JP2007070212A - SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME - Google Patents
SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME Download PDFInfo
- Publication number
- JP2007070212A JP2007070212A JP2005291707A JP2005291707A JP2007070212A JP 2007070212 A JP2007070212 A JP 2007070212A JP 2005291707 A JP2005291707 A JP 2005291707A JP 2005291707 A JP2005291707 A JP 2005291707A JP 2007070212 A JP2007070212 A JP 2007070212A
- Authority
- JP
- Japan
- Prior art keywords
- sol
- acid
- dispersoid
- zirconium
- zirconia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000002253 acid Substances 0.000 claims abstract description 49
- 229910007746 Zr—O Inorganic materials 0.000 claims abstract description 30
- 239000006185 dispersion Substances 0.000 claims abstract description 22
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 20
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 20
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 9
- 239000002612 dispersion medium Substances 0.000 claims description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims description 9
- 239000000463 material Substances 0.000 abstract description 9
- 239000000919 ceramic Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 230000009257 reactivity Effects 0.000 abstract 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 80
- 239000007864 aqueous solution Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 150000003754 zirconium Chemical class 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- -1 sintered bodies Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003985 ceramic capacitor Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000003930 superacid Substances 0.000 description 3
- 239000012756 surface treatment agent Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- WRAGBEWQGHCDDU-UHFFFAOYSA-M C([O-])([O-])=O.[NH4+].[Zr+] Chemical compound C([O-])([O-])=O.[NH4+].[Zr+] WRAGBEWQGHCDDU-UHFFFAOYSA-M 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229930195143 oxyphenol Natural products 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、Zr−O系粒子を分散質とするゾル及びその製造方法に関する。 The present invention relates to a sol having Zr—O-based particles as a dispersoid and a method for producing the sol.
ジルコニアは今日多種多様な用途で使用される有用な原材料である。ジルコニア粉体は耐火物、セラミックコンデンサ、酸素センサー、圧電体、固体酸化物型燃料電池、固体超強酸、触媒、焼結体、固溶体、塗料、バインダー、光学材料、コーティング剤、その他多種多様のセラミックスの材料として使用されている。
ジルコニア粉体を原料として成型品を得ようとするとき、多くの場合他の材料と混合して使用される。ジルコニア粉体に含まれる平均粒子径が小さく単分散であるほど、ジルコニア粉体は他材料とよく混合されると共に成型品の性能を大きく左右する局所的な組成の偏りは解消される。
したがって、成型品を均質なものとするためにより小さい平均粒子径で単分散しているジルコニアが求められているが、ジルコニア粉体は常に制御困難な凝集の問題がつきまとい、特に数100nm以下の平均粒子径を持ち単分散しているジルコニア粉体を得ることは困難である。Zirconia is a useful raw material used in a wide variety of applications today. Zirconia powders are refractories, ceramic capacitors, oxygen sensors, piezoelectric bodies, solid oxide fuel cells, solid superacids, catalysts, sintered bodies, solid solutions, paints, binders, optical materials, coating agents, and a wide variety of other ceramics. It is used as a material.
When trying to obtain a molded product from zirconia powder as a raw material, it is often used by mixing with other materials. As the average particle size contained in the zirconia powder is smaller and monodispersed, the zirconia powder is well mixed with other materials, and the local compositional bias that greatly affects the performance of the molded product is eliminated.
Therefore, zirconia that is monodispersed with a smaller average particle size is required in order to make the molded product homogeneous, but zirconia powder always has a problem of aggregation that is difficult to control. It is difficult to obtain a monodispersed zirconia powder having a particle size.
これに反し、ジルコニアゾルはゾル粒子同士の静電気的反発を利用する事で上記ジルコニア粉体の弱点である凝集を制御し数100nm以下の平均粒子径と単分散を実現するものである。即ち数100nm以下の平均粒子径や単分散ジルコニアゾル特有のもので、それ故にジルコニアゾルが好適に使用される。ジルコニアゾルの平均粒子径が小さいことは触媒、焼結体、固溶体、バインダー等の用途における高比表面積がもたらす表面活性の点でも有利であり、触媒においては反応速度の増大、焼結体や固溶体においては生成温度の低温化、バインダーではより少量での強力な粘結力等に寄与する。 On the other hand, the zirconia sol uses the electrostatic repulsion between the sol particles to control the aggregation, which is a weak point of the zirconia powder, and realize an average particle size and monodispersion of several hundred nm or less. In other words, the average particle diameter is several hundred nm or less and is unique to the monodispersed zirconia sol. Therefore, the zirconia sol is preferably used. The small average particle diameter of the zirconia sol is also advantageous in terms of surface activity brought about by the high specific surface area in applications such as catalysts, sintered bodies, solid solutions, binders, etc. Contributes to lowering the production temperature, and a strong caking force in a smaller amount with a binder.
ところで、ジルコニアゾル及びジルコニアゾルの製造方法に関して以下のような開示がある。
特許文献1には、含まれるジルコニウムのほとんどが結晶子30〜100Åの単斜ジルコニアであり、その2次凝集粒子の平均径が500Åを超えないことを特徴とする結晶質ジルコニアのコロイドゾルと濃度0.05〜2.0mol/Lのジルコニウムの塩水溶液に、過酸化水素または過酸化水素を生成する化合物を加え、この溶液を80〜300℃に加熱処理して水溶液中でジルコニアを単斜型に結晶化させることを特徴とする結晶質ジルコニアのコロイドゾルの製造方法が記載されている。By the way, there is the following disclosure regarding the zirconia sol and the method for producing the zirconia sol.
