、拡散防止層2としてアルミナ(Al23)を用い、中間層3としてAgを用い、水素透過膜4としてPd−Ag合金膜を用いた。ステンレス鋼板の片面にアークイオンプレーティング法によりアルミナ層(厚さ約0.2μm)を形成した。図1(b)に示す2層積層体である。
<Preparation of Example Hydrogen Permeation Membrane Reinforced Structure>
A stainless steel plate (SUS430) having a thickness of 0.05 mm is used as the metal plate 1, alumina (Al 2 O 3 ) is used as the diffusion prevention layer 2, Ag is used as the intermediate layer 3, and the hydrogen permeable membrane 4 is used. A Pd—Ag alloy film was used. An alumina layer (thickness: about 0.2 μm) was formed on one side of the stainless steel plate by arc ion plating. It is a two-layer laminate shown in FIG.

さらに、拡散防止層2の面に、アークイオンプレーティング法によりAg層(厚さ約0.5μm)を形成した。図1(c)に示す3層積層体である。以上のように形成した3層積層体の中間層3側の全面に対して、Pd−Ag合金の水素透過性箔膜を貼付した後、冷間圧接法により圧接し、図1(e)に示すような4層構造体を得た。   Further, an Ag layer (thickness: about 0.5 μm) was formed on the surface of the diffusion preventing layer 2 by an arc ion plating method. It is a three-layer laminated body shown in FIG.1 (c). After affixing a hydrogen permeable foil film of Pd—Ag alloy to the entire surface of the three-layer laminate formed as described above on the intermediate layer 3 side, the film is pressure-welded by a cold pressure welding method as shown in FIG. A four-layer structure as shown was obtained.

こうして得た4層構造体のステンレス鋼板側の面の周縁上面、すなわち水素透過膜4を支持する枠となる部分に図1(f)に示すように厚さ8μmのマスキングをした。マスキングは、水溶液レジストをディップ式により塗布した後、乾燥することで行った。図1(f)を斜視図として示すと図2(a)のようになる。   Masking with a thickness of 8 μm was performed on the peripheral upper surface of the surface of the four-layer structure obtained in this way on the stainless steel plate side, that is, on the portion serving as a frame for supporting the hydrogen permeable membrane 4 as shown in FIG. Masking was performed by applying an aqueous resist by a dip method and then drying. If FIG.1 (f) is shown as a perspective view, it will become like Fig.2 (a).

次いで、塩化第2鉄水溶液を用いてエッチング処理した。エッチング処理は、ステンレス鋼板面のうち、マスキングしないステンレス鋼板の露出部分から、アルミナ層2までエッチングした後、一度水洗してアルミナ粉を除去し、さらにAg層3をエッチングすることで行った。こうして図1(g)に示すような凹部Sを有する開口積層体を得た。図1(g)を斜視図として示すと図2(b)のようになる。図1(a)〜(g)の工程のうち、(c)〜(e)、(g)の工程を図4(a)と対比して図4(b)に示している。   Next, etching was performed using a ferric chloride aqueous solution. The etching treatment was performed by etching from the exposed portion of the stainless steel plate not masked to the alumina layer 2, washing with water once to remove the alumina powder, and further etching the Ag layer 3. Thus, an opening laminate having a recess S as shown in FIG. When FIG.1 (g) is shown as a perspective view, it will become like FIG.2 (b). Among the steps of FIGS. 1A to 1G, the steps of (c) to (e) and (g) are shown in FIG. 4B in comparison with FIG.

〈水素透過膜補強構造体の試験用モジュールの作製〉
水素透過膜補強構造体は、通常、500〜700℃という温度の炭化水素の改質装置に連結するか、あるいはメンブレンリアクタのように炭化水素の水蒸気改質による水素製造、精製装置に一体化して用いられる。そこで、本加熱試験では、上記のとおり作製した比較例水素透過膜補強構造体と実施例水素透過膜補強構造体を、それぞれ、メンブレンリアクタ形式の水素製造、精製装置に組み込んで、加熱試験を実施した。
<Production of test module for hydrogen permeable membrane reinforced structure>
The hydrogen permeable membrane reinforcing structure is usually connected to a hydrocarbon reforming apparatus having a temperature of 500 to 700 ° C., or integrated with a hydrogen production / purification apparatus using hydrocarbon steam reforming like a membrane reactor. Used. Therefore, in this heating test, a comparative hydrogen permeable membrane reinforcing structure and an example hydrogen permeable membrane reinforcing structure prepared as described above were incorporated into a membrane reactor type hydrogen production and purification device, respectively, and a heating test was conducted. did.

