JP2007069185A - Method for washing inorganic matter - Google Patents
Method for washing inorganic matter Download PDFInfo
- Publication number
- JP2007069185A JP2007069185A JP2005262272A JP2005262272A JP2007069185A JP 2007069185 A JP2007069185 A JP 2007069185A JP 2005262272 A JP2005262272 A JP 2005262272A JP 2005262272 A JP2005262272 A JP 2005262272A JP 2007069185 A JP2007069185 A JP 2007069185A
- Authority
- JP
- Japan
- Prior art keywords
- washing
- chlorine
- water
- waste
- inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005406 washing Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 40
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000000460 chlorine Substances 0.000 claims abstract description 44
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 44
- 239000010881 fly ash Substances 0.000 claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 26
- 239000002956 ash Substances 0.000 claims abstract description 24
- 238000000926 separation method Methods 0.000 claims abstract description 20
- 238000003763 carbonization Methods 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- 238000004140 cleaning Methods 0.000 claims description 43
- 239000000126 substance Substances 0.000 claims description 40
- 229910010272 inorganic material Inorganic materials 0.000 claims description 22
- 239000011147 inorganic material Substances 0.000 claims description 22
- 239000002699 waste material Substances 0.000 claims description 22
- 238000004056 waste incineration Methods 0.000 claims description 18
- 230000006641 stabilisation Effects 0.000 claims description 14
- 238000011105 stabilization Methods 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 22
- 239000002440 industrial waste Substances 0.000 abstract description 11
- 238000010828 elution Methods 0.000 abstract description 5
- 235000002918 Fraxinus excelsior Nutrition 0.000 abstract 3
- 150000001247 metal acetylides Chemical class 0.000 abstract 2
- 239000000047 product Substances 0.000 description 39
- 239000004568 cement Substances 0.000 description 21
- 238000005469 granulation Methods 0.000 description 19
- 230000003179 granulation Effects 0.000 description 19
- 239000000706 filtrate Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 11
- 239000008187 granular material Substances 0.000 description 8
- 238000007654 immersion Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004065 wastewater treatment Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- -1 bottles / cans Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- GBZANUMDJPCQHY-UHFFFAOYSA-L mercury(ii) thiocyanate Chemical compound [Hg+2].[S-]C#N.[S-]C#N GBZANUMDJPCQHY-UHFFFAOYSA-L 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- VLYFRFHWUBBLRR-UHFFFAOYSA-L potassium;sodium;carbonate Chemical compound [Na+].[K+].[O-]C([O-])=O VLYFRFHWUBBLRR-UHFFFAOYSA-L 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
本発明は、一般廃棄物や産業廃棄物の焼却処理時に発生する焼却灰、焼却飛灰や溶融飛灰、一般廃棄物や産業廃棄物の炭化処理時に得られる炭化物、またはごみ焼却残さ等が埋設されている最終処分場より掘り起こされたごみ焼却残さといった無機物中に含まれる塩素を除去する洗浄方法に関する。 The present invention embeds incineration ash, incineration fly ash and molten fly ash generated during incineration of general waste and industrial waste, carbide obtained during carbonization of general waste and industrial waste, or waste incineration residue The present invention relates to a cleaning method for removing chlorine contained in inorganic substances such as waste incineration residue excavated from a final disposal site.
一般廃棄物や産業廃棄物の焼却時に発生する焼却灰、焼却飛灰や溶融飛灰といった焼却残さの大部分は必要に応じた安定化処理が行われたのち、埋立処分されている。ところが近年、最終処分場の確保が困難になってきており、焼却残さの有効利用が大きな課題となっている。 Most of the incineration residues such as incineration ash, incineration fly ash and molten fly ash generated during incineration of general waste and industrial waste are landfilled after stabilization as necessary. However, in recent years, it has become difficult to secure a final disposal site, and effective use of incineration residue has become a major issue.
また、一般廃棄物や産業廃棄物を処理するプロセスの一つとして、廃棄物を炭化処理することにより得られる炭化物は発熱量が高く、多孔質であることから、近年その有効利用について多くの研究がなされている。 In addition, as one of the processes for treating general waste and industrial waste, carbide obtained by carbonizing waste has a high calorific value and is porous. Has been made.
一方で既存の最終処分場を掘り起こして、掘り起こしごみの有効利用を行い、埋立容量を確保するための最終処分場の再生がおこなわれている。掘り起こしごみのうち、特にごみ焼却残さの有効利用が大きな課題となっている。 On the other hand, the existing final disposal site is dug up, the excavated waste is effectively used, and the final disposal site is regenerated to secure the landfill capacity. Of the excavated waste, effective utilization of waste incineration residue is a major issue.
無機物の有効利用方法としては、焼却灰、焼却飛灰、溶融飛灰および掘り起こしごみ焼却残さの場合はセメント原料化や焼成による骨材副原料化、炭化物の場合は代替燃料、吸着剤、土壌改良材等が挙げられる。しかし、これらの廃棄物由来の無機物中には多量の塩素が残留している。これら無機物をそのままセメント原料をはじめとする各種原料として資源化しようとすると、塩素成分がセメント製造プラントに付着して閉塞を引き起こして安定操業が確保できなくなるだけでなく、製造されたセメントについても塩素による鉄筋腐食を起こす場合があることから、その使用量がかなり限定されることとなるため、効率的な塩素除去技術が要求される。 Effective methods of using inorganic substances include incineration ash, incineration fly ash, molten fly ash, and excavated waste incineration residue as a raw material for cement or as a secondary material by firing, and in the case of carbide, alternative fuel, adsorbent, and soil improvement Materials and the like. However, a large amount of chlorine remains in these waste-derived inorganic substances. If these inorganic materials are used as raw materials as cement raw materials as they are, not only will the chlorine component adhere to the cement manufacturing plant and cause clogging, and stable operation will not be ensured, but the manufactured cement will also be chlorine-free. Since there is a case where corrosion of reinforcing bars is caused, the amount of use is considerably limited, and an efficient chlorine removal technique is required.