In
また、特許文献2には、水酸化ジルコニウムと酸とを含むスラリー状の混合物の酸濃度を制御して加熱処理することを特徴とする平均粒径0.05〜0.3μmの水和ジルコニアゾルの製造方法が記載されている。
また、特許文献3には、平均粒径が0.1μm以上であり、且つ、粉末X線回折測定により7°及び11°に回折線のピークが観測され、乾燥後の示差熱分析において450℃付近に発熱ピークが存在することを特徴とする水和ジルコニアゾルとその製造方法が記載されている。Further,
Further, in
しかしながら、上記のジルコニアゾル及び製造方法で得られるジルコニアゾルは、それらの平均粒子径が十分に小さいとは言えず、表面活性が低いため好ましくない。またこれらのジルコニアゾルは、粒子径分布の幅が広いためゾル粒子個々が等質とは言い難く、原料、材料として最適とはいえない。
一方、ジルコニウム塩類の水溶液は樹脂の架橋剤、触媒、金属表面処理剤、焼結体、バインダー、耐水化剤、ジルコニア粉体の原料、セラミックス等の用途で用いられている。
ジルコニウム塩類の水溶液の問題点はそれらが多くの酸、アルカリを含むことによる適用対象の腐食や環境負荷の大きさであったり不純物が多いことである。しかし、酸やアルカリが存在しなければ水溶液の状態を保つことが困難なためジルコニウム塩類の水溶液からそれらをは減らすこと不可能である。However, the zirconia sols obtained by the above zirconia sol and the production method are not preferable because their average particle diameter cannot be said to be sufficiently small and the surface activity is low. In addition, these zirconia sols are not optimal as raw materials and materials because it is difficult to say that the sol particles are homogeneous since the particle size distribution is wide.
On the other hand, aqueous solutions of zirconium salts are used in applications such as resin crosslinking agents, catalysts, metal surface treatment agents, sintered bodies, binders, water resistance agents, zirconia powder raw materials, and ceramics.
The problem with the aqueous solution of zirconium salts is that they contain a large amount of acid and alkali, and are subject to corrosion and environmental burden, and have many impurities. However, since it is difficult to maintain the state of the aqueous solution without the presence of acid or alkali, it is impossible to reduce them from the aqueous solution of zirconium salts.
そこで、Zrに対する酸やアルカリのモル比が少なく、不純物の除去が容易なジルコニアゾルの使用が考えられるが、上記の用途でのジルコニウム塩類の効果はジルコニウム原子の働きによるものであって、多くのジルコニウム原子が結晶内部に存在する特許文献1〜3に記載のような結晶性のジルコニアゾルでこの機能は発現しないため不適である。例えば樹脂の架橋剤として機能する場合、ジルコニウム原子を含む化学種内ではジルコニウム原子が架橋反応の起こるサイトとなる。 Therefore, it is conceivable to use a zirconia sol in which the molar ratio of acid or alkali to Zr is small and impurities can be easily removed, but the effect of zirconium salts in the above applications is due to the action of zirconium atoms. In crystalline zirconia sols such as those described in
特許文献4には、炭酸ジルコニウムアンモニウムを加水分解して得られる透明性ジルコニアゾルにオキシフェノール類;アミノアルコール類;オキシ酸類およびそのエステル類;オキシアルデヒド類;アミノ酸類;β−ジケトン類;並びにβ−ケトン酸類およびそのエステルから選ばれる少なくとも1種を配合してなる高性能ジルコニアゾルに関する記載がある。この透明性ジルコニアゾルはジルコニウム塩類の水溶液に似た性質を示すジルコニアゾルであるが、キレート化剤を用いることやゾルを得るために炭酸ジルコニウムアンモニウムを経由する複雑な製造工程であるため経済的に不利である。
本発明は上記の問題を鑑みて成されたものであって、その目的は耐火物、セラミックコンデンサ、酸素センサー、圧電体、固体酸化物型燃料電池、固体超強酸、触媒、焼結体、固溶体、塗料、バインダー、光学材料、コーティング剤、架橋剤、表面処理剤その他多種多様のセラミックスの材料として使用される、反応活性があり、溶液に近い性質を持ち、平均粒子径が小さく、かつ、非晶質のZr−O系粒子を分散質とするゾルとその効率的なゾルの製造方法を提供することである。 The present invention has been made in view of the above problems, and its purpose is refractory, ceramic capacitor, oxygen sensor, piezoelectric body, solid oxide fuel cell, solid superacid, catalyst, sintered body, solid solution Used as a material for a wide variety of ceramics, paints, binders, optical materials, coating agents, crosslinking agents, surface treatment agents, etc., has reactive properties, has properties close to solutions, has a small average particle size, and non It is an object to provide a sol using crystalline Zr—O-based particles as a dispersoid and an efficient method for producing the sol.
本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、水酸化ジルコニウム、酸及び水からなる反応分散液を所定の条件で調製することで上記目的を達成する事を見出し、本発明を完成させるに至った。
即ち本発明は、下記の非晶質のZr−O系粒子を分散質とするゾル及びその製造方法に係る。
(1)平均粒子径が1〜20nmであり、かつ、非晶質のZr−O系粒子を分散質とし、分散媒のpHが7以下であることを特徴とするゾル。
(2)分散媒が溶媒と酸からなり、その分散媒中に、1モルのZrに対して0.1〜2グラム当量の酸を含むことを特徴とする前記(1)記載のゾル。
(3)酸が硝酸であることを特徴とする前記(2)記載のゾル。
(4)水酸化ジルコニウム、酸及び溶媒からなる反応分散液中のZrO2換算のジルコニウム濃度をX重量%及び1モルのZrに対する酸のグラム当量数Yとした場合、
3≦X≦20かつ(2.0−0.07X)≦Y≦(3.0−0.08X)
となるように該反応分散液を調製し、ついでこれを80℃以上で加熱しZr−O系粒子を分散質とするゾルを生成させることを特徴とするZr−O系粒子を分散質とするゾルの製造方法。
(5)酸が硝酸であることを特徴とする前記(4)記載のZr−O系粒子を分散質とするゾルの製造方法。As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by preparing a reaction dispersion composed of zirconium hydroxide, acid and water under predetermined conditions. It came to complete.