実施例水素透過膜補強構造体を組み込んだ試験用モジュールを作製した。図5はその構造体を含む各部材、その作製過程を説明する図である。図5(b)、(f)は2個の実施例水素透過膜補強構造体〔図4(b)参照〕である。図5(a)、(g)に示す5はパンチングメタル、6は細孔、図5(c)、(e)に示す7は微細孔を有する補強板、図5(d)は上下貫通開口を有するケース8で、これらは金属性枠体1と同種の材料で構成した。9はケース8に設けた水素導出管である。   Example A test module incorporating a hydrogen permeable membrane reinforcing structure was produced. FIG. 5 is a diagram for explaining each member including the structure and a manufacturing process thereof. 5B and 5F show two examples of hydrogen permeable membrane reinforcing structures [see FIG. 4B]. 5 (a) and 5 (g), 5 is a punching metal, 6 is a fine hole, 7 is a reinforcing plate having fine holes, and FIG. 5 (d) is a vertically penetrating opening. These are made of the same kind of material as the metallic frame 1. Reference numeral 9 denotes a hydrogen outlet pipe provided in the case 8.

上下貫通開口を有するケース8の上下両側に補強板7を介在させて上下2個の実施例水素透過膜補強構造体を配置、接合した後、上部の実施例水素透過膜補強構造体の上面と下部の実施例水素透過膜補強構造体の下面にそれぞれパンチングメタル5を配置、溶接した。図6(a)は、こうして作製した実施例水素透過膜補強構造体の試験用モジュールM1の斜視図である。   After arranging and joining the two upper and lower embodiment hydrogen permeable membrane reinforcing structures with the reinforcing plates 7 interposed between the upper and lower sides of the case 8 having the upper and lower through openings, the upper surface of the upper embodiment hydrogen permeable membrane reinforcing structure and The punching metal 5 was arrange | positioned and welded to the lower surface of the lower Example hydrogen permeable membrane reinforcement structure, respectively. FIG. 6A is a perspective view of the test module M1 for the hydrogen permeable membrane reinforcing structure according to the example manufactured in this way.

同様にして、比較例水素透過膜補強構造体〔図4(a)参照〕を組み込んだ試験用モジュールを作製した。図6(b)は、こうして作製した比較例水素透過膜補強構造体の試験用モジュールM2の斜視図である。比較例試験用モジュールM2は、実施例試験用モジュールM1の水素透過膜補強構造体では有する拡散防止層2と中間層3の層、すなわち金属製枠体1と水素透過膜4の周面との間に拡散防止層2と中間層3の層が無い点で異なる。   Similarly, a test module incorporating a comparative example hydrogen permeable membrane reinforcing structure [see FIG. 4A] was produced. FIG. 6B is a perspective view of the test module M2 of the comparative example hydrogen permeable membrane reinforcing structure manufactured as described above. The comparative example test module M2 includes a diffusion preventing layer 2 and an intermediate layer 3 included in the hydrogen permeable membrane reinforcing structure of the example test module M1, that is, the metal frame 1 and the peripheral surface of the hydrogen permeable membrane 4. The difference is that there is no diffusion prevention layer 2 and intermediate layer 3 between them.

〈加熱試験〉
実施例試験用モジュールM1と比較例試験用モジュールM2を、それぞれ、図7のように円筒型水蒸気改質器中にセットした。図7中、10は円筒状容器、11は原料ガス供給管、12はオフガスすなわち水素分離済みガスの排出管、13は粒状改質触媒(Ni担持アルミナ触媒)である。
<Heating test>
The example test module M1 and the comparative example test module M2 were each set in a cylindrical steam reformer as shown in FIG. In FIG. 7, 10 is a cylindrical container, 11 is a raw material gas supply pipe, 12 is an off-gas, that is, a hydrogen-separated gas discharge pipe, and 13 is a granular reforming catalyst (Ni-supported alumina catalyst).