そこで、無機物中に含まれる塩素が主に水溶性であることに着目し、水洗浄により脱塩素することが一般的に行われている。焼却灰および焼却飛灰中の塩素分を水中に溶出させる技術が多く知られており、例えば、焼却灰に水、炭酸ガス、燃焼排ガス、または酸のいずれか一つ以上を洗浄剤として添加し、焼却飛灰中からセメントまたはセメント系固化材の製造に障害となる物質を除去した後に、固形分をセメントとして利用する方法(例えば、特許文献1参照)、焼却灰を分級などにより異物を除去した後、水洗を行い、塩素を除去してセメント原料化する方法(例えば、特許文献2参照)、灰と水の流れを向流にし、また灰と水の混合時に細粒化と灰表面を被覆する付着物を剥離させる作用を行わせながら複数段水洗を行い、脱塩する方法(例えば、特許文献3参照)などが知られている。 Therefore, paying attention to the fact that chlorine contained in inorganic substances is mainly water-soluble, dechlorination is generally performed by washing with water. Many techniques for eluting chlorine in incineration ash and incineration fly ash into water are known. For example, one or more of water, carbon dioxide, combustion exhaust gas, or acid is added to the incineration ash as a cleaning agent. After removing substances that obstruct the production of cement or cement-based solidified material from incineration fly ash, the method of using solid content as cement (for example, see Patent Document 1), removing foreign substances by classifying incineration ash, etc. After that, washing with water, removing chlorine and making cement raw material (see, for example, Patent Document 2), making the flow of ash and water counter-current, and also pulverizing and ashing the surface when mixing ash and water A method of performing desalting by performing water washing in a plurality of stages while performing the action of peeling off the deposits to be coated is known (for example, see Patent Document 3).
また、炭化物からの塩素分を除去する方法として、例えば、炭化処理して得た炭化物を金属分離した後、湿式粉砕を行い、その後洗浄水槽にて洗浄した後、脱水・乾燥を行って脱塩された炭化物の粉砕物を製品として得る方法(例えば、特許文献4参照)などが知られている。 In addition, as a method for removing chlorine from the carbide, for example, the carbide obtained by carbonization is separated into metals, then wet pulverized, then washed in a washing water tank, dehydrated and dried, and desalted. A method for obtaining a pulverized product of carbide as a product (for example, see Patent Document 4) is known.
さらに、最終処分場より掘り起こされたごみ焼却残さをセメント原料として再生する方法として、例えば、埋立処分ごみを掘削し、粗大物を重機により除去し、その後、埋立処分ごみをふるい選別機に供給して、ふるい通過ごみに水を添加して内部の水可溶性成分を洗い流した後にセメント製造用の原料および燃料として使用する方法(例えば、特許文献5参照)が知られている。
しかしながら、上記の特許文献1、特許文献2及び特許文献5において開示されている方法は灰中の粒径の細かい部分を含めた洗浄を行うため、固液分離時に粒子状の懸濁物質(SS)が洗浄排水側に移行することとなる。このSS中には鉛、カドミウムなどの有害重金属類が一部微粒子の形で含まれており、また、上記有害重金属類も溶出するため、後段で行う排水処理に負荷がかかるという問題があった。また、上記の特許文献3及び特許文献4において開示されている方法は設備が複雑で、しかも灰の細粒化を行いながら洗浄を行っているために得られる洗浄物の含水率も高くなるという問題もあった。 However, the methods disclosed in Patent Document 1, Patent Document 2 and Patent Document 5 described above perform washing including a portion having a fine particle diameter in ash, so that a particulate suspended matter (SS) is obtained during solid-liquid separation. ) Will be transferred to the washing drainage side. This SS contains some harmful heavy metals such as lead and cadmium in the form of fine particles, and the harmful heavy metals are also eluted, which has a problem that the waste water treatment performed later is burdened. . In addition, the methods disclosed in Patent Document 3 and Patent Document 4 described above have complicated facilities, and the water content of the washed product obtained is high because the washing is performed while the ash is being refined. There was also a problem.
さらに上述した従来の方法においては、固液分離の操作に遠心分離器又はフィルタープレス等を用いているが、細かい部分を含めた洗浄を行うため、装置に一部スラリー状になった洗浄無機物が付着し、その結果定期的な清掃作業が必要となる等、ハンドリングの点でも問題があった。 Furthermore, in the conventional method described above, a centrifuge or a filter press is used for the operation of solid-liquid separation. However, in order to perform cleaning including fine parts, the cleaning inorganic substance partially in the form of slurry is contained in the apparatus. There was also a problem in terms of handling, such as adhesion, which required regular cleaning work.
本発明は、洗浄時に発生するSS量及び有害重金属類の溶出を抑え、容易に無機物に含まれる塩素を選択的に除去でき、さらに含水率の低い無機物を得ることができる無機物の洗浄方法を提供することを目的とする。 The present invention provides an inorganic cleaning method capable of suppressing the amount of SS generated during cleaning and elution of toxic heavy metals, easily removing chlorine contained in the inorganic material, and obtaining an inorganic material having a low water content. The purpose is to do.
本発明者らは、上記課題を解決するために鋭意検討した結果、無機物を造粒し、その造粒物の洗浄を行うことで、造粒化処理を行わない水洗浄よりも洗浄ろ液中のSSの発生を抑えながら無機物に含まれる塩素を選択的に除去でき、洗浄物の固液分離はより容易となること見出し、本発明に到達した。 As a result of intensive studies to solve the above problems, the inventors of the present invention granulated an inorganic substance and washed the granulated product, thereby cleaning the filtrate more than water washing without performing granulation treatment. It was found that the chlorine contained in the inorganic material can be selectively removed while suppressing the occurrence of SS, and the solid-liquid separation of the washed product becomes easier, and the present invention has been achieved.
さらに、高濃度の有害重金属類を含み、溶出の恐れのある無機物については、重金属溶出防止の安定化処理を行った後に造粒を行い、その造粒物の洗浄処理を行うことで、造粒化処理を行わない水洗浄よりも洗浄ろ液中のSSの発生及び重金属類の溶出を抑えながら無機物に含まれる塩素を選択的に除去でき、洗浄物の固液分離はより容易となること見出し、本発明に到達した。 Furthermore, for inorganic substances that contain high concentrations of toxic heavy metals and may be dissolved, granulate after performing stabilization treatment to prevent elution of heavy metals, and then wash the granulated product to obtain granulated products. Finds that chlorine contained in inorganic substances can be selectively removed while suppressing the generation of SS and elution of heavy metals in the washing filtrate, compared to water washing without crystallization treatment, and the solid-liquid separation of the washed substance becomes easier. The present invention has been reached.