That is, the present invention relates to a sol having the following amorphous Zr—O-based particles as a dispersoid and a method for producing the same.
(1) A sol having an average particle diameter of 1 to 20 nm, amorphous Zr—O-based particles as a dispersoid, and a dispersion medium having a pH of 7 or less.
(2) The sol as described in (1) above, wherein the dispersion medium comprises a solvent and an acid, and the dispersion medium contains 0.1 to 2 gram equivalent of acid with respect to 1 mol of Zr.
(3) The sol as described in (2) above, wherein the acid is nitric acid.
(4) When the zirconium concentration in terms of ZrO 2 in the reaction dispersion composed of zirconium hydroxide, acid and solvent is X wt% and the gram equivalent number Y of acid with respect to 1 mol of Zr,
3 ≦ X ≦ 20 and (2.0−0.07X) ≦ Y ≦ (3.0−0.08X)
The reaction dispersion liquid is prepared so as to be, and then heated at 80 ° C. or higher to form a sol having the Zr—O-based particles as a dispersoid. The Zr—O-based particles are used as a dispersoid. A method for producing a sol.
(5) The method for producing a sol using the Zr—O-based particles as described in (4) above, wherein the acid is nitric acid.
本発明のZr−O系粒子を分散質とするゾルは、反応活性があり、溶液に近い性質を持ち、平均粒子径が1〜20nmであり、かつ、非晶質のZr−O系粒子を分散質としているため、耐火物、セラミックコンデンサ、酸素センサー、圧電体、固体酸化物型燃料電池、固体超強酸、触媒、焼結体、固溶体、塗料、バインダー、光学材料、コーティング剤、架橋剤、表面処理剤その他多種多様のセラミックスの材料として好適に利用することができる。 The sol having the Zr—O-based particles of the present invention as a dispersoid has reaction activity, has properties close to a solution, has an average particle diameter of 1 to 20 nm, and amorphous Zr—O-based particles. Because it is dispersoid, refractory, ceramic capacitor, oxygen sensor, piezoelectric body, solid oxide fuel cell, solid superacid, catalyst, sintered body, solid solution, paint, binder, optical material, coating agent, crosslinking agent, It can be suitably used as a surface treatment agent and other various ceramic materials.
以下に本発明のZr−O系粒子を分散質とするゾル及びその製造方法について詳細を説明する。なお、本発明において、平均粒子径とは動的光散乱法で測定した粒子径分布の累積頻度が50体積%となる粒子径を言う。 Hereinafter, the sol having the Zr—O-based particles of the present invention as a dispersoid and the production method thereof will be described in detail. In the present invention, the average particle size refers to a particle size at which the cumulative frequency of particle size distribution measured by the dynamic light scattering method is 50% by volume.
非晶質のZr−O系粒子を分散質とするゾル
(1)ゾルについて
本発明のゾルは分散質と分散媒よりなり、分散媒は溶媒及び酸で構成されるが、その溶媒は特に限定されるものでなく、例えば水、メタノール、エタノール、アセトン、エーテル等であってもよい。好ましくは、通常、水が用いられる。
分散媒は、酸を含有しており、pH7以下、好ましくはpH5以下である。pHが7を超えると分散質の凝集、沈殿やゲル化等を起こしゾルとして安定でなくなるため好ましくない。
さらに、1モルのZrに対して0.1〜2グラム当量、好ましくは0.1〜1グラム当量、より好ましくは0.1〜0.5グラム当量の酸を含むものであってもよい。
Zr−O系粒子が分散した状態を安定して保つためには1モルのZrに対する酸が0.1グラム当量以上は必要であるがそれ以上の酸のグラム当量はゾルに必要な特性、用途に応じて自由に選択できる。
1モルのZrに対する酸が2グラム当量を超えることは、塩類の水溶液よりも不純物が少ないというゾルの優位性がなくなるほか、pHが強酸性領域となり適用対象を腐食しやすくなるなどして好ましくない。 Sol (1) Sol Using Amorphous Zr-O Particles as Dispersoid The sol of the present invention comprises a dispersoid and a dispersion medium, and the dispersion medium is composed of a solvent and an acid. For example, water, methanol, ethanol, acetone, ether or the like may be used. Preferably, water is usually used.
The dispersion medium contains an acid and has a pH of 7 or less, preferably 5 or less. A pH exceeding 7 is not preferable because it causes dispersoid aggregation, precipitation, gelation, and the like, and becomes unstable as a sol.
Further, it may contain 0.1 to 2 gram equivalents, preferably 0.1 to 1 gram equivalents, more preferably 0.1 to 0.5 gram equivalents of acid per mole of Zr.
In order to stably maintain the dispersed state of the Zr—O-based particles, it is necessary that the acid with respect to 1 mol of Zr is 0.1 gram equivalent or more, but the gram equivalent of the acid exceeding that is the characteristics and use required for the sol. You can choose freely according to.
It is not preferable that the acid with respect to 1 mol of Zr exceeds 2 gram equivalents because the sol has less impurities than the aqueous salt solution and the pH becomes a strongly acidic region and the application object is easily corroded. .
(2)非晶質のZr−O系粒子について
本発明のゾルは、非晶質のZr−O系粒子を分散質とする。
分散質であるZr−O系粒子の平均粒子径は、1〜20nm、好ましくは1〜15nmである。平均粒子径が1nm未満では、ジルコニウム塩類の水溶液としての性質が強くなりそれとの区別が明確にならず好ましくない。又、20nmを超えると本発明のゾルの特徴である反応活性や溶液しての性質が低下するので好ましくない。
なお、該Zr−O系粒子は非晶質であるため、200℃以下の温度で恒量となるまで乾燥し、X線回折測定を行ったとき2θ=10〜50°で特定の結晶系に帰属されるパターンを示さない。(2) Amorphous Zr—O-based particles The sol of the present invention uses amorphous Zr—O-based particles as a dispersoid.