実施例試験用モジュールM1をセットした円筒型水蒸気改質器と比較例試験用モジュールM2をセットした円筒型水蒸気改質器のそれぞれを、電気炉中で温度600℃に加熱しながら、原料ガス(脱硫済み都市ガス13Aと水蒸気の混合ガス、S/C比=3.0、改質圧力:0.83MPaG)を供給して、改質、精製試験を180時間実施した。   While each of the cylindrical steam reformer set with the example test module M1 and the cylindrical steam reformer set with the comparative example test module M2 was heated to a temperature of 600 ° C. in an electric furnace, A mixed gas of desulfurized city gas 13A and water vapor, S / C ratio = 3.0, reforming pressure: 0.83 MPaG) was supplied, and reforming and purification tests were carried out for 180 hours.

〈観察1〉
そして、自然冷却により冷却した後、それぞれ実施例試験用モジュールM1、比較例試験用モジュールM2を取り出し、水素導出管9からHeガスでモジュール内部に圧力をかけ、水中でのリーク状況を観察した。比較例試験用モジュールM2では、比較例水素透過膜補強構造体の金属製枠体1であるステンレス鋼枠板と水素透過性箔膜5であるPd−Ag合金膜間の界面から多量のガスリークが観察された。これに対して、実施例水素透過膜補強構造体の金属製枠体1であるステンレス鋼枠板と水素透過膜5であるPd−Ag合金箔膜間の界面からのガスリークは観察されなかった。
<Observation 1>
Then, after cooling by natural cooling, each of the example test module M1 and the comparative example test module M2 was taken out, pressure was applied to the inside of the module with He gas from the hydrogen lead-out pipe 9, and the leakage situation in water was observed. In the comparative example test module M2, a large amount of gas leaks from the interface between the stainless steel frame plate which is the metal frame 1 of the comparative example hydrogen permeable membrane reinforcing structure and the Pd-Ag alloy film which is the hydrogen permeable foil membrane 5. Observed. On the other hand, no gas leak was observed from the interface between the stainless steel frame plate, which is the metal frame 1 of the example hydrogen permeable membrane reinforcing structure, and the Pd—Ag alloy foil film, which is the hydrogen permeable membrane 5.

〈観察2〉
次に、上記観察後の実施例試験用モジュールM1、比較例試験用モジュールM2を自然乾燥し、実施例水素透過膜補強構造体及び比較例水素透過膜補強構造体のそれぞれについて、金属製枠体1であるステンレス鋼枠板と水素透過性箔膜5であるPd−Ag合金箔膜間の接合界面の状態を観察した。図8はその各接合面のSEM写真を拡大して図面化した図で、図8(a)は比較例構造体の接合面、図8(b)は実施例構造体の接合面である。
<Observation 2>
Next, the example test module M1 and the comparative example test module M2 after the above observation were naturally dried, and each of the example hydrogen permeable membrane reinforcing structure and the comparative hydrogen permeable membrane reinforcing structure was made of a metal frame. The state of the bonding interface between the stainless steel frame plate 1 and the Pd—Ag alloy foil film 5 which is the hydrogen permeable foil film 5 was observed. FIG. 8 is an enlarged view of the SEM photograph of each joint surface. FIG. 8A shows the joint surface of the comparative structure, and FIG. 8B shows the joint surface of the example structure.