すなわち、本発明は、焼却灰、焼却飛灰、溶融飛灰、廃棄物の炭化処理により得られる炭化物及びごみ焼却残さが埋設されている最終処分場より掘り起こされたごみ焼却残さ、からなる群から選ばれる一種以上の無機物を造粒し、次いで得られた造粒物に対し洗浄処理を行って塩素を除去することを特徴とする無機物の洗浄方法を要旨するものであり、好ましくは、造粒物の粒径が、1〜100mmである前記の無機物の洗浄方法であり、また、好ましくは、洗浄処理が、造粒物に洗浄水として炭酸塩を含む水溶液を添加し固液分離するものである前記の洗浄方法であり、さらに好ましくは、無機物を造粒する前に、無機物に対し安定化処理を行うことを特徴とする前記の無機物の洗浄方法である。 That is, the present invention is from the group consisting of incineration ash, incineration fly ash, molten fly ash, carbide obtained by carbonization of waste, and waste incineration residue excavated from the final disposal site where waste incineration residue is buried It summarizes a method for washing an inorganic substance, characterized by granulating one or more selected inorganic substances and then removing chlorine by subjecting the obtained granulated substance to a washing treatment, preferably granulation In the method for cleaning an inorganic material, the particle size of the product is 1 to 100 mm. Preferably, the cleaning treatment is performed by adding an aqueous solution containing a carbonate as a cleaning water to the granulated material for solid-liquid separation. It is the above-described cleaning method, and more preferably, the inorganic material cleaning method described above, wherein the inorganic material is subjected to stabilization treatment before granulating the inorganic material.
本発明によれば、一般廃棄物や産業廃棄物の焼却処理時に発生する焼却灰、焼却飛灰や溶融飛灰、一般廃棄物や産業廃棄物の炭化処理時に得られる炭化物、またはごみ焼却残さ等が埋設されている最終処分場より掘り起こされたごみ焼却残さなどの種々の無機物から塩素を効果的に除去することができる。また、得られた洗浄物は含水率が低いものとなっているためハンドリングが容易になるとともに、この洗浄処理において得られた水洗残さを、より大きな割合で資源化可能な各種原料として有効に利用することができる。 According to the present invention, incineration ash generated during incineration of general waste and industrial waste, incineration fly ash and molten fly ash, carbide obtained during carbonization of general waste and industrial waste, or waste incineration residue, etc. Chlorine can be effectively removed from various inorganic materials such as garbage incineration residue excavated from the final disposal site where the waste is buried. In addition, the resulting washed product has a low moisture content, making it easy to handle, and effectively using the water washing residue obtained in this washing process as various raw materials that can be recycled at a higher rate. can do.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明において洗浄の対象となる無機物は、焼却灰、焼却飛灰、溶融飛灰、廃棄物の炭化処理により得られる炭化物又はごみ焼却残さ等が埋設されている最終処分場より掘り起こされたごみ焼却残さである。焼却灰とは、一般廃棄物や産業廃棄物を焼却炉で焼却した際に生ずる灰をいい、焼却飛灰とは、一般廃棄物や産業廃棄物の焼却時に発生する酸性ガスを処理した際に生ずる灰をいい、溶融飛灰とは、焼却灰や焼却飛灰の溶融時に発生する酸性ガスを処理した際に生ずる灰をいう。 Inorganic materials subject to cleaning in the present invention are incineration ash, incineration fly ash, molten fly ash, carbide obtained by carbonization of waste or waste incineration excavated from the final disposal site where waste incineration residue is buried It is a residue. Incineration ash refers to ash produced when incineration of general waste and industrial waste in an incinerator. Incineration fly ash refers to the treatment of acid gas generated during incineration of general waste and industrial waste. The generated ash is referred to as molten fly ash, which is the ash generated when the incinerated ash or the acid gas generated when the incinerated fly ash is melted is treated.
また、廃棄物の炭化処理により得られる炭化物とは、一般廃棄物や産業廃棄物を炭化炉で処理した際に得られるものをいう。ごみ焼却残さ等が埋設されている最終処分場より掘り起こされたごみ焼却残さとは、最終処分場を掘り起こした際に発生する掘り起こし廃棄物を、約100mmの粗選別および磁力選別を行い、鉄類が除去された100mm以下の部分を乾燥後、振動ふるいおよび手選別を行い、最終的に焼却残さを含む土砂類、可燃物+プラスチック類、ビン・カン類、石・ガレキ類に分別して得られるもののうちの一つであるごみ焼却残さをいう。 Moreover, the carbide | carbonized_material obtained by carbonization of a waste means the thing obtained when processing a general waste and an industrial waste with a carbonization furnace. Garbage incineration residue excavated from the final disposal site where waste incineration residue, etc. is buried is roughly 100mm of the waste generated when the final disposal site is excavated, and roughly sorted by magnetic separation. After drying the portion of 100mm or less from which dust has been removed, it is obtained by separating it into earth and sand, combustible materials + plastics, bottles / cans, stones / rubbles, etc., including incineration residue, after vibration sieve and hand sorting It refers to the waste incineration residue that is one of the things.
上記の無機物は、焼却飛灰、溶融飛灰、炭化物については粒径が1〜50μmの粉末状であり、水分は0.5%〜10%とほとんど含まれていない。一方、焼却灰および最終処分場より掘り起こされたごみ焼却残さについては粒径が0.1〜100mmの砂状であり、水分は20〜50%と湿っている場合が多い。また一般に焼却飛灰、溶融飛灰のほうが焼却灰および最終処分場より掘り起こされたごみ焼却残さに比べ、塩素濃度が10〜20倍程度高い。 The above-mentioned inorganic substances are in the form of powder having a particle size of 1 to 50 μm for incinerated fly ash, molten fly ash, and carbide, and hardly contain moisture at 0.5% to 10%. On the other hand, the incineration ash and the waste incineration residue dug up from the final disposal site are sandy with a particle size of 0.1 to 100 mm, and the moisture is often 20 to 50%. In general, incineration fly ash and molten fly ash have a chlorine concentration of about 10 to 20 times higher than incineration ash and waste incineration residue excavated from the final disposal site.
なお、本発明における無機物は、これらのうちから選択される一種以上のものであればよく、複数の無機物が混合されたものを処理対象物としても差し支えない。 In addition, the inorganic substance in this invention should just be 1 or more types selected from these, and what mixed several inorganic substances may also be made into a process target object.
本発明においては、上記に示した無機物を造粒することを必須とする。本発明で用いられる造粒方法は、いずれの手段でもよく、例えば、押出造粒、圧縮造粒、転動造粒、撹拌造粒等による造粒が挙げられる。これらのうち、押出造粒が造粒物のハンドリングや洗浄後の固液分離の点で好ましい。また、場合によっては2段組み合わせをしてもよい。 In the present invention, it is essential to granulate the inorganic substances shown above. Any means may be used for the granulation method used by this invention, For example, granulation by extrusion granulation, compression granulation, rolling granulation, stirring granulation etc. is mentioned. Of these, extrusion granulation is preferable in terms of handling the granulated product and solid-liquid separation after washing. In some cases, a two-stage combination may be used.