The average particle size of the Zr—O-based particles as the dispersoid is 1 to 20 nm, preferably 1 to 15 nm. If the average particle size is less than 1 nm, the properties of zirconium salts as an aqueous solution become strong, and the distinction from that becomes unclear, which is not preferable. On the other hand, if it exceeds 20 nm, the reaction activity and the properties as a solution, which are the characteristics of the sol of the present invention, are deteriorated.
Since the Zr—O-based particles are amorphous, they are dried to a constant weight at a temperature of 200 ° C. or lower and assigned to a specific crystal system at 2θ = 10 to 50 ° when X-ray diffraction measurement is performed. Does not show the pattern to be played.
図1に本発明で製造されたゾルの分散質であるZr−O系粒子の粒子径分布の一例を示す。これより、Zr−O系粒子は7〜30nmの範囲に粒子径分布を持ち、平均粒子径が10nmで、粒子径分布の累積頻度が10%となる粒子径が8nmであり、90%となる粒子径が15nmであることがわかる。
又、図2に本発明で製造されたゾルの分散質であるZr−O系粒子を100℃で恒量まで乾燥したもののX線回折測定の結果得られた回折パターンの一例を示す。これより、特定の結晶系に帰属される回折パターンは見出されず、Zr−O系粒子が非晶質であることが確認できる。
なお、Zr−O系粒子には、少なくともZrとOが含まれればよく、例えばZrの水酸化物、酸化物、水和物のいずれでもよく、これらの混合物でも良い。FIG. 1 shows an example of the particle size distribution of Zr—O-based particles that are dispersoids of the sol produced in the present invention. Accordingly, the Zr—O-based particles have a particle size distribution in the range of 7 to 30 nm, the average particle size is 10 nm, the particle size at which the cumulative frequency of particle size distribution is 10% is 8 nm, and is 90%. It can be seen that the particle size is 15 nm.
FIG. 2 shows an example of a diffraction pattern obtained as a result of X-ray diffraction measurement of Zr—O-based particles, which are dispersoids of the sol produced according to the present invention, dried at 100 ° C. to a constant weight. This confirms that the diffraction pattern attributed to the specific crystal system is not found, and the Zr—O-based particles are amorphous.
The Zr—O-based particles may contain at least Zr and O, and may be any of Zr hydroxide, oxide, hydrate, or a mixture thereof.
非晶質のZr−O系粒子を分散質とするゾルの製造方法
本発明で用いる水酸化ジルコニウムは特に限定されない。一例を示せば、ジルコニウム塩類の水溶液を水酸化アルカリやアンモニア水で中和することで得られる沈殿を水洗し不純物を取り除いて得た水酸化ジルコニウムを用いることができる。
ジルコニウム塩類としては、特に限定されず、塩基性硫酸塩、オキシ塩化塩、硝酸塩、酢酸塩、その他有機酸塩等が例示され、オキシ塩化塩が安価で純度が高いという点で好ましい。
水酸化ジルコニウム、酸及び溶媒、好ましくは、水からなる反応分散液の調製に際して、まず、反応容器に必要量の水を入れそれを適度に攪拌しながら、ついで所定量の水酸化ジルコニウム、次に酸を投入する。水酸化ジルコニウム、酸及び水の投入順序は特に限定されないが、作業性を考慮すると上記が好ましい。
該分散液を調製する際の該分散液のジルコニウム濃度はZrO2換算で3〜20重量%、好ましくは、5〜18重量%の範囲内であるとよい。3重量%未満の場合非効率であり、20重量%を超える場合は増粘、ゲル化の危険性があり好ましくない。
このジルコニウム濃度が高いほど後述する該分散液に添加される酸の量が少なくなるため経済的に有利であり、生成するゾルが含む酸が少なくなることから環境負荷、不純物の低減が期待できる。 Method for Producing Sol by Using Amorphous Zr-O-Based Particles as Dispersoid Zirconium hydroxide used in the present invention is not particularly limited. For example, zirconium hydroxide obtained by washing a precipitate obtained by neutralizing an aqueous solution of a zirconium salt with an alkali hydroxide or aqueous ammonia to remove impurities can be used.
Zirconium salts are not particularly limited, and examples thereof include basic sulfates, oxychlorides, nitrates, acetates, and other organic acid salts. Oxychlorides are preferable because they are inexpensive and have high purity.
In preparing a reaction dispersion consisting of zirconium hydroxide, an acid and a solvent, preferably water, first, a required amount of water is put into a reaction vessel and then stirred appropriately, then a predetermined amount of zirconium hydroxide, Input acid. The order of adding zirconium hydroxide, acid and water is not particularly limited, but the above is preferable in consideration of workability.
The zirconium concentration of the dispersion when preparing the dispersion is 3 to 20% by weight in terms of ZrO 2 , preferably 5 to 18% by weight. If it is less than 3% by weight, it is inefficient, and if it exceeds 20% by weight, there is a risk of thickening and gelation, which is not preferable.
The higher the zirconium concentration is, the more economical it is because the amount of acid added to the dispersion described later is smaller, and the less the acid contained in the generated sol, the lower the environmental load and impurities can be expected.