図8(a)中、符号14として示すように、比較例水素透過膜補強構造体では、ステンレス鋼枠板側からPd−Ag合金箔膜にステンレス鋼の成分(Fe)が浸透拡散していることが観察される。これに対して、図8(b)のとおり、実施例水素透過膜補強構造体では、ステンレス鋼枠板面とPd−Ag合金箔膜面とは截然と分かれており、Pd−Ag合金膜とステンレス鋼成分の相互拡散は観察されない。   8A, in the comparative hydrogen permeable membrane reinforcing structure, the stainless steel component (Fe) diffuses and diffuses from the stainless steel frame plate side to the Pd—Ag alloy foil membrane. It is observed. On the other hand, as shown in FIG. 8B, in the example hydrogen permeable membrane reinforcing structure, the stainless steel frame plate surface and the Pd—Ag alloy foil membrane surface are clearly separated, and the Pd—Ag alloy membrane No interdiffusion of stainless steel components is observed.

本発明の態様を説明する図The figure explaining the aspect of this invention 本発明の態様を説明する図The figure explaining the aspect of this invention 本発明の他の態様を説明する図The figure explaining the other aspect of this invention 比較例水素透過膜補強構造体と実施例水素透過膜補強構造体の作製過程を示す図The figure which shows the preparation process of a comparative example hydrogen permeable membrane reinforcement structure and an Example hydrogen permeable membrane reinforcement structure 実施例水素透過膜補強構造体を試験用モジュールとして組み込む際の各部材、その作製過程を説明する図FIG. 3 is a diagram for explaining each member and its manufacturing process when incorporating the hydrogen permeable membrane reinforcing structure as a test module. 実施例水素透過膜補強構造体を組み込んだ試験用モジュールM1及び比較例水素透過膜補強構造体を組み込んだ試験用モジュールM2を示す図The figure which shows the test module M1 incorporating the Example hydrogen permeable membrane reinforcement structure and the test module M2 incorporating the comparative example hydrogen permeable membrane reinforcement structure 円筒型水蒸気改質器中にそれぞれ実施例構造体試験用モジュールM1及び比較例構造体試験用モジュールM2をセットした図The figure which set the module M1 for an Example structure test, and the module M2 for a comparative example structure test in the cylindrical steam reformer, respectively 〈加熱試験〉後の比較例構造体と実施例構造体の各接合面のSEM写真を拡大して図面化した図<Heating test> The enlarged view of the SEM photograph of each joint surface of the comparative structure and the example structure after the heating test 558号公報に開示の態様例を示した図The figure which showed the example of an aspect disclosed in 558 gazette 558号公報に開示の態様例を示した図The figure which showed the example of an aspect disclosed in 558 gazette 355号公報に開示の態様例を示した図The figure which showed the example of an aspect disclosed in No. 355 gazette

符号の説明Explanation of symbols

1 金属製板体(金属製枠体)
2 中間層
3 拡散防止層
4 水素透過膜である水素透過性箔膜
5 パンチングメタル
6 細孔
7 微細孔を有する補強板
8 上下貫通開口を有するケース
9 水素導出管
10 円筒状容器
11 原料ガス供給管
12 オフガス導出管
13 改質触媒
14 比較例構造体で観察されたステンレス鋼成分の浸透拡散状況
21 金属製板体(金属製枠体)
22 第一の中間層
23 拡散防止層
24 第二の中間層
25 水素透過性箔膜
S 水素透過膜補強構造体の凹部
31 展張枠(枠体)
32 Pd合金箔などの水素ガス分離性を有する材料(水素透過性箔膜)
33 金属支持板
b 細孔
101 クラッド切板の周囲部分
102 クラッド切板の中央部分
34 ケース
35 精製水素取出管
44 水素透過層
46 支持層
48 中間層
1 Metal plate (metal frame)
DESCRIPTION OF SYMBOLS 2 Intermediate | middle layer 3 Diffusion prevention layer 4 Hydrogen permeable foil film | membrane which is a hydrogen permeable film 5 Punching metal 6 Pore 7 Reinforcing plate having a fine hole 8 Case having upper and lower through openings 9 Hydrogen outlet pipe 10 Cylindrical container 11 Supply of raw material gas Pipe 12 Off-gas lead-out pipe 13 Reforming catalyst 14 Comparative example Penetration diffusion state of stainless steel component observed in structure 21 Metal plate (metal frame)
DESCRIPTION OF SYMBOLS 22 1st intermediate | middle layer 23 Diffusion prevention layer 24 2nd intermediate | middle layer 25 Hydrogen-permeable foil film | membrane S Recessed part of hydrogen-permeable film reinforcement structure 31 Extending frame (frame body)
32 Pd alloy foil and other materials with hydrogen gas separation (hydrogen permeable foil membrane)
33 Metal support plate b Pore 101 Peripheral portion of clad cut plate 102 Central portion of clad cut plate 34 Case 35 Purified hydrogen outlet tube 44 Hydrogen permeation layer 46 Support layer 48 Intermediate layer

