Nothing Special   »   [go: up one dir, main page]

JP2006337630A - Method for manufacturing multilayer optical film - Google Patents

Method for manufacturing multilayer optical film Download PDF

Info

Publication number
JP2006337630A
JP2006337630A JP2005161037A JP2005161037A JP2006337630A JP 2006337630 A JP2006337630 A JP 2006337630A JP 2005161037 A JP2005161037 A JP 2005161037A JP 2005161037 A JP2005161037 A JP 2005161037A JP 2006337630 A JP2006337630 A JP 2006337630A
Authority
JP
Japan
Prior art keywords
film
defect
laminated optical
retardation
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161037A
Other languages
Japanese (ja)
Inventor
Takashi Morimoto
尚 森本
Katsushi Mizuno
克司 水野
Atsuhiko Shinozuka
淳彦 篠塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005161037A priority Critical patent/JP2006337630A/en
Priority to TW095118285A priority patent/TW200705093A/en
Priority to KR1020060048004A priority patent/KR20060125483A/en
Priority to CNA2006100899639A priority patent/CN1873398A/en
Publication of JP2006337630A publication Critical patent/JP2006337630A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Polarising Elements (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer optical film made by sticking a polarizing film hardly having defect to a retardation film. <P>SOLUTION: In a method for manufacturing multilayer optical film, the retardation film having a constant width is conveyed in the length direction vertical to the width direction, wherein a pair of polarizers are arranged in cross Nicols in parallel to the film surface on both sides of the retardation film, an optical compensation film having a birefringent characteristic is arranged between the polarizer and the retardation film, light is projected from the external side of the one side polarizer, transmission light from the other side polarizer is received, a defect is detected from the brightness signal, subsequently, the retardation film is stuck to the polarizing film and, thereafter, the defect part is removed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、偏光フィルムと位相差フィルムを積層してなる積層光学フィルムの製造方法に関する。   The present invention relates to a method for producing a laminated optical film obtained by laminating a polarizing film and a retardation film.

従来から、合成樹脂フィルムや紙などの製造工程では、一定の幅で長大な帯状の状態で各種処理が自動的に施され、最終的に製品仕様に従って所定の形状となるようにカットされている。製品仕様を満たさない欠陥部分の検出も、帯状の状態で自動的に行われ、後行程で欠陥部分の識別が容易となるように、マークが施される。
液晶表示パネルに使用される偏光フィルムを製造する際には、合成樹脂フィルムとしての製造や、一定方向への伸延による偏光特性の付与などの行程では、フィルムが長大な帯状の状態で連続して行い、製品仕様によって予め定められる大きさや方向に切り出す。欠陥の検査を自動的に行う際には、欠陥の検出と欠陥についてのマーキングとを、フィルムの搬送経路に沿って行われる。位相差フィルムについても同様にして、フィルムが長大な帯状の状態で連続して、欠陥の検出と欠陥についてのマーキングとを、フィルムの搬送経路に沿って行われる。
このようにして得られる偏光フィルムと位相差フィルムは、所定の軸角度になるように貼合し、通常、所定の大きさのチップに切り出され、マークに基づいて欠陥部分を有するチップを除いて、積層光学フィルムの製品とされる。
Conventionally, in the manufacturing process of synthetic resin films and papers, various treatments are automatically performed in a long strip shape with a constant width, and finally cut into a predetermined shape according to product specifications. . Detection of a defective portion that does not satisfy the product specification is also automatically performed in a belt-like state, and a mark is provided so that the defective portion can be easily identified in a later process.
When manufacturing a polarizing film used for a liquid crystal display panel, in the process of manufacturing as a synthetic resin film or imparting polarization characteristics by stretching in a certain direction, the film is continuously in a long strip state. And cut out in a size and direction predetermined by the product specifications. When the defect inspection is automatically performed, the defect detection and the defect marking are performed along the film conveyance path. In the same manner for the retardation film, the detection of the defect and the marking of the defect are performed along the film conveyance path in a continuous state in a long and long film state.
The polarizing film and the retardation film thus obtained are bonded so as to have a predetermined axial angle, and are usually cut into chips of a predetermined size, except for chips having a defective portion based on the marks. It is a product of laminated optical film.

合成樹脂フィルムの異物などの欠陥検査方法として、合成樹脂フィルムに光源から投光し、その透過光または反射光をカメラで撮影し、またはクロスニコルに配置した2枚の偏光板の間に合成樹脂フィルムを配置し、光源からの透過光をカメラで撮影し、その撮像を画像処理して欠陥検査する方法が知られている(例えば、特許文献1参照。)。   As a method for inspecting defects such as foreign matter in a synthetic resin film, a synthetic resin film is projected from a light source onto the synthetic resin film, the transmitted light or reflected light is photographed with a camera, or a synthetic resin film is placed between two polarizing plates arranged in crossed Nicols. There is known a method of arranging and photographing a transmitted light from a light source with a camera and performing image processing on the captured image to inspect a defect (for example, refer to Patent Document 1).

また、フィルムの欠陥のマーキング方法として、欠陥を含む部分のフィルムの側縁に線状のマークを施す方法、直接欠陥位置にマークを施す方法、欠陥部分に対し、幅方向の両側で予め定める範囲の近傍となる位置に、マークを施す方法が知られている(特許文献2参照。)。   In addition, as a film defect marking method, a method of marking a linear mark on the side edge of a film including a defect, a method of directly marking a defect position, a predetermined range on both sides in the width direction with respect to the defect portion There is known a method of applying a mark to a position in the vicinity of (see Patent Document 2).

しかしながら、特許文献1等に記載の欠陥検出方法では、合成樹脂フィルムが位相差フィルムの場合には、欠陥部分の輝度信号のSN比が低く、欠陥検出精度が低くなり、マーキングが確実に行われたとしても、偏光フィルムと貼合してなる積層光学フィルムを液晶表示パネルに使用した時に欠陥が顕在化してしまう。
特開2005−49158号公報 特開2001−305070号公報
However, in the defect detection method described in Patent Document 1 and the like, when the synthetic resin film is a retardation film, the SN ratio of the luminance signal of the defect portion is low, the defect detection accuracy is low, and marking is performed reliably. Even if it uses a laminated optical film bonded with a polarizing film for a liquid crystal display panel, a defect will become apparent.
JP 2005-49158 A JP 2001-305070 A

本発明の目的は、欠陥の少ない偏光フィルムと位相差フィルムを貼合してなる積層光学フィルムを提供することにある。   The objective of this invention is providing the laminated optical film formed by bonding the polarizing film with few defects, and retardation film.