具体的には、スクリュー式押出造粒の場合、円筒上のスクリューケースの先端に、造粒物の径となる所定の大きさの多数の穴のあいた平板ダイスが垂直に取り付けてあり、スクリューの回転により、ダイスに向かって、無機物と水とを混練した粉体を加圧、圧縮して押しつけ、穴より押し出して、造粒物を得ることができる。 Specifically, in the case of screw-type extrusion granulation, a flat plate die having a large number of holes of a predetermined size as the diameter of the granulated product is vertically attached to the tip of a screw case on a cylinder. By rotating, a powder obtained by kneading an inorganic substance and water is pressed, compressed and pressed toward a die, and extruded from a hole to obtain a granulated product.
本発明において、造粒物の形状については特に限定しないが、洗浄水を均一に造粒物に行き渡らせるという点で成形物は球状、円筒状である方が好ましい。その具体的な大きさは造粒物の径が1〜100mmが好ましく、特に2〜10mmが好ましい。1mm未満の場合は造粒物からの脱水が困難となる上、重金属類が粒子状の形で溶出しやすくなり、また100mmを超える場合は洗浄水が造粒物の内部にまで十分に浸透せず、塩素除去が困難となるので好ましくない。 In the present invention, the shape of the granulated product is not particularly limited, but the molded product is preferably spherical or cylindrical in that the washing water is uniformly distributed to the granulated product. The specific size of the granulated product is preferably 1 to 100 mm, particularly preferably 2 to 10 mm. If it is less than 1 mm, dehydration from the granulated product becomes difficult, and heavy metals are more likely to elute in the form of particles, and if it exceeds 100 mm, the washing water sufficiently penetrates into the granulated product. Therefore, it is not preferable because chlorine removal becomes difficult.
なお、造粒前の無機物について、そのままでは造粒が困難な場合には、無機物の粉砕を行って一度粉末状態にしてから造粒を行ってもよい。そのための粉末化は、造粒機を傷つけない程度の粉砕が好ましく、例えば、ローラーミルによる圧縮・せん断による方法で粒径を1mm以下になるまで粉砕してもよい。 In addition, about the inorganic substance before granulation, when granulation is difficult as it is, granulation may be performed after pulverizing the inorganic substance to make a powder state once. For this purpose, pulverization is preferably performed to such an extent that the granulator is not damaged. For example, it may be pulverized until the particle size becomes 1 mm or less by a compression / shear method using a roller mill.
また、本発明における造粒時には、造粒物の崩壊防止のために、無機物につなぎ剤を添加して造粒を行ってもよい。ここで使用されるつなぎ剤としては、セメント、石膏、水ガラス、ベントナイトなどの無機成分、でんぷん、にかわ、天然ゴム、タール、アスファルト、糖蜜、パルプ、レジン等の有機成分などが挙げられ、これらのうち、セメント、アスファルトが価格の点で好ましい。つなぎ剤は、無機物に対し、0.1〜50重量%、さらに好ましくは1〜30 重量%、最も好ましくは5〜20 重量%添加する。 Further, at the time of granulation in the present invention, granulation may be performed by adding a binder to the inorganic material in order to prevent the granulated material from collapsing. Examples of the binder used here include inorganic components such as cement, gypsum, water glass and bentonite, and organic components such as starch, glue, natural rubber, tar, asphalt, molasses, pulp, and resin. Of these, cement and asphalt are preferable in terms of price. The binder is added in an amount of 0.1 to 50% by weight, more preferably 1 to 30% by weight, and most preferably 5 to 20% by weight based on the inorganic substance.
本発明においては、次に上記で得られた造粒物に対し洗浄処理を行うことが必要である。洗浄処理は、造粒物に洗浄水を加えた後、浸漬洗浄あるいは機械撹拌を用いて洗浄操作を行う。 In the present invention, it is next necessary to perform a washing treatment on the granulated product obtained above. In the washing treatment, washing water is added to the granulated product, and then washing operation is performed using immersion washing or mechanical stirring.
本発明における洗浄処理は、造粒物中に含まれる塩素がほとんど除去されるまで洗浄することが望ましいが、その数値は限定されない。ただし、水可溶性塩素がほぼ除去されていることが好ましく、具体的には洗浄処理後の洗浄液の電気伝導度が4.0mS/cm以下、さらに好ましくは2.0mS/cm以下、最も好ましくは1.0mS/cm以下となれば、洗浄処理を終了しても差し支えない。 Although it is desirable that the washing treatment in the present invention is carried out until chlorine contained in the granulated product is almost removed, the numerical value is not limited. However, it is preferable that water-soluble chlorine is almost removed, specifically, the electrical conductivity of the cleaning liquid after the cleaning treatment is 4.0 mS / cm or less, more preferably 2.0 mS / cm or less, most preferably 1.0 mS / cm. If it is less than cm, the cleaning process can be terminated.
また、本発明における洗浄処理に使用する洗浄水としては、水の外、塩素除去効果を上げるために炭酸塩を含む水溶液を用いてもよく、例えば、炭酸ナトリウム1%水溶液を用いた造粒物の浸漬洗浄を行ってもよい。 Further, as the washing water used for the washing treatment in the present invention, an aqueous solution containing carbonate may be used in order to increase the chlorine removal effect, for example, a granulated product using a 1% aqueous solution of sodium carbonate. The immersion cleaning may be performed.
洗浄水の添加量は、造粒物と洗浄水の固液比を、造粒物の湿重量:洗浄水の容量=1:1〜1:30が好ましく、特に1:2〜1:10が好ましい。1:1未満の場合は混合および塩素溶解が困難となり、1:30を超える場合は設備容量および排水処理の負担が大きくなるので好ましくない。ここで、造粒物の湿重量とは、造粒物が水分を含んだ状態での重量をいう。 The amount of washing water added is preferably the solid-liquid ratio of the granulated product and the washing water, the wet weight of the granulated product: the capacity of the washing water = 1: 1 to 1:30, particularly 1: 2 to 1:10. preferable. If it is less than 1: 1, mixing and chlorine dissolution become difficult, and if it exceeds 1:30, the equipment capacity and the wastewater treatment burden increase, which is not preferable. Here, the wet weight of the granulated product refers to the weight in a state where the granulated product contains moisture.
本発明においては塩素除去効果を上げるために、洗浄水の温度を30〜100℃に設定するのが好ましく、さらに好ましくは40〜80℃である。操作としては、洗浄水が所定の液温となるように恒温水槽を用いて温度調整を行えばよい。 In the present invention, the temperature of the washing water is preferably set to 30 to 100 ° C., more preferably 40 to 80 ° C., in order to increase the chlorine removal effect. As an operation, the temperature may be adjusted using a constant temperature water bath so that the washing water has a predetermined liquid temperature.
なお、機械撹拌を用いる場合は、造粒物を壊砕しない程度の撹拌が好ましく、例えば回転式攪拌機を用いて造粒物に撹拌パドルが触れないように、多数の穴をもつメッシュの容器で撹拌部を覆いながら10分〜2時間撹拌を行うことができる。 In the case of using mechanical agitation, it is preferable to agitate so that the granulated material is not crushed.For example, in a mesh container having a large number of holes so that the agitation paddle does not touch the granulated material using a rotary agitator. Stirring can be performed for 10 minutes to 2 hours while covering the stirring section.
本発明においては塩素除去効果を上げるために、多段式洗浄を用いてもよく、例えば、まず浸漬洗浄あるいはその他の方法による第一洗浄を行い、固液分離後に得られた水洗残さに対し、浸漬洗浄あるいはその他の方法による第二洗浄を行い、その後脱水を行ってもよい。 In the present invention, in order to increase the chlorine removal effect, multi-stage cleaning may be used. For example, first cleaning by immersion cleaning or other methods is performed first, and the water washing residue obtained after solid-liquid separation is immersed. You may perform washing | cleaning or the 2nd washing | cleaning by another method, and may perform dehydration after that.
本発明においては、次いで、固液分離による脱水を行い、水洗残さと水洗ろ液とに分離する。脱水する手段としてはどのような方法でもよく、例えば重力沈降分離や遠心分離などが用いられる。 Next, in the present invention, dehydration is performed by solid-liquid separation to separate into a water washing residue and a water washing filtrate. As a means for dehydrating, any method may be used, for example, gravity sedimentation separation or centrifugation is used.
本発明においては、無機物を造粒する前に、無機物に対し安定化処理を行うことが好ましい。安定化処理としては、無機物にセメントあるいは重金属固定化剤の一方、または両方を添加し、重金属を無機物中に固定化するようにするのがよい。そのようなセメントには、普通、早強、超早強、中庸熱、特殊などの各種ポルトランドセメントの他、スラグやフライアッシュ等を混合した混合セメントがいずれも使用できるが、普通ポルトランドセメントあるいは早強ポルトランドセメントが重金属の安定化の点で好ましい。また、重金属固定剤には、有機系キレート形成基を有し、当該キレート形成基と重金属とが強固に結合することにより、各種重金属イオンを安定化できるものであれば特に限定されない。このような有機系キレート化剤としては、例えば、ジチオカルバミン酸系、イミン系、ピロリジン系等が挙げられる。 In the present invention, it is preferable to perform a stabilization treatment on the inorganic material before granulating the inorganic material. As the stabilization treatment, it is preferable to add one or both of cement and heavy metal fixing agent to the inorganic material so that the heavy metal is fixed in the inorganic material. As such cement, various portland cements such as normal, early strength, ultra-early strength, medium heat, special, etc., as well as mixed cement mixed with slag, fly ash, etc. can be used. Strong Portland cement is preferred in terms of stabilizing heavy metals. In addition, the heavy metal fixing agent is not particularly limited as long as it has an organic chelate-forming group and the chelate-forming group and heavy metal can be firmly bonded to stabilize various heavy metal ions. Examples of such organic chelating agents include dithiocarbamic acid, imine, and pyrrolidine.
これらの添加量は限定的ではないが、通常、無機物に対して、セメントは0.1〜50重量%、さらに好ましくは1〜30 重量%、最も好ましくは3〜20 重量%添加し、また重金属固定化剤は0.1〜30重量%、さらに好ましくは1〜20 重量%、最も好ましくは3〜10 重量%添加
する。
The amount of these additives is not limited, but usually 0.1 to 50% by weight, more preferably 1 to 30% by weight, and most preferably 3 to 20% by weight of cement is added to the inorganic substance, and the heavy metal is fixed. The agent is added in an amount of 0.1 to 30% by weight, more preferably 1 to 20% by weight, and most preferably 3 to 10% by weight.
具体的には、重金属類溶出の恐れのある無機物に対し、所定量の普通ポルトランドセメント、および所定量のジチオカルバミン酸系の重金属固定化剤並びに所定量の水分を同時に混練機内に供給して、無機物の安定化処理を行う。その後、市販の成型機または造粒機を用いて安定化物の造粒化を行い、造粒化物を作成する。この造粒化物に対して、洗浄処理を行い、脱塩処理された水洗残さを得てもよい。 Specifically, a predetermined amount of ordinary Portland cement, a predetermined amount of a dithiocarbamic acid-based heavy metal fixing agent and a predetermined amount of moisture are simultaneously supplied into a kneader to an inorganic material that is likely to elute heavy metals. The stabilization process is performed. Thereafter, the stabilized product is granulated using a commercially available molding machine or granulator to produce a granulated product. The granulated product may be washed to obtain a desalted water washing residue.
本発明により塩素が除去された無機物は、乾燥および粉砕により、水分量および粒度の調整が行われた後、搬出され、各種原料として用いられる。洗浄処理後の塩素濃度は低ければ低いほどよいが、セメント原料の場合、できるだけJIS規格のセメント原料の塩素含有許容量である乾ベースで350ppm以下とした方が好ましい。塩素濃度が少なくなるほど、この洗浄処理により得られた物質がセメント原料の一部に代替えされる割合が増加する。 The inorganic substance from which chlorine has been removed according to the present invention is adjusted for moisture content and particle size by drying and pulverization, and is then carried out and used as various raw materials. The lower the chlorine concentration after the cleaning treatment, the better. However, in the case of a cement raw material, it is preferable to set it to 350 ppm or less as much as possible on the dry basis, which is the chlorine content allowable amount of the JIS standard cement raw material. As the chlorine concentration decreases, the rate at which the material obtained by this cleaning process is replaced with a portion of the cement raw material increases.
以下、本発明の実施の形態を図面により説明する。
図1、図2は本発明の二つの実施の形態に係わる無機物の処理装置を示すブロック図である。いずれの実施形態においても、無機物を造粒する造粒装置5、造粒物を洗浄する洗浄装置8、固液分離装置9、排水処理設備12を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 are block diagrams showing an inorganic material processing apparatus according to two embodiments of the present invention. In any embodiment, a granulating device 5 for granulating an inorganic material, a cleaning device 8 for cleaning the granulated material, a solid-liquid separation device 9 and a waste water treatment facility 12 are provided.
図1の実施の形態では、まず無機物が造粒装置5に投入されて造粒が行われる。造粒物は洗浄装置8に移され洗浄水と混合される。本発明における混合方法は洗浄装置8に洗浄水7を加えた後、浸漬洗浄あるいは機械攪拌を用いて洗浄操作を行う。次に固液分離装置9による脱水を行ない水洗残さ10と水洗ろ液11とに分離する。水洗ろ液については排水処理装置12により、微量重金属類の除去が行われた後、排水13と排水処理残さ14とに分離される。排水は中和処理し系外へ放流するか、または濃縮晶析などにより、塩回収を行っても良い。 In the embodiment shown in FIG. 1, first, an inorganic substance is put into the granulator 5 and granulation is performed. The granulated product is transferred to the cleaning device 8 and mixed with the cleaning water. In the mixing method according to the present invention, the cleaning water 7 is added to the cleaning device 8 and then the cleaning operation is performed using immersion cleaning or mechanical stirring. Next, dehydration is performed by the solid-liquid separation device 9 to separate into a water washing residue 10 and a water washing filtrate 11. The water washing filtrate is separated into the waste water 13 and the waste water treatment residue 14 after the trace heavy metals are removed by the waste water treatment device 12. The wastewater may be neutralized and discharged outside the system, or salt recovery may be performed by concentrated crystallization.
図2の実施の形態では、まず無機物が安定化処理装置2に投入されて重金属の安定化処理が行われる。この安定化処理装置2で処理された安定化無機物4は、図1の場合と同様に造粒装置5に投入されて造粒が行われる。なお、安定化処理装置が無機物の造粒も兼ねている装置の場合はこの装置を用いてもよい。図2のその他の構成は図1と同一である。 In the embodiment of FIG. 2, first, an inorganic substance is charged into the stabilization processing apparatus 2 to perform stabilization processing of heavy metal. The stabilized inorganic substance 4 treated by the stabilization treatment apparatus 2 is put into the granulation apparatus 5 and granulated as in the case of FIG. In addition, when the stabilization processing apparatus is an apparatus that also serves as an inorganic material granulation, this apparatus may be used. The other configuration of FIG. 2 is the same as that of FIG.
以下、本発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
本実施例において、塩素含有量は試料中の金属類の全量を計る方法として知られているアルカリ溶融法に準拠して測定した。すなわち、試料に所定量の炭酸カリウムナトリウムを加えて900℃でアルカリ溶融し、溶融物をチオシアン酸水銀(II)吸光光度法による測定を行い、得られた値を塩素量とした。 In this example, the chlorine content was measured according to an alkali melting method known as a method for measuring the total amount of metals in a sample. That is, a predetermined amount of sodium potassium carbonate was added to the sample, and the mixture was alkali-melted at 900 ° C., and the melt was measured by mercury (II) thiocyanate absorptiometry, and the obtained value was defined as the amount of chlorine.
実施例1
図1に示したフロー図に従って処理を行った。無機物(1)として流動床ごみ焼却施設より排出され、安定化処理された焼却飛灰が主に埋設されている最終処分場より掘り起こされたごみ焼却残さを用いた(埋立経過年数半年〜1年)。この無機物の粒度分布を調査したところ、90%以上が1mm以下の粒子であった。また含水率は11.0%、塩素含有濃度は40,800mg/kg-dryであった。
Example 1
Processing was performed according to the flow chart shown in FIG. The waste incineration residue excavated from the final disposal site where the incineration fly ash discharged from the fluidized bed waste incineration facility and stabilized is mainly buried is used as the inorganic substance (1). ). When the particle size distribution of this inorganic substance was examined, 90% or more of the particles were 1 mm or less. The water content was 11.0% and the chlorine content was 40,800 mg / kg-dry.
造粒装置5としては押出成形機を使用した。ここで用いた押出成型機は、スクリュー前押出装置(不二パウダル(株)製、EXD-60型)を用いた。この造粒装置5に無機物(1)を投入して造粒操作を行い、円筒状(円筒高さ約8mm)の造粒物6を得た。この造粒物6の塩素含有濃度は51,700mg/kg-dryであった。 As the granulator 5, an extrusion molding machine was used. The extrusion molding machine used here was a screw pre-extrusion apparatus (manufactured by Fuji Powder Co., Ltd., EXD-60 type). An inorganic substance (1) was added to the granulator 5 to perform granulation, and a cylindrical granule 6 (cylindrical height of about 8 mm) was obtained. The chlorine-containing concentration of this granulated product 6 was 51,700 mg / kg-dry.
次いで、作成した造粒物6のうち、200.0gを洗浄装置8に投入した。洗浄装置8としては市販の手つき穴あきカゴ(目幅約0.64 mm)およびボウル(いずれもポリプロピレン製、容量1.5L)である。手付き穴あきカゴの上に造粒物6を乗せ、所定量の洗浄水7(1,000 mL、固液比1:5)が満たされたボウルの中に浸漬させて常温(20〜25℃)で1日静置、すなわち浸漬洗浄を行った。洗浄水7には純水を用いた。浸漬洗浄終了後、固液分離装置9にて固液分離を行った。固液分離装置9としてはボウルより浸漬洗浄が終了した手付き穴あきカゴを取り出してボウルの上部に1時間静置して水切りを行う、すなわち自然重力沈降による固液分離により、水洗残さ(1)(塩素濃度:7,900mg/kg-dry、含水率:30.8%)が180.0g(乾量)と水洗ろ液(1)(SS含有濃度:6,950mg/L)が880mL得られた。 Next, 200.0 g of the prepared granulated product 6 was put into the cleaning device 8. The cleaning device 8 is a commercially available hand-made perforated basket (mesh width of about 0.64 mm) and a bowl (both made of polypropylene, capacity 1.5 L). Place the granulated product 6 on a hand-punched basket and immerse it in a bowl filled with a predetermined amount of washing water 7 (1,000 mL, solid-liquid ratio 1: 5) at room temperature (20-25 ° C). It was left to stand for 1 day, that is, immersion cleaning was performed. As the washing water 7, pure water was used. After the immersion cleaning, solid-liquid separation was performed with the solid-liquid separator 9. As the solid-liquid separation device 9, the perforated basket having been dipped and washed is taken out of the bowl, and left at the top of the bowl for 1 hour for draining. As a result, 180.0 g (dry amount) (chlorine concentration: 7,900 mg / kg-dry, water content: 30.8%) and 880 mL of water-washed filtrate (1) (SS content concentration: 6,950 mg / L) were obtained.
実施例2
図2に示したフロー図に従って処理を行った。無機物(2)として、某焼却施設より排出された焼却飛灰(塩素含有濃度62,800mg/kg-dry、含水率7.5%)を安定化処理装置2に供給し、安定化処理を行った。安定化処理装置はセメント固化処理装置(本田鐵工(株)製、TMHW-50型)を用い、セメント添加量約4重量%、加湿水約25重量%で混練した。その後、安定化無機物4を造粒装置5に投入する。造粒装置には、パン型造粒機(ヤマト機販(株)製、YG-2500型)を用い、造粒物6(直径約10mm、球状)を得た。この造粒物6の塩素含有濃度は63,000mg/kg-dryであった。
Example 2
Processing was performed according to the flow chart shown in FIG. Inorganic fly ash (chlorine-containing concentration 62,800 mg / kg-dry, moisture content 7.5%) discharged from the incineration facility was supplied to the stabilization treatment device 2 as the inorganic substance (2), and the stabilization treatment was performed. As a stabilization treatment device, a cement solidification treatment device (TMHW-50 type, manufactured by Honda Seiko Co., Ltd.) was used, and the mixture was kneaded with a cement addition amount of about 4% by weight and humidified water of about 25% by weight. Thereafter, the stabilized inorganic substance 4 is put into the granulator 5. A granulated product 6 (diameter: about 10 mm, spherical shape) was obtained using a bread type granulator (YG-2500 type, manufactured by Yamato Kikai Co., Ltd.) as the granulator. The granulated product 6 had a chlorine-containing concentration of 63,000 mg / kg-dry.
次いで、作成した造粒物6のうち、200.0gを洗浄装置8へ投入した。洗浄装置8としては市販の手つき穴あきカゴ(目幅約0.64 mm)およびボウル(いずれもポリプロピレン製、容量1.5L)である。手付き穴あきカゴの上に造粒物6を乗せ、所定量の洗浄水7(1,000 mL、固液比1:5)が満たされたボウルの中に浸漬させて常温(20〜25℃)で1日静置、すなわち浸漬洗浄を行った。洗浄水7には純水を用いた。浸漬洗浄終了後、固液分離装置9にて固液分離を行った。固液分離装置9としてはボウルより浸漬洗浄が終了した手付き穴あきカゴを取り出してボウルの上部に1時間静置して水切りを行う、すなわち自然重力沈降による固液分離を行い、塩素濃度が14,900mg/kg-dry、含水率が28.7%の水洗残さ(2)として180.1g(乾量)、SS含有濃度が370mg/Lの水洗ろ液(2)として900mL得た。 Next, 200.0 g of the prepared granulated product 6 was put into the cleaning device 8. The cleaning device 8 is a commercially available hand-made perforated basket (mesh width of about 0.64 mm) and a bowl (both made of polypropylene, capacity 1.5 L). Place the granulated product 6 on a hand-punched basket and immerse it in a bowl filled with a predetermined amount of washing water 7 (1,000 mL, solid-liquid ratio 1: 5) at room temperature (20-25 ° C). It was left to stand for 1 day, that is, immersion cleaning was performed. As the washing water 7, pure water was used. After the immersion cleaning, solid-liquid separation was performed with the solid-liquid separator 9. As the solid-liquid separation device 9, take out the perforated basket that has been dipped and washed from the bowl and leave it on the top of the bowl for 1 hour to drain it, that is, solid-liquid separation by natural gravity sedimentation, and the chlorine concentration is 14,900. As a result of washing with water (2) having a mg / kg-dry content of 28.7% (2), 180.1 g (dry weight) and an SS content of 370 mg / L as a water-washed filtrate (2) were obtained in an amount of 900 mL.
比較例1
実施例1と同じ無機物(1)200.0gを直接洗浄装置8に投入する以外は実施例1と同様の操作を行い、塩素濃度が8,100mg/kg-dry、含水率が43.0%の水洗残さ(3)として184.0g(乾量)、SS含有濃度が11,300mg/Lの水洗ろ液(3)として830mLを得た。
Comparative Example 1
The same operation as in Example 1 was carried out except that 200.0 g of the same inorganic substance (1) as in Example 1 was directly charged into the washing device 8, and the water washing residue with a chlorine concentration of 8,100 mg / kg-dry and a water content of 43.0% ( 830 mL was obtained as a water-washed filtrate (3) having 184.0 g (dry weight) as 3) and an SS concentration of 11,300 mg / L.
比較例2
実施例2と同じ無機物(2)200.0gを直接洗浄装置8に投入する以外は実施例2と同様の操作を行い、塩素濃度が18,600mg/kg-dry、含水率が57.7%の水洗残さ(4)として149.9g(乾量)、SS含有濃度が87,000mg/Lの水洗ろ液(4)として860mLを得た。
Comparative Example 2
The same operation as in Example 2 was carried out except that 200.0 g of the same inorganic substance (2) as in Example 2 was directly charged into the washing apparatus 8, and the water washing residue with a chlorine concentration of 18,600 mg / kg-dry and a water content of 57.7% ( As 4), 149.9 g (dry weight) and SS content concentration was 87,000 mg / L, and 860 mL was obtained as a water-washed filtrate (4).
実施例1、2で得られた水洗残さ(1)、(2)、および比較例1、2で得られた水洗残さ(3)、(4)についての塩素含有量濃度と含水率ついて表1に示す。 Table 1 shows the chlorine content concentration and water content of the washing residues (1) and (2) obtained in Examples 1 and 2 and the washing residues (3) and (4) obtained in Comparative Examples 1 and 2. Shown in
また、表2から、実施例と比較例において、SSおよび重金属濃度についても差が見られることがわかる。すなわち実施例1は比較例1に比べてSS濃度は11,300mg/Lから6,950mg/Lに、Pb濃度は2.44mg/Lから0.04mg/Lに、Cd濃度は0.051mg/Lから0.002mg/Lに、T-Hg濃度は0.0048mg/Lから検出下限値以下(<0.0005mg/L)に、Se濃度は0.013mg/Lから0.002mg/Lに、As濃度は0.086mg/Lから検出下限値以下(<0.005mg/L)に低下しており、また実施例2は比較例2に比べてSS濃度は87,000mg/Lから370mg/Lに、Pb濃度は7.25mg/Lから0.02mg/Lに、Cd濃度は0.132mg/Lから0.002mg/Lに、T-Hg濃度は0.0127mg/Lから検出下限値以下(<0.0005mg/L)に、Se濃度は0.031mg/Lから0.002mg/Lに、As濃度は0.257mg/Lから検出下限値以下(<0.005mg/L)にに低下しており、無機物を造粒してから洗浄を行うことにより、SSおよび有害重金属類の水洗ろ液中への溶出防止も効果的に行われていることがわかる。 Table 2 also shows that there are differences in SS and heavy metal concentrations in the examples and comparative examples. That is, in Example 1, the SS concentration was changed from 11,300 mg / L to 6,950 mg / L, the Pb concentration was changed from 2.44 mg / L to 0.04 mg / L, and the Cd concentration was changed from 0.051 mg / L to 0.002 mg / L. L, T-Hg concentration from 0.0048 mg / L to below detection limit (<0.0005 mg / L), Se concentration from 0.013 mg / L to 0.002 mg / L, As concentration from 0.086 mg / L to detection limit In Example 2, the SS concentration was reduced from 87,000 mg / L to 370 mg / L and the Pb concentration was 7.25 mg / L to 0.02 mg / L. L, Cd concentration from 0.132 mg / L to 0.002 mg / L, T-Hg concentration from 0.0127 mg / L to below detection limit (<0.0005 mg / L), Se concentration from 0.031 mg / L to 0.002 mg The concentration of As has decreased from 0.257 mg / L to below the lower detection limit (<0.005 mg / L), and by washing after granulating inorganics, SS and hazardous heavy metals can be washed with water. It turns out that the elution prevention into a filtrate is also performed effectively.