Claims (9)

上下に貫通した開口を有する金属製枠体の片面に水素透過性箔膜を配してなる水素透過膜補強構造体であって、金属製板体の片面に順次拡散防止層及び中間層を設けた後、該中間層に水素透過性箔膜を接合し、次いで金属製板体側から選択エッチングを行い水素透過性箔膜を露出させてなることを特徴とする水素透過膜補強構造体。   A hydrogen permeable membrane reinforcing structure in which a hydrogen permeable foil membrane is arranged on one side of a metal frame having an opening penetrating vertically, and a diffusion preventing layer and an intermediate layer are sequentially provided on one side of the metal plate After that, a hydrogen permeable foil reinforced structure is obtained by bonding a hydrogen permeable foil film to the intermediate layer and then selectively etching from the metal plate side to expose the hydrogen permeable foil film. 請求項1に記載の水素透過膜補強構造体において、前記中間層の構成材料が、Au、Ag、Cu、Al、Ti、Ni、Co、Pt、Pd、Rh、Ruまたはそれら金属の二種以上からなる材料であることを特徴とする水素透過膜補強構造体。   The hydrogen permeable membrane reinforcing structure according to claim 1, wherein the constituent material of the intermediate layer is Au, Ag, Cu, Al, Ti, Ni, Co, Pt, Pd, Rh, Ru, or two or more of these metals A hydrogen permeable membrane reinforcing structure, characterized by comprising a material comprising: 上下に貫通した開口を有する金属製枠体の片面に水素透過性箔膜を配してなる水素透過膜補強構造体であって、金属製板体の片面に順次第一の中間層、拡散防止層及び第二の中間層を設けた後、第二の中間層に水素透過性箔膜を接合し、次いで、金属製板体側から選択エッチングを行い水素透過性箔膜を露出させてなることを特徴とする水素透過膜補強構造体。   A hydrogen permeable membrane reinforcing structure in which a hydrogen permeable foil membrane is arranged on one side of a metal frame having an opening penetrating vertically, and a first intermediate layer and diffusion prevention are sequentially provided on one side of the metal plate. After providing the layer and the second intermediate layer, the hydrogen permeable foil film is bonded to the second intermediate layer, and then the hydrogen permeable foil film is exposed by performing selective etching from the metal plate body side. A hydrogen permeable membrane reinforcing structure. 請求項3に記載の水素透過膜補強構造体において、前記第一の中間層の構成材料がAu、Ag、Cu、Ni、Co、Pt、Pd、Rh、Ruまたはそれら金属の二種以上からなる材料であり、前記第二の中間層の構成材料がAu、Ag、Cu、Al、Ti、Ni、Co、Pt、Pd、Rh、Ruまたはそれら金属の二種以上からなる材料であることを特徴とする水素透過膜補強構造体。   4. The hydrogen permeable membrane reinforcing structure according to claim 3, wherein the constituent material of the first intermediate layer is made of Au, Ag, Cu, Ni, Co, Pt, Pd, Rh, Ru, or two or more of these metals. The material of the second intermediate layer is Au, Ag, Cu, Al, Ti, Ni, Co, Pt, Pd, Rh, Ru, or a material composed of two or more of these metals. A hydrogen permeable membrane reinforcing structure. 請求項1〜4のいずれか1項に記載の水素透過膜補強構造体において、前記金属製枠体の構成材料が、ステンレス鋼、ニッケル、ニッケル基合金、銅合金または鉄基合金であることを特徴とする水素透過膜補強構造体。   5. The hydrogen permeable membrane reinforcing structure according to claim 1, wherein the constituent material of the metal frame is stainless steel, nickel, a nickel-base alloy, a copper alloy, or an iron-base alloy. A hydrogen permeable membrane reinforcing structure. 請求項1〜5のいずれか1項に記載の水素透過膜補強構造体において、前記拡散防止層の構成材料が、Zr、Mo、Ta、W、Cr、Hf、Nb、Ruから選ばれた高融点金属またはTiN、TiC、TiO2、TiB、Si34、SiC、SiO2、AlN、Al23、MgO、CaO、AlSiOX、Y23、ZrO2、TiAlN、MgO・Al23、2MgO・SiO2から選ばれたセラミックスであることを特徴とする水素透過膜補強構造体。 