本発明は、偏光フィルムと位相差フィルムを貼合して積層光学フィルムを製造する方法において、一定の幅を有する位相差フィルムを、幅方向に垂直な長さ方向に搬送し、その際、該位相差フィルムの両側にフィルム面と平行に一対の偏光子をクロスニコルに配置し、該偏光子と該位相差フィルムの間に、複屈折特性を有する光学補償フィルムを配置し、一方の偏光子の外側から投光し、他方の偏光子からの透過光を受光し、その輝度信号から欠陥を検出し、次いで偏光フィルムと貼合した後、欠陥部分を除くことを特徴とする積層光学フィルムの製造方法である。   The present invention is a method for producing a laminated optical film by laminating a polarizing film and a retardation film, and transporting a retardation film having a certain width in a length direction perpendicular to the width direction, A pair of polarizers are arranged in crossed Nicols parallel to the film surface on both sides of the retardation film, an optical compensation film having birefringence characteristics is arranged between the polarizer and the retardation film, and one polarizer The laminated optical film is characterized in that light is projected from the outside of the optical element, the transmitted light from the other polarizer is received, the defect is detected from the luminance signal, and then bonded to the polarizing film, and then the defective part is removed. It is a manufacturing method.

以上のように本発明によれば、欠陥の少ない偏光フィルムと位相差フィルムを貼合してなる積層光学フィルムが得られる。   As described above, according to the present invention, a laminated optical film obtained by bonding a polarizing film with few defects and a retardation film can be obtained.

偏光フィルムは、特定の振動方向の光だけを透過させる機能を有するフィルムであって、ポリビニルアルコールフィルムをヨウ素等で染色、延伸して製造され、スミカラン(登録商標)(住友化学(株)製)等として市販されている。
また、位相差フィルムは、位相差を補償して、着色をなくし、視認性を向上させ、または視野角を拡大させる機能を有するフィルムであって、ポリカーボネートフィルム、シクロオレフィンポリマーを延伸して、またフィルムに液晶をコートして製造され、スミカライト(登録商標)(住友化学(株)製)、R−フィルム((株)カネカ製)、ピュアエース(登録商標)(帝人(株)製)、ゼオノアフィルム(登録商標)((株)オプテス製)、エスシーナ位相差フィルム(積水化学工業(株)製)、コニカミノルタ光学フィルム(コニカミノルタ オプト(株)製)、富士フィルムWV FILM(富士写真フィルム(株)製)、TFT視角改良用途向けNHフィルム(新日本石油(株)製)、STN色補償用途向けLCフィルム(新日本石油(株)製)等として市販されている。
A polarizing film is a film having a function of transmitting only light in a specific vibration direction, and is manufactured by dyeing and stretching a polyvinyl alcohol film with iodine or the like. Sumikaran (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd.) Etc. are commercially available.
The retardation film is a film having a function of compensating for the retardation, eliminating coloring, improving visibility, or widening the viewing angle, and extending a polycarbonate film or cycloolefin polymer. Manufactured by coating a film with liquid crystal, Sumikalite (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd.), R-film (manufactured by Kaneka Corporation), Pure Ace (registered trademark) (manufactured by Teijin Limited), ZEONOR Film (registered trademark) (manufactured by Optes Co., Ltd.), Essina retardation film (manufactured by Sekisui Chemical Co., Ltd.), Konica Minolta Optical Film (manufactured by Konica Minolta Opto), Fuji Film WV FILM (Fuji Photo Film) Co., Ltd.), NH film for TFT viewing angle improvement (manufactured by Nippon Oil Corporation), LC film for STN color compensation (manufactured by Nippon Oil Corporation), etc.

図1は、本発明におけるフィルムの欠陥検出および欠陥マーキング装置10の一実施形態の概略的な構成を示す斜視図である。図2は、フィルムの欠陥検出および欠陥マーキング装置10の内、位相差フィルムの欠陥検出手段25の構成を示す簡略化した断面図である。
位相差フィルム11には、肉眼では識別困難なほど小さい、表面の微小な欠陥であっても、高精細化している液晶表示装置の表示画質を低下させてしまうので、存在することは好ましくない。また比較的広い範囲にわたる欠陥であっても、肉眼では判別が困難な場合もある。肉眼では判別が困難な欠陥であっても、欠陥検出手段25によって、欠陥13として検出する。
FIG. 1 is a perspective view showing a schematic configuration of an embodiment of a film defect detection and defect marking apparatus 10 according to the present invention. FIG. 2 is a simplified cross-sectional view showing the configuration of the phase difference film defect detection means 25 in the film defect detection and defect marking apparatus 10.
It is not preferable that the phase difference film 11 is present even if the surface defect is so small that it is difficult to identify with the naked eye, because it degrades the display image quality of the liquid crystal display device with high definition. Even with a relatively wide range of defects, it may be difficult to determine with the naked eye. Even a defect that is difficult to distinguish with the naked eye is detected as a defect 13 by the defect detection means 25.

位相差フィルム11は、搬送方向11aに一定速度で搬送され、欠陥検出手段25で欠陥を検出し、欠陥検出手段に対して搬送方向11aの下流側には、マーキング手段14が設置される。位相差フィルム11は、ロール16に巻かれた状態から引き出されて検査対象となる。   The retardation film 11 is conveyed at a constant speed in the conveyance direction 11a, the defect detection means 25 detects a defect, and the marking means 14 is installed downstream of the defect detection means in the conveyance direction 11a. The phase difference film 11 is pulled out from the state wound around the roll 16 and becomes an inspection object.

欠陥検出手段25は、照明装置17と、被検査フィルムである位相差フィルム11のシート面の両側にシート面と平行にクロスニコルに配置された一対の偏光子22、23と、偏光子と位相差フィルムの間に配置され、複屈折特性を有する光学補償フィルム24と、これらフィルムを透過してくる照明装置からの透過光を撮像する撮像手段12と、撮像した画像の輝度信号を処理する画像処理装置19とから主に構成される。   The defect detection means 25 includes a lighting device 17, a pair of polarizers 22 and 23 arranged in crossed Nicols parallel to the sheet surface on both sides of the sheet surface of the retardation film 11 that is a film to be inspected, and the position of the polarizer. An optical compensation film 24 disposed between the phase difference films and having birefringence characteristics, an image pickup means 12 for picking up transmitted light from an illumination device that passes through these films, and an image for processing a luminance signal of the picked-up image The processing unit 19 is mainly configured.

照明装置17は、位相差フィルム11の幅方向の全体にわたって、均一な照明を行う。照明装置17としては、蛍光灯などの管状の発光体や、伝送ライトなどの線状の光源を使用する。伝送ライトは、棒状の導光体の軸方向の端面にメタルハロゲンランプなどの強力な光源を配置し、端面に入射された光を両端面間の側面に導き、棒状の光源として機能する。レーザ光を広げて照射することもできる。照明装置17が位相差フィルム11に照射する光は、欠陥13の検出が容易な波長や偏光特性となるように設定される。撮像手段12と照明装置17との組み合わせで、効率よく検出可能な欠陥13の種類が定まる。複数種類の欠陥13を検出可能にするため、撮像手段12と照明装置17との組み合わせを、搬送方向11aに沿って複数組配置し、いずれかの種類の欠陥13が検出されれば、マーキング手段14によってマーキングが施されるようにすることもできる。   The illumination device 17 performs uniform illumination over the entire width direction of the retardation film 11. As the illumination device 17, a tubular light emitter such as a fluorescent lamp or a linear light source such as a transmission light is used. In the transmission light, a powerful light source such as a metal halogen lamp is disposed on the end face in the axial direction of a rod-shaped light guide, and the light incident on the end surface is guided to the side surface between both end surfaces to function as a rod-shaped light source. Laser light can be spread and irradiated. The light that the illuminating device 17 irradiates the retardation film 11 is set so as to have a wavelength and polarization characteristics that facilitate detection of the defect 13. The combination of the imaging means 12 and the illumination device 17 determines the types of defects 13 that can be efficiently detected. In order to make it possible to detect a plurality of types of defects 13, a plurality of combinations of the imaging unit 12 and the illumination device 17 are arranged along the transport direction 11a, and if any type of the defect 13 is detected, the marking unit Marking can also be made by 14.

一対の偏光子22、23は、被検査フィルムである位相差フィルムのフィルム面の両側に平行に配置され、偏光子22は照明装置17から照射される光を直線偏向して、該位相差フィルムに入射させる。偏光子23は、偏光子22とクロスニコルの状態(偏光子22の偏光軸と偏光子23の偏光軸を直交させた状態)で配置され、位相差フィルムおよび光学補償フィルム24を透過した透過光のうち、偏光子23の偏光軸方向の透過光を透過させる。偏光子22および偏光子23ともに公知の偏光子、通常、偏光板が用いられる。
偏光子23は照明装置17の前面に配置し、偏光子22はカメラに取り付けても良い。また一対の偏光子をクロスニコル状態にし易くするために、一方の偏光子を回転できるようにしておくのが好ましい。位相差フィルムのない状態で、輝度信号値が最小になるように偏光子を回転させて、容易にクロスニコル状態に配置することができる。
The pair of polarizers 22 and 23 are arranged in parallel on both sides of the film surface of the retardation film that is the film to be inspected, and the polarizer 22 linearly deflects the light emitted from the illuminating device 17, and the retardation film To enter. The polarizer 23 is arranged in a crossed Nicols state with the polarizer 22 (a state in which the polarization axis of the polarizer 22 and the polarization axis of the polarizer 23 are orthogonal), and transmitted light that has passed through the retardation film and the optical compensation film 24. Among them, the transmitted light in the direction of the polarization axis of the polarizer 23 is transmitted. A known polarizer, usually a polarizing plate, is used for both the polarizer 22 and the polarizer 23.
The polarizer 23 may be disposed on the front surface of the illumination device 17, and the polarizer 22 may be attached to the camera. In order to facilitate the pair of polarizers in a crossed Nicols state, it is preferable that one polarizer can be rotated. In a state where there is no retardation film, the polarizer can be rotated so as to minimize the luminance signal value and can be easily placed in the crossed Nicols state.

光学補償フィルム24は、位相差フィルムと略同じ複屈折特性を有するフィルムが好ましく用いられる。光学補償フィルムは、位相差フィルムと偏光子22との間、または位相差フィルムと偏光子23との間に配置される。光学補償フィルムは、その複屈折の異方性によって前記位相差フィルムの複屈折の異方性を補償するように配置される。すなわち、位相差フィルムの複屈折特性によって光が楕円偏光するのを、光学補償フィルムの複屈折特性によって直線偏光に戻す。これによって、欠陥部分の輝度信号のSN比が大きくなり、欠陥をより確実に検出できる。
位相差フィルムの複屈折の異方性を容易に補償できるように、光学補償フィルムを回転できるようにしておくのが好ましい。
As the optical compensation film 24, a film having substantially the same birefringence characteristics as the retardation film is preferably used. The optical compensation film is disposed between the retardation film and the polarizer 22 or between the retardation film and the polarizer 23. The optical compensation film is arranged to compensate for the birefringence anisotropy of the retardation film by the birefringence anisotropy. That is, light is elliptically polarized due to the birefringence characteristics of the retardation film, but is returned to linearly polarized light due to the birefringence characteristics of the optical compensation film. As a result, the SN ratio of the luminance signal of the defective portion is increased, and the defect can be detected more reliably.
It is preferable that the optical compensation film can be rotated so that the birefringence anisotropy of the retardation film can be easily compensated.

撮像手段12は、幅方向に複数のカメラ21、…、を備える。撮像手段12が撮像した画像の輝度信号は画像処理装置19で処理される。
画像処理装置では、通常、輝度信号値に閾値を設け、閾値以上の信号値であれば、欠陥と判定する。欠陥部分の輝度信号のSN比が大きく、この方法によって精度良く欠陥を検出することができる。正常領域の輝度信号を一定にして、正常領域と欠陥を明確化するためにシェーディング処理を行った後、閾値を設定して判定するのが好ましい。原画像と、例えば正常領域の平均として求めたシェーディング画像との差分に128階調を加算し、128階調を基準とする波形画像とし、この画像について閾値を設定して欠陥を判定する。
The imaging means 12 includes a plurality of cameras 21 in the width direction. The luminance signal of the image picked up by the image pickup means 12 is processed by the image processing device 19.
In an image processing apparatus, normally, a threshold value is provided for a luminance signal value, and if the signal value is equal to or greater than the threshold value, it is determined as a defect. The SN ratio of the luminance signal of the defective portion is large, and the defect can be detected with high accuracy by this method. It is preferable to determine by setting a threshold value after performing a shading process in order to clarify the normal region and the defect while keeping the luminance signal of the normal region constant. 128 gradations are added to the difference between the original image and, for example, the shading image obtained as an average of the normal areas to obtain a waveform image based on the 128 gradations, and a threshold is set for this image to determine a defect.

位相差フィルムの欠陥のマーキング方法として、欠陥を含む部分のフィルムの側縁に線状のマークを施す方法、直接欠陥位置にマークを施す方法、特許文献2に記載の欠陥部分に対し、幅方向の両側で予め定める範囲の近傍となる位置に、マークを施す方法を採用することができるが、フィルムを切り出す際に、欠陥が含まれないことを確実に保証し、かつ歩留まりの低下を抑制することができる点から、欠陥部分に対し、幅方向の両側で予め定める範囲の近傍となる位置に、マークを施す方法が好ましい。   As a method of marking a defect in a retardation film, a method of applying a linear mark to a side edge of a film including a defect, a method of directly marking a defect position, and a width direction with respect to a defect part described in Patent Document 2 Although it is possible to adopt a method of marking at a position that is in the vicinity of a predetermined range on both sides of the film, it is ensured that no defects are included when cutting out the film, and a decrease in yield is suppressed. In view of this, it is preferable to mark the defective portion at a position that is in the vicinity of a predetermined range on both sides in the width direction.

欠陥部分に対し、幅方向の両側で予め定める範囲の近傍となる位置に、マークを施す方法は、具体的には図1において、マーキング手段14が、位相差フィルム11の表面に、搬送方向11aに平行な線状のマーク15を施す。   Specifically, in FIG. 1, the marking means 14 is placed on the surface of the retardation film 11 on the surface of the retardation film 11 in the transport direction 11a. A linear mark 15 is applied in parallel.

位相差フィルム11の搬送速度は、搬送速度検出装置18によって検出される。搬送速度検出装置18からの出力は、撮像手段12が撮像した画像について所定の画像処理を施す画像処理装置19からの画像処理結果とともに、制御手段20に入力される。制御手段20は、たとえば産業用パーソナルコンピュータなどによって実現され、画像処理結果から欠陥の有無の判別と、欠陥13が存在するときの位置の検出とを行う。制御手段20は、さらに、欠陥存在位置に対して幅方向の予め定める近傍の範囲内でマークを施すように、搬送速度検出装置18からの出力に基づいてタイミングを調整して、マーキング手段14を作動させる。マーキング手段14は、幅方向に複数のマーカ31、…、を備える。   The conveyance speed of the retardation film 11 is detected by a conveyance speed detection device 18. The output from the conveyance speed detection device 18 is input to the control unit 20 together with the image processing result from the image processing device 19 that performs predetermined image processing on the image captured by the imaging unit 12. The control unit 20 is realized by, for example, an industrial personal computer, and performs determination of the presence / absence of a defect from the image processing result and detection of a position when the defect 13 exists. The control means 20 further adjusts the timing based on the output from the conveying speed detection device 18 so as to mark the defect existing position within a predetermined vicinity in the width direction, and sets the marking means 14 Operate. The marking means 14 includes a plurality of markers 31 in the width direction.

図3は、欠陥検出手段25で検出する欠陥13に対して、マーキング手段14でマークを施す考え方を示す。撮像手段12は、幅方向に複数のカメラ21、…、を一定間隔で配置している。各カメラ21、…、は、例えば5000の画素を高密度に配列した一次元のCCDセンサを撮像素子として備える。検査対象の位相差フィルム11の幅であるワーク幅は、たとえば800〜1300mmの範囲であるので、撮像手段12としての検査エリアは1300mmの幅となる。この検査エリアに対して、6基のカメラ21、…、を配置し、各カメラ21、…、の視野21a、…、を250mmとする。各カメラ21、…、の視野21a、…、は、隣接するカメラ21、…、の視野21a、…、と、境界部で重複させる。   FIG. 3 shows the concept of marking the defect 13 detected by the defect detection means 25 with the marking means 14. The imaging means 12 has a plurality of cameras 21 arranged in the width direction at regular intervals. Each camera 21,... Includes, for example, a one-dimensional CCD sensor in which 5000 pixels are arranged at high density as an image sensor. Since the workpiece width, which is the width of the retardation film 11 to be inspected, is in the range of, for example, 800 to 1300 mm, the inspection area as the imaging unit 12 has a width of 1300 mm. .. Are arranged in the inspection area, and the visual field 21a of each camera 21 is set to 250 mm. The field of view 21a of each camera 21,... Overlaps with the field of view 21a of the adjacent camera 21,.

マーキング手段14では、複数のマーカ31、…、を、一定間隔、たとえば20mm間隔で、幅方向に配置する。各マーカ31、…、は、いずれかのカメラ21、…、の視野21a、…、の搬送方向11aへの延長上に位置する。図1の制御手段20は、各カメラ21、…、からの画像中で欠陥13を検出すると、欠陥13の幅方向の両側を挟む最も近い位置のマーカ31、…、を選択し、選択されたマーカ31、…、間にもマーカ31、…、が存在していればそれも選択して作動させる。各マーカ31、…、は、フェルトペン形式であり、先端を位相差フィルム11の表面に接触させることによって、搬送方向11aに線状のマーク15を形成することができる。各マーカ31、…、は、不使用時にはキャップをかぶせて、溶剤や希釈剤などが蒸発して書き味などが低下するのを防ぐことが好ましい。一般に欠陥13がマーカ31、…、の位置の間で検出されるときは、その検出位置の両側にマーク15が施される。   In the marking means 14, a plurality of markers 31,... Are arranged in the width direction at regular intervals, for example, 20 mm intervals. Each marker 31, ... is located on an extension of one of the cameras 21, ... in the visual field 21a, ... in the transport direction 11a. 1 detects the defect 13 in the images from the respective cameras 21,..., Selects the nearest marker 31... Sandwiching both sides of the defect 13 in the width direction. If there is a marker 31,... Between the markers 31,. Each marker 31,... Is in the form of a felt pen, and the linear mark 15 can be formed in the transport direction 11a by bringing the tip into contact with the surface of the retardation film 11. It is preferable that each marker 31,... Is covered with a cap when not in use to prevent the writing quality and the like from deteriorating due to evaporation of the solvent or diluent. Generally, when the defect 13 is detected between the positions of the markers 31,..., Marks 15 are provided on both sides of the detected position.

図4は、(a)で図1の制御手段20がマーキング手段14を作動させ、マークを施す際の制御の考え方の一例を示す。図4(b)および図4(c)は、図4(a)の考え方に従って、幅方向および長さ方向に大きな欠陥13b、13cについて施されるマーク15b、15cを示す。   FIG. 4 shows an example of the control concept when the control means 20 of FIG. 4 (b) and 4 (c) show marks 15b and 15c applied to large defects 13b and 13c in the width direction and the length direction in accordance with the concept of FIG. 4 (a).

図4(a)に示すように、位相差フィルム11の表面は、仮想的なブロック40で区画される。各ブロック40は、幅方向についてのマーカ31、…、の配置ピッチに合わせて各辺41、42、43、44が20mmの長さの正方形とする。辺41、42は、搬送方向11aの上流側および下流側のそれぞれ境界であり、辺43、44は、幅方向の一方側および他方側のそれぞれ境界である。各ブロック40の内部に欠陥13が存在するときは、幅方向の両側の辺43、44の位置のマーカが選択されてマークが施される。欠陥13が辺43、44のいずれかにかかっているときは、さらにその辺を境界として隣接するブロックで、その辺に対向する辺についてもマークが施される。したがって、図4(b)に示すように、幅方向に長く、複数のブロックにわたるような欠陥13bに対して、幅方向の両側から挟むような位置の辺と、その間のすべての辺とにマークが施されることになる。   As shown in FIG. 4A, the surface of the retardation film 11 is partitioned by virtual blocks 40. Each block 40 is a square whose sides 41, 42, 43, and 44 are 20 mm in length in accordance with the arrangement pitch of the markers 31 in the width direction. The sides 41 and 42 are boundaries on the upstream side and the downstream side in the transport direction 11a, respectively, and the sides 43 and 44 are boundaries on one side and the other side in the width direction. When the defect 13 exists in each block 40, the markers at the positions of the sides 43 and 44 on both sides in the width direction are selected and marked. When the defect 13 is on one of the sides 43 and 44, a mark is also given to the side opposite to the side of the block adjacent to the side. Therefore, as shown in FIG. 4B, the defect 13b that is long in the width direction and spans a plurality of blocks is marked on the side that is sandwiched from both sides in the width direction and all the sides between them. Will be given.

図4(a)で、欠陥13が辺41、42のいずれかにかかっているときは、さらにその辺を境界として隣接するブロックでも、幅方向の両側の辺についてマークが施される。したがって、図4(c)に示すように、長さ方向に長く、複数のブロックにわたるような欠陥13cに対して、幅方向の両側から挟むような位置の辺に、ブロック間を延長して連続的にマークが施される。   In FIG. 4A, when the defect 13 is on one of the sides 41 and 42, a mark is given to both sides in the width direction even in a block adjacent to that side as a boundary. Therefore, as shown in FIG. 4C, the defect 13c that is long in the length direction and spans a plurality of blocks is continuously extended by extending between the blocks to the side that is sandwiched from both sides in the width direction. Mark is given.

なお、単一のマーカを使用しても、搬送方向11aと幅方向とに位相差フィルム11の搬送速度に比較して高速に移動可能であれば、欠陥13の両側を挟むようなマークを施すことは可能である。ただし、マーカの移動の制御は複雑となり、近接した位置に複数の欠陥13が検出されるような場合に、確実なマークを施すことは困難である。また、複数のマーカを移動させれば、多くの欠陥13に同時にマークを施すことが可能になるけれども、制御はより複雑になってしまう。   Even if a single marker is used, a mark that sandwiches both sides of the defect 13 is applied if it can move in the transport direction 11a and the width direction at a higher speed than the transport speed of the retardation film 11. It is possible. However, control of the movement of the marker is complicated, and it is difficult to reliably mark when a plurality of defects 13 are detected at close positions. If a plurality of markers are moved, it becomes possible to mark many defects 13 at the same time, but the control becomes more complicated.

また、マーキング手段14として、フェルトペン形式のものを使用しているけれども、インクジェット式など、他の形式のマーカを使用することもできる。   Moreover, although the felt pen type thing is used as the marking means 14, other types of markers, such as an ink jet type, can also be used.

偏光フィルムについても同様に欠陥検査および欠陥マーキングを行うことができる。偏光フィルムの欠陥検査は、図1に示す位相差フィルムの代わりに偏光フィルムとし、透過光を受光し、画像処理して輝度信号から欠陥を検出する方法、反射光を受光し、画像処理して輝度信号から欠陥を検出する方法、または偏光フィルムのフィルム面と平行に偏光子をクロスニコルに配置し、偏光フィルムまたは偏光子の外側から投光し、偏光子または偏光フィルムからの透過光を受光し、画像処理して輝度信号から欠陥を検出する方法によって行われる。
偏光フィルムの欠陥にマークを施す方法は、位相差フィルムの場合と同様であり、特許文献2の方法が好ましく用いられる。
Similarly, defect inspection and defect marking can be performed on the polarizing film. In the defect inspection of the polarizing film, a polarizing film is used instead of the retardation film shown in FIG. 1, and the transmitted light is received, the image is processed to detect the defect from the luminance signal, the reflected light is received, and the image is processed. A method of detecting defects from the luminance signal, or a polarizer placed in crossed Nicols parallel to the film surface of the polarizing film, projecting light from the outside of the polarizing film or polarizer, and receiving transmitted light from the polarizer or polarizing film Then, the image processing is performed by a method of detecting a defect from the luminance signal.
The method for marking the defect of the polarizing film is the same as that for the retardation film, and the method of Patent Document 2 is preferably used.

欠陥を検出した位相差フィルムは偏光フィルムと所定の軸角度になるように貼合される。偏光フィルムは、通常、一定幅を有するフィルムを、幅方向に垂直な長さ方向に搬送して製造され、欠陥検査が行われる。通常、偏光フィルムは中間サイズに切り出されて、位相差フィルムと貼合される。
位相差フィルムと偏光フィルムとの貼合は、アクリル系粘着剤等を用いた公知の方法で行われる。偏光フィルムには、通常、目的によって1〜2枚の位相差フィルムが貼合される。すなわち、積層光学フィルムとして、偏光フィルムに所定の軸角度になるように位相差フィルムを貼合したもの、このフィルムの位相差フィルム上に更に所定の軸角度になるように位相差フィルムを貼合したものがある。
The retardation film in which the defect is detected is bonded to the polarizing film so as to have a predetermined axial angle. A polarizing film is usually manufactured by transporting a film having a certain width in a length direction perpendicular to the width direction, and a defect inspection is performed. Usually, a polarizing film is cut out to an intermediate size and bonded to a retardation film.
The lamination of the retardation film and the polarizing film is performed by a known method using an acrylic adhesive or the like. Usually, one or two retardation films are bonded to the polarizing film depending on the purpose. That is, as a laminated optical film, a polarizing film with a retardation film bonded so as to have a predetermined axial angle, and a retardation film that is further bonded with a predetermined axial angle on the retardation film of this film. There is what I did.

位相差フィルムと偏光フィルムと貼合した後、欠陥部分を除いて積層光学フィルムの製品が得られる。通常、積層光学フィルムが使用される液晶表示パネルの大きさのチップに切り出され、欠陥部分を有するチップを除いて、積層光学フィルムの製品とされる。   After laminating the retardation film and the polarizing film, a laminated optical film product is obtained except for the defective portion. Usually, a laminated optical film is cut into a chip having a size of a liquid crystal display panel to be used, and a laminated optical film product is obtained except for a chip having a defective portion.

位相差フィルムと偏光フィルムを貼合する際に、粘着剤中の異物や微細なゴミの付着による新たな欠陥が生じていることがあるので、貼合した後、更に目視で欠陥を検出するのが好ましい。この際、検出した欠陥に手動でマークを施しておく。目視で新たに検出した欠陥部分は、自動検出しておいた欠陥部分と会わせて除かれる。   When laminating a retardation film and a polarizing film, new defects may occur due to adhesion of foreign matter or fine dust in the adhesive. Is preferred. At this time, the detected defect is manually marked. The newly detected defect portion is visually removed from the defect portion that has been automatically detected.

検出した欠陥部分には、上記の方法で自動および手動でマークを施し、それらのマークに基づいて欠陥部分を除くことが、確実に欠陥部分を除くことができるので好ましい。   It is preferable to mark the detected defective portion automatically and manually by the above-described method and remove the defective portion based on those marks because the defective portion can be surely removed.

以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

実施例1
図1および図2に示す装置を用い、上記した方法で、位相差フィルム(TFT視角改良用途向けNHフィルム、位相差:120nm、新日本石油(株)製)の欠陥検出および欠陥マーキングを行った。
光学補償フィルムとして、被検査フィルムである上記の位相差フィルムを使用し、被検査フィルムの搬送方向に直角に配置し、その複屈折の異方性によって被検査フィルムである位相差フィルムの複屈折の異方性を補償した。
偏光子として偏光フィルム(スミカラン(登録商標)、住友化学(株)製)を用いた。
位相差フィルムの搬送速度を6m/分とし、画像処理して得られる128階調を基準とする波形画像に閾値を+50の178として欠陥を自動検出し、検出した欠陥に自動的にマークを施した。
その結果、欠陥マーキング数は平均17個/mであった。
次に、この位相差フィルムを、偏光フィルム(スミカラン(登録商標)SBPグレード、住友化学(株)製)と位相差フィルム(スミカライト(登録商標)SESグレード、住友化学(株)製)を貼合したフィルムの位相差フィルム側に粘着剤を介して貼合し、積層光学フィルムを得た。
この積層光学フィルムを、扱い易い約50cm角に切り出し、目視検査を行い、貼合時に混入した異物等による欠陥に手動でマークを施した。
次にこのマークを施された積層光学フィルムを2.2インチサイズのチップに切り出した。このチップのうち、上記自動マーキングおよび手動マーキングされたチップを除き、残りを製品とした。
このようにして得られた積層光学フィルムの製品を液晶表示パネルに貼合し、画像の良否から積層光学フィルムの良否を判定すると、不良率は1%以下になる。
Example 1
Using the apparatus shown in FIG. 1 and FIG. 2, defect detection and defect marking were performed on the retardation film (NH film for TFT viewing angle improvement application, retardation: 120 nm, manufactured by Nippon Oil Corporation) by the above-described method. .
As the optical compensation film, the above-mentioned retardation film that is the film to be inspected is used, arranged at right angles to the transport direction of the film to be inspected, and the birefringence of the retardation film that is the film to be inspected due to the anisotropy of the birefringence. Anisotropy of was compensated.
A polarizing film (Sumikaran (registered trademark), manufactured by Sumitomo Chemical Co., Ltd.) was used as a polarizer.
When the conveyance speed of the retardation film is set to 6 m / min, a defect is automatically detected with a threshold value of +178 in the waveform image based on 128 gradations obtained by image processing, and the detected defect is automatically marked. did.
As a result, the average number of defect markings was 17 / m.
Next, a polarizing film (Sumikaran (registered trademark) SBP grade, manufactured by Sumitomo Chemical Co., Ltd.) and a retardation film (Sumikalite (registered trademark) SES grade, manufactured by Sumitomo Chemical Co., Ltd.) are pasted on the retardation film. The laminated film was bonded to the retardation film side via an adhesive to obtain a laminated optical film.
This laminated optical film was cut into an easy-to-handle approximately 50 cm square, visually inspected, and manually marked for defects due to foreign matters mixed at the time of bonding.
Next, the laminated optical film provided with this mark was cut into a 2.2-inch chip. Among these chips, except the above-mentioned automatic marking and manually marked chips, the rest were used as products.
When the product of the laminated optical film thus obtained is bonded to a liquid crystal display panel and the quality of the laminated optical film is judged from the quality of the image, the defect rate is 1% or less.

比較例1
位相差フィルム(TFT視角改良用途向けNHフィルム、位相差:120nm、新日本石油(株)製)の自動欠陥検出および自動欠陥マーキングを行わなかった以外は実施例1と同様に行った。
このようにして得られた積層光学フィルムの製品を液晶表示パネルに貼合し、画像の良否から積層光学フィルムの良否を判定すると、不良率は10%程度になる。
Comparative Example 1
It was carried out in the same manner as in Example 1 except that automatic defect detection and automatic defect marking were not performed on the retardation film (NH film for TFT viewing angle improvement application, retardation: 120 nm, manufactured by Nippon Oil Corporation).
When the product of the laminated optical film thus obtained is bonded to a liquid crystal display panel and the quality of the laminated optical film is judged from the quality of the image, the defect rate is about 10%.

本発明におけるフィルムの欠陥検出および欠陥マーキング装置10の概略的な構成を示す斜視図である。1 is a perspective view showing a schematic configuration of a film defect detection and defect marking apparatus 10 according to the present invention. 図1の欠陥検出および欠陥マーキング装置の内、位相差フィルムについての欠陥検出手段25の構成を示す簡略化した断面図である。It is the simplified sectional view which shows the structure of the defect detection means 25 about retardation film among the defect detection and defect marking apparatuses of FIG. 図1の欠陥マーキング装置でのマーキングの考え方を示す図である。It is a figure which shows the view of marking in the defect marking apparatus of FIG. 図1の制御手段20がマーキング手段14を作動させ、マーキングを施す際の制御の考え方の一例を示す図である。It is a figure which shows an example of the view of control when the control means 20 of FIG. 1 operates the marking means 14 and gives marking.

符号の説明Explanation of symbols

10 欠陥検出マーキング装置
11 位相差フィルム
11a 搬送方向
12 撮像手段
13、13b、13c 欠陥
14 マーキング手段
15 マーク
17 照明装置
18 搬送速度検出装置
19 画像処理装置
20 制御手段
21、…、 カメラ
22、23 偏光子
24 光学補償フィルム
25 欠陥検出手段
31,…, マーカ
40 ブロック
41,42,43,44 辺

DESCRIPTION OF SYMBOLS 10 Defect detection marking apparatus 11 Retardation film 11a Conveying direction 12 Imaging means 13, 13b, 13c Defect 14 Marking means 15 Mark 17 Illumination apparatus 18 Conveyance speed detection apparatus 19 Image processing apparatus 20 Control means 21, ... Camera 22, 23 Polarization Element 24 Optical compensation film 25 Defect detection means 31,..., Marker 40 Blocks 41, 42, 43, 44 sides

Claims (10)

偏光フィルムと位相差フィルムを貼合して積層光学フィルムを製造する方法において、
一定の幅を有する位相差フィルムを、幅方向に垂直な長さ方向に搬送し、その際、位相差フィルムの両側にフィルム面と平行に一対の偏光子をクロスニコルに配置し、偏光子と位相差フィルムの間に、複屈折特性を有する光学補償フィルムを配置し、一方の偏光子の外側から投光し、他方の偏光子からの透過光を受光し、その輝度信号から欠陥を検出し、次いで偏光フィルムと貼合した後、欠陥部分を除くことを特徴とする積層光学フィルムの製造方法。
In the method of manufacturing a laminated optical film by laminating a polarizing film and a retardation film,
A retardation film having a certain width is conveyed in a length direction perpendicular to the width direction. At that time, a pair of polarizers are arranged in parallel to the film surface on both sides of the retardation film in crossed Nicols, and An optical compensation film having birefringence characteristics is placed between the retardation films, light is projected from the outside of one polarizer, light transmitted from the other polarizer is received, and defects are detected from the luminance signal. Then, after pasting with a polarizing film, the manufacturing method of the laminated optical film characterized by removing a defective part.
光学補償フィルムが位相差フィルムの複屈折特性と略同じ複屈折特性を有し、光学補償フィルムの複屈折の異方性によって前記位相差フィルムの複屈折の異方性を補償するように前記光学補償フィルムを配置することを特徴とする請求項1記載の積層光学フィルムの製造方法。   The optical compensation film has birefringence characteristics substantially the same as the birefringence characteristics of the retardation film, and the optical compensation film compensates for the birefringence anisotropy of the retardation film by the birefringence anisotropy of the optical compensation film. The method for producing a laminated optical film according to claim 1, wherein a compensation film is disposed. 偏光フィルムと貼合した後、更に目視で欠陥を検出し、位相差フィルムの欠陥部分と合せて欠陥部分を除くことを特徴とする請求項1記載の積層光学フィルムの製造方法。   2. The method for producing a laminated optical film according to claim 1, wherein after the lamination with the polarizing film, the defect is further visually detected, and the defective portion is removed together with the defective portion of the retardation film. 欠陥を検出した偏光フィルムと貼合することを特徴とする請求項1または3記載の積層光学フィルムの製造方法。   The method for producing a laminated optical film according to claim 1, wherein the laminated optical film is bonded to a polarizing film in which a defect is detected. 偏光フィルムに投光し、その反射光または透過光を受光し、その輝度信号から偏光フィルムの欠陥を検出することを特徴とする請求項4記載の積層光学フィルムの製造方法。   5. The method for producing a laminated optical film according to claim 4, wherein the polarizing film is projected, the reflected light or transmitted light is received, and the defect of the polarizing film is detected from the luminance signal. 偏光フィルムのフィルム面と平行に偏光子をクロスニコルに配置し、偏光フィルムまたは偏光子の外側から投光し、偏光子または偏光フィルムからの透過光を受光し、その輝度信号から欠陥を検出することを特徴とする請求項4記載の積層光学フィルムの製造方法。   A polarizer is placed in crossed Nicols parallel to the film surface of the polarizing film, light is projected from the outside of the polarizing film or polarizer, light transmitted from the polarizer or polarizing film is received, and defects are detected from the luminance signal. The method for producing a laminated optical film according to claim 4. 欠陥部分に対し、マークを施し、そのマークに基づいて欠陥部分を除くことを特徴とする請求項1または4記載の積層光学フィルムの製造方法。   The method for producing a laminated optical film according to claim 1 or 4, wherein the defective portion is marked, and the defective portion is removed based on the mark. 欠陥部分に対し、幅方向の両側で予め定める範囲の近傍となる位置に、マークを施すことを特徴とすることを特徴とする請求項7記載の積層光学フィルムの製造方法。   8. The method for producing a laminated optical film according to claim 7, wherein a mark is provided at a position near a predetermined range on both sides in the width direction with respect to the defective portion. 幅方向の両側でマークを施す位置が予め定める間隔以上離れているとき、中間にもマークを施すことを特徴とする請求項8記載の積層光学フィルムの製造方法。   9. The method for producing a laminated optical film according to claim 8, wherein the mark is also applied in the middle when the positions where the mark is applied on both sides in the width direction are separated by a predetermined distance or more. 偏光フィルムと貼合した後、更に目視で欠陥を検出し、その欠陥部分に対してもマークを施し、マークに基づいて欠陥部分を除くことを特徴とする請求項1または4記載の積層光学フィルムの製造方法。


The laminated optical film according to claim 1 or 4, wherein after the lamination with the polarizing film, the defect is further detected visually, the defect portion is marked, and the defect portion is removed based on the mark. Manufacturing method.


JP2005161037A 2005-06-01 2005-06-01 Method for manufacturing multilayer optical film Pending JP2006337630A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005161037A JP2006337630A (en) 2005-06-01 2005-06-01 Method for manufacturing multilayer optical film
TW095118285A TW200705093A (en) 2005-06-01 2006-05-23 A method for producing optical laminate film
KR1020060048004A KR20060125483A (en) 2005-06-01 2006-05-29 A method for producing optical laminate film
CNA2006100899639A CN1873398A (en) 2005-06-01 2006-05-30 Method for producing laminated optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161037A JP2006337630A (en) 2005-06-01 2005-06-01 Method for manufacturing multilayer optical film

Publications (1)

Publication Number Publication Date
JP2006337630A true JP2006337630A (en) 2006-12-14

Family

ID=37483931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161037A Pending JP2006337630A (en) 2005-06-01 2005-06-01 Method for manufacturing multilayer optical film

Country Status (4)

Country Link
JP (1) JP2006337630A (en)
KR (1) KR20060125483A (en)
CN (1) CN1873398A (en)
TW (1) TW200705093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271497A (en) * 2008-04-10 2009-11-19 Toppan Printing Co Ltd Defect inspection device and defect inspection method for color filter substrate
US8821674B2 (en) 2009-04-10 2014-09-02 Nitto Denko Corporation Optical film material roll and method for manufacturing image display device using thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057626B1 (en) * 2008-01-07 2011-08-19 주식회사 엘지화학 Polarizer Stain Inspection Method Using Image Analysis and Polarizer Stain Automatic Inspection System Using The Same
TWI536003B (en) * 2011-08-31 2016-06-01 富士軟片股份有限公司 Apparatus and method of detecting defect for patterned retardation film and method of manufacturing patterned retardation film
EP2914762B1 (en) * 2012-11-01 2020-05-13 SiO2 Medical Products, Inc. Coating inspection method
US10665838B2 (en) 2014-10-10 2020-05-26 Sumitomo Chemical Company, Limited Method for manufacturing separator web, method for manufacturing separator, separator web, and apparatus for manufacturing separator web
JP6146921B2 (en) * 2014-12-02 2017-06-14 日東電工株式会社 Optical film manufacturing method and manufacturing apparatus
CN206583816U (en) * 2015-12-15 2017-10-24 住友化学株式会社 Defect inspection filming apparatus, defect inspecting system and film manufacturing device
KR101955757B1 (en) * 2016-06-08 2019-03-07 삼성에스디아이 주식회사 Apparatus and method for processing film
CN110161044B (en) * 2019-05-13 2022-03-11 无锡先导智能装备股份有限公司 Detection method of battery material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324453A (en) * 2000-03-08 2001-11-22 Fuji Photo Film Co Ltd Apparatus, system and method for inspecting defect of film
JP2001349839A (en) * 2000-06-07 2001-12-21 Sumitomo Chem Co Ltd Inspection method for polarizing film defect
JP2002303580A (en) * 2001-04-03 2002-10-18 Dainippon Printing Co Ltd Defect marking method and device for sheet like product
JP2003344302A (en) * 2002-05-31 2003-12-03 Sumitomo Chem Co Ltd Method and equipment for inspecting polarization film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324453A (en) * 2000-03-08 2001-11-22 Fuji Photo Film Co Ltd Apparatus, system and method for inspecting defect of film
JP2001349839A (en) * 2000-06-07 2001-12-21 Sumitomo Chem Co Ltd Inspection method for polarizing film defect
JP2002303580A (en) * 2001-04-03 2002-10-18 Dainippon Printing Co Ltd Defect marking method and device for sheet like product
JP2003344302A (en) * 2002-05-31 2003-12-03 Sumitomo Chem Co Ltd Method and equipment for inspecting polarization film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271497A (en) * 2008-04-10 2009-11-19 Toppan Printing Co Ltd Defect inspection device and defect inspection method for color filter substrate
US8821674B2 (en) 2009-04-10 2014-09-02 Nitto Denko Corporation Optical film material roll and method for manufacturing image display device using thereof

Also Published As

Publication number Publication date
KR20060125483A (en) 2006-12-06
TW200705093A (en) 2007-02-01
CN1873398A (en) 2006-12-06

Similar Documents

Publication Publication Date Title
KR20060125483A (en) A method for producing optical laminate film
US7976657B2 (en) Method and system for continuously manufacturing liquid-crystal display element
US8460490B2 (en) Roll of continuous web of optical film laminate with predefined slit lines, and method and system for manufacturing the same
US8016965B2 (en) Information storing, readout and calculation system for use in a system for continuously manufacturing liquid-crystal display elements, and method for producing the same
EP2264515A1 (en) Optical film laminate with a continuous web of cutting lines and manufacturing method and manufacturing apparatus thereof
TWI731359B (en) Manufacturing method of optical display panel and manufacturing system of optical display panel
US8821674B2 (en) Optical film material roll and method for manufacturing image display device using thereof
JP2007327915A (en) Apparatus and method for inspecting defect of film
JP2011085630A (en) Method and device for continuously manufacturing liquid crystal display element
KR20030093956A (en) Method for inspecting polarizing film and apparatus for the method
JP4343456B2 (en) Defect marking method and apparatus for sheet-like product
KR20190108655A (en) Defect inspection system and film production apparatus
KR20190040905A (en) Defect inspection apparatus, defect inspection method, and manufacturing method for optical film
TW200307117A (en) Method for inspecting polarizing film and apparatus for the method
US8540543B2 (en) Method for continuously manufacturing liquid crystal display panel and inspection method
JP2005009919A (en) Inspection device and inspecting method for polarization plate with protective film
KR20140087715A (en) Apparatus for in-line measurement
CN110018582B (en) Optical display panel continuous inspection method and apparatus, continuous manufacturing method and system
JP7288989B1 (en) Inspection method for long optical film

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928