1:無機物
2:安定化処理装置
3:安定化処理剤
4:安定化無機物
5:造粒装置
6:造粒物
7:洗浄水
8:洗浄装置
9:固液分離装置
10:水洗残さ
11:水洗ろ液
12:排水処理設備
13:排水
14:排水処理残さ
1: Inorganic matter 2: Stabilizing treatment device 3: Stabilizing agent 4: Stabilizing inorganic material 5: Granulating device 6: Granulated product 7: Washing water 8: Washing device 9: Solid-liquid separation device 10: Washing residue 11: Washing filtrate 12: Wastewater treatment equipment 13: Wastewater 14: Wastewater treatment residue
Claims (4)
The method for washing an inorganic substance according to any one of claims 1 to 3, wherein the inorganic substance is subjected to stabilization treatment before granulating the inorganic substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005262272A JP2007069185A (en) | 2005-09-09 | 2005-09-09 | Method for washing inorganic matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005262272A JP2007069185A (en) | 2005-09-09 | 2005-09-09 | Method for washing inorganic matter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007069185A true JP2007069185A (en) | 2007-03-22 |
Family
ID=37931101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005262272A Pending JP2007069185A (en) | 2005-09-09 | 2005-09-09 | Method for washing inorganic matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007069185A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012115767A (en) * | 2010-11-30 | 2012-06-21 | Mitsubishi Materials Corp | Method for washing sludge |
JP2013213698A (en) * | 2012-03-30 | 2013-10-17 | Ihi Corp | Crust-like composition and manufacturing method of the same |
JP2013213697A (en) * | 2012-03-30 | 2013-10-17 | Ihi Corp | Crust-like composition and manufacturing method of the same |
JP2015229135A (en) * | 2014-06-04 | 2015-12-21 | 鹿島建設株式会社 | System and method for insolubilization treatment of coagulated sludge |
JP2017520391A (en) * | 2014-08-06 | 2017-07-27 | 華南理工大学 | Method of preparing dechlorinated caustic sludge mixture from caustic sludge by ammonia soda method and its application |
JP2017148770A (en) * | 2016-02-26 | 2017-08-31 | 三菱マテリアル株式会社 | Processing method for chlorine-containing burned ash |
JP2017148720A (en) * | 2016-02-24 | 2017-08-31 | 太平洋セメント株式会社 | Processing device and processing method for chlorine-containing dust |
-
2005
- 2005-09-09 JP JP2005262272A patent/JP2007069185A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012115767A (en) * | 2010-11-30 | 2012-06-21 | Mitsubishi Materials Corp | Method for washing sludge |
JP2013213698A (en) * | 2012-03-30 | 2013-10-17 | Ihi Corp | Crust-like composition and manufacturing method of the same |
JP2013213697A (en) * | 2012-03-30 | 2013-10-17 | Ihi Corp | Crust-like composition and manufacturing method of the same |
JP2015229135A (en) * | 2014-06-04 | 2015-12-21 | 鹿島建設株式会社 | System and method for insolubilization treatment of coagulated sludge |
JP2017520391A (en) * | 2014-08-06 | 2017-07-27 | 華南理工大学 | Method of preparing dechlorinated caustic sludge mixture from caustic sludge by ammonia soda method and its application |
JP2017148720A (en) * | 2016-02-24 | 2017-08-31 | 太平洋セメント株式会社 | Processing device and processing method for chlorine-containing dust |
JP2017148770A (en) * | 2016-02-26 | 2017-08-31 | 三菱マテリアル株式会社 | Processing method for chlorine-containing burned ash |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4438329B2 (en) | Method for treating waste containing organic matter | |
US10118182B2 (en) | Incineration byproduct processing and methods | |
JP5311007B2 (en) | Heat treatment system and heat treatment method | |
US20120298562A1 (en) | Ash processing and metals recovery systems and methods | |
CN109264898A (en) | A kind of flying dust multistage dechlorination and water lotion decalcification softening process and its system | |
JP4191199B2 (en) | Waste incineration ash treatment method, sand substitute and crushed stone substitute obtained by the treatment method | |
JP2007069185A (en) | Method for washing inorganic matter | |
JP2006326462A (en) | Method for recycling ash as cement raw material | |
JP4190669B2 (en) | Method and apparatus for processing particulate matter with contaminants attached | |
CN110937835A (en) | Method for resource utilization of waste incineration slag | |
JP2008126185A (en) | Calcined object and its manufacturing method | |
KR101934411B1 (en) | High-temperature waste treatment method using sludge | |
JP4421088B2 (en) | Incineration ash disposal method and waste final disposal site | |
JP4348046B2 (en) | Treatment method of kiln exhaust gas dust | |
JP2004067399A (en) | Method of producing regenerated sand from construction sludge | |
JP2004041895A (en) | Treatment method for incineration ash | |
JP2003073153A (en) | Method of disposing incinerated ash | |
JP3242674B2 (en) | Mud and mud waste treatment equipment | |
JP2004167350A (en) | Processing method of incineration ash | |
CN105985073A (en) | Household-garbage-incineration-slag comprehensive utilization production technology | |
JPH11300331A (en) | Production of sand vsing waste incineration residue as raw material | |
CN107073531B (en) | Method and apparatus for desalting bottom ash and converting bottom ash into cement raw material | |
JP2004358288A (en) | Method for washing/desalting incineration ash | |
JP2000210651A (en) | Treatment of contaminant-adhered granular body | |
JP2011183305A (en) | Method of treating incineration ash |