The hydrogen permeable membrane reinforcing structure according to any one of claims 1 to 5, wherein a constituent material of the diffusion prevention layer is selected from Zr, Mo, Ta, W, Cr, Hf, Nb, and Ru. Melting point metal or TiN, TiC, TiO 2 , TiB, Si 3 N 4 , SiC, SiO 2 , AlN, Al 2 O 3 , MgO, CaO, AlSiO X , Y 2 O 3 , ZrO 2 , TiAlN, MgO · Al 2 A hydrogen permeable membrane reinforcing structure, which is a ceramic selected from O 3 and 2MgO · SiO 2 . 請求項1〜6のいずれか1項に記載の水素透過膜補強構造体において、前記水素透過性箔膜が、(1)Pd膜、(2)Pd合金膜、(3)5族金属と他の金属との合金膜、(4)Pd合金膜自体の多層膜、(5)Pd膜と、5族金属と他の金属との合金膜と、の多層膜、または(6)Pd合金膜と、5族金属と他の金属との合金膜と、の多層膜であることを特徴とする水素透過膜補強構造体。   The hydrogen permeable membrane reinforcing structure according to any one of claims 1 to 6, wherein the hydrogen permeable foil membrane includes (1) a Pd film, (2) a Pd alloy film, (3) a Group 5 metal, and the like. (4) a multilayer film of the Pd alloy film itself, (5) a multilayer film of a Pd film and an alloy film of a Group 5 metal and another metal, or (6) a Pd alloy film A hydrogen permeable membrane reinforcing structure, which is a multilayer film of a group 5 metal and an alloy film of another metal. 上下に貫通した開口を有する金属製枠体の片面に水素透過性箔膜を配してなる水素透過膜補強構造体の作製方法であって、金属製板体の片面に順次拡散防止層及び中間層を設けた後、該中間層に水素透過性箔膜を接合し、次いで金属製板体側から選択エッチングを行い水素透過性箔膜を露出させることを特徴とする水素透過膜補強構造体の作製方法。   A method for producing a hydrogen permeable membrane reinforcing structure in which a hydrogen permeable foil membrane is disposed on one side of a metal frame having openings extending vertically, wherein a diffusion preventing layer and an intermediate layer are sequentially formed on one side of the metal plate. After forming a layer, a hydrogen permeable foil membrane is bonded to the intermediate layer, and then selectively etched from the metal plate side to expose the hydrogen permeable foil membrane, thereby producing a hydrogen permeable membrane reinforcing structure Method. 上下に貫通した開口を有する金属製枠体の片面に水素透過性箔膜を配してなる水素透過膜補強構造体の作製方法であって、金属製板体の片面に順次第一の中間層、拡散防止層及び第二の中間層を設けた後、第二の中間層に水素透過性箔膜を接合し、次いで、金属製板体側から選択エッチングを行い水素透過性箔膜を露出させることを特徴とする水素透過膜補強構造体の作製方法。   A method for producing a hydrogen permeable membrane reinforcing structure in which a hydrogen permeable foil membrane is disposed on one side of a metal frame having an opening penetrating vertically, the first intermediate layer being sequentially formed on one side of the metal plate After the diffusion preventing layer and the second intermediate layer are provided, the hydrogen permeable foil film is joined to the second intermediate layer, and then the hydrogen permeable foil film is exposed by performing selective etching from the metal plate body side. A method for producing a hydrogen permeable membrane reinforcing structure.
JP2005192316A 2005-06-30 2005-06-30 Reinforcing structure for hydrogen-permeable film, and its manufacturing method Pending JP2007007565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192316A JP2007007565A (en) 2005-06-30 2005-06-30 Reinforcing structure for hydrogen-permeable film, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192316A JP2007007565A (en) 2005-06-30 2005-06-30 Reinforcing structure for hydrogen-permeable film, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007007565A true JP2007007565A (en) 2007-01-18

Family

ID=37746721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192316A Pending JP2007007565A (en) 2005-06-30 2005-06-30 Reinforcing structure for hydrogen-permeable film, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007007565A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167798A (en) * 2005-12-22 2007-07-05 Tokyo Gas Co Ltd Hydrogen permeable membrane module
JP2007167797A (en) * 2005-12-22 2007-07-05 Tokyo Gas Co Ltd Hydrogen permeable membrane module
JP2008289970A (en) * 2007-05-23 2008-12-04 Sumitomo Metal Mining Co Ltd Hydrogen permeable membrane and its manufacturing method
JP2009000658A (en) * 2007-06-22 2009-01-08 Tokyo Gas Co Ltd Hydrogen permeable membrane module
JP2009000659A (en) * 2007-06-22 2009-01-08 Tokyo Gas Co Ltd Hydrogen permeable membrane module
JP2009045539A (en) * 2007-08-17 2009-03-05 Sumitomo Metal Mining Co Ltd Hydrogen-permeable membrane and method for manufacturing the same
JP2010042397A (en) * 2008-07-14 2010-02-25 Ngk Insulators Ltd Hydrogen separator and method of operating hydrogen separator
JP2011056485A (en) * 2009-09-14 2011-03-24 Tokyo Gas Co Ltd Hydrogen separation membrane comprising v-w based alloy membrane and hydrogen separation method
JP2011144088A (en) * 2010-01-15 2011-07-28 Tokyo Gas Co Ltd Two-stage hydrogen separation type reformer
JP2011143375A (en) * 2010-01-16 2011-07-28 Tokyo Gas Co Ltd Hydrogen separation system using 5a group metallic hydrogen separation membrane
JP2012066199A (en) * 2010-09-24 2012-04-05 Tokyo Gas Co Ltd Method and device for separating hydrogen
JP2012250234A (en) * 2012-07-28 2012-12-20 Tokyo Gas Co Ltd HYDROGEN SEPARATION MEMBRANE MADE OF Nb-W-BASED ALLOY FILM
JP2013215717A (en) * 2012-03-12 2013-10-24 Tokyo Gas Co Ltd Hydrogen separation membrane and hydrogen separation method
JP5803928B2 (en) * 2010-09-24 2015-11-04 東京瓦斯株式会社 Hydrogen separation membrane
JP2017192930A (en) * 2016-04-20 2017-10-26 日本精線株式会社 Heater built-in type hydrogen separation module and hydrogen separator using the same
CN109830703A (en) * 2019-02-22 2019-05-31 成都新柯力化工科技有限公司 A kind of polymer matrix gas diffusion layer of sheet material and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276558A (en) * 2000-03-31 2001-10-09 Toyo Kohan Co Ltd Hydrogen gas separation unit and method of manufacturing it
JP2001286742A (en) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane
JP2004142355A (en) * 2002-10-28 2004-05-20 Toyo Kohan Co Ltd Method for manufacturing opening-formed laminate and method for manufacturing part using opening-formed laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276558A (en) * 2000-03-31 2001-10-09 Toyo Kohan Co Ltd Hydrogen gas separation unit and method of manufacturing it
JP2001286742A (en) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane
JP2004142355A (en) * 2002-10-28 2004-05-20 Toyo Kohan Co Ltd Method for manufacturing opening-formed laminate and method for manufacturing part using opening-formed laminate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167798A (en) * 2005-12-22 2007-07-05 Tokyo Gas Co Ltd Hydrogen permeable membrane module
JP2007167797A (en) * 2005-12-22 2007-07-05 Tokyo Gas Co Ltd Hydrogen permeable membrane module
JP2008289970A (en) * 2007-05-23 2008-12-04 Sumitomo Metal Mining Co Ltd Hydrogen permeable membrane and its manufacturing method
JP2009000658A (en) * 2007-06-22 2009-01-08 Tokyo Gas Co Ltd Hydrogen permeable membrane module
JP2009000659A (en) * 2007-06-22 2009-01-08 Tokyo Gas Co Ltd Hydrogen permeable membrane module
JP2009045539A (en) * 2007-08-17 2009-03-05 Sumitomo Metal Mining Co Ltd Hydrogen-permeable membrane and method for manufacturing the same
JP2010042397A (en) * 2008-07-14 2010-02-25 Ngk Insulators Ltd Hydrogen separator and method of operating hydrogen separator
JP2011056485A (en) * 2009-09-14 2011-03-24 Tokyo Gas Co Ltd Hydrogen separation membrane comprising v-w based alloy membrane and hydrogen separation method
JP2011144088A (en) * 2010-01-15 2011-07-28 Tokyo Gas Co Ltd Two-stage hydrogen separation type reformer
JP2011143375A (en) * 2010-01-16 2011-07-28 Tokyo Gas Co Ltd Hydrogen separation system using 5a group metallic hydrogen separation membrane
JP2012066199A (en) * 2010-09-24 2012-04-05 Tokyo Gas Co Ltd Method and device for separating hydrogen
JP5803928B2 (en) * 2010-09-24 2015-11-04 東京瓦斯株式会社 Hydrogen separation membrane
JP2013215717A (en) * 2012-03-12 2013-10-24 Tokyo Gas Co Ltd Hydrogen separation membrane and hydrogen separation method
JP2012250234A (en) * 2012-07-28 2012-12-20 Tokyo Gas Co Ltd HYDROGEN SEPARATION MEMBRANE MADE OF Nb-W-BASED ALLOY FILM
JP2017192930A (en) * 2016-04-20 2017-10-26 日本精線株式会社 Heater built-in type hydrogen separation module and hydrogen separator using the same
CN109830703A (en) * 2019-02-22 2019-05-31 成都新柯力化工科技有限公司 A kind of polymer matrix gas diffusion layer of sheet material and preparation method
CN109830703B (en) * 2019-02-22 2022-02-08 成都新柯力化工科技有限公司 Polymer-based gas diffusion layer sheet and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007007565A (en) Reinforcing structure for hydrogen-permeable film, and its manufacturing method
US20030015096A1 (en) Hydrogen extraction unit
US8110022B2 (en) Hydrogen purifier module and method for forming the same
JPH11276866A (en) Hydrogen-permeable membrane and its manufacture
JP5101183B2 (en) Method for producing hydrogen permeable membrane module
US8226750B2 (en) Hydrogen purifier module with membrane support
JP2006272420A (en) Diffusion welding method for metallic foil
JP2000005580A (en) Composite hydrogen permeation membrane having pressure resistance and its production and repairing method thereof
JP5101182B2 (en) Hydrogen permeable membrane module
JPH11276867A (en) Joining of hydrogen-permeable membrane
JP2007268404A (en) Hydrogen purification filter and its production method
JP2008080234A (en) Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method
JP4745048B2 (en) Hydrogen permeable membrane module
JP2004202479A (en) Hydrogen separating permeation membrane, production method therefor, and separator for hydrogen production
JP4806867B2 (en) Hydrogen extraction device
JP4934949B2 (en) Fuel cell, hydrogen separation membrane module, and manufacturing method thereof
JP4745049B2 (en) Method for producing hydrogen permeable membrane module
JP2004290900A (en) Hydrogen separation membrane, production method therefor, hydrogen separation unit using the membrane, and membrane reactor
JP2003334418A (en) Manufacturing method for hydrogen separator
JP4001114B2 (en) Hydrogen separator and fuel cell
JP2005218963A (en) Member for hydrogen permeation and its producing method
JP4025620B2 (en) Method for manufacturing aperture laminate and method for manufacturing component using aperture laminate
JP2007245123A (en) Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method
JP2014184381A (en) Hydrogen separation body
JP2006004694A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201