ここで、ゾルの生成と酸の関係について簡単に述べる。水酸化ジルコニウムが解膠され非晶質のZr−O系のゾル粒子が生成すると同時に酸由来のプロトンがゾル粒子の界面に吸着することでゾル粒子は帯電しその界面には電気二重層が形成される。この電気二重層の反発力によってゾル粒子同士は凝集せずに分散状態を保つことができる。酸濃度が低すぎる場合、十分な電気二重層を得られないためゾルは生成しない。
酸には上記のゾル粒子に電気二重層を与える役割以外に水酸化ジルコニウムからの結晶性ジルコニアの生成を促す作用がある。この結晶性ジルコニアの生成機構は定かでないが、水酸化ジルコニウムを水に分散したものを加熱保持するよりも、いくらかの酸の存在下に加熱保持するとき結晶性ジルコニアの生成速度は速くなる。そして、結晶性ジルコニアが生成する場合には同時にジルコニアゾルの平均粒子径は大きくなる傾向にある。おそらく酸が水酸化ジルコニウムに作用する事で結晶性ジルコニアの前駆体が生成されると考えられる。Here, the relationship between sol formation and acid will be briefly described. Zirconium hydroxide is peptized to form amorphous Zr-O sol particles, and at the same time, protons derived from acid are adsorbed on the interface of the sol particles, charging the sol particles and forming an electric double layer at the interface. Is done. Due to the repulsive force of the electric double layer, the sol particles can be kept in a dispersed state without being aggregated. When the acid concentration is too low, a sufficient electric double layer cannot be obtained, so that no sol is generated.
In addition to the role of providing an electric double layer to the sol particles, the acid has an action of promoting the formation of crystalline zirconia from zirconium hydroxide. Although the formation mechanism of this crystalline zirconia is not clear, the rate of formation of crystalline zirconia is faster when heated and held in the presence of some acid than when heated in the presence of zirconium hydroxide dispersed in water. And when crystalline zirconia produces | generates, the average particle diameter of a zirconia sol tends to become large simultaneously. Presumably, an acid acts on zirconium hydroxide to produce a crystalline zirconia precursor.
結晶性ジルコニアの生成速度は反応分散液中の酸濃度に依存し、その生成速度が最大となる酸濃度は、上記の電気二重層形成のためには十分な濃度であるが本発明のZr−O系粒子を分散質とするゾルを得るために適当な酸濃度よりは低濃度である。厳密には適当な酸濃度は反応分散液のジルコニウム濃度によって変化し、ジルコニウム濃度が高いほどより高い酸濃度を必要とするが、1モルのZrに対し必要な酸のグラム当量数で換算した場合に反応分散液のジルコニウム濃度が高いほどそのグラム当量数は低下する。 The production rate of crystalline zirconia depends on the acid concentration in the reaction dispersion, and the acid concentration at which the production rate is maximized is a sufficient concentration for forming the electric double layer, but the Zr- In order to obtain a sol having O-based particles as a dispersoid, the concentration is lower than an appropriate acid concentration. Strictly speaking, the appropriate acid concentration varies depending on the zirconium concentration of the reaction dispersion, and the higher the zirconium concentration, the higher the acid concentration is required, but when converted to the number of gram equivalents of acid required for 1 mol of Zr. In addition, the higher the zirconium concentration in the reaction dispersion, the lower the number of gram equivalents.
本発明の反応活性があり、溶液に近い性質を持ち、平均粒子径が小さく、かつ、非晶質のZr−O系粒子を分散質とするゾルを製造するには、反応分散液を調製する際に、1モルのZrに対するそのグラム当量数Yが、上記ジルコニウム濃度をX重量%としたとき、下記の式(1)の範囲内にすることが望ましい。
3≦X≦20かつ(2.0−0.07X)≦Y≦(3.0−0.08X) (1)To produce a sol having the reaction activity of the present invention, having properties close to a solution, a small average particle diameter, and amorphous Zr-O-based particles as a dispersoid, a reaction dispersion is prepared. In this case, it is desirable that the gram equivalent number Y with respect to 1 mol of Zr is within the range of the following formula (1) when the zirconium concentration is X wt%.
3 ≦ X ≦ 20 and (2.0−0.07X) ≦ Y ≦ (3.0−0.08X) (1)
この酸のグラム当量数Yがとる範囲は上記で述べたゾル粒子に電気二重層を与えるには十分で、かつ、結晶性ジルコニアが生成しない酸濃度となるような範囲である。このグラム当量数Yが上記範囲の下限未満の場合、生成するゾルの粒子径が大きくなり過ぎたり、結晶性ジルコニアが生成し目的とする本発明の非晶質のZr−O系粒子を分散質とするゾルが得られない。 The range that the gram equivalent number Y of the acid takes is a range that is sufficient to give the electric double layer to the sol particles described above and that the acid concentration is such that no crystalline zirconia is formed. When the gram equivalent number Y is less than the lower limit of the above range, the particle size of the sol to be formed becomes too large, or crystalline zirconia is generated, and the desired amorphous Zr-O-based particles of the present invention are dispersed. A sol is not obtained.
図3にX、Yの値を変化させ、合成したゾルの結晶性についてX線回折測定によって調べた結果を示す。
ゾルの結晶性は、ゾルを200℃以下の温度で恒量となるまで乾燥しX線回折測定によって得られる回折パターンにおいて2θ=10〜50°で特定の結晶系に帰属されるパターンを示さないものを非晶質とし、それ以外を結晶質と分類した。
上記の式(1)を満足するX、Yの範囲において非晶質のゾルが得られ、それ以外では結晶性のゾルが得られた。そのうち非晶質のゾルは1〜20nmの平均粒子径であった。
すなわち、上記の式(1)を満足するようにX、Yを制御することで本発明のゾルが得られることが判る。
なお、上限を超える場合は、ゾルの生成には過剰量となり不経済であるばかりでなく、環境負荷や生成するゾルの不純物を増加させるため好ましくない。
上記酸は特に限定されるものではないが、不純物が少なく、ゾルの生成速度が速いという点で硝酸が好ましい。FIG. 3 shows the results of examining the crystallinity of the synthesized sol by changing the values of X and Y by X-ray diffraction measurement.
The crystallinity of the sol does not show a pattern attributed to a specific crystal system at 2θ = 10 to 50 ° in a diffraction pattern obtained by drying the sol to a constant weight at a temperature of 200 ° C. or lower and obtaining an X-ray diffraction measurement. Was classified as amorphous, and the others were classified as crystalline.
An amorphous sol was obtained in the range of X and Y satisfying the above formula (1), and a crystalline sol was obtained otherwise. Among them, the amorphous sol had an average particle diameter of 1 to 20 nm.
That is, it can be seen that the sol of the present invention can be obtained by controlling X and Y so as to satisfy the above formula (1).
If the upper limit is exceeded, the amount of sol produced is excessive, which is uneconomical and undesirably increases the environmental load and impurities of the produced sol.
The acid is not particularly limited, but nitric acid is preferable in that it has few impurities and has a high sol formation rate.
次に、調製された反応分散液を適度に攪拌しながら80℃以上、好ましくは90℃以上に加熱し、保持する。保持する温度はゾルの生成速度に影響し、80℃未満では十分な生成速度を得られず非効率である。100℃以上で保持する場合は溶媒の蒸発を避けるためオートクレーブ等の密閉容器を使用することが望ましい。保持時間は特に限定されず、反応分散液が完全に本発明のゾルとなったことを反応分散液の粒子径分布測定及び恒量まで100℃で乾燥後のX線回折測定などで確認すればそこで加熱を終了してよいが、通常12〜96時間である。
次に、得られたゾル中の酸を限外ろ過等で除去しても良い。方法は限外ろ過に限定されるものではなく透析や逆浸透の方法でも良い。これらの処理によって酸以外の不純物を除去する事やゾルのジルコニウム濃度を濃縮することが可能であるためゾルの用途によって処理の回数、時間を任意に選択できる。Next, the prepared reaction dispersion is heated to 80 ° C. or higher, preferably 90 ° C. or higher, with appropriate stirring, and held. The temperature to be maintained affects the sol production rate, and if it is less than 80 ° C., a sufficient production rate cannot be obtained, which is inefficient. When the temperature is kept at 100 ° C. or higher, it is desirable to use a closed container such as an autoclave in order to avoid evaporation of the solvent. The holding time is not particularly limited, and if the reaction dispersion is completely converted into the sol of the present invention, the particle size distribution of the reaction dispersion and the X-ray diffraction measurement after drying at 100 ° C. until constant weight can be confirmed there. Heating may be terminated, but usually 12 to 96 hours.
Next, the acid in the obtained sol may be removed by ultrafiltration or the like. The method is not limited to ultrafiltration and may be a dialysis or reverse osmosis method. By these treatments, impurities other than acids can be removed and the zirconium concentration of the sol can be concentrated, so the number of treatments and time can be arbitrarily selected depending on the use of the sol.
以下に実施例を示し、本発明をより具体的に説明する。但し、本発明は実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
まず、水酸化ジルコニウム(ZrO2換算で30重量%含有)300gを純水1070gに分散し、適度に攪拌しながらそこへ67.5重量%硝酸126gを添加し反応分散液を調製した。このとき反応分散液のジルコニウム濃度はZrO2換算で6重量%であり、1モルのZrに対する硝酸(HNO3)のグラム当量数は1.85であった。
次に、該分散液を95℃まで加熱し、24時間保持した後静置し自然冷却しゾルを得た。該ゾルはジルコニウム濃度がZrO2換算で6重量%であり、pHは0.7であった。
該ゾルの粒子径分布(図1)から該ゾルの平均粒子径は10nmであり、また、該ゾルを100℃で恒量まで乾燥したもののX線回折パターン(図2)は特定の結晶系に帰属されなかった。
さらに該ゾルの限外ろ過処理によって該ゾル中の硝酸を除去し、ジルコニウム濃度を濃縮することで、ジルコニウム濃度がZrO2換算で10重量%であり、pHが3.2、ケルダール法によって測定された1モルのZrに対する硝酸(HNO3)のグラム当量数が0.4である以外は上記と同様のゾルを得た。First, 300 g of zirconium hydroxide (containing 30% by weight in terms of ZrO 2 ) was dispersed in 1070 g of pure water, and 126 g of 67.5% by weight nitric acid was added thereto with proper stirring to prepare a reaction dispersion. At this time, the zirconium concentration of the reaction dispersion was 6% by weight in terms of ZrO 2 , and the number of gram equivalents of nitric acid (HNO 3 ) with respect to 1 mol of Zr was 1.85.
Next, the dispersion was heated to 95 ° C., kept for 24 hours, and then allowed to stand to cool naturally to obtain a sol. The sol had a zirconium concentration of 6% by weight in terms of ZrO 2 and a pH of 0.7.
From the particle size distribution of the sol (FIG. 1), the average particle size of the sol is 10 nm, and the X-ray diffraction pattern (FIG. 2) of the sol dried to a constant weight at 100 ° C. belongs to a specific crystal system. Was not.
Furthermore, by removing nitric acid in the sol by ultrafiltration treatment of the sol and concentrating the zirconium concentration, the zirconium concentration was 10% by weight in terms of ZrO 2 , and the pH was measured by the Kjeldahl method. A sol similar to the above was obtained except that the number of gram equivalents of nitric acid (HNO 3 ) with respect to 1 mol of Zr was 0.4.
Claims (5)
3≦X≦20かつ(2.0−0.07X)≦Y≦(3.0−0.08X)
となるように該反応分散液を調製し、ついでこれを80℃以上で加熱しZr−O系粒子を分散質とするゾルを生成させることを特徴とするZr−O系粒子を分散質とするゾルの製造方法。When the zirconium concentration in terms of ZrO 2 in the reaction dispersion composed of zirconium hydroxide, acid and solvent is X wt% and the gram equivalent number Y of acid to 1 mol of Zr,
3 ≦ X ≦ 20 and (2.0−0.07X) ≦ Y ≦ (3.0−0.08X)
The reaction dispersion liquid is prepared so as to be, and then heated at 80 ° C. or higher to form a sol having the Zr—O-based particles as a dispersoid. The Zr—O-based particles are used as a dispersoid. A method for producing a sol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005291707A JP4963820B2 (en) | 2005-09-02 | 2005-09-02 | Method for producing sol using Zr-O-based particles as dispersoid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005291707A JP4963820B2 (en) | 2005-09-02 | 2005-09-02 | Method for producing sol using Zr-O-based particles as dispersoid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007070212A true JP2007070212A (en) | 2007-03-22 |
JP4963820B2 JP4963820B2 (en) | 2012-06-27 |
Family
ID=37931985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005291707A Active JP4963820B2 (en) | 2005-09-02 | 2005-09-02 | Method for producing sol using Zr-O-based particles as dispersoid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4963820B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009270040A (en) * | 2008-05-09 | 2009-11-19 | Sumitomo Chemical Co Ltd | AMORPHOUS Zr-O-BASED PARTICLE-DISPERSED SOL, METHOD FOR PRODUCING THE SAME, PHOTO CATALYST-COATING LIQUID USING THE SOL AS BINDER, AND METHOD FOR PRODUCING PHOTOCATALYST-FUNCTIONAL PRODUCT COATED WITH THE PHOTO CATALYST-COATING IQUID |
EP2133311A1 (en) | 2008-06-09 | 2009-12-16 | Sumitomo Chemical Company, Limited | Zirconium oxalate sol |
JP2010523451A (en) * | 2007-04-04 | 2010-07-15 | エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック | Preparation of colloidal solution of zirconia |
JP2010270094A (en) * | 2008-06-09 | 2010-12-02 | Sumitomo Chemical Co Ltd | Zirconium oxalate sol |
JP2011105580A (en) * | 2009-11-19 | 2011-06-02 | Daiichi Kigensokagaku Kogyo Co Ltd | SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME |
WO2012014893A1 (en) | 2010-07-29 | 2012-02-02 | Toto株式会社 | Inorganic material comprising photocatalyst layer, method for producing same, and photocatalyst coating liquid for inorganic material |
WO2015056488A1 (en) | 2013-10-18 | 2015-04-23 | 第一稀元素化学工業株式会社 | Zirconium oxide-titanium oxide composite sol and production method thereof |
WO2023013289A1 (en) * | 2021-08-04 | 2023-02-09 | 三井金属鉱業株式会社 | Zirconic acid solution, method for producing same, zirconium oxide powder, and method for producing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5758037B1 (en) | 2014-09-29 | 2015-08-05 | 第一稀元素化学工業株式会社 | Sol comprising amorphous Zr-O-based particles as dispersoid and method for producing the same |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59107969A (en) * | 1982-12-08 | 1984-06-22 | 加藤 悦朗 | Zirconia solid solution single crystal super fine particle-dispersed sol and manufacture |
JPS6476919A (en) * | 1987-09-17 | 1989-03-23 | Toray Industries | Production of crystallized zirconia sol |
JPH0524844A (en) * | 1991-07-25 | 1993-02-02 | Tosoh Corp | Production of hydrated zirconia sol and zirconia powder |
JPH0558637A (en) * | 1991-09-05 | 1993-03-09 | Tosoh Corp | Production of hydrated zirconia sol and zirconia powder |
JPH05193948A (en) * | 1991-11-06 | 1993-08-03 | Tosoh Corp | Zirconia powder and production thereof |
JPH06183738A (en) * | 1992-12-14 | 1994-07-05 | Tosoh Corp | Production of zirconia powder |
JPH08325015A (en) * | 1994-12-21 | 1996-12-10 | Eniricerche Spa | Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier |
JPH10139436A (en) * | 1996-11-12 | 1998-05-26 | Tosoh Corp | Zirconia particle for solid electrolyte and its production |
JP2003512287A (en) * | 1999-10-28 | 2003-04-02 | スリーエム イノベイティブ プロパティズ カンパニー | Zirconia sol and method for producing the same |
WO2004002893A2 (en) * | 2002-06-26 | 2004-01-08 | Rhodia Electronics And Catalysis | Composition based on zirconium oxide and oxides of cerium, lanthanum and of another rare earth, a method for preparing same and use thereof as catalyst |
JP2005054116A (en) * | 2003-08-06 | 2005-03-03 | Univ Nihon | Producing method of hard coating film |
JP2005179111A (en) * | 2003-12-18 | 2005-07-07 | Catalysts & Chem Ind Co Ltd | Method for manufacturing zirconia sol |
JP2006143535A (en) * | 2004-11-19 | 2006-06-08 | Catalysts & Chem Ind Co Ltd | Zirconia sol and its manufacturing method |
-
2005
- 2005-09-02 JP JP2005291707A patent/JP4963820B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59107969A (en) * | 1982-12-08 | 1984-06-22 | 加藤 悦朗 | Zirconia solid solution single crystal super fine particle-dispersed sol and manufacture |
JPS6476919A (en) * | 1987-09-17 | 1989-03-23 | Toray Industries | Production of crystallized zirconia sol |
JPH0524844A (en) * | 1991-07-25 | 1993-02-02 | Tosoh Corp | Production of hydrated zirconia sol and zirconia powder |
JPH0558637A (en) * | 1991-09-05 | 1993-03-09 | Tosoh Corp | Production of hydrated zirconia sol and zirconia powder |
JPH05193948A (en) * | 1991-11-06 | 1993-08-03 | Tosoh Corp | Zirconia powder and production thereof |
JPH06183738A (en) * | 1992-12-14 | 1994-07-05 | Tosoh Corp | Production of zirconia powder |
JPH08325015A (en) * | 1994-12-21 | 1996-12-10 | Eniricerche Spa | Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier |
JPH10139436A (en) * | 1996-11-12 | 1998-05-26 | Tosoh Corp | Zirconia particle for solid electrolyte and its production |
JP2003512287A (en) * | 1999-10-28 | 2003-04-02 | スリーエム イノベイティブ プロパティズ カンパニー | Zirconia sol and method for producing the same |
WO2004002893A2 (en) * | 2002-06-26 | 2004-01-08 | Rhodia Electronics And Catalysis | Composition based on zirconium oxide and oxides of cerium, lanthanum and of another rare earth, a method for preparing same and use thereof as catalyst |
JP2005054116A (en) * | 2003-08-06 | 2005-03-03 | Univ Nihon | Producing method of hard coating film |
JP2005179111A (en) * | 2003-12-18 | 2005-07-07 | Catalysts & Chem Ind Co Ltd | Method for manufacturing zirconia sol |
JP2006143535A (en) * | 2004-11-19 | 2006-06-08 | Catalysts & Chem Ind Co Ltd | Zirconia sol and its manufacturing method |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010523451A (en) * | 2007-04-04 | 2010-07-15 | エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック | Preparation of colloidal solution of zirconia |
JP2009270040A (en) * | 2008-05-09 | 2009-11-19 | Sumitomo Chemical Co Ltd | AMORPHOUS Zr-O-BASED PARTICLE-DISPERSED SOL, METHOD FOR PRODUCING THE SAME, PHOTO CATALYST-COATING LIQUID USING THE SOL AS BINDER, AND METHOD FOR PRODUCING PHOTOCATALYST-FUNCTIONAL PRODUCT COATED WITH THE PHOTO CATALYST-COATING IQUID |
US8298979B2 (en) | 2008-06-09 | 2012-10-30 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Zirconium oxalate sol |
JP2010270094A (en) * | 2008-06-09 | 2010-12-02 | Sumitomo Chemical Co Ltd | Zirconium oxalate sol |
EP2133311A1 (en) | 2008-06-09 | 2009-12-16 | Sumitomo Chemical Company, Limited | Zirconium oxalate sol |
JP2011105580A (en) * | 2009-11-19 | 2011-06-02 | Daiichi Kigensokagaku Kogyo Co Ltd | SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME |
WO2012014893A1 (en) | 2010-07-29 | 2012-02-02 | Toto株式会社 | Inorganic material comprising photocatalyst layer, method for producing same, and photocatalyst coating liquid for inorganic material |
WO2015056488A1 (en) | 2013-10-18 | 2015-04-23 | 第一稀元素化学工業株式会社 | Zirconium oxide-titanium oxide composite sol and production method thereof |
US9902655B2 (en) | 2013-10-18 | 2018-02-27 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Zirconium oxide-titanium oxide composite sol and production method thereof |
WO2023013289A1 (en) * | 2021-08-04 | 2023-02-09 | 三井金属鉱業株式会社 | Zirconic acid solution, method for producing same, zirconium oxide powder, and method for producing same |
JPWO2023013289A1 (en) * | 2021-08-04 | 2023-02-09 | ||
JP7345078B2 (en) | 2021-08-04 | 2023-09-14 | 三井金属鉱業株式会社 | Zirconium acid solution and its manufacturing method, zirconium oxide powder and its manufacturing method |
TWI840868B (en) * | 2021-08-04 | 2024-05-01 | 日商三井金屬鑛業股份有限公司 | Zirconic acid solution and method for producing the same, zirconium oxide powder and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4963820B2 (en) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0229657B1 (en) | High-dispersion sol or gel of monoclinic zirconia supermicrocrystals and a process for its production | |
JP5019826B2 (en) | Zirconia sol and method for producing the same | |
KR101233703B1 (en) | Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same | |
KR101308118B1 (en) | Acidic zirconia sol and method for producing same | |
JP5464840B2 (en) | Method for producing zirconia fine particles | |
JP4963820B2 (en) | Method for producing sol using Zr-O-based particles as dispersoid | |
JP5703549B2 (en) | Alumina-doped zirconia nanoparticles and production method thereof | |
JP2005255450A (en) | Zirconium oxide crystal particle and method for producing the same | |
JP2007332026A (en) | Zirconia sintered compact | |
Asadi et al. | Effect of crystalline size on the structure of copper doped zirconia nanopaticles synthesized via sol-gel | |
JP6149039B2 (en) | Ultrafine titanium dioxide and method for producing the same | |
JP5622386B2 (en) | Sol comprising dispersoids of Zr-O-based particles and method for producing the same | |
JP2014224032A (en) | Method for manufacturing anisotropically shaped potassium niobate particles | |
JP2004315356A (en) | Acicular titanium oxide particulate, method for manufacturing the same and application for the same | |
Riazian et al. | STRUCTURE OF LATTICE STRAIN AND EFFECT OF SOL CONCENTRATION ON THE CHARACTERIZATION OF TIO-2CUO-SIO2 NANOPARTICLES | |
KR102078632B1 (en) | Method for producing nano-ceria powder using precipitation process at low temperature | |
JP5889261B2 (en) | Zirconium oxide-titanium oxide composite sol and method for producing the same | |
JPS6197134A (en) | Powder of zirconia agglomerated particle and preparation thereof | |
Grabis et al. | Characteristics and sinterability of ceria stabilized zirconia nanoparticles prepared by chemical methods | |
JP2003095657A (en) | Titanium oxide sol dispersed in organic solvent and method of manufacturing it | |
Hu et al. | Ultrafine microsphere particles of zirconium titanate produced by homogeneous dielectric-tuning coprecipitation | |
EP3502059B1 (en) | Method for preparing potassium titanate | |
JPH0558633A (en) | Production of strontium titanate | |
JP2007223881A (en) | Crystalline hafnia sol and production process | |
JPH03218928A (en) | Zirconia organosol and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080212 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120327 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4963820 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150406 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |