Nothing Special   »   [go: up one dir, main page]

JP2007069153A - Exhaust gas cleaning filter and its manufacturing method - Google Patents

Exhaust gas cleaning filter and its manufacturing method Download PDF

Info

Publication number
JP2007069153A
JP2007069153A JP2005260804A JP2005260804A JP2007069153A JP 2007069153 A JP2007069153 A JP 2007069153A JP 2005260804 A JP2005260804 A JP 2005260804A JP 2005260804 A JP2005260804 A JP 2005260804A JP 2007069153 A JP2007069153 A JP 2007069153A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
active catalyst
filter medium
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005260804A
Other languages
Japanese (ja)
Other versions
JP4785470B2 (en
Inventor
Takeshi Mori
武史 森
Shinichi Kikuchi
伸一 菊池
Norihiko Suzuki
紀彦 鈴木
Yuichi Matsuo
雄一 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005260804A priority Critical patent/JP4785470B2/en
Publication of JP2007069153A publication Critical patent/JP2007069153A/en
Application granted granted Critical
Publication of JP4785470B2 publication Critical patent/JP4785470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning filter in which PM (particulate matter) in low-temperature exhaust gas within a practical use region of a diesel car can be burned continuously and which can be regenerated forcibly at low temperature even when the PM is accumulated therein, and to provide a method for manufacturing the exhaust gas cleaning filter. <P>SOLUTION: The exhaust gas cleaning filter arranged in an exhaust gas passage of an internal-combustion engine for removing the PM in the exhaust gas to be discharged from the internal-combustion engine is provided with: an exhaust gas inflow passage through which exhaust gas flows in; a filter medium which is used for forming the partition wall of the exhaust gas inflow passage and has voids; and an exhaust gas outflow passage for discharging the exhaust gas made to flow in the exhaust gas inflow passage and pass through the filtering material. A low contact-active catalyst 10 exhibiting high activity regardless of the chance to be in contact with the PM is deposited on the inside surface of the partition wall and a high contact-active catalyst 12 exhibiting high activity when the chance to be in contact with the PM is large is deposited on the inside surface of the void 9 in the filter medium. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関から排出される排ガス中に含まれる粒子状物質(PM:particulate matter、以下PMともいう)を浄化するための排ガス浄化フィルタおよびその製造方法に関する。特に、粒子状物質と触媒との接触状態によらず、粒子状物質を低温で燃焼可能な排ガス浄化フィルタおよびその製造方法に関する。   The present invention relates to an exhaust gas purification filter for purifying particulate matter (PM) (hereinafter also referred to as PM) contained in exhaust gas discharged from an internal combustion engine, and a method for manufacturing the same. In particular, the present invention relates to an exhaust gas purification filter capable of burning particulate matter at a low temperature and a method for manufacturing the same regardless of the contact state between the particulate matter and a catalyst.

ディーゼル排ガス中に含まれる粒子状物質(PM)の浄化装置としては、ディーゼル微粒子除去装置(DPF:diesel particulate filter)やキャタライズドスートフィルタ(CSF:catalyzed soot filter)が知られている。このような浄化装置においては、フィルタにてPMを捕集し、燃焼させることにより、排ガスを浄化する。   As a purification device for particulate matter (PM) contained in diesel exhaust gas, a diesel particulate filter (DPF) and a catalyzed soot filter (CSF) are known. In such a purification device, exhaust gas is purified by collecting and burning PM by a filter.

しかしながら、PMの燃焼には、通常、550℃〜650℃の高温を必要とする。このため、ディーゼル車の実用域でのPMの連続燃焼は困難であり、捕集したPMは、徐々にフィルタに堆積されていく。そこで、連続再生式の浄化装置においては、捕集したPMの過剰な堆積を回避するため、何らかの昇温手段を用いて強制的に、堆積したPMを燃焼(強制再生)させて、フィルタの再生を行なっている。   However, combustion of PM usually requires a high temperature of 550 ° C to 650 ° C. For this reason, continuous combustion of PM in a practical range of a diesel vehicle is difficult, and the collected PM is gradually deposited on the filter. Therefore, in the continuous regeneration type purification device, in order to avoid excessive accumulation of the collected PM, the accumulated PM is forcibly burned (forced regeneration) using some heating means to regenerate the filter. Is doing.

また、触媒を用いて浄化を行なうCSFにおいても、PMの燃焼温度は、それ程低温化することができてはいない。これは、PMと触媒との反応は、固体−固体反応であることから、触媒との接触状態の良いPMは燃焼するものの、接触状態の悪いPMは燃焼しづらくなるためである。   Further, even in CSF that performs purification using a catalyst, the combustion temperature of PM cannot be lowered so much. This is because the PM-catalyst reaction is a solid-solid reaction, and thus PM in good contact with the catalyst burns, but PM in poor contact is difficult to burn.

CSFに使用されるPM捕集担体に触媒を担持する場合には、通常、PM捕集担体の壁面、あるいは細孔に触媒が塗布される。このため、PMの捕集量が増加するにつれて、壁面あるいは細孔に塗布された触媒上には、徐々にPMが堆積していく。このとき、触媒との界面(接触面)に存在するPMは、触媒との接触性は良好であるものの、界面以外に積層したPMは、触媒と接触しにくくなる。その結果、たとえPMに対して活性の高い触媒を用いていても、接触状態によっては、触媒の性能を十分に発揮することができない。   When a catalyst is supported on a PM collection carrier used for CSF, the catalyst is usually applied to the wall surface or pores of the PM collection carrier. For this reason, as the amount of collected PM increases, PM gradually accumulates on the catalyst applied to the wall surface or pores. At this time, PM present at the interface (contact surface) with the catalyst has good contact with the catalyst, but PM stacked other than the interface is less likely to contact the catalyst. As a result, even if a catalyst having high activity with respect to PM is used, the performance of the catalyst cannot be fully exhibited depending on the contact state.

例えば、特許文献1においては、3次元構造体上に触媒を層構造に塗布することにより、触媒の機能を分離する技術が提案されている。この技術によれば、3次元構造体にそれぞれ特性の異なる触媒層を設けることで、3次元構造体と触媒成分との反応を抑制し、また、触媒層間同士の反応による劣化を抑制することで、触媒の活性の劣化を防ぐことができ、これらの結果、高活性の浄化材を得ることができる。   For example, Patent Document 1 proposes a technique for separating the functions of a catalyst by applying the catalyst to a layer structure on a three-dimensional structure. According to this technology, by providing a catalyst layer having different characteristics in each of the three-dimensional structures, the reaction between the three-dimensional structure and the catalyst component is suppressed, and the deterioration due to the reaction between the catalyst layers is suppressed. The deterioration of the activity of the catalyst can be prevented, and as a result, a highly active purification material can be obtained.

また、特許文献2においては、PM捕集担体として多孔質のセラミック濾過材を使用し、多孔質セラミックの細孔の内面に、触媒を塗布した担体が提案されている。多孔質セラミックの細孔の内面に触媒を担持させることにより、排気ガスが濾過材を流通する過程でPMを燃焼させ、PMの濾過と同時に燃焼除去することができる。   Patent Document 2 proposes a carrier in which a porous ceramic filter material is used as a PM trapping carrier and a catalyst is applied to the inner surface of the pores of the porous ceramic. By supporting the catalyst on the inner surfaces of the pores of the porous ceramic, PM can be burned in the process of exhaust gas flowing through the filter medium, and burned and removed simultaneously with PM filtration.

更に、特許文献3においては、DPFの細孔内に触媒を偏って担持させる技術が提案されている。この技術によれば、排気圧損の上昇を抑制しつつ、PM捕集率を高めるとともに、高効率で捕集されたPMを、触媒を担持した細孔内にて順次燃焼させることができる。
特開2001−157845号公報 特開2002−221022号公報 特開2004−076717号公報
Furthermore, Patent Document 3 proposes a technique in which a catalyst is biased and supported in the pores of the DPF. According to this technique, it is possible to increase the PM collection rate while suppressing an increase in exhaust pressure loss, and to sequentially burn the PM collected with high efficiency in the pores carrying the catalyst.
JP 2001-157845 A JP 2002-221022 A Japanese Patent Application Laid-Open No. 2004-077617

しかしながら、特許文献1の技術によれば、PMと触媒との反応は固体−固体反応であることに起因して、上層触媒とPMとは接触可能であるものの、下層触媒とPMとは接触することが出来ず、したがって、下層触媒の性能を十分に発揮することは困難であった。また、上層触媒においても、PMと触媒との接触箇所以外に積層したPMは、触媒による補助を受けることができず、このため、低温にて燃焼させることはできなかった。   However, according to the technique of Patent Document 1, although the reaction between PM and the catalyst is a solid-solid reaction, the upper layer catalyst and PM can contact each other, but the lower layer catalyst and PM contact each other. Therefore, it has been difficult to fully exhibit the performance of the lower layer catalyst. Further, even in the upper layer catalyst, the PM laminated other than the contact portion between the PM and the catalyst cannot be supported by the catalyst, and therefore cannot be burned at a low temperature.

また、特許文献2および特許文献3の技術によれば、PMの捕集量が増加するにつれて、PM捕集担体の細孔径以上のPMは、濾過材の表面上に徐々に堆積していく。濾過材の表面に堆積したPMは、触媒と接触することができず、このため、PMに対して活性が高い触媒を担持した場合であっても、触媒の性能を十分に発揮することはできなかった。   Moreover, according to the technique of patent document 2 and patent document 3, PM more than the pore diameter of PM collection support | carrier is gradually deposited on the surface of a filter medium as the amount of PM collection increases. PM deposited on the surface of the filter medium cannot come into contact with the catalyst. For this reason, even when a catalyst having high activity against PM is supported, the performance of the catalyst cannot be fully exhibited. There wasn't.

本発明は、以上のような課題に鑑みてなされたものであり、ディーゼル車の実用域の範囲である低温の排気ガスにおけるPMの連続燃焼が可能であり、且つ、たとえPMが堆積した場合であっても、低温で強制再生ができる排ガス浄化フィルタおよびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is capable of continuous combustion of PM in low-temperature exhaust gas, which is a practical range of diesel vehicles, and even when PM is deposited. Even if it exists, it aims at providing the exhaust gas purification filter which can be forcedly regenerated at low temperature, and its manufacturing method.

本発明者らは上記課題を解決するため、粒子状物質と触媒との接触性に着目して鋭意研究を重ねた。その結果、高接触活性触媒と低接触活性触媒とを併用することにより、PMの接触状態あるいは堆積状態によらず、PMを低温燃焼可能となることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。   In order to solve the above-mentioned problems, the present inventors have made extensive studies focusing on the contact property between the particulate matter and the catalyst. As a result, it has been found that by using a high contact active catalyst and a low contact active catalyst in combination, PM can be combusted at a low temperature regardless of the contact state or deposition state of PM, and the present invention has been completed. More specifically, the present invention provides the following.

(1) 内燃機関の排気通路に配置され前記内燃機関から排出される排ガス中の粒子状物質を浄化する排ガス浄化フィルタであって、前記排ガスが流入する排ガス流入路と、この排ガス流入路の隔壁を形成し空隙を有する濾過材と、前記排ガス流入路に流入して前記濾過材を通過した排ガスを流出する排ガス流出路と、を備え、前記隔壁の内表面には、前記粒子状物質との接触性によらず高い活性を示す低接触活性触媒が担持され、前記濾過材中の前記空隙の内表面には、前記粒子状物質との接触性が高い場合に高い活性を示す高接触活性触媒が担持された排ガス浄化フィルタ。   (1) An exhaust gas purification filter that is disposed in an exhaust passage of an internal combustion engine and purifies particulate matter in exhaust gas discharged from the internal combustion engine, the exhaust gas inflow passage through which the exhaust gas flows, and a partition wall of the exhaust gas inflow passage And a filter medium having voids, and an exhaust gas outflow path that flows into the exhaust gas inflow path and flows out of the exhaust gas that has passed through the filter medium, and the inner surface of the partition wall includes the particulate matter. A highly catalytically active catalyst exhibiting a high activity when a low catalytically active catalyst exhibiting a high activity regardless of the contact property is supported and the inner surface of the void in the filter medium has a high contact property with the particulate matter. Exhaust gas purification filter carrying

(1)の排ガス浄化フィルタは、粒子状物質(PM)との接触性によらず高い活性を示す低接触活性触媒と、粒子状物質(PM)との接触性が高い場合に高い活性を示す高接触活性触媒とを、それぞれ、粒子状物質との接触性が高い部位と低い部位とで使い分けるものである。具体的には、濾過材の空隙内に高接触活性触媒を配置し、濾過材の表面に低接触活性触媒を配置するものである。   The exhaust gas purification filter of (1) exhibits high activity when the contact property between the low contact active catalyst showing high activity regardless of the contact property with the particulate matter (PM) and the particulate matter (PM) is high. The high contact active catalyst is used separately at a site where the contact property with the particulate matter is high and a site where the contact property is low. Specifically, a high contact active catalyst is disposed in the gap of the filter medium, and a low contact active catalyst is disposed on the surface of the filter medium.

ここで、本発明における「接触性」とは、堆積PM量に対するPMと触媒の接触比率をさす。接触性が高い場合とは、堆積PMのほとんどが触媒と接触点を有する場合であり、接触性が低い場合とは、堆積PMのほとんどが触媒と接触点を有さない場合である。すなわち、PM量が少ないほど接触比率は上がり、接触性は高くなる。   Here, “contactability” in the present invention refers to the contact ratio of PM and catalyst to the amount of deposited PM. The case where the contact property is high is a case where most of the deposited PM has a contact point with the catalyst, and the case where the contact property is low is a case where most of the deposited PM does not have a contact point with the catalyst. That is, the smaller the PM amount, the higher the contact ratio and the higher the contactability.

一般に、DPFを用いて排ガスの浄化を行なう場合、濾過材の空隙内には、空隙径よりも小さい径のPMが入り込んで捕集され、一方で、空隙径よりも大きい径を有するPMは、濾過材の表面で捕集される。PMは、粒径が小さいほど存在が少量となるため、濾過材の空隙孔に捕集されるPM量は少量となり、このため、濾過材の空隙内の触媒とPMとの接触性は高い。一方で、濾過材の表面で捕集されるPMは、粒径がある程度大きいため、捕集量が増えるにつれて積層され、触媒との接触性は低くなり、更には、PMは触媒と接触しなくなる。   In general, when purifying exhaust gas using DPF, PM having a diameter smaller than the gap diameter enters and is collected in the gap of the filter medium, while PM having a diameter larger than the gap diameter is It is collected on the surface of the filter medium. Since the smaller the particle size, the smaller the amount of PM present, the smaller the amount of PM collected in the pores of the filter medium. Therefore, the contact between the catalyst in the gap of the filter medium and the PM is high. On the other hand, since PM collected on the surface of the filter medium has a large particle size, it is laminated as the collected amount increases, and the contact with the catalyst is lowered, and furthermore, PM does not contact the catalyst. .

(1)の排ガス浄化フィルタによれば、それぞれの触媒の性能を十分に発揮することから、粒子状物質(PM)を効率よく燃焼させることができ、これにより、PMの燃焼温度を低下させることができる。したがって、ディーゼル車の実用域の範囲にある低温の排気ガス中のPMを連続燃焼させることができ、且つ、たとえPMが堆積した場合であっても、低温で強制再生を行なうことができる。その結果、(1)の排ガス浄化フィルタによれば、強制再生による燃費のロス、触媒劣化を抑制することができ、自動車への負担を軽減することができる。   According to the exhaust gas purification filter of (1), since the performance of each catalyst is sufficiently exhibited, the particulate matter (PM) can be burned efficiently, thereby reducing the combustion temperature of PM. Can do. Therefore, PM in low-temperature exhaust gas within the practical range of diesel vehicles can be continuously burned, and forced regeneration can be performed at low temperatures even when PM is deposited. As a result, according to the exhaust gas purification filter of (1), the loss of fuel consumption and catalyst deterioration due to forced regeneration can be suppressed, and the burden on the automobile can be reduced.

また、(1)の排ガス浄化フィルタは、それぞれの触媒の性能を十分に発揮することができ、触媒を有効に用いることができる。したがって、排ガス浄化フィルタの作成にあたって、経費の削減に寄与することができる。   Moreover, the exhaust gas purification filter of (1) can sufficiently exhibit the performance of each catalyst, and the catalyst can be used effectively. Therefore, it is possible to contribute to a reduction in costs in creating the exhaust gas purification filter.

(2) 前記排ガス流入路および前記排ガス流出路は、前記濾過材を介して交互に隣接して配置された多数のセルから形成され、前記排ガス流入路を形成するセルは、上流側末端が開放され、且つ、下流側末端が目封止されており、前記排ガス流出路を形成するセルは、上流側末端が目封止され、且つ、下流側末端が開放されている(1)記載の排ガス浄化フィルタ。   (2) The exhaust gas inflow passage and the exhaust gas outflow passage are formed from a large number of cells alternately arranged adjacent to each other through the filter medium, and the upstream end of the cell forming the exhaust gas inflow passage is open. The downstream end is plugged, and the cells forming the exhaust gas outflow passage are plugged at the upstream end and open at the downstream end, as described in (1). Purification filter.

(2)の排ガス浄化フィルタは、多数のセルから構成されるいわゆるウォールフロー型の排ガス浄化フィルタである。(2)の排ガス浄化フィルタは、ハニカム構造体を有することから、小さな堆積で効率よく排ガスを処理することができる。   The exhaust gas purification filter (2) is a so-called wall flow type exhaust gas purification filter composed of a large number of cells. Since the exhaust gas purification filter of (2) has a honeycomb structure, exhaust gas can be efficiently processed with small deposition.

(3) 前記濾過材は、多孔質セラミックである(1)または(2)記載の排ガス浄化フィルタ。   (3) The exhaust gas purification filter according to (1) or (2), wherein the filter medium is a porous ceramic.

(3)の排ガス浄化フィルタは、その材質を多孔質セラミックとすることから、高接触活性触媒を担持するための空隙を十分に備えており、且つ、強制再生等による高温条件下においても、十分に耐えることができる。   Since the exhaust gas purifying filter of (3) is made of porous ceramic, the exhaust gas purifying filter has sufficient voids for supporting the high contact active catalyst, and is sufficient even under high temperature conditions such as forced regeneration. Can withstand.

(4) 前記低接触活性触媒は、少なくとも1種の遷移金属元素および少なくとも1種のアルカリ金属元素を含む(1)から(3)いずれか記載の排ガス浄化フィルタ。   (4) The exhaust gas purification filter according to any one of (1) to (3), wherein the low contact active catalyst includes at least one transition metal element and at least one alkali metal element.

(4)の排ガス浄化フィルタは、低接触活性触媒として、少なくとも1種の遷移金属元素および少なくとも1種のアルカリ金属元素を含む触媒を用いることにより、触媒の活性をより高いものとすることができる。また、本発明に係る排ガス浄化フィルタにおいて、低接触活性触媒は、濾過材の表面に全体的に担持されることから、貴金属等を含む高価な触媒を使用する場合と比較して、排ガス浄化フィルタの作成にあたって、経費の削減に寄与することができる。   In the exhaust gas purification filter of (4), the activity of the catalyst can be made higher by using a catalyst containing at least one transition metal element and at least one alkali metal element as the low contact active catalyst. . Further, in the exhaust gas purification filter according to the present invention, since the low contact active catalyst is entirely supported on the surface of the filter medium, the exhaust gas purification filter is compared with the case where an expensive catalyst containing a noble metal or the like is used. This can contribute to cost reduction.

(5) 前記高接触活性触媒は、少なくとも1種の貴金属元素を含む(1)から(4)いずれか記載の排ガス浄化フィルタ。   (5) The exhaust gas purification filter according to any one of (1) to (4), wherein the high contact active catalyst includes at least one kind of noble metal element.

(5)の排ガス浄化フィルタは、高接触活性触媒として、少なくとも1種の貴金属元素を含む触媒を用いるものである。貴金属元素を含む触媒は、一般に高価である。本発明において、高接触活性触媒は、濾過材の空隙部分にのみ担持されることから、その使用量を抑えることができる。したがって、(5)の排ガス浄化フィルタによれば、高価な貴金属元素を含む触媒の使用量を低減することができ、このため、排ガス浄化フィルタの作成にあたって、経費の削減に寄与することができる。   The exhaust gas purification filter of (5) uses a catalyst containing at least one kind of noble metal element as a high contact active catalyst. A catalyst containing a noble metal element is generally expensive. In the present invention, since the high contact active catalyst is supported only in the void portion of the filter medium, the amount of use can be suppressed. Therefore, according to the exhaust gas purification filter of (5), the amount of the catalyst containing an expensive noble metal element can be reduced, and this can contribute to a reduction in costs in producing the exhaust gas purification filter.

(6) 内燃機関の排気通路に配置され前記内燃機関から排出される排ガス中の粒子状物質を浄化する排ガス浄化フィルタの製造方法であって、空隙を有する濾過材に、前記粒子状物質との接触性が高い場合に高い活性を示す高接触活性触媒を通過させ、前記濾過材中の前記空隙の内表面に前記高接触活性触媒を担持させる高接触活性触媒担持工程と、前記高接触活性触媒担持工程により前記濾過材中の前記空隙の内表面に前記高接触活性触媒を担持させた前記濾過材の表面に、前記粒子状物質との接触性によらず高い活性を示す低接触活性触媒を塗布して担持させる低接触活性触媒担持工程と、を含む排ガス浄化フィルタの製造方法。   (6) A method of manufacturing an exhaust gas purification filter that is disposed in an exhaust passage of an internal combustion engine and purifies particulate matter in exhaust gas discharged from the internal combustion engine, wherein a filter medium having a void is bonded to the particulate matter. A high contact active catalyst supporting step of passing a high contact active catalyst exhibiting high activity when the contact property is high and supporting the high contact active catalyst on the inner surface of the void in the filter medium; and the high contact active catalyst A low contact active catalyst exhibiting high activity regardless of the contact property with the particulate matter on the surface of the filter medium in which the high contact active catalyst is supported on the inner surface of the void in the filter medium by a supporting step. A method for producing an exhaust gas purifying filter, comprising: a low contact active catalyst carrying step for coating and carrying.

(6)の排ガス浄化フィルタの製造方法によれば、粒子状物質との接触性が高い部位に高接触活性触媒を配置し、粒子状物質との接触性が低い部位に低接触活性触媒を配置することができる。このため、(6)の排ガス浄化フィルタの製造方法により得られるフィルタは、上記(1)の効果を有する。   According to the method for producing an exhaust gas purification filter of (6), a high contact active catalyst is disposed at a site having high contact with the particulate matter, and a low contact active catalyst is disposed at a portion having low contact with the particulate matter. can do. For this reason, the filter obtained by the manufacturing method of the exhaust gas purification filter of (6) has the effect of (1).

本発明によれば、ディーゼル車の実用域の範囲にある低温の排気ガス中のPMを連続燃焼させることができ、且つ、たとえPMが堆積した場合であっても、低温で強制再生を行なうことができる。このため、強制再生による燃費のロス、触媒劣化を抑制することができ、自動車への負担を軽減することができる。   According to the present invention, it is possible to continuously burn PM in low-temperature exhaust gas within the practical range of a diesel vehicle, and to perform forced regeneration at a low temperature even when PM accumulates. Can do. For this reason, fuel consumption loss and catalyst deterioration due to forced regeneration can be suppressed, and the burden on the automobile can be reduced.

また、PMの堆積状態に合わせた触媒を使い分けて使用することができるため、高価な貴金属を含む触媒の使用量を抑えることができ、その結果、排ガス浄化フィルタの作成にあたって、経費の削減に寄与することができる。   In addition, it is possible to use different catalysts according to the PM deposition state, so it is possible to reduce the amount of catalysts containing expensive precious metals, and as a result, contribute to cost reduction in the creation of exhaust gas purification filters. can do.

以下、本発明の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[排ガス浄化フィルタの全体構成]
図1は、本発明の実施形態にかかるウォールフロー型DPF1の、セルに平行な方向の断面模式図である。本実施形態にかかるウォールフロー型DPF1は、排ガス(濾過材通過前)2が流入する排ガス流入路3と、この排ガス流入路3の隔壁を形成する濾過材4と、排ガス流入路3に流入した後、濾過材4を通過して濾過された排ガス(濾過材通過後)5が流出する排ガス流出路6を備える。また、排ガス流入路3の下流側末端、および、排ガス流出路6の上流側末端は、目封止材7にて目封止されている。
[Overall configuration of exhaust gas purification filter]
FIG. 1 is a schematic cross-sectional view of a wall flow type DPF 1 according to an embodiment of the present invention in a direction parallel to a cell. The wall flow type DPF 1 according to the present embodiment flows into the exhaust gas inflow path 3 into which the exhaust gas (before passing through the filter medium) 2 flows, the filter medium 4 that forms the partition wall of the exhaust gas inflow path 3, and the exhaust gas inflow path 3. Thereafter, an exhaust gas outflow passage 6 through which exhaust gas (after passing through the filter medium) 5 that has passed through the filter medium 4 flows out is provided. Further, the downstream end of the exhaust gas inflow passage 3 and the upstream end of the exhaust gas outflow passage 6 are plugged with a plugging material 7.

本実施形態においては、排ガス(濾過材通過前)2は、排ガス浄化フィルタの排ガス流入路3に流入され、濾過材4により濾過されることにより浄化し、排ガス(濾過材通過後)5として、排ガス流出路6から排出される。   In the present embodiment, the exhaust gas (before passing through the filter medium) 2 is purified by flowing into the exhaust gas inflow passage 3 of the exhaust gas purification filter and being filtered by the filter medium 4, and as exhaust gas (after passing through the filter medium) 5, It is discharged from the exhaust gas outflow passage 6.

図2は、図1における点線範囲Pの部分拡大図である。図2に示されるように、濾過材8は、排ガス流入路3および排ガス流出路6に連結する空隙9を有する。また、濾過材8の排ガス流入路3側の表面には、低接触活性触媒10が担持されている。濾過材8の空隙9の内表面には、高接触活性触媒11が担持されている。   FIG. 2 is a partially enlarged view of a dotted line range P in FIG. As shown in FIG. 2, the filter medium 8 has a gap 9 connected to the exhaust gas inflow passage 3 and the exhaust gas outflow passage 6. A low contact active catalyst 10 is supported on the surface of the filter medium 8 on the exhaust gas inflow path 3 side. A high contact active catalyst 11 is supported on the inner surface of the gap 9 of the filter medium 8.

本実施形態においては、濾過材8の空隙9の径以下の径を有するPM12は、空隙9を通過して、空隙9の内表面に担持された高接触活性触媒11に接触する。また、濾過材8の空隙9の径以上の径を有するPM13は、空隙9を通過することなく濾過材8の排ガス流入路3側の表面に担持された低接触活性触媒10に接触する。   In the present embodiment, the PM 12 having a diameter equal to or smaller than the diameter of the gap 9 of the filter medium 8 passes through the gap 9 and contacts the high contact active catalyst 11 supported on the inner surface of the gap 9. Further, the PM 13 having a diameter equal to or larger than the diameter of the gap 9 of the filter medium 8 contacts the low contact active catalyst 10 carried on the surface of the filter medium 8 on the exhaust gas inflow path 3 side without passing through the gap 9.

図3は、図2における点線範囲Qの部分拡大図である。図3に示されるように、濾過材8の空隙9の径以下の径を有するPM12は、空隙9の内表面に担持された高接触活性触媒11の触媒粒子同士の隙間に侵入することができ、このため、触媒の活性点とPMの接触点が増加する。   FIG. 3 is a partially enlarged view of the dotted line range Q in FIG. As shown in FIG. 3, the PM 12 having a diameter equal to or smaller than the diameter of the gap 9 of the filter medium 8 can enter the gap between the catalyst particles of the high contact active catalyst 11 supported on the inner surface of the gap 9. For this reason, the active point of a catalyst and the contact point of PM increase.

[濾過材]
本実施形態で用いられる濾過材8としては、特に限定されるものではない。高接触活性触媒11を担持することのできる空隙を有し、PMの燃焼温度に耐えうるものであれば、公知の濾過材を用いることが可能である。本実施形態に用いられる濾過材としては、例えば、多孔質セラミック、セラミック発泡体、金属発泡体、金属メッシュ等を挙げることができる。これらの中では多孔質セラミックを使用することが好ましい。
[Filtering media]
The filter medium 8 used in the present embodiment is not particularly limited. A known filter medium can be used as long as it has a void capable of supporting the high contact active catalyst 11 and can withstand the combustion temperature of PM. Examples of the filtering material used in the present embodiment include porous ceramics, ceramic foams, metal foams, and metal meshes. Among these, it is preferable to use a porous ceramic.

〔濾過材の厚み〕
本発明に用いられる濾過材の厚みとしては、特に限定されるものではなく、求められる浄化の程度、使用する触媒の性能、濾過材の空隙の大きさ、空隙率、さらには、排ガス浄化フィルタを用いる浄化装置の大きさに併せて、適宜選択することができる。本発明における濾過材の厚みは、254μm以上380μm以下が好ましく、254μm以上310μm以下が更に好ましい。濾過材の厚みがこの範囲にあれば、空隙に侵入するPM量に対する最適な触媒量を塗布することが可能であり、十分に触媒性能を発揮することができる。
[Thickness of filter medium]
The thickness of the filter medium used in the present invention is not particularly limited, and the required degree of purification, the performance of the catalyst used, the size of the voids in the filter medium, the porosity, and the exhaust gas purification filter It can select suitably according to the magnitude | size of the purification apparatus to be used. The thickness of the filter medium in the present invention is preferably from 254 μm to 380 μm, and more preferably from 254 μm to 310 μm. If the thickness of the filter medium is within this range, it is possible to apply an optimum catalyst amount with respect to the PM amount entering the gap, and the catalyst performance can be sufficiently exhibited.

〔空隙の大きさ・空隙率〕
本発明に用いられる濾過材における空隙の大きさ、および空隙率は、特に限定されるものではない。求められる浄化の程度、使用する触媒の性能、濾過材の厚み、さらには、排ガス浄化フィルタを用いる浄化装置の大きさに併せて、適宜選択することができる。本発明における濾過材の空隙の大きさは、1μm以上40μm以下の範囲であることが好ましく、9μm以上24μm以下であることが更に好ましい。空隙の大きさがこの範囲にあれば、触媒の接触において高い接触性を有するPM粒径を空隙に侵入させることができ、十分に触媒性能を発揮することができる。また、本発明における濾過材の空隙率は、30%以上98%以下であることが好ましく、40%以上70%以下であることが更に好ましい。空隙率がこの範囲にあれば、十分なPM捕集率を保ちながらPMを浄化可能とすることができる。
[Void size / porosity]
The size of the voids and the porosity in the filter medium used in the present invention are not particularly limited. The degree of purification required, the performance of the catalyst used, the thickness of the filter medium, and the size of the purification device using the exhaust gas purification filter can be selected as appropriate. In the present invention, the size of the gap of the filter medium is preferably in the range of 1 μm to 40 μm, and more preferably 9 μm to 24 μm. If the size of the voids is within this range, PM particle size having high contactability in contact with the catalyst can enter the voids, and the catalyst performance can be sufficiently exhibited. Further, the porosity of the filter medium in the present invention is preferably 30% or more and 98% or less, and more preferably 40% or more and 70% or less. If the porosity is within this range, PM can be purified while maintaining a sufficient PM collection rate.

[目封止材]
本実施形態に用いられる目封止材7は、特に限定されるものではない。排ガス流入路3および排ガス流出路5を目封止することのできる大きさを有し、PMの燃焼温度等の使用に耐えうるものであれば、公知の材料により形成された目封止材を用いることが可能である。本実施形態に用いられる目封止材としては、例えば、SiC、コージェライト、アルミナ、シリカ等のセラミック材料や金属材料を挙げることができるが、濾過材8と同じ材料を使用することが望ましい。
[Plugging material]
The plugging material 7 used in the present embodiment is not particularly limited. As long as the exhaust gas inflow passage 3 and the exhaust gas outflow passage 5 have a size that can be plugged and can withstand the use of the combustion temperature of PM, a plugging material formed of a known material is used. It is possible to use. Examples of the plugging material used in the present embodiment include ceramic materials such as SiC, cordierite, alumina, and silica, and metal materials, but it is desirable to use the same material as the filter material 8.

[高接触活性触媒]
本実施形態に用いられる高接触活性触媒11は、粒子状物質との接触性が高い場合に高い活性を示す触媒である。高活性触媒は、PMとの接触状態が高い場合に、PMを低温で燃焼することができるため、処理する排ガスが低温であっても、連続的にPMを燃焼することができる。このため、ディーゼル車における実用域においても、十分に連続的にPMを燃焼させることができる。
[High catalytic activity catalyst]
The high contact active catalyst 11 used in the present embodiment is a catalyst exhibiting high activity when the contact property with the particulate matter is high. Since the highly active catalyst can burn PM at a low temperature when the contact state with PM is high, PM can be burned continuously even if the exhaust gas to be treated is at a low temperature. For this reason, PM can be burned sufficiently continuously even in a practical range in a diesel vehicle.

本発明に用いられる高接触活性触媒としては、特に限定されるものではないが、例えば、貴金属元素、遷移金属元素等の無機元素から選ばれる少なくとも1種の元素を含む触媒を挙げることができる。これらの中では、ルテニウム、パラジウム等の貴金属元素を含む触媒が好ましい。   Although it does not specifically limit as a high contact active catalyst used for this invention, For example, the catalyst containing at least 1 sort (s) of elements chosen from inorganic elements, such as a noble metal element and a transition metal element, can be mentioned. In these, the catalyst containing noble metal elements, such as ruthenium and palladium, is preferable.

[低接触活性触媒]
本実施形態に用いられる低接触活性触媒10は、粒子状物質との接触性によらず高い活性を示す触媒である。低接触活性触媒は、PMとの接触状態が高い状態で、PMを低温で燃焼できるばかりでなく、PMとの接触状態が低い状態であっても、PMを低温で燃焼することができる。これは、アルカリ金属等の低接触活性触媒に含まれる成分の溶融効果により、接触が低い状態であっても、PMの低温燃焼が可能となると推測される。
[Low catalytic activity catalyst]
The low contact active catalyst 10 used in the present embodiment is a catalyst that exhibits high activity regardless of the contact property with the particulate matter. The low contact active catalyst not only can burn PM at a low temperature in a state where the contact state with PM is high, but can burn PM at a low temperature even in a state where the contact state with PM is low. This is presumed that low temperature combustion of PM is possible even in a low contact state due to the melting effect of the components contained in the low contact active catalyst such as alkali metal.

低接触活性触媒は、PMとの接触が低い状態では、上記の高接触活性触媒の接触性が高い状態よりも高温側でしかPMを燃焼することができないが、高接触活性触媒のPMとの接触が低い状態よりは、低温側でPMを燃焼することができる。このため、高接触活性触媒とPMとの接触性が低く、連続燃焼させることのできなかったPM(例えば積層したPM)を、高接触活性触媒を使用して燃焼させるよりは、低い温度にて燃焼することができる。   The low contact active catalyst can burn PM only on the high temperature side when the contact with the PM is low as compared with the state where the contact property of the high contact active catalyst is high. PM can be combusted at a lower temperature than in a state where the contact is low. For this reason, the contact property between the high contact active catalyst and PM is low, and PM (for example, stacked PM) that could not be continuously burned is lower at a lower temperature than burning using a high contact active catalyst. Can burn.

本発明に用いられる低接触活性触媒としては、特に限定されるものではないが、例えば、貴金属元素、遷移金属元素、アルカリ金属、アルカリ土類金属等の無機元素から選ばれる少なくとも1種の元素を含む触媒を挙げることができる。これらの中では、少なくとも1種の遷移金属元素および少なくとも1種のアルカリ金属元素を含む触媒が好ましく、遷移金属元素としてはランタン、セリウム、プラセオジム、ネオジム、マンガン、コバルト、銅、モリブデン、バナジウム等の酸化物でイオン化エネルギーの低い元素、アルカリ金属元素としては最も電気陰性度の低いセシウムを併用した組み合わせが特に好ましい。   The low contact active catalyst used in the present invention is not particularly limited. For example, at least one element selected from inorganic elements such as noble metal elements, transition metal elements, alkali metals, and alkaline earth metals is used. Mention may be made of the catalyst comprising. Among these, a catalyst containing at least one transition metal element and at least one alkali metal element is preferable. Examples of the transition metal element include lanthanum, cerium, praseodymium, neodymium, manganese, cobalt, copper, molybdenum, and vanadium. A combination of cesium having the lowest electronegativity is particularly preferable as the oxide and the element having low ionization energy and the alkali metal element.

[排ガス浄化フィルタの製造方法(触媒の担持方法)]
本発明の排ガス浄化フィルタの製造方法は、高接触活性触媒担持工程と、低接触活性触媒担持工程とを含むものである。
[Manufacturing method of exhaust gas purification filter (catalyst loading method)]
The method for producing an exhaust gas purification filter of the present invention includes a high contact active catalyst supporting step and a low contact active catalyst supporting step.

〔高接触活性触媒担持工程〕
排ガス浄化フィルタの製造方法における高接触活性触媒担持工程とは、濾過材に、粒子状物質との接触性が高い場合に高い活性を示す高接触活性触媒を通過させ、濾過材中の空隙の内表面に、高接触活性触媒を担持させる工程である。
[High contact active catalyst loading process]
The high-contact active catalyst supporting step in the method for producing an exhaust gas purification filter is a method in which a high-contact active catalyst exhibiting high activity is passed through a filter material when the contact property with particulate matter is high, In this step, a highly catalytically active catalyst is supported on the surface.

〔低接触活性触媒担持工程〕
排ガス浄化フィルタの製造方法における低接触活性触媒担持工程とは、高接触活性触媒担持工程により濾過材中の空隙の内表面に高接触活性触媒が担持された濾過材の表面に、粒子状物質との接触性によらず高い活性を示す低接触活性触媒を塗布して担持させる工程である。
[Low contact active catalyst loading process]
The low contact active catalyst supporting step in the method for producing an exhaust gas purification filter is a particulate material on the surface of the filter medium in which the high contact active catalyst is supported on the inner surface of the void in the filter medium by the high contact active catalyst support step. This is a step of applying and supporting a low contact active catalyst exhibiting high activity regardless of the contact property of the catalyst.

〔目封止工程〕
本発明において、ウォールフロー型の排ガス浄化フィルタを製造する場合には、上記の高接触活性触媒担持工程の後に、目封止材による目封止工程を実施し、その後に、排気ガス流入路の入口側から低接触活性触媒を塗布することにより、低接触活性触媒担持工程を実施することができる。
[Closing process]
In the present invention, when producing a wall flow type exhaust gas purification filter, after the above-described high contact active catalyst supporting step, a plugging step with a plugging material is performed, and then the exhaust gas inflow passage is By applying the low contact active catalyst from the inlet side, the low contact active catalyst supporting step can be carried out.

[排ガス浄化装置]
本発明の排ガス浄化フィルタが用いられる装置は、特に限定されるものではない。排ガス浄化装置は、大きく分けてトラップ型の排ガス浄化装置(ウォールフロー型)と、オープン型の排ガス浄化装置(ストレートフロー型)とが存在する。本発明の排ガス浄化フィルタは、いずれの型の排ガス浄化装置においても好適に用いることができるが、低温でのPMの燃焼を効率的に行なうことができる利点を生かすことから、特に、ウォールフロー型の排ガス浄化装置に用いることが好ましい。
[Exhaust gas purification equipment]
The apparatus in which the exhaust gas purification filter of the present invention is used is not particularly limited. Exhaust gas purification devices are roughly classified into trap type exhaust gas purification devices (wall flow type) and open type exhaust gas purification devices (straight flow type). The exhaust gas purifying filter of the present invention can be suitably used in any type of exhaust gas purifying device. However, since it makes use of the advantage that PM can be efficiently burned at a low temperature, it is particularly a wall flow type. It is preferable to use for this exhaust gas purification apparatus.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

<触媒の評価>
先ず、実施例および比較例に用いる触媒につき、PM燃焼温度の測定を行なった。
<Evaluation of catalyst>
First, PM combustion temperature was measured for the catalysts used in Examples and Comparative Examples.

[PM燃焼温度の測定]
本発明の試験例、実施例、および比較例においては、PM燃焼温度を以下の条件に基づいて測定した。
〔試験条件〕
測定装置 :TG/DTA(エスアイアイ・ナノテクノロジー社製、商品名:EXSTAR6000TG/DTA)
昇温条件 :20℃/min
雰囲気 :Dry Air
サンプル量:10mg(内PM量:5質量%)
流量 :SV=60000h−1
〔試料調整条件〕
接触性が高い状態(タイトコンタクト:TC):乳鉢乳棒にて2μm以下に粉砕混合
接触性が低い状態(ルーズコンタクト:LC):試料上にPMをふりかける
[Measurement of PM combustion temperature]
In the test examples, examples, and comparative examples of the present invention, the PM combustion temperature was measured based on the following conditions.
〔Test conditions〕
Measuring device: TG / DTA (manufactured by SII Nano Technology, trade name: EXSTAR6000TG / DTA)
Temperature rising condition: 20 ° C / min
Atmosphere: Dry Air
Sample amount: 10 mg (internal PM amount: 5% by mass)
Flow rate: SV = 60000h −1
[Sample preparation conditions]
High contact state (tight contact: TC): pulverized and mixed to 2 μm or less with a mortar pestle Low contact state (loose contact: LC): Sprinkle PM on the sample

[試験例1(RuO+PM:TC)]
塩化ルテニウム(市販の特級試薬)を800℃で焼成し、引き続き、2μm以下の粉末となるよう整粒して、触媒Aとした。触媒Aに対し、20:1(質量比)となるようPMを粉砕混合し、PMと触媒との接触性が高い状態のサンプルを得た。得られたサンプルにつき、PM燃焼温度の測定を行なった。燃焼ピーク温度を表1に示す。
[Test Example 1 (RuO 2 + PM: TC)]
Ruthenium chloride (a commercially available special grade reagent) was calcined at 800 ° C., and subsequently sized so as to obtain a powder of 2 μm or less. PM was pulverized and mixed with the catalyst A so as to be 20: 1 (mass ratio) to obtain a sample having high contact between PM and the catalyst. The PM combustion temperature was measured for the obtained sample. The combustion peak temperature is shown in Table 1.

