Nothing Special   »   [go: up one dir, main page]

JP2007040197A - Propeller fan - Google Patents

Propeller fan Download PDF

Info

Publication number
JP2007040197A
JP2007040197A JP2005225854A JP2005225854A JP2007040197A JP 2007040197 A JP2007040197 A JP 2007040197A JP 2005225854 A JP2005225854 A JP 2005225854A JP 2005225854 A JP2005225854 A JP 2005225854A JP 2007040197 A JP2007040197 A JP 2007040197A
Authority
JP
Japan
Prior art keywords
plate
blade
air
protrusion
propeller fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005225854A
Other languages
Japanese (ja)
Other versions
JP4508974B2 (en
Inventor
Atsushi Suzuki
敦 鈴木
Tetsuo Tominaga
哲雄 冨永
Takeshi Eguchi
剛 江口
Kazuyuki Kamiya
一行 神谷
Asuka Soya
あす香 征矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005225854A priority Critical patent/JP4508974B2/en
Priority to EP06300193.7A priority patent/EP1750014B1/en
Priority to US11/366,029 priority patent/US7559744B2/en
Priority to EP13192076.1A priority patent/EP2696079B1/en
Priority to CN2006100547413A priority patent/CN1908445B/en
Publication of JP2007040197A publication Critical patent/JP2007040197A/en
Application granted granted Critical
Publication of JP4508974B2 publication Critical patent/JP4508974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a propeller fan capable of suppressing a centripetal stream and improving air blowing performance. <P>SOLUTION: A part where an air passage 6 of a shroud 2 surrounds the peripheral direction of a rotary vane wheel 3 becomes a circle, but a plate-like projection 4 in this invention is erected on the surface of a vane on the negative pressure side of the rotary vane wheel 3 which becomes a position on a concentric circle with the circle. Air peeld off from the surface of the shroud 2 due to the plate-like projection 4 is prevented from flowing an inner side more by the plate-like projection 4 and pushed into the downstream side in the axial direction of the rotary vane wheel 3 by the nearby vane. The plate-like projection 4 is erected by facing the axial direction of the rotary vane wheel 3 at an angle at which it becomes parallel with the internal wall of the part where the air passage 6 of the shroud 2 surrounds the peripheral direction of the rotary vane wheel 3 or more from the surface of the vane 8 on the negative pressure side. If a part from a vane front fringe to a vane rear fringe is 100% chord (100% vane chord length), it is ideal that the plate-like projection 4 is formed in such a way that the protrusion of the plate-like projection 4 starts at a position of 0 to 20% chord from the vane front fringe, and its height is smoothly increased up to the vane rear fringe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プロペラファンに関するものであり、さらに詳しくは、ラジエータやコンデンサ等、車載の熱交換機の通風作用を促進させるプロペラファンに関する。   The present invention relates to a propeller fan, and more particularly to a propeller fan that promotes the ventilation action of an on-vehicle heat exchanger such as a radiator or a condenser.

車両用ラジエータや空気調和装置用コンデンサの冷却ファンに利用される樹脂製のプロペラファンは、狭小なエンジンルーム内に装着されることが前提で、奥行き方向(厚み方向)の寸法を大きくとることができない。このことから、矩形のラジエータ等から円形のファン流入口までのシュラウド断面形状は、変化が急峻となり、整流効果が著しく制限される。特にファン流入部に設けられるベルマウス部分は、小半径の角R(面取り)で構成されることが多い。そのため、矩形のラジエータ等を通過した空気の多くは、慣性力により、ファンの中心部に向かう求心流(向心流)となりやすく、ファンの実効半径が減少し、ひいては送風性能、効率の悪化および騒音の増大を招いている。   Resin-made propeller fans used as cooling fans for vehicle radiators and condensers for air conditioners may have a large dimension in the depth direction (thickness direction) on the assumption that they are installed in a narrow engine room. Can not. For this reason, the shroud cross-sectional shape from the rectangular radiator or the like to the circular fan inflow port changes sharply, and the rectifying effect is remarkably limited. In particular, the bell mouth portion provided at the fan inflow portion is often configured with a small radius angle R (chamfering). For this reason, most of the air that has passed through a rectangular radiator or the like tends to become a centripetal flow (centripetal flow) toward the center of the fan due to the inertial force, and the effective radius of the fan is reduced. Increases noise.

上記性能等の悪化を回避するため、楕円角Rを持つベルマウスや比較的大きな角Rにてベルマウス主要部分を構成し、プロペラファンと干渉する部分のみを小さな角Rとするベルマウスが適用されている(たとえば、特許文献1)。   In order to avoid the deterioration of the above performance etc., the bell mouth with the elliptical angle R and the bell mouth with the relatively large angle R constituting the main part of the bell mouth and only the part that interferes with the propeller fan is applied. (For example, Patent Document 1).

特開2001−349300号公報JP 2001-349300 A

しかしながら、上記技術でも、十分な効果が得られなかったり、プロペラファンの回転翼車とシュラウドの形状との相互作用により生じる離散周波数音が突出する等の副作用を持っていた。   However, even the above-described technique has a side effect such that a sufficient effect cannot be obtained, or discrete frequency sound generated by the interaction between the rotor blade of the propeller fan and the shape of the shroud protrudes.

そこで、この発明は、上記に鑑みてなされたものであって、奥行き方向寸法を大きくせずに、求心流を抑制し、送風性能が向上するプロペラファンを提供することを目的とする。   Therefore, the present invention has been made in view of the above, and an object thereof is to provide a propeller fan that suppresses centripetal flow and improves air blowing performance without increasing the size in the depth direction.

上述の目的を達成するために、この発明によるプロペラファンは、軸流形式の回転翼車と、空気通路の形状が略矩形から円形状に移行し、当該円形状となる部分に前記回転翼車が設けられ、車載熱交換機の下流に設置されるシュラウドと、を有するプロペラファンにおいて、前記シュラウドの前記空気通路の円形状と同心円上の位置となる前記回転翼車の負圧側翼表面から、前記シュラウドの断面形状が円形となって前記回転翼車の周方向を囲む部分の前記空気通路の内壁と平行またはテーパとなる角度をもって前記回転翼車の軸方向に向いて立設される板状突起を有するようにしたものである。   In order to achieve the above-described object, a propeller fan according to the present invention includes an axial flow type rotary impeller, and the shape of an air passage is changed from a substantially rectangular shape to a circular shape. A propeller fan having a shroud installed downstream of an in-vehicle heat exchanger, from the suction side blade surface of the rotary impeller at a position concentric with the circular shape of the air passage of the shroud, A plate-like protrusion that is erected in the axial direction of the rotary impeller at an angle that is parallel or tapered to the inner wall of the air passage at a portion surrounding the circumferential direction of the rotary impeller with a circular cross-sectional shape of the shroud It is made to have.

車載熱交換機の下流という狭い場所で、奥行き方向寸法を大きくとれずに設置されるプロペラファンでは、断面が矩形から円に移行する箇所の、特に、矩形の角となる箇所から円に移行する箇所で、軸流形式の回転翼車の軸方向と80度〜60度程の比較的なだらかな斜面に沿って流れていた空気が、回転翼車によって急に当該軸方向に変えられることになる。このとき、なだらかな斜面を流れていた空気は、その慣性力によって、急な方向転換ができず、剥離しやすくなる。剥離すれば、回転翼車の最も送風効率のよい、外周部分付近を通り過ぎ、内周に近い部分になだれ込むようになる。   In a propeller fan installed in a narrow place downstream of the on-board heat exchanger without taking a large dimension in the depth direction, where the cross-section changes from a rectangle to a circle, especially where the rectangle turns from a corner to a circle Thus, the air flowing along the relatively gentle slope of about 80 to 60 degrees with the axial direction of the axial flow type impeller is suddenly changed to the axial direction by the impeller. At this time, the air flowing on the gentle slope cannot be suddenly changed due to its inertial force and easily peels off. If it peels off, it will pass through the vicinity of the outer peripheral portion of the rotary impeller, which has the highest air blowing efficiency, and will be infiltrated into the portion near the inner periphery.

本発明では、空気通路の円形状と同心円上の位置となる回転翼車の負圧側翼の表面から板状突起が立設され、これによってシュラウドの表面から剥離して求心流となった空気や下流から翼のクリアランスを通って逆流する空気が、それ以上内側に流れることを防止する。また、そのような空気は、すぐ隣の翼によって、回転翼車の軸方向下流に、しかも大きな速度で押し込まれる。したがって、翼の板状突起の外側に形成される環状風路での送風作用が活発に営まれることから送風効率が向上する。   In the present invention, a plate-like protrusion is erected from the surface of the suction side blade of the rotary impeller, which is positioned concentrically with the circular shape of the air passage, thereby separating the air from the shroud surface into a centripetal flow. Air that flows backward from the downstream through the wing clearance is prevented from flowing further inward. Further, such air is pushed in at a high speed by the adjacent blades downstream in the axial direction of the impeller. Therefore, since the air blowing action is actively performed in the annular air passage formed outside the plate-like protrusions of the wing, the air blowing efficiency is improved.

また、板状突起は、空気通路と同心円上の位置となる回転翼車の負圧側翼表面に設けられるので、翼車が回転するときの当該突起の空気抵抗も小さくすむし、これによって、軸方向下流に押し出される空気も、当該板状突起によって堰き止められた一つ空間の中で回転翼車の周方向に沿って滑らかに流れることになるので、送風効率がよい。板状突起は、回転翼車の周方向を囲み、円形状になっている部分の空気通路の内壁と平行またはテーパになる角度をもって軸方向に向いて立設されるのは、剥離する空気をそれ以上内側にいかないように押さえ込むために最低必要な角度だからである。   In addition, since the plate-like protrusion is provided on the suction side blade surface of the rotary impeller that is concentric with the air passage, the air resistance of the protrusion when the impeller rotates is reduced, thereby reducing the shaft Since the air pushed out in the downstream direction also flows smoothly along the circumferential direction of the rotary impeller in one space blocked by the plate-like protrusion, the blowing efficiency is good. The plate-like projections surround the circumferential direction of the impeller and are erected in the axial direction with an angle parallel to or tapered with the inner wall of the air passage in the circular shape. This is because it is the minimum necessary angle to keep it from going further inward.

また、この発明によるプロペラファンは、前記プロペラファンにおいて、前記板状突起は、翼前縁0〜20%コード位置から突出が始まり、翼後縁まで高さが滑らかに増加するようにしたものである。   The propeller fan according to the present invention is such that in the propeller fan, the plate-like protrusion starts to protrude from the blade leading edge 0 to 20% cord position, and the height smoothly increases to the blade trailing edge. is there.

翼の表面における静圧は、翼後縁にいくに従って高くなり、シュラウドから求心流として剥離する空気や、下流から翼端のチップクリアランスを通って逆流する空気が突入し乱れる傾向が強くなる。したがって、翼後縁ほど板状突起を高くして、環状風路を確保するのが好ましい。高さ変化を滑らかにするのは、いたずらに空気の流れを乱すのを防止するためと、空気の混合拡散は、後縁にいくにしたがって徐々に変化するため、これに対応するためである。   The static pressure on the surface of the blade increases as it goes to the trailing edge of the blade, and the tendency for air separating from the shroud as centripetal flow and air flowing back from the downstream through the tip clearance of the blade tip enters and becomes turbulent increases. Therefore, it is preferable to increase the plate-like protrusion toward the trailing edge of the blade to ensure an annular air passage. The reason why the height change is smooth is to prevent the air flow from being disturbed unnecessarily, and to cope with this because the mixing and diffusion of the air gradually changes toward the trailing edge.

また、この発明によるプロペラファンは、前記プロペラファンにおいて、前記板状突起は、前記回転翼車の翼外縁からハブ外周までの長さを100としたとき、当該翼外縁から5〜45までの範囲に立設されるようにしたものである。   Further, in the propeller fan according to the present invention, in the propeller fan, the plate-like protrusion ranges from 5 to 45 from the blade outer edge when the length from the blade outer edge to the outer periphery of the hub is 100. It is intended to be erected.

回転翼車の翼は、外縁にいけばいくほど、周速が大きくなるので、空気を下流に押し込める効率が高い。本発明では、この効率が高い部分を用いて、シュラウドの空気通路から剥離して求心流となった空気、および下流の高圧部分からシュラウドと回転翼車との隙間から漏れ戻る空気を下流に押し込むために、ハブ外周から翼外縁までの長さを100としたときの、当該翼外縁から5〜45までの範囲に板状突起を立設させる。   Since the peripheral speed of the impeller blade increases toward the outer edge, the efficiency of pushing air downstream is high. In the present invention, this highly efficient portion is used to push the air separated from the air passage of the shroud into a centripetal flow and the air returning from the gap between the shroud and the rotor wheel downstream from the high pressure portion downstream. Therefore, when the length from the outer periphery of the hub to the outer edge of the blade is 100, the plate-like protrusion is erected in a range from 5 to 45 from the outer edge of the blade.

また、この発明によるプロペラファンは、前記プロペラファンにおいて、前記板状突起の高さは、前記回転翼車の高さ以下であるようにしたものである。   In the propeller fan according to the present invention, the height of the plate-like protrusion is not more than the height of the rotary impeller in the propeller fan.

板状突起の高さは、高ければ高いほど、空気通路から剥離してしまう求心流と、翼と空気通路との隙間をぬって下流から逆流してくる空気の流れとを効率良く下流に押し込む環状風路の確保という点で好ましい。しかし、回転翼車の上流には、近傍に熱交換機が配置されるのが通常であるから、異物混入、変形時の熱交換機との接触回避を目的とした隙間確保のためには、回転翼車3のハブ7の高さ以下となるようにするのが好ましい。   The higher the height of the plate-like protrusion, the more efficiently the centripetal flow that separates from the air passage and the air flow that flows backward from the downstream through the gap between the blade and the air passage are pushed efficiently. This is preferable in terms of securing an annular air passage. However, since a heat exchanger is usually arranged in the vicinity of the upstream of the rotary impeller, the rotary blade is used to secure a gap for the purpose of avoiding contact with the heat exchanger when foreign matter is mixed or deformed. It is preferable that the height is equal to or less than the height of the hub 7 of the vehicle 3.

以上説明したように、この発明に係るプロペラファンによれば、奥行き方向寸法を大きくせずに、シュラウドと回転翼車によって強制回折される空気の求心流を巧みに抑制し、回転翼車の送風効率が高い部分によって、空気を後方に流すことができる。これによって、プロペラファン全体の送風効率が向上する。   As described above, according to the propeller fan according to the present invention, the centripetal flow of air forcedly diffracted by the shroud and the rotary impeller is skillfully suppressed without increasing the dimension in the depth direction. The high efficiency part allows the air to flow backwards. Thereby, the ventilation efficiency of the whole propeller fan improves.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

図1は、プロペラファン全体を示す正面図である。プロペラファン1は、大きくわけて、軸流形式の回転翼車3と、それを囲うと共に、空気通路を形成するシュラウド2とで構成される。回転翼車3は、ハブ7に放射状に取り付けた翼8(図では、9枚)が軸心5を中心に紙面向かって時計回りに回転し、空気を紙面手前から後方に押し出す仕事をする。   FIG. 1 is a front view showing the entire propeller fan. The propeller fan 1 is roughly composed of an axial flow type impeller 3 and a shroud 2 that surrounds the shroud 2 and forms an air passage. In the rotary impeller 3, blades 8 (9 in the figure) radially attached to the hub 7 rotate clockwise about the axis 5 toward the paper surface, and work to push air out from the front of the paper surface.

シュラウド2の上流(紙面手前)には、車両用ラジエータや車載空気調和装置のコンデンサ等の熱交換機が設けられる。車両用ラジエータは構造上矩形であることがほとんどであり、一方、軸流形式の回転翼車を用いて、当該ラジエータを冷却するときは、空気通路を円形としなくてはならない。そのため、シュラウドが形成する空気通路は、入り口(紙面手前)が矩形で、出口が円形となっており、回転翼車が配置される入り口近傍で、矩形から円形へと形状が移行される。   A heat exchanger such as a vehicle radiator or a condenser of an in-vehicle air conditioner is provided upstream of the shroud 2 (before the paper surface). The vehicular radiator is almost rectangular in structure. On the other hand, when the radiator is cooled by using an axial flow type impeller, the air passage must be circular. Therefore, the air passage formed by the shroud has a rectangular entrance (near the paper surface) and a circular exit, and the shape is changed from a rectangle to a circle in the vicinity of the entrance where the rotary impeller is disposed.

この発明では、回転翼車3の負圧側(図1の手前側)の翼8表面に、板状突起4が立設されることが特徴である。さらに具体的には、シュラウド2の空気通路6が回転翼車3の周方向を囲む部分は、円となるが、この発明の板状突起4は、その円と同心円上の位置となる回転翼車3の負圧側の翼表面に立設される。   The present invention is characterized in that the plate-like protrusion 4 is erected on the surface of the blade 8 on the negative pressure side (front side in FIG. 1) of the rotary impeller 3. More specifically, the portion where the air passage 6 of the shroud 2 surrounds the circumferential direction of the rotary impeller 3 is a circle, but the plate-like protrusion 4 of the present invention is a rotary vane that is positioned concentrically with the circle. It is erected on the wing surface on the negative pressure side of the vehicle 3.

図2は、図1のプロペラファンの断面形状を示すA−A断面図である。同図に示されているように、この発明にかかる板状突起13は、上記の他に、負圧側の翼8の表面から、シュラウド2の空気通路6が回転翼車3の周方向を囲む部分の内壁11と平行となる角度以上に回転翼車3の軸方向10に向いて立設される。この図の場合は、内壁11と平行またはテーパとなる角度をもって回転翼車3の軸方向10と同じになっている。   2 is a cross-sectional view taken along the line AA showing the cross-sectional shape of the propeller fan in FIG. As shown in the figure, in addition to the above, the plate-like protrusion 13 according to the present invention has the air passage 6 of the shroud 2 surrounding the circumferential direction of the rotary impeller 3 from the surface of the blade 8 on the negative pressure side. It is erected in the axial direction 10 of the rotary impeller 3 more than an angle parallel to the inner wall 11 of the part. In the case of this figure, it is the same as the axial direction 10 of the rotary impeller 3 with an angle parallel or tapered to the inner wall 11.

図3は、板状突起が軸方向に向いていない場合を示す図1のA−A断面図である。この図に示すように、板状突起17は、空気通路15の内壁の角度16と平行となる角度18に立設されている。このように、板状突起17は、空気通路15の内壁の角度16と平行となる角度18でもよいし、空気通路15の内壁の角度16が傾いている場合でも、図2の場合のように、回転翼車3の軸方向10を向くようにしてもよい。   FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1 showing a case where the plate-like protrusion is not oriented in the axial direction. As shown in this figure, the plate-like protrusion 17 is erected at an angle 18 parallel to the angle 16 of the inner wall of the air passage 15. Thus, the plate-like protrusion 17 may be at an angle 18 parallel to the angle 16 of the inner wall of the air passage 15, or even when the angle 16 of the inner wall of the air passage 15 is inclined, as in the case of FIG. The axial direction 10 of the rotary impeller 3 may be directed.

車載熱交換機の下流という狭い場所で、奥行き方向寸法を大きくとれずに設置されるプロペラファンでは、断面が矩形から円に移行する箇所の、特に、矩形の角となる箇所から円に移行する箇所(図1の9)で、軸流形式の回転翼車の軸方向と80度〜60度程の比較的なだらかな斜面(図2の符号2または図3の符号2参照)に沿って流れていた空気が、回転翼車3によって急に当該軸方向に変えられることになる。このとき、なだらかな斜面を流れていた空気は、その慣性力によって、急な方向転換ができず、剥離しやすくなる。剥離すれば、その空気は求心流となって、回転翼車の最も送風効率のよい外周部分付近(環状流路)を通り過ぎ、内周に近い部分に入り込むことになり、送風効率を低下させる。   In a propeller fan installed in a narrow place downstream of the on-board heat exchanger without taking a large dimension in the depth direction, where the cross-section changes from a rectangle to a circle, especially where the rectangle turns from a corner to a circle (9 in FIG. 1), it flows along a relatively gentle slope of about 80 to 60 degrees (see reference numeral 2 in FIG. 2 or reference numeral 2 in FIG. 3) with the axial direction of the axial-flow rotor wheel. The air is suddenly changed in the axial direction by the rotary impeller 3. At this time, the air flowing on the gentle slope cannot be suddenly changed due to its inertial force and easily peels off. If it peels off, the air becomes a centripetal flow, passes through the vicinity of the outer peripheral portion (annular flow path) with the highest blowing efficiency of the rotary impeller, enters the portion near the inner periphery, and lowers the blowing efficiency.

図1に示したように、本発明では、空気通路6の円形状と同心円上の位置となる回転翼車3の負圧側翼8の表面から、板状突起4が立設されるから、シュラウド2の表面から剥離した空気は、板状突起4によってそれ以上内側に流れることを妨げられ、すぐ隣の翼によって、回転翼車3の軸方向下流に押し込まれる。したがって、翼の板状突起4の外側に形成される環状風路での送風作用が活発に営まれることから送風効率が向上する。   As shown in FIG. 1, in the present invention, the plate-like protrusion 4 is erected from the surface of the suction side blade 8 of the rotary impeller 3 that is concentric with the circular shape of the air passage 6. The air separated from the surface of 2 is prevented from flowing further inward by the plate-like protrusions 4 and is pushed in the downstream in the axial direction of the rotary impeller 3 by the adjacent blade. Therefore, since the air blowing action in the annular air passage formed outside the plate-like protrusion 4 of the wing is actively performed, the air blowing efficiency is improved.

また、図2または図3に示したように、板状突起13、17は、空気通路6、15と同心円上の位置となる回転翼車の負圧側翼表面に設けられるので、翼車が回転するときの当該突起の空気抵抗も小さくすむし、これによって、軸方向下流に押し出される空気も、当該板状突起13、17によって堰き止められた一つ空間の中で回転翼車3の周方向に沿って滑らかに流れることになるので、送風効率がよい。板状突起13、17は、回転翼車3の周方向を囲み、円形状になっている部分の空気通路6、15の内壁11と平行またはテーパになる角度をもって軸方向10に向いて立設されるのは、剥離する空気をそれ以上内側にいかないように押さえ込むために最低必要な角度だからである。   Also, as shown in FIG. 2 or 3, the plate-like protrusions 13 and 17 are provided on the suction side blade surface of the rotary impeller that is concentric with the air passages 6 and 15, so that the impeller rotates. This reduces the air resistance of the projections, and the air pushed downstream in the axial direction also causes the circumferential direction of the rotary impeller 3 in one space blocked by the plate-like projections 13 and 17. Since it will flow smoothly along, air blowing efficiency is good. The plate-like projections 13 and 17 are provided so as to stand in the axial direction 10 at an angle that surrounds the circumferential direction of the rotary impeller 3 and is parallel or tapered with the inner wall 11 of the air passages 6 and 15 in the circular shape. The reason is that the angle is the minimum necessary to keep the air to be peeled away from going inward any further.

図4は、板状突起より外側に形成される環状風路のイメージを示す説明図である。この図に示すように、板状突起4、4a、4bより外側にできる環状風路Bは、最も効率よく空気を押し出せる領域である。仮に板状突起4、4a、4bが翼長の80%の位置に円上に立設されたとしても、空気を送り出す仕事は、回転翼車全体の50%を越える効率となる。したがって、本発明により、板状突起4、4a、4bを設けることは、環状風路Bを最大限に利用することにもつながるため、至極有用となる。   FIG. 4 is an explanatory diagram showing an image of an annular air passage formed outside the plate-like protrusion. As shown in this figure, the annular air passage B formed outside the plate-like protrusions 4, 4a, 4b is a region where air can be pushed out most efficiently. Even if the plate-like protrusions 4, 4a, and 4b are erected on a circle at a position of 80% of the blade length, the work of sending out the air has an efficiency exceeding 50% of the entire rotary impeller. Therefore, according to the present invention, providing the plate-like protrusions 4, 4a, 4b is extremely useful because it leads to the maximum use of the annular air passage B.

図2に戻って、上記環状風路には、シュラウド2の空気通路となるなだらかな斜面に沿って流れたきた空気が急に向きを変えることになり、剥離してしまう流れS1と、上流に比べて相対的に高い静圧となっている下流から翼8と空気通路12との隙間をぬって逆流してくる空気の流れS2とが負圧側の翼8の表面に流れ込むが、板状突起13があるために、それ以上翼8の内側にいくことがなく、回転する翼8により、効率よく下流に押し込まれる。この作用を確保するために、板状突起13は、軸方向に向けて立設されていることが好ましいが、図3の場合のように、空気通路15がテーパーをもった円錐形状である場合は、進路が急に変化することにより空気が剥離する割合が減るので、図3のように当該空気通路15と平行な角度で傾いて板状突起17が設けられてもよい。   Returning to FIG. 2, in the annular air passage, the air flowing along the gentle slope that becomes the air passage of the shroud 2 suddenly changes direction, and the flow S <b> 1 that peels off and upstream The air flow S2 that flows backward from the downstream where the blade 8 and the air passage 12 flow from the downstream where the static pressure is relatively high flows into the surface of the blade 8 on the negative pressure side. 13, there is no further inside of the blade 8, and it is efficiently pushed downstream by the rotating blade 8. In order to ensure this action, the plate-like protrusion 13 is preferably erected in the axial direction, but when the air passage 15 has a tapered conical shape as in the case of FIG. Since the rate of air separation due to a sudden change in the path decreases, the plate-like protrusion 17 may be provided inclined at an angle parallel to the air passage 15 as shown in FIG.

板状突起13の高さh2は、高ければ高いほど、剥離してしまう空気の流れS1と、翼8と空気通路12との隙間をぬって逆流してくる下流からの空気の流れS2とを効率良く下流に押し込む環状風路の確保という点で好ましい。しかし、回転翼車3の上流には、近傍に熱交換機が配置されるのが通常であるから、安全のためには、回転翼車3のハブ7の高さ以下となるようにするのがよい。   The higher the height h2 of the plate-like protrusion 13 is, the higher the air flow S1 that is separated and the air flow S2 from the downstream that flows backward through the gap between the blade 8 and the air passage 12. This is preferable in terms of securing an annular air passage that is efficiently pushed downstream. However, since a heat exchanger is usually disposed in the vicinity of the upstream of the rotary impeller 3, for safety, the height of the hub 7 of the rotary impeller 3 should be kept below. Good.

図5は、回転翼車の翼の表面における板状突起の長さを示す翼正面図である。翼前縁23から翼後縁24を100%コード(100%翼弦長)とすると、板状突起4は、翼前縁23から0〜20%コードの位置(符号22から21の間)から突出が始まり、翼後縁24まで滑らかに高さが増加するように設けるのが理想的である。翼の表面における静圧は、翼後縁24にいくに従って高くなり、シュラウドから剥離する空気や、下流から翼端のチップクリアランスを通って逆流する空気が突入し、乱れる傾向が強くなる。したがって、翼後縁ほど板状突起4を高くして、環状風路を確保するのが好ましい。高さ変化を滑らかにするのは、いたずらに空気の流れを乱すのを防止するためと、空気の混合拡散は、後縁にいくにしたがって徐々に広がるため、これに対応するためである。   FIG. 5 is a front view of the blade showing the length of the plate-like protrusion on the surface of the blade of the rotary impeller. Assuming that the blade leading edge 23 to the blade trailing edge 24 are 100% cords (100% chord length), the plate-like protrusion 4 is positioned from the position of 0 to 20% cord from the blade leading edge 23 (between reference numerals 22 to 21). Ideally, the protrusion starts and the height increases smoothly to the blade trailing edge 24. The static pressure on the surface of the blade increases as it goes to the blade trailing edge 24, and air that peels from the shroud or air that flows backward from the downstream through the tip clearance of the blade tip enters and becomes more prone to disturbance. Therefore, it is preferable to increase the plate-like protrusion 4 toward the blade trailing edge to ensure an annular air passage. The reason why the height change is smooth is to prevent the air flow from being disturbed unnecessarily, and to cope with this because the mixed diffusion of the air gradually spreads toward the trailing edge.

図6は、回転翼車の翼の表面における板状突起のスパン方向位置を示す翼正面図である。板状突起4は、回転翼車3のハブ7の外周25から翼外縁26までの長さを100Rとしたとき、翼外縁26から5R〜45Rまでの範囲に立設されるのが好ましい。既述したが、翼8は、外縁ほど周速が大きいので、効率よく空気を押し出せる仕事が可能となる。したがって、板状突起4は、最低でも外縁から5R以上、50R以内、できれば45R以内の領域に設けるのが得策である。これよりも内側に板状突起4を設けると、空気を押し込む効率が極端に下がり出すからである。   FIG. 6 is a blade front view showing the span direction position of the plate-like protrusion on the surface of the blade of the rotary impeller. The plate-like protrusion 4 is preferably erected in a range from 5R to 45R from the blade outer edge 26 when the length from the outer periphery 25 of the hub 7 of the rotary impeller 3 to the blade outer edge 26 is 100R. As described above, since the peripheral speed of the wing 8 increases as the outer edge increases, work capable of efficiently extruding air becomes possible. Therefore, it is advantageous to provide the plate-like protrusions 4 in a region at least 5R or more and 50R or less, preferably 45R or less from the outer edge. This is because if the plate-like protrusion 4 is provided on the inner side than this, the efficiency of pushing in air starts to extremely decrease.

以上のように、本発明にかかるプロペラファンは、車載熱交換機の下流に配置され、奥行き方向の寸法を大きく制限されるシュラウドを有するプロペラファンの製造、使用に有用である。   As described above, the propeller fan according to the present invention is useful for the manufacture and use of a propeller fan having a shroud that is disposed downstream of an in-vehicle heat exchanger and whose depth dimension is greatly limited.

プロペラファン全体を示す正面図である。It is a front view which shows the whole propeller fan. 図1のプロペラファンの断面形状を示すA−A断面図である。It is AA sectional drawing which shows the cross-sectional shape of the propeller fan of FIG. 板状突起が軸方向に向いていない場合を示す図1のA−A断面図である。It is AA sectional drawing of FIG. 1 which shows the case where a plate-shaped protrusion is not suitable for the axial direction. 板状突起より外側に形成される環状風路のイメージを示す説明図である。It is explanatory drawing which shows the image of the annular air path formed outside a plate-shaped protrusion. 回転翼車の翼の表面における板状突起の長さを示す翼正面図である。It is a wing | blade front view which shows the length of the plate-shaped protrusion in the surface of the blade | wing of a rotary impeller. 回転翼車の翼の表面における板状突起のスパン方向位置を示す翼正面図である。It is a wing | blade front view which shows the span direction position of the plate-shaped protrusion in the surface of the blade | wing of a rotary impeller.

符号の説明Explanation of symbols

1 プロペラファン
2 シュラウド
3 回転翼車
4、10、13、17 板状突起
6、12、15 空気通路
7 ハブ
8 翼
11 内壁
23 翼前縁
24 翼後縁
25 ハブ外周
26 翼外縁
DESCRIPTION OF SYMBOLS 1 Propeller fan 2 Shroud 3 Rotary impeller 4, 10, 13, 17 Plate-like protrusion 6, 12, 15 Air passage 7 Hub 8 Blade 11 Inner wall 23 Blade front edge 24 Blade rear edge 25 Hub outer periphery 26 Blade outer edge

Claims (4)

軸流形式の回転翼車と、
空気通路の形状が略矩形から円形状に移行し、当該円形状となる部分に前記回転翼車が設けられ、車載熱交換機の下流に設置されるシュラウドと、
を有するプロペラファンにおいて、
前記シュラウドの前記空気通路の円形状と同心円上の位置となる前記回転翼車の負圧側翼表面から、前記シュラウドの前記回転翼車の周方向を囲む部分の前記空気通路の内壁と平行またはテーパとなる角度をもって前記回転翼車の軸方向に向いて立設される板状突起を有することを特徴とするプロペラファン。
An axial-flow rotary impeller,
The shape of the air passage is changed from a substantially rectangular shape to a circular shape, the rotary impeller is provided in the circular shape portion, and a shroud installed downstream of the in-vehicle heat exchanger;
In a propeller fan having
Parallel to or taper from the inner wall of the air passage at a portion surrounding the circumferential direction of the rotary impeller of the shroud from the suction side blade surface of the rotary impeller at a position concentric with the circular shape of the air passage of the shroud A propeller fan characterized by having a plate-like protrusion standing upright in the axial direction of the rotary impeller at an angle of
前記板状突起は、翼前縁0〜20%コード位置から突出が始まり、翼後縁まで高さが滑らかに増加することを特徴とする請求項1に記載のプロペラファン。   2. The propeller fan according to claim 1, wherein the plate-like protrusion starts to protrude from a blade leading edge 0 to 20% cord position and smoothly increases in height to the blade trailing edge. 前記板状突起は、前記回転翼車の翼外縁からハブ外周までの長さを100としたとき、当該翼外縁から5〜45までの範囲に立設されることを特徴とする請求項1または2に記載のプロペラファン。   2. The plate-like protrusion is erected in a range from 5 to 45 from the outer edge of the blade, where the length from the outer edge of the rotor blade to the outer periphery of the hub is 100. 5. 2. The propeller fan according to 2. 前記板状突起の高さは、前記回転翼車のハブ高さ以下であることを特徴とする請求項1〜3のいずれか一つに記載のプロペラファン。   The propeller fan according to any one of claims 1 to 3, wherein a height of the plate-like protrusion is not more than a hub height of the rotary impeller.
JP2005225854A 2005-08-03 2005-08-03 Propeller fan Active JP4508974B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005225854A JP4508974B2 (en) 2005-08-03 2005-08-03 Propeller fan
EP06300193.7A EP1750014B1 (en) 2005-08-03 2006-03-02 Axial fan for heat exchanger of in-vehicle air conditioner
US11/366,029 US7559744B2 (en) 2005-08-03 2006-03-02 Propeller fan for heat exchanger of in-vehicle air conditioner
EP13192076.1A EP2696079B1 (en) 2005-08-03 2006-03-02 Propeller fan for heat exchanger of in-vehicle air conditioner
CN2006100547413A CN1908445B (en) 2005-08-03 2006-03-10 Propeller fan for heat exchanger of in-vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225854A JP4508974B2 (en) 2005-08-03 2005-08-03 Propeller fan

Publications (2)

Publication Number Publication Date
JP2007040197A true JP2007040197A (en) 2007-02-15
JP4508974B2 JP4508974B2 (en) 2010-07-21

Family

ID=37699634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225854A Active JP4508974B2 (en) 2005-08-03 2005-08-03 Propeller fan

Country Status (2)

Country Link
JP (1) JP4508974B2 (en)
CN (1) CN1908445B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048884A1 (en) 2009-10-19 2011-04-28 三菱重工業株式会社 Heat exchange module for vehicle
CN102261349A (en) * 2011-08-24 2011-11-30 张家港施亿百机电设备有限公司 Axial flow blade
JP2012107529A (en) * 2010-11-15 2012-06-07 Mitsubishi Heavy Ind Ltd Propeller fan
JP2020502421A (en) * 2017-01-06 2020-01-23 グリー エレクトリック アプライアンスィズ,インコーポレーテッド オブ ジュハイ Blades, impellers and fans

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588337B (en) * 2012-02-29 2015-11-18 Tcl空调器(中山)有限公司 Axial wind wheel structure and axial fan
CN103362867A (en) * 2013-08-02 2013-10-23 无锡杰尔压缩机有限公司 Variable chamfer structure of unshrouded impeller
JP6409666B2 (en) * 2014-09-18 2018-10-24 株式会社デンソー Blower
WO2016164533A1 (en) * 2015-04-08 2016-10-13 Horton, Inc. Fan blade surface features
CN108506246B (en) * 2018-05-04 2020-03-06 广东美的制冷设备有限公司 Axial flow wind wheel, air conditioner outdoor unit and air conditioner
WO2019210591A1 (en) * 2018-05-04 2019-11-07 广东美的制冷设备有限公司 Axial flow wind wheel, air conditioner outdoor unit and air conditioner
CN108868997B (en) * 2018-06-29 2020-08-04 陈科 Heat radiator for be used for automobile engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150895U (en) * 1980-04-14 1981-11-12
JPS57191495A (en) * 1981-05-19 1982-11-25 Toyota Central Res & Dev Lab Inc Axial-flow fan
JPS59105998A (en) * 1982-12-08 1984-06-19 Nippon Denso Co Ltd Axial flow fan
JPH05164090A (en) * 1991-12-17 1993-06-29 Matsushita Refrig Co Ltd Blower
JPH0849698A (en) * 1994-08-08 1996-02-20 Yamaha Motor Co Ltd Axial fan
JP2001349300A (en) * 2000-06-06 2001-12-21 Twenty One Enterprise:Kk Axial blower
JP2005002882A (en) * 2003-06-11 2005-01-06 Ishikawajima Harima Heavy Ind Co Ltd Moving blade, coating method for snubber, repair method for snubber, and method for manufacturing restoration moving blade

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128363A (en) * 1975-04-30 1978-12-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Axial flow fan
JPS5472507A (en) * 1977-11-22 1979-06-11 Toyota Central Res & Dev Lab Inc Axial flow fan with supplementary blades
US4522160A (en) * 1984-01-23 1985-06-11 J. I. Case Company Fan-shroud structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150895U (en) * 1980-04-14 1981-11-12
JPS57191495A (en) * 1981-05-19 1982-11-25 Toyota Central Res & Dev Lab Inc Axial-flow fan
JPS59105998A (en) * 1982-12-08 1984-06-19 Nippon Denso Co Ltd Axial flow fan
JPH05164090A (en) * 1991-12-17 1993-06-29 Matsushita Refrig Co Ltd Blower
JPH0849698A (en) * 1994-08-08 1996-02-20 Yamaha Motor Co Ltd Axial fan
JP2001349300A (en) * 2000-06-06 2001-12-21 Twenty One Enterprise:Kk Axial blower
JP2005002882A (en) * 2003-06-11 2005-01-06 Ishikawajima Harima Heavy Ind Co Ltd Moving blade, coating method for snubber, repair method for snubber, and method for manufacturing restoration moving blade

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048884A1 (en) 2009-10-19 2011-04-28 三菱重工業株式会社 Heat exchange module for vehicle
US8491270B2 (en) 2009-10-19 2013-07-23 Mitsubishi Heavy Industries, Ltd. Vehicle heat-exchange module
JP2012107529A (en) * 2010-11-15 2012-06-07 Mitsubishi Heavy Ind Ltd Propeller fan
CN102261349A (en) * 2011-08-24 2011-11-30 张家港施亿百机电设备有限公司 Axial flow blade
CN102261349B (en) * 2011-08-24 2013-01-02 张家港施亿百机电设备有限公司 Axial flow blade
JP2020502421A (en) * 2017-01-06 2020-01-23 グリー エレクトリック アプライアンスィズ,インコーポレーテッド オブ ジュハイ Blades, impellers and fans
US11078921B2 (en) 2017-01-06 2021-08-03 Gree Electric Appliances, Inc. Of Zhuhai Blade, impeller and fan

Also Published As

Publication number Publication date
JP4508974B2 (en) 2010-07-21
CN1908445B (en) 2010-05-12
CN1908445A (en) 2007-02-07

Similar Documents

Publication Publication Date Title
US7559744B2 (en) Propeller fan for heat exchanger of in-vehicle air conditioner
JP5880288B2 (en) Blower
US9334875B2 (en) Multiblade centrifugal fan and air conditioner equipped with the same
CN107850083B (en) Blower and air conditioner equipped with same
JP5689538B2 (en) Outdoor cooling unit for vehicle air conditioner
KR20000023522A (en) Axial flow blower
JP2001271790A (en) Centrifugal impeller and air cleaner
JP2007263004A (en) Multiple layout fan
JP4508974B2 (en) Propeller fan
CN107532612B (en) Centrifugal blower
JP3969354B2 (en) Centrifugal fan and its application
JP5357492B2 (en) Propeller fan
JP2004218450A (en) Centrifugal blower
US10473113B2 (en) Centrifugal blower
JP6224952B2 (en) Blower
JPH08240197A (en) Axial-flow fan
JP2003180051A (en) Moving blade of totally-enclosed fan-cooled rotating electric machine
JP2016166558A (en) Air blower
JP4243105B2 (en) Impeller
WO2015122134A1 (en) Blower
JP2005016457A (en) Blower and heat exchange unit equipped with blower
JP2002285996A (en) Multi-blade blower fan
WO2022153522A1 (en) Centrifugal blower
WO2023281994A1 (en) Air blowing device and air conditioning system including same
JP2010151047A (en) Multiblade centrifugal fan and vehicle air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4508974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250