Figure 2007069153
Figure 2007069153

[試験例2(1質量%Pd/CeO+PM:TC)]
硝酸セリウム(市販の特級試薬)、塩化パラジウム、およびHOを、所定の組成となるように秤量混合し、セリウムおよびパラジウム含有水溶液を得た。別の容器にて、水酸化ナトリウムおよびHOを、所定の組成となるように秤量混合し、水酸化ナトリウム水溶液を得た。得られたセリウムおよびパラジウム含有水溶液を、水酸化ナトリウム水溶液に滴下することにより、沈殿物を得た。このときのpHは10であった。60℃×1時間の熟成を行った後に、ろ過、水洗を実施し、350℃で仮焼成の後、2μm以下の粉末となるように整粒した。得られた粉末に対し、500℃×5時間の焼成を実施し、触媒Bとした。触媒Bに対し、20:1(質量比)でPMを粉砕混合し、PMと触媒との接触性が高い状態のサンプルを得た。得られたサンプルにつき、試験例1と同様にPM燃焼温度の測定を行なった。燃焼ピーク温度を表1に示す。
[Test Example 2 (1 mass% Pd / CeO 2 + PM: TC)]
Cerium nitrate (commercial special grade reagent), palladium chloride, and H 2 O were weighed and mixed so as to have a predetermined composition to obtain an aqueous solution containing cerium and palladium. In a separate container, sodium hydroxide and H 2 O were weighed and mixed so as to have a predetermined composition to obtain an aqueous sodium hydroxide solution. The obtained cerium and palladium-containing aqueous solution was dropped into an aqueous sodium hydroxide solution to obtain a precipitate. The pH at this time was 10. After aging at 60 ° C. for 1 hour, filtration and washing were carried out, and after calcination at 350 ° C., the particles were sized to become a powder of 2 μm or less. The obtained powder was calcined at 500 ° C. for 5 hours to obtain catalyst B. PM was pulverized and mixed with the catalyst B at a ratio of 20: 1 (mass ratio) to obtain a sample having a high contact property between the PM and the catalyst. About the obtained sample, the PM combustion temperature was measured in the same manner as in Test Example 1. The combustion peak temperature is shown in Table 1.

[試験例3(10質量%CsCO/LaMnO+PM:TC)]
硝酸ランタン(市販の特級試薬)、硝酸マンガン、およびHOを、所定の組成となるように秤量混合し、ランタンおよびマンガン含有水溶液を得た。別の容器にて、炭酸ナトリウムおよびHOを、所定の組成となるように秤量混合し、炭酸ナトリウム水溶液を得た。ランタンおよびマンガン含有水溶液を炭酸ナトリム水溶液に滴下することにより、沈殿物を得た。引き続き、60℃×1時間の熟成を行い、ろ過、水洗の後、350℃で仮焼成し、引き続き、2μm以下の粉末となるように整粒した。得られた粉末に対し、800℃×10時間の焼成を実施し、触媒Cとした。触媒Cに対し、炭酸セシウムを10質量%となるよう粉砕混合し、800℃×1時間の焼成を実施して固相反応させ、触媒Dを得た。触媒Dに対し、20:1(質量比)でPMを粉砕混合し、PMと触媒との接触性が高い状態のサンプルを得た。得られたサンプルにつき、試験例1と同様にPM燃焼温度の測定を行なった。燃焼ピーク温度を表1に示す。
[Test Example 3 (10 mass% Cs 2 CO 3 / LaMnO 3 + PM: TC)]
Lanthanum nitrate (a commercially available special grade reagent), manganese nitrate, and H 2 O were weighed and mixed so as to have a predetermined composition to obtain an aqueous solution containing lanthanum and manganese. In another container, sodium carbonate and H 2 O were weighed and mixed so as to have a predetermined composition to obtain an aqueous sodium carbonate solution. A lanthanum and manganese-containing aqueous solution was dropped into a sodium carbonate aqueous solution to obtain a precipitate. Subsequently, aging was performed at 60 ° C. for 1 hour, followed by filtration and washing with water, followed by provisional firing at 350 ° C., followed by sizing so as to obtain a powder of 2 μm or less. The obtained powder was calcined at 800 ° C. for 10 hours to obtain catalyst C. The catalyst C was pulverized and mixed to 10% by mass of cesium carbonate, and calcined at 800 ° C. for 1 hour to cause a solid phase reaction, whereby a catalyst D was obtained. PM was pulverized and mixed with the catalyst D at a ratio of 20: 1 (mass ratio) to obtain a sample having a high contact property between the PM and the catalyst. About the obtained sample, the PM combustion temperature was measured in the same manner as in Test Example 1. The combustion peak temperature is shown in Table 1.

[試験例4(10質量%CsCO/LaMnO+PM:LC)]
試験例3で得られた触媒Dに対し、20:1(質量比)でPMをふりかけて、PMと触媒との接触性が低い状態のサンプルを得た。得られたサンプルにつき、試験例1と同様にPM燃焼温度の測定を行なった。燃焼ピーク温度を表1に示す。
[Test Example 4 (10% by mass Cs 2 CO 3 / LaMnO 3 + PM: LC)]
The catalyst D obtained in Test Example 3 was sprinkled with PM at a ratio of 20: 1 (mass ratio) to obtain a sample with a low contact property between PM and the catalyst. About the obtained sample, the PM combustion temperature was measured in the same manner as in Test Example 1. The combustion peak temperature is shown in Table 1.

[比較試験例1(PMのみ)]
ディーゼル発電機より収集したPM粉末につき、試験例1と同様にPM燃焼温度の測定を行なった。結果を表1に示す。
[Comparative Test Example 1 (PM only)]
The PM combustion temperature was measured in the same manner as in Test Example 1 for the PM powder collected from the diesel generator. The results are shown in Table 1.

[比較試験例2(RuO+PM:LC)]
試験例1で得られた触媒Aに対し、20:1(質量比)でPMをふりかけて、PMと触媒との接触性が低い状態のサンプルを得た。得られたサンプルにつき、試験例1と同様にPM燃焼温度の測定を行なった。燃焼ピーク温度を表1に示す。
[Comparative Test Example 2 (RuO 2 + PM: LC)]
The catalyst A obtained in Test Example 1 was sprinkled with PM at a ratio of 20: 1 (mass ratio) to obtain a sample having a low contact property between PM and the catalyst. About the obtained sample, the PM combustion temperature was measured in the same manner as in Test Example 1. The combustion peak temperature is shown in Table 1.

[比較試験例3(1質量%Pd/CeO+PM:LC)]
試験例2で得られた触媒Bに対し、20:1(質量比)でPMをふりかけて、PMと触媒との接触性が低い状態のサンプルを得た。得られたサンプルにつき、試験例1と同様にPM燃焼温度の測定を行なった。燃焼ピーク温度を表1に示す。
[Comparative Test Example 3 (1% by mass Pd / CeO 2 + PM: LC)]
The catalyst B obtained in Test Example 2 was sprinkled with PM at a ratio of 20: 1 (mass ratio) to obtain a sample having a low contact property between PM and the catalyst. About the obtained sample, the PM combustion temperature was measured in the same manner as in Test Example 1. The combustion peak temperature is shown in Table 1.

[試験例からの考察]
比較例試験例1は、触媒を用いない場合のPM燃焼ピーク温度である。PMそのままの場合の燃焼ピーク温度は、668℃であった。
[Consideration from test examples]
Comparative Example Test Example 1 is a PM combustion peak temperature when no catalyst is used. The combustion peak temperature in the case of PM as it was was 668 ° C.

試験例1および2は、高接触活性触媒を、接触性が高い状態で使用した例である。試験例1および2に示されるように、高接触活性触媒を、接触性が高い状態で使用する場合には、300℃以下の1stPeakおよび500℃以下の2ndPeakを持たせて、PMを低温で燃焼させることが可能である。PM中のHC成分の影響も考えられるが、1stPeakは、PMと触媒との界面(接触面)の燃焼によるピークであり、2ndPeakは、接触性がそれほど高くないPMの燃焼によるピークであると推察できる。   Test Examples 1 and 2 are examples in which a high contact active catalyst was used in a state where contactability was high. As shown in Test Examples 1 and 2, when using a highly catalytically active catalyst with high contactability, 1st Peak of 300 ° C. or less and 2nd Peak of 500 ° C. or less are provided, and PM is burned at a low temperature. It is possible to make it. Although the influence of HC components in PM is also considered, 1st Peak is a peak due to combustion at the interface (contact surface) between PM and catalyst, and 2nd Peak is presumed to be a peak due to combustion of PM with low contact properties it can.

これに対し、比較試験例2および3に示されるように、高接触活性触媒を、接触性が低い状態で使用した場合には、2ndPeakは大幅に高温化し、それぞれ585℃および654℃となった。これにより、高接触活性触媒を、接触性が低い状態で使用した場合には、PMを低温で燃焼することができないことが判る。   On the other hand, as shown in Comparative Test Examples 2 and 3, when the high contact active catalyst was used in a low contact state, the 2nd Peak was significantly increased to 585 ° C. and 654 ° C., respectively. . Thus, it can be seen that PM cannot be burned at a low temperature when the high contact active catalyst is used in a low contact state.

試験例3は、低接触活性触媒を、接触性が高い状態で使用した例である。試験例3からは、375℃と、PMを低温で燃焼可能であることが判る。低接触活性触媒を接触性が高い状態で使用した場合であっても、それほど燃焼ピーク温度が高くならないのは、低接触活性触媒は、高接触活性触媒と比較して、元来の活性が低いためと考えられる。   Test Example 3 is an example in which a low contact active catalyst was used in a state where contactability was high. From Test Example 3, it can be seen that PM can be burned at 375 ° C. at a low temperature. Even when the low catalytic activity catalyst is used in a state where the contact property is high, the combustion peak temperature is not so high. The low catalytic activity catalyst has lower original activity than the high catalytic activity catalyst. This is probably because of this.

試験例4は、低接触活性触媒を、接触性が低い状態で使用した例である。試験例4の1stPeakは522℃であり、これは、PMのみ(触媒なし)の燃焼ピーク温度よりも低いことは勿論、高接触活性触媒を、接触性が低い状態で使用する場合(試験例2および3)と比較しても、低温でPMを燃焼可能であることが判る。低接触活性触媒の接触性が低い場合であっても触媒性能が高いのは、活性種の移動や溶融により、活性点での接触性が向上しているためと推察される。   Test Example 4 is an example in which a low contact active catalyst was used in a state where contactability was low. The 1st Peak of Test Example 4 is 522 ° C., which is lower than the combustion peak temperature of PM alone (no catalyst), as well as the case where a high contact active catalyst is used in a state where the contact property is low (Test Example 2). Also, it can be seen that PM can be combusted at a low temperature as compared with 3). The reason why the catalytic performance is high even when the low catalytic activity catalyst is low is presumed to be that the catalytic activity at the active site is improved by the movement and melting of the active species.

以上より、高接触活性触媒および低接触活性触媒のそれぞれを、PMとの接触の高い部分と低い部分とに塗り分けることにより、触媒の性能を十分に発揮しつつ、PMの低温での燃焼を効率良く行なうことができることが判る。   As described above, the high contact active catalyst and the low contact active catalyst are separately applied to the high contact portion and the low contact portion with the PM, thereby sufficiently exhibiting the performance of the catalyst, and combustion of the PM at a low temperature. It turns out that it can carry out efficiently.

<実施例1>
[空隙:RuO+PM、表面:10質量%CsCO/LaMnO+PM]
試験例1により得られた触媒A、シリカゾル(日産化学工業)、およびHOを、所定の組成となるように秤量し、24時間、ボールミルにて粉砕混合を行ない、触媒スラリーAを得た。また、試験例3で得られた触媒D、シリカゾル(日産化学工業)、およびHOを、所定の組成となるように秤量し、24時間、ボールミルにて粉砕混合を行ない、触媒スラリーDを得た。
<Example 1>
[Void: RuO 2 + PM, Surface: 10% by mass Cs 2 CO 3 / LaMnO 3 + PM]
Catalyst A, silica sol (Nissan Chemical Industry) obtained in Test Example 1 and H 2 O were weighed so as to have a predetermined composition, and pulverized and mixed in a ball mill for 24 hours to obtain catalyst slurry A. . Further, the catalyst D, silica sol (Nissan Chemical Industries) obtained in Test Example 3 and H 2 O were weighed so as to have a predetermined composition, and pulverized and mixed in a ball mill for 24 hours to obtain catalyst slurry D. Obtained.

得られた触媒スラリーAを、市販のDPF(イビデン製)に含浸担持させ、表面の余分なスラリーをエアーガンにて十分取り除いた。その後、600℃×2時間の焼成を行なうことにより、DPFの空隙内部に触媒Aを50g/L担持した。引き続き、DPFを交互に目封止し、触媒スラリーDを含浸担持させ、余分なスラリーをエアーガンにて取り除いた。その後、600℃×2時間の焼成を行なうことにより、DPFの表面に触媒Dを50g/L担持した。得られた触媒Aおよび触媒Dを担持したDPFを用いて、ディーゼル発電機の排ガス管に設置したPM捕集ホルダーによって、PMの捕集を行なった。このときのPM捕集量は、5g/Lとした。PM捕集後のDPFにつき、PM燃焼温度の測定を行なった。燃焼ピーク温度を表2に示す。   The obtained catalyst slurry A was impregnated and supported on a commercially available DPF (manufactured by Ibiden), and excess slurry on the surface was sufficiently removed with an air gun. Thereafter, baking was performed at 600 ° C. for 2 hours to load 50 g / L of catalyst A inside the gaps of the DPF. Subsequently, DPF was alternately plugged, the catalyst slurry D was impregnated and supported, and excess slurry was removed with an air gun. Thereafter, the catalyst D was supported on the surface of the DPF by 50 g / L by firing at 600 ° C. for 2 hours. Using the DPF carrying the obtained catalyst A and catalyst D, PM was collected by a PM collection holder installed in an exhaust gas pipe of a diesel generator. The amount of PM collected at this time was 5 g / L. The PM combustion temperature was measured for the DPF after PM collection. The combustion peak temperature is shown in Table 2.

Figure 2007069153
Figure 2007069153

<比較例1>
[空隙および表面:RuO+PM]
市販のDPF(イビデン製)を交互に目封止し、上記の触媒スラリーAを含浸担持し、余分なスラリーをエアーガンにて十分取り除いた後、600℃×2時間の焼成を実施し、DPFの空隙と表面に、合計で100g/Lの触媒Aを担持した。得られた触媒Aを担持したDPFを用いて、実施例1と同様にPMの捕集を行ない、PM捕集後のDPFにつき、PM燃焼温度の測定を行なった。燃焼ピーク温度を表2に示す。
<Comparative Example 1>
[Voids and surface: RuO 2 + PM]
Commercially available DPF (made by Ibiden) was alternately plugged, impregnated and supported with the catalyst slurry A described above, and excess slurry was sufficiently removed with an air gun, followed by firing at 600 ° C. for 2 hours. A total of 100 g / L of catalyst A was supported on the voids and the surface. Using the obtained DPF carrying the catalyst A, PM was collected in the same manner as in Example 1, and the PM combustion temperature was measured for the DPF after PM collection. The combustion peak temperature is shown in Table 2.

<比較例2>
[空隙および表面:10質量%CsCO/LaMnO+PM]
市販のDPF(イビデン製)を交互に目封止し、上記の触媒スラリーDを含浸担持し、余分なスラリーをエアーガンにて十分取り除いた後、600℃×2時間の焼成を実施し、DPFの空隙と表面に、合計で100g/Lの触媒Dを担持した。得られた触媒Dを担持したDPFを用いて、実施例1と同様にPMの捕集を行ない、PM捕集後のDPFにつき、PM燃焼温度の測定を行なった。燃焼ピーク温度を表2に示す。
<Comparative example 2>
[Void and surface: 10% by mass Cs 2 CO 3 / LaMnO 3 + PM]
Commercially available DPF (made by Ibiden) was alternately plugged, impregnated and supported with the catalyst slurry D described above, and the excess slurry was sufficiently removed with an air gun, followed by firing at 600 ° C. for 2 hours. A total of 100 g / L of Catalyst D was supported on the voids and the surface. Using the obtained DPF carrying the catalyst D, PM was collected in the same manner as in Example 1, and the PM combustion temperature was measured for the DPF after PM collection. The combustion peak temperature is shown in Table 2.

<比較例3>
[空隙および表面:1質量%Pd/CeO+10質量%CsCO/LaMnO+PM]
上記試験例の触媒A、触媒D、シリカゾル(日産化学工業)、およびHOを、所定の組成となるように秤量し、24時間、ボールミルにて粉砕混合し、触媒スラリーEを得た。市販のDPF(イビデン製)を交互に目封じし、得られた触媒スラリーEを含浸担持し、余分なスラリーをエアーガンにて十分取り除いた後、600℃×2時間の焼成を実施することにより、DPFの空隙および表面に、合計で100g/Lの触媒Aと触媒Dの混合物を担持した。得られた触媒Aと触媒Dの混合物を担持したDPFを用いて、実施例1と同様にPMの捕集を行ない、PM捕集後のDPFにつき、PM燃焼温度の測定を行なった。燃焼ピーク温度を表2に示す。
<Comparative Example 3>
[Void and surface: 1% by mass Pd / CeO 2 + 10% by mass Cs 2 CO 3 / LaMnO 3 + PM]
Catalyst A, Catalyst D, silica sol (Nissan Chemical Industries), and H 2 O of the above test examples were weighed so as to have a predetermined composition, and pulverized and mixed in a ball mill for 24 hours to obtain catalyst slurry E. By plugging commercially available DPF (made by Ibiden) alternately, impregnating and supporting the obtained catalyst slurry E, and removing excess slurry sufficiently with an air gun, by carrying out firing at 600 ° C. for 2 hours, A total of 100 g / L of the mixture of catalyst A and catalyst D was supported in the voids and the surface of the DPF. Using the DPF carrying the obtained mixture of the catalyst A and the catalyst D, PM was collected in the same manner as in Example 1, and the PM combustion temperature was measured for the DPF after PM collection. The combustion peak temperature is shown in Table 2.

<比較例4>
[空隙:10質量%CsCO/LaMnO、表面:1質量%Pd/CeO+PM]
上記の触媒スラリーDを市販のDPF(イビデン製)に含浸担持し、表面の余分なスラリーをエアーガンにて十分取り除いたあと、600℃×2時間の焼成を実施することにより、DPFの空隙内部に触媒Dを50g/L担持した。引き続き、DPFを交互に目封止し、上記の触媒スラリーAを含浸担持させ、余分なスラリーをエアーガンにて取り除いた。その後、600℃×2時間の焼成を行なうことにより、DPFの表面に触媒Dを50g/L担持した。得られた得られた触媒Aおよび触媒Dを担持したDPFを用いて、実施例1と同様にPMの捕集を行ない、PM捕集後のDPFにつき、PM燃焼温度の測定を行なった。燃焼ピーク温度を表2に示す。
<Comparative example 4>
[Void: 10% by mass Cs 2 CO 3 / LaMnO 3 , surface: 1% by mass Pd / CeO 2 + PM]
The catalyst slurry D is impregnated and supported in a commercially available DPF (made by Ibiden), and the excess slurry on the surface is sufficiently removed with an air gun, followed by firing at 600 ° C. for 2 hours, so that the inside of the DPF voids. Catalyst D was supported at 50 g / L. Subsequently, DPF was alternately plugged, the catalyst slurry A was impregnated and supported, and excess slurry was removed with an air gun. Thereafter, the catalyst D was supported on the surface of the DPF by 50 g / L by firing at 600 ° C. for 2 hours. Using the obtained DPF carrying the catalyst A and catalyst D, PM was collected in the same manner as in Example 1, and the PM combustion temperature was measured for the DPF after PM collection. The combustion peak temperature is shown in Table 2.

[実施例および比較例からの考察]
実施例1は、濾過材の空隙内表面に高接触活性触媒を、濾過材の表面に低接触活性触媒を塗布した例であり、燃焼ピーク温度は262℃と522℃となった。1stPeakの262℃は、空隙内の高接触活性触媒と接触性の高いPMの燃焼温度であり、2ndPeakの522℃は、空隙内の接触性のそれほど高くないPMと、濾過剤の表面のみに積層して低接触活性触媒との接触性が低いPMとの燃焼温度が重なったものと推察される。
[Consideration from Examples and Comparative Examples]
Example 1 is an example in which a high contact active catalyst was applied to the inner surface of the filter medium and a low contact active catalyst was applied to the surface of the filter medium, and the combustion peak temperatures were 262 ° C. and 522 ° C. 262 ° C of 1st Peak is the combustion temperature of PM that is highly contactable with the high contact active catalyst in the void, and 522 ° C of 2nd Peak is laminated only on the surface of the filtering agent with PM that is not so high in the void. Thus, it is presumed that the combustion temperature overlaps with PM having low contactability with the low contact active catalyst.

実施例1に示されるように、濾過材の空隙内表面に高接触活性触媒を、濾過材の表面に低接触活性触媒を塗布した場合には、PM量が細孔内の接触性が高いPMのみで構成される程度に少ないときには、ディーゼル車におけるもっとも頻度の高い運転条件(実用域:排気温200℃〜300℃)において、PMを連続的に燃焼することできる。また、PM量が増加した場合や、PM粒径が空隙径以上に大きい場合においても、これまでよりも大幅に低い温度で、強制再生がすることができる。   As shown in Example 1, when a high contact active catalyst was applied to the inside surface of the filter medium and a low contact active catalyst was applied to the surface of the filter medium, the PM amount is high in the contactability in the pores. When it is so small that only PM is constituted, PM can be continuously burned under the most frequent operating conditions (practical range: exhaust temperature 200 ° C. to 300 ° C.) in a diesel vehicle. Further, even when the amount of PM increases or when the PM particle size is larger than the void diameter, forced regeneration can be performed at a temperature significantly lower than before.

比較例1は、濾過材の空隙内および表面ともに、高接触活性触媒のみを担持した例であり、燃焼ピーク温度は247℃、481℃、579℃と3つに分かれる。1stPeakの247℃は、空隙内のPMで、触媒との接触性が高いものの燃焼温度であり、2ndPeakの481℃は、空隙内のPMで、触媒との接触性がそれほど高くないものの燃焼温度、3rdPeakの579℃は、濾過材表面に存在する接触性の低いPMの燃焼温度であると推察される。   Comparative Example 1 is an example in which only the high contact active catalyst is supported in both the voids and the surface of the filter medium, and the combustion peak temperatures are divided into 247 ° C, 481 ° C, and 579 ° C. 1st Peak 247 ° C. is the combustion temperature of PM in the gap and has high contact with the catalyst, and 2nd Peak 481 ° C. is PM in the gap and the combustion temperature of the contact with the catalyst is not so high. 3rd Peak of 579 ° C. is presumed to be the combustion temperature of low-contact PM present on the filter medium surface.

比較例1からは、PM量が濾過材の空隙内の接触性が高いPMのみで構成される程度に少ないときには、PMを低温で燃焼できるが、PM量がそれ以上に増加した場合や、PM粒径が空隙径以上に大きい場合においては、触媒との接触性が低くなることから、低温で燃焼することができないことが判る。   From Comparative Example 1, when the amount of PM is small enough to be composed of only PM with high contact in the gap of the filter medium, PM can be burned at a low temperature, but when the amount of PM further increases, When the particle diameter is larger than the void diameter, the contact with the catalyst becomes low, and it can be understood that combustion cannot be performed at a low temperature.

比較例2は、濾過材の空隙内および表面ともに、低接触活性触媒のみを担持した例であり、燃焼ピーク温度は369℃、536℃の2つであった。1stPeakの369℃は、空隙内のPMで、触媒との接触性が高いものの燃焼温度であり、2ndPeakの536℃は、濾過材表面に存在する接触性の低いPMの燃焼温度であると推察される。   Comparative Example 2 was an example in which only the low contact active catalyst was supported in both the voids and the surface of the filter medium, and the combustion peak temperatures were 369 ° C and 536 ° C. It is estimated that 369 ° C of 1st Peak is the combustion temperature of PM in the gap and has high contact property with the catalyst, and 536 ° C of 2nd Peak is the combustion temperature of low contact property PM present on the filter medium surface. The

比較例2からは、PM量が多い場合や、PM粒径が空隙径以上に大きい場合においては、実施例1と同等の性能を示すが、空隙内の触媒との接触性が高いPMのみで構成される程度にPM量が少ない場合には、実施例1よりも燃焼温度が高くなることが判る。   From Comparative Example 2, when the amount of PM is large or when the PM particle size is larger than the gap diameter, the performance is the same as that of Example 1, but only PM with high contact with the catalyst in the gap is obtained. It can be seen that the combustion temperature is higher than that in Example 1 when the amount of PM is small enough to be configured.

比較例3は、濾過材の空隙内および表面ともに、高接触活性触媒と低接触活性触媒の混合物を担持した例であり、燃焼ピーク温度は373℃、524℃の2つであった。1stPeakの373℃は、空隙内に低接触活性触媒を塗布した場合(試験例3)に近いことから、混合により高接触活性触媒の効果がなくなったためと考えられる。2ndPeakの524℃は、濾過材表面に存在する触媒との接触性の低いPMの燃焼温度と推察され、低接触活性触媒の影響と思われる。   Comparative Example 3 was an example in which a mixture of a high contact active catalyst and a low contact active catalyst was supported both in the voids and on the surface of the filter medium, and the combustion peak temperatures were two at 373 ° C and 524 ° C. The 1st Peak of 373 ° C. is considered to be because the effect of the high contact active catalyst was lost by mixing because it was close to the case where the low contact active catalyst was applied in the gap (Test Example 3). 2nd Peak of 524 ° C. is presumed to be the combustion temperature of PM having low contact property with the catalyst present on the surface of the filter medium, and is considered to be the influence of the low contact active catalyst.

比較例3からは、比較例2と同様に、PM量が多い場合や、PM粒径が空隙径以上に大きい場合においては、実施例1と同等の性能を示すが、空隙内の触媒との接触性が高いPMのみで構成される程度にPM量が少ない場合には、実施例1よりも燃焼温度が高くなることが判る。   From Comparative Example 3, as in Comparative Example 2, when the amount of PM is large, or when the PM particle size is larger than the void diameter, the performance equivalent to that of Example 1 is shown. It can be seen that the combustion temperature is higher than that in Example 1 when the amount of PM is small enough to be composed of only PM with high contactability.

比較例4は、実施例1とは逆に、濾過材の空隙内に低接触活性触媒、濾過材の表面に高接触活性触媒を担持した例であり、燃焼ピーク温度は277℃、375℃、579℃と3つに分かれる。1stPeakの277℃は、濾過材の表面の高接触活性触媒とPMとの界面に存在する接触性の高いPMの燃焼温度、2ndPeakの375℃は、空隙内のPMで接触性が高いものの燃焼温度、3rdPeakは、濾過材の表面のPMで接触性が低いものの燃焼温度であると推察される。   Contrary to Example 1, Comparative Example 4 is an example in which a low contact active catalyst is supported in the gap of the filter medium, and a high contact active catalyst is supported on the surface of the filter medium, and the combustion peak temperatures are 277 ° C., 375 ° C., It is divided into 579 ° C and three. 1st Peak 277 ° C is the combustion temperature of highly contactable PM present at the interface between the high contact active catalyst on the surface of the filter medium and PM, and 2nd Peak 375 ° C is the combustion temperature of PM in the gap with high contactability. 3rd Peak is presumed to be the combustion temperature of PM on the surface of the filter medium with low contactability.

比較例4からは、濾過材の表面において触媒との界面で接触できる程度にPM量が少ない場合においては、PMを低温で燃焼できるが、空隙径以下の径を有するPMが細孔内に堆積した場合には、ディーゼル車における最も頻度の高い運転条件(実用域:排気温200℃〜300℃)での連続燃焼は不可能であり、また、PM量が多い場合や、PM粒径が空隙径以上に大きい場合においては、接触性が悪くなることから、実施例1よりも燃焼温度が高くなることが判る。   From Comparative Example 4, when the amount of PM is small enough to contact the interface with the catalyst on the surface of the filter medium, PM can be combusted at a low temperature, but PM having a diameter equal to or smaller than the void diameter is deposited in the pores. In this case, continuous combustion under the most frequent operating conditions (practical range: exhaust temperature 200 ° C. to 300 ° C.) in a diesel vehicle is impossible, and when the amount of PM is large or the PM particle size is void When the diameter is larger than the diameter, the contact property is deteriorated, so that it is understood that the combustion temperature is higher than that of the first embodiment.

したがって、DPFの場合もは、実施例1のように、濾過材の空隙内表面に高接触活性触媒、濾過材の表面に低接触活性触媒とする塗り分けが、最適であることがわかる。   Therefore, in the case of DPF as well, it can be seen that, as in Example 1, it is optimal to separately apply a high contact active catalyst on the inner surface of the filter medium and a low contact active catalyst on the surface of the filter medium.

尚、実施例1において高接触活性触媒の接触性が高い理由としては、高接触活性触媒の活性の高さ、PM量が少ないこと、およびPMの粒子径が小さいことは勿論であるが、図3に示されるように、高接触活性触媒の粒子同士の隙間にPMが入り込むことによって、触媒活性点とPMの接触点を増加させ、接触性がより高まるためと推測される。例えば、DPFの場合には、DPF細孔によってPM粒子がDPF細孔径以下となるものに分級されるため、高接触活性触媒の粒子によって構成される触媒同士の隙間にPMが入りやすくなると推測される。   In Example 1, the reason why the contact property of the high contact active catalyst is high is that the activity of the high contact active catalyst is high, the amount of PM is small, and the particle size of the PM is small. As shown in FIG. 3, it is presumed that the contact point between the catalyst active point and the PM is increased by PM entering the gaps between the particles of the high contact active catalyst, and the contact property is further increased. For example, in the case of DPF, the PM particles are classified by the DPF pores into those having a diameter equal to or smaller than the DPF pore size, so it is estimated that PM easily enters the gaps between the catalysts constituted by the high contact active catalyst particles. The

ウォールフロー型DPFのセルに平行方向の断面模式図である。It is a cross-sectional schematic diagram of a direction parallel to the cell of a wall flow type DPF. 図1における点線範囲Pの部分拡大図である。It is the elements on larger scale of the dotted line range P in FIG. 図2における点線範囲Qの部分拡大図である。FIG. 3 is a partially enlarged view of a dotted line range Q in FIG. 2.

符号の説明Explanation of symbols

1 ウォールフロー型DPF
2 排ガス(濾過材通過前)
3 排ガス流入路
4 濾過材
5 排ガス(濾過材通過後)
6 排ガス流出路
7 目封止材
8 濾過材
9 空隙
10 低接触活性触媒
11 高接触活性触媒
12 空隙径以下の径を有するPM
13 空隙径以上の径を有するPM
1 Wall flow type DPF
2 Exhaust gas (before passing through filter media)
3 Exhaust gas inflow path 4 Filter material 5 Exhaust gas (after passing through the filter material)
6 Exhaust gas outflow passage 7 Plugging material 8 Filter material 9 Void 10 Low contact active catalyst 11 High contact active catalyst 12 PM having a diameter equal to or smaller than the void diameter
13 PM with a diameter larger than the void diameter

Claims (6)

内燃機関の排気通路に配置され前記内燃機関から排出される排ガス中の粒子状物質を浄化する排ガス浄化フィルタであって、
前記排ガスが流入する排ガス流入路と、
この排ガス流入路の隔壁を形成し空隙を有する濾過材と、
前記排ガス流入路に流入して前記濾過材を通過した排ガスを流出する排ガス流出路と、を備え、
前記隔壁の内表面には、前記粒子状物質との接触性によらず高い活性を示す低接触活性触媒が担持され、
前記濾過材中の前記空隙の内表面には、前記粒子状物質との接触性が高い場合に高い活性を示す高接触活性触媒が担持された排ガス浄化フィルタ。
An exhaust gas purification filter that is disposed in an exhaust passage of an internal combustion engine and purifies particulate matter in exhaust gas discharged from the internal combustion engine,
An exhaust gas inflow passage through which the exhaust gas flows; and
A filter medium that forms a partition wall of the exhaust gas inflow passage and has a gap;
An exhaust gas outflow passage that flows into the exhaust gas inflow passage and outflows the exhaust gas that has passed through the filter medium, and
The inner surface of the partition wall is loaded with a low contact active catalyst that exhibits high activity regardless of contact with the particulate matter,
An exhaust gas purifying filter in which a high contact active catalyst exhibiting high activity is supported on the inner surface of the void in the filter medium when contactability with the particulate matter is high.
前記排ガス流入路および前記排ガス流出路は、前記濾過材を介して交互に隣接して配置された多数のセルから形成され、
前記排ガス流入路を形成するセルは、上流側末端が開放され、且つ、下流側末端が目封止されており、
前記排ガス流出路を形成するセルは、上流側末端が目封止され、且つ、下流側末端が開放されている請求項1記載の排ガス浄化フィルタ。
The exhaust gas inflow passage and the exhaust gas outflow passage are formed from a large number of cells alternately arranged adjacent to each other through the filter medium,
The cell forming the exhaust gas inflow path has an upstream end opened and a downstream end plugged.
2. The exhaust gas purification filter according to claim 1, wherein the cells forming the exhaust gas outflow passage are plugged at an upstream end and open at a downstream end.
前記濾過材は、多孔質セラミックである請求項1または2記載の排ガス浄化フィルタ。   The exhaust gas purification filter according to claim 1 or 2, wherein the filter medium is a porous ceramic. 前記低接触活性触媒は、少なくとも1種の遷移金属元素および少なくとも1種のアルカリ金属元素を含む請求項1から3いずれか記載の排ガス浄化フィルタ。   The exhaust gas purification filter according to any one of claims 1 to 3, wherein the low contact active catalyst contains at least one transition metal element and at least one alkali metal element. 前記高接触活性触媒は、少なくとも1種の貴金属元素を含む請求項1から4いずれか記載の排ガス浄化フィルタ。   The exhaust gas purification filter according to any one of claims 1 to 4, wherein the high contact active catalyst includes at least one kind of noble metal element. 内燃機関の排気通路に配置され前記内燃機関から排出される排ガス中の粒子状物質を浄化する排ガス浄化フィルタの製造方法であって、
空隙を有する濾過材に、前記粒子状物質との接触性が高い場合に高い活性を示す高接触活性触媒を通過させ、前記濾過材中の前記空隙の内表面に前記高接触活性触媒を担持させる高接触活性触媒担持工程と、
前記高接触活性触媒担持工程により前記濾過材中の前記空隙の内表面に前記高接触活性触媒を担持させた前記濾過材の表面に、前記粒子状物質との接触性によらず高い活性を示す低接触活性触媒を塗布して担持させる低接触活性触媒担持工程と、を含む排ガス浄化フィルタの製造方法。
An exhaust gas purification filter manufacturing method for purifying particulate matter in exhaust gas disposed in an exhaust passage of an internal combustion engine and exhausted from the internal combustion engine,
When the contact property with the particulate matter is high, the high contact active catalyst that exhibits high activity is passed through the filter medium having voids, and the high contact active catalyst is supported on the inner surface of the voids in the filter medium. A high contact active catalyst loading process;
The surface of the filter medium in which the high contact active catalyst is supported on the inner surface of the void in the filter medium by the high contact active catalyst support process exhibits high activity regardless of the contact property with the particulate matter. And a low contact active catalyst supporting step of applying and supporting the low contact active catalyst.
JP2005260804A 2005-09-08 2005-09-08 Exhaust gas purification filter and manufacturing method thereof Expired - Fee Related JP4785470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005260804A JP4785470B2 (en) 2005-09-08 2005-09-08 Exhaust gas purification filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005260804A JP4785470B2 (en) 2005-09-08 2005-09-08 Exhaust gas purification filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007069153A true JP2007069153A (en) 2007-03-22
JP4785470B2 JP4785470B2 (en) 2011-10-05

Family

ID=37931069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260804A Expired - Fee Related JP4785470B2 (en) 2005-09-08 2005-09-08 Exhaust gas purification filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4785470B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168663A1 (en) 2008-09-24 2010-03-31 Honda Motor Co., Ltd Exhaust Gas Purification Filter, and Manufacturing Method thereof
CN102808677A (en) * 2011-06-01 2012-12-05 福特环球技术公司 Exhaust gas aftertreatment device and method for a gasoline engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157845A (en) * 1999-12-02 2001-06-12 Matsushita Electric Ind Co Ltd Exhaust gas cleaning agent and manufacturing method
JP2001187344A (en) * 2000-01-05 2001-07-10 Matsushita Electric Ind Co Ltd Waste gas cleaning material and waste gas cleaning device
JP2003161137A (en) * 2001-11-27 2003-06-06 Toyota Motor Corp Particulate filter
JP2003211001A (en) * 2002-01-28 2003-07-29 Toyota Motor Corp Exhaust gas purification apparatus for internal combustion engine and catalyst supporting method for supporting catalyst on particulate filter of exhaust gas purification apparatus
JP2004092584A (en) * 2002-09-03 2004-03-25 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2004105792A (en) * 2002-09-13 2004-04-08 Toyota Motor Corp Catalyst for exhaust gas purification filter and method of manufacturing the same
JP2004202427A (en) * 2002-12-26 2004-07-22 Toyota Motor Corp Filter catalyst for exhaust gas purification
JP2004300951A (en) * 2003-03-28 2004-10-28 Ngk Insulators Ltd Catalyst-carrying filter, exhaust emission control system using the same, and catalyst body
JP2007056736A (en) * 2005-08-23 2007-03-08 Mazda Motor Corp Diesel particulate filter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157845A (en) * 1999-12-02 2001-06-12 Matsushita Electric Ind Co Ltd Exhaust gas cleaning agent and manufacturing method
JP2001187344A (en) * 2000-01-05 2001-07-10 Matsushita Electric Ind Co Ltd Waste gas cleaning material and waste gas cleaning device
JP2003161137A (en) * 2001-11-27 2003-06-06 Toyota Motor Corp Particulate filter
JP2003211001A (en) * 2002-01-28 2003-07-29 Toyota Motor Corp Exhaust gas purification apparatus for internal combustion engine and catalyst supporting method for supporting catalyst on particulate filter of exhaust gas purification apparatus
JP2004092584A (en) * 2002-09-03 2004-03-25 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2004105792A (en) * 2002-09-13 2004-04-08 Toyota Motor Corp Catalyst for exhaust gas purification filter and method of manufacturing the same
JP2004202427A (en) * 2002-12-26 2004-07-22 Toyota Motor Corp Filter catalyst for exhaust gas purification
JP2004300951A (en) * 2003-03-28 2004-10-28 Ngk Insulators Ltd Catalyst-carrying filter, exhaust emission control system using the same, and catalyst body
JP2007056736A (en) * 2005-08-23 2007-03-08 Mazda Motor Corp Diesel particulate filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168663A1 (en) 2008-09-24 2010-03-31 Honda Motor Co., Ltd Exhaust Gas Purification Filter, and Manufacturing Method thereof
JP2010077845A (en) * 2008-09-24 2010-04-08 Honda Motor Co Ltd Exhaust emission control filter and manufacturing method thereof
CN102808677A (en) * 2011-06-01 2012-12-05 福特环球技术公司 Exhaust gas aftertreatment device and method for a gasoline engine
US9238982B2 (en) 2011-06-01 2016-01-19 Ford Global Technologies, Llc Exhaust gas aftertreatment device and method for a gasoline engine

Also Published As

Publication number Publication date
JP4785470B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4628676B2 (en) Internal combustion engine exhaust gas purification catalyst, method for producing the same, and internal combustion engine exhaust gas purification method
US8709365B2 (en) Particulate filter with hydrogen sulphide block function
US9486791B2 (en) NOx trap
US7306771B2 (en) Filter catalyst for purifying exhaust gases and its manufacturing method thereof
US7204965B2 (en) Filter catalyst for purifying exhaust gases
KR101457238B1 (en) Improved soot filter
WO2017051459A1 (en) Exhaust purification filter
JP2009165922A (en) Exhaust gas purification catalyst
KR20080057336A (en) Exhaust gas purifying apparatus
WO2001068219A1 (en) Ceramic filter and filter device
US9358504B2 (en) Non-PGM catalyst for burning carbon soot, and filtration filter and exhaust gas post-processing apparatus using the same
JP2004058013A (en) Purification catalyst for exhaust gas
JP5070173B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
JP4218559B2 (en) Diesel exhaust gas purification device
JP4785470B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP6627813B2 (en) Method for producing particulate filter with catalyst
JP2013092090A (en) Particulate filter with catalyst
WO2008059726A1 (en) Filter and exhaust-gas purification system
KR100914279B1 (en) Catalyst for purifying exhaust gases and process for producing the same
JP2004243189A (en) Purifying apparatus for exhaust gas of internal combustion engine
US9527032B2 (en) Non-PGM catalyst for burning carbon soot, and filtration filter and exhaust gas post-processing apparatus using the same
Swallow et al. NO x trap
JP2006204979A (en) Filter for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees