Nothing Special   »   [go: up one dir, main page]

JP2006337158A - Sample concentration device - Google Patents

Sample concentration device Download PDF

Info

Publication number
JP2006337158A
JP2006337158A JP2005161759A JP2005161759A JP2006337158A JP 2006337158 A JP2006337158 A JP 2006337158A JP 2005161759 A JP2005161759 A JP 2005161759A JP 2005161759 A JP2005161759 A JP 2005161759A JP 2006337158 A JP2006337158 A JP 2006337158A
Authority
JP
Japan
Prior art keywords
sample
gas
orifice
purge gas
collection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161759A
Other languages
Japanese (ja)
Inventor
Kenichi Kitamura
顕一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005161759A priority Critical patent/JP2006337158A/en
Publication of JP2006337158A publication Critical patent/JP2006337158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample concentration device capable of effectively separating collected components, using a simple constitution. <P>SOLUTION: After a sample component is collected by passing a sample gas through a low-temperature collection pipe 2, the collection pipe 2 is heated and a valve 5 is changed-over to allow a purge gas (also used as a carrier gas) through the collection pipe 2, in a direction opposite to the flow direction of the sample gas; while the captured sample components are separated from the collection pipe 2 to be introduced into the analyzer 10 of a rear stage. An orifice 13 is provided in the flow channel, on the inflow side of the purge gas provided in close vicinity to the collection pipe 2. According to this constitution, the flow velocity of the purge gas is throttled by the orifice 13 at heating and separation, and is increased in the collection pipe 2, the pressure of the purge gas is allowed to fall due to the Bernoulli effect, and accordingly, the separation efficiency of the collected components is enhanced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば空気中の環境汚染物質の分析において試料空気中の微量の測定対象成分物質を捕集濃縮して分析装置に導入するための試料濃縮装置に関する。   The present invention relates to a sample concentrator for collecting and concentrating a small amount of a measurement target component substance in a sample air and introducing it into an analyzer, for example, in analyzing environmental pollutants in the air.

空気中の環境汚染物質、例えば各種の揮発性有機化合物(VOC)はシックハウス問題の原因物質としてその測定技術の確立が急務とされている。環境汚染源となり得るVOCは100種を越えると言われるが、これら多種の物質を分離して定性・定量するための分析装置としては分離定性能力の高いガスクロマトグラフ質量分析装置(GC/MS)が多く用いられる。空気中のVOCはその濃度が極微量であり、そのままではGC/MS等の分析装置に導入しても一般に検出は不可能であるから、分析の前段階として試料濃縮装置を用いるのが普通である。   Environmental pollutants in the air, such as various volatile organic compounds (VOC), are urgently required to establish measurement techniques as causative substances for sick house problems. Although it is said that there are over 100 VOCs that can be a source of environmental pollution, there are many gas chromatograph mass spectrometers (GC / MS) with high separation and qualitative capabilities as analyzers for separating and qualitatively quantifying these various substances. Used. Since the concentration of VOC in the air is extremely small and cannot be detected even if it is introduced into an analyzer such as GC / MS as it is, it is common to use a sample concentrator as the pre-analysis stage. is there.

試料濃縮装置としては、固相吸着/加熱脱離方式のものが従来から用いられている。この方式は、吸着剤等の捕集剤を充填した低温の捕集管に試料となる気体(例えば空気)を通過させ、気体中に含まれるVOC等の測定対象成分物質を捕集剤に吸着させて捕集し、その後にこの捕集管を加熱すると共にパージガスを流して捕集されたVOC等を追い出して分析装置に導入するものである(例えば、特許文献1参照)。   As a sample concentrating device, a solid-phase adsorption / heat desorption method has been conventionally used. In this method, a sample gas (for example, air) is passed through a low-temperature collection tube filled with a collection agent such as an adsorbent, and a component material to be measured such as VOC contained in the gas is adsorbed to the collection agent. Then, the collection tube is heated and purge gas is flowed to expel the collected VOC and the like and introduce it into the analyzer (see, for example, Patent Document 1).

図2は、従来の試料濃縮装置の構成例を示す。この例は試料濃縮装置とガスクロマトグラフを組み合わせた分析装置として構成されたものである。
この試料濃縮装置の動作は捕集過程と脱離過程に分けられる。
同図において、先ず捕集過程では、試料空気はポンプ4に吸引されて試料導入口1からバルブ5を経由して冷却加熱装置11で冷却されている捕集管2を通過して流れ、試料空気中の測定対象成分物質が捕集管2に捕集される。この間、ガスクロマトグラフィのキャリアガスは、キャリアガス源8からバルブ5を経てカラム6および検出器7へと流れている。次に脱離過程に移り、捕集管2を加熱すると共にバルブ5を切り換えると、キャリアガスはパージガスとして捕集管2に迂回して流れるようになり、捕集管2内に捕集された物質を追い出してカラム6に導入し、ここで成分分離が行われる。分離された各成分は検出器7で電気信号に変えられ、データ処理装置9で適宜処理されて記録される。
FIG. 2 shows a configuration example of a conventional sample concentrator. This example is configured as an analyzer that combines a sample concentrator and a gas chromatograph.
The operation of the sample concentrator is divided into a collection process and a desorption process.
In the figure, first in the collection process, the sample air is sucked into the pump 4 and flows from the sample introduction port 1 through the valve 5 through the collection tube 2 cooled by the cooling and heating device 11, A component substance to be measured in the air is collected in the collection tube 2. During this time, the carrier gas for gas chromatography flows from the carrier gas source 8 through the valve 5 to the column 6 and the detector 7. Next, the process proceeds to the desorption process, and when the collection tube 2 is heated and the valve 5 is switched, the carrier gas flows as a purge gas by detouring to the collection tube 2 and is collected in the collection tube 2. The material is expelled and introduced into the column 6 where component separation takes place. Each separated component is converted into an electric signal by the detector 7, appropriately processed by the data processing device 9, and recorded.

上記の例では、捕集過程と脱離過程で捕集管2内のガスの流れ方向が同じであるが、図2において試料導入口1とポンプ4の位置を入れ換えることにより、捕集管2内における試料空気とパージガスの流れ方向を逆方向にする(逆パージ)こともできる。逆パージの方が高沸点成分まで速やかに捕集管2から脱離させる上で有利であるから、従来から逆パージによる脱離も広く利用されている。   In the above example, the gas flow direction in the collection tube 2 is the same in the collection process and the desorption process. However, by exchanging the positions of the sample introduction port 1 and the pump 4 in FIG. The flow directions of the sample air and the purge gas in the inside can be reversed (reverse purge). Since reverse purge is more advantageous for quickly desorbing the high boiling point component from the collection tube 2, desorption by reverse purge has been widely used.

なお、上記の例のように後段の分析装置がガスクロマトグラフ(GC/MSを含む)である場合は、キャリアガスがパージガスを兼ねるので同じガスに対して2つの呼称があるが、以下、捕集管2内を流れるときのキャリアガスはその機能を明確にするためパージガスと記す。   When the subsequent analyzer is a gas chromatograph (including GC / MS) as in the above example, the carrier gas also serves as the purge gas, so there are two names for the same gas. The carrier gas when flowing in the pipe 2 is referred to as a purge gas in order to clarify its function.

特開2004−77384号公報JP 2004-77384 A

上記のような試料濃縮装置では、捕集管の外側から電熱ヒータで捕集管を加熱することで捕集物質を脱離させて追い出すように構成されるのが普通である。濃縮効果を高めるには加熱脱離の際に短時間で一気に加熱することが望ましいが、外部からの伝熱には遅れを伴うので捕集管内部まで一気に温度を上昇させるのは困難であり、その結果として後段のガスクロマトグラフィによる分離においてピークの幅が広がり、またピークの高さも低下するので検出感度や定量精度の低下を招く要因となる。従って、試料濃縮装置の設計製作に当たっては、短時間で効果的に捕集成分を脱離させることが最も重要な課題とされる。
本発明は、このような事情に鑑みてなされたものであり、簡単な構成で従来よりも効果的に捕集成分を脱離させることのできる試料濃縮装置を提供することを目的とする。
The sample concentrator as described above is generally configured to desorb and remove the collected substance by heating the collection tube with an electric heater from the outside of the collection tube. In order to enhance the concentration effect, it is desirable to heat in a short time at the time of heat desorption, but since heat transfer from the outside is accompanied by a delay, it is difficult to raise the temperature to the inside of the collection tube at once, As a result, in the subsequent separation by gas chromatography, the width of the peak widens and the height of the peak also decreases, which causes a decrease in detection sensitivity and quantitative accuracy. Therefore, in designing and manufacturing the sample concentrator, it is most important to effectively desorb the collected components in a short time.
This invention is made | formed in view of such a situation, and it aims at providing the sample concentration apparatus which can desorb | save a collection component more effectively than before with a simple structure.

本発明は、上記課題を解決するために、試料気体を低温の捕集管に通して試料成分を捕集した後、捕集管を加熱すると共に捕集管内にパージガスを流すことにより捕集された試料成分を捕集管から脱離させて分析装置に導入するように構成された試料濃縮装置において、前記捕集管への前記パージガスの流入側流路にオリフィスを設ける。このように構成することにより、加熱脱離時に捕集管内でパージガスの流速がオリフィスに絞られて増加し、ベルヌーイ効果により圧力が減少するため捕集成分の脱離効率が上がる。   In order to solve the above problems, the present invention collects sample components by passing a sample gas through a low temperature collection tube and then collecting the sample components, and then heating the collection tube and flowing a purge gas into the collection tube. In the sample concentrating device configured to desorb the sample component from the collecting tube and introduce the sample component into the analyzer, an orifice is provided in the inflow channel of the purge gas to the collecting tube. With this configuration, the flow rate of the purge gas is increased by being restricted by the orifice in the collection tube at the time of heat desorption, and the pressure is reduced by the Bernoulli effect, so that the desorption efficiency of the collected component is increased.

本発明装置は上記のように構成されているので、捕集された試料成分の脱離効率が高く、より短い時間で脱離させることができる。これにより後段の分析装置においてピークの広がりが抑えられ、ピーク高さも増すので検出感度と定量精度が向上する。
また、捕集過程でオリフィスの存在により捕集管内の圧力が上昇するので、捕集効率が向上するという効果も期待できる。
Since the apparatus of the present invention is configured as described above, the collected sample components have high desorption efficiency, and can be desorbed in a shorter time. This suppresses the spread of peaks in the subsequent analyzer and increases the peak height, thereby improving detection sensitivity and quantitative accuracy.
In addition, since the pressure in the collection tube increases due to the presence of the orifice in the collection process, an effect of improving the collection efficiency can be expected.

本発明が提供する試料濃縮装置は次のような特徴を有する。即ち、第1の特徴はパージガスの流入側流路にオリフィスを設けるように構成された点にあり、第2の特徴はそのオリフィスを捕集管直近に設けるように構成された点である。ここで「直近」とは、捕集管端部から捕集管内径のおよそ5倍以内の距離を意味する。
従って、最良の形態の基本的な構成はパージガスの流入側流路の捕集管直近にオリフィスを設けた試料濃縮装置である。
The sample concentrator provided by the present invention has the following characteristics. That is, the first feature is that an orifice is provided in the purge gas inflow passage, and the second feature is that the orifice is provided in the vicinity of the collecting pipe. Here, “nearest” means a distance within about 5 times the inner diameter of the collecting tube from the end of the collecting tube.
Therefore, the basic configuration of the best mode is a sample concentrating device in which an orifice is provided in the immediate vicinity of the collection pipe of the purge gas inflow passage.

図1に本発明の一実施例を示す。以下図示例に従って説明する。
同図において、直管状の捕集管2は不活性コーティングされた内部に吸着剤または樹脂系のTenax(商品名)等の捕集剤3が充填されている。捕集管2の一端には流れを絞るオリフィス13が取り付けられ、さらに配管14bを介してバルブ5に接続され、バルブ5によりキャリアガス源8または排出口15のいずれかに切り換え接続される。捕集管2の他端は、異径接手12と配管14aを介してバルブ5に接続され、バルブ5により後段のGC/MS等の分析装置10または試料空気送給用のポンプ4のいずれかに切り換え接続される。なお、異径接手12は管径の異なる捕集管2と配管14aとを接続するために用いられる。
FIG. 1 shows an embodiment of the present invention. This will be described with reference to the illustrated example.
In the figure, a straight tubular collection tube 2 is filled with an adsorbent or a collection agent 3 such as a resin-based Tenax (trade name) in an inertly coated interior. An orifice 13 for restricting the flow is attached to one end of the collecting pipe 2, and further connected to the valve 5 through a pipe 14 b, and is connected to either the carrier gas source 8 or the discharge port 15 by the valve 5. The other end of the collection tube 2 is connected to a valve 5 via a different-diameter joint 12 and a pipe 14a, and either the analysis device 10 such as a subsequent GC / MS or the pump 4 for supplying sample air is connected by the valve 5. The connection is switched to. The different diameter joint 12 is used to connect the collecting pipe 2 and the pipe 14a having different pipe diameters.

捕集管2は、ペルチエ素子および電気ヒータ(いずれも図示せず)を備えた冷却加熱装置11に抱かれており、この冷却加熱装置11からの伝熱により、捕集過程では冷却、脱離過程では加熱され、その温度はこれも図示しない温度制御装置により制御される。   The collection tube 2 is held by a cooling and heating device 11 having a Peltier element and an electric heater (both not shown), and the heat transfer from the cooling and heating device 11 cools and desorbs during the collection process. The process is heated and its temperature is controlled by a temperature control device (not shown).

このように構成された本実施例装置は以下のように動作する。
先ず捕集過程では、バルブ5は図中に実線で示すように各ポート間が接続された状態にあり、捕集管2は所定温度に冷却されている。この状態で、試料空気はポンプ4に吸引されて試料導入口1から取り込まれ、バルブ5、配管14a、異径接手12を順に経由して捕集管2を通過して流れ、さらにオリフィス13、配管14b、バルブ5を経由して排出口15から排出される。この過程で、試料空気中の測定対象成分物質が冷却された捕集剤3に捕集される。捕集管2の下流側にオリフィス13があるので、その抵抗により捕集管2内の圧力が上昇し、オリフィス13が無い場合に比べて捕集効率が向上する。
この間、キャリアガスは、キャリアガス源8からバルブ5を経て分析装置10へ流れている。
The apparatus of this embodiment configured as described above operates as follows.
First, in the collecting process, the valve 5 is in a state where the ports are connected as shown by a solid line in the drawing, and the collecting tube 2 is cooled to a predetermined temperature. In this state, the sample air is sucked into the pump 4 and taken in from the sample introduction port 1 and flows through the collection tube 2 through the valve 5, the pipe 14a, and the different diameter joint 12 in this order, and further, the orifice 13, It is discharged from the discharge port 15 via the pipe 14b and the valve 5. In this process, the component substance to be measured in the sample air is collected by the cooled collection agent 3. Since the orifice 13 is provided on the downstream side of the collection tube 2, the resistance increases the pressure in the collection tube 2, and the collection efficiency is improved as compared with the case without the orifice 13.
During this time, the carrier gas flows from the carrier gas source 8 through the valve 5 to the analyzer 10.

次に脱離過程に移り、冷却加熱装置11により捕集管2を所定温度に加熱すると共にバルブ5を切り換え、点線で示すように各ポート間が接続された状態にすると、キャリアガスは、キャリアガス源8からバルブ5、配管14b、オリフィス13を経由してパージガスとして捕集管2に流れる。この時捕集管2内でのパージガスの流れ方向は、上記捕集過程における試料空気の流れ方向と逆方向である。即ち、逆パージが行われることになり、捕集管2内に捕集された物質は追い出されて、異径接手12、配管14a、バルブ5を経て分析装置10へ運ばれ、分析される。   Next, the process proceeds to the desorption process. When the collection tube 2 is heated to a predetermined temperature by the cooling and heating device 11 and the valve 5 is switched so that the ports are connected as indicated by the dotted lines, the carrier gas is transferred to the carrier gas. The gas flows from the gas source 8 through the valve 5, the pipe 14 b and the orifice 13 as a purge gas to the collection pipe 2. At this time, the flow direction of the purge gas in the collection tube 2 is opposite to the flow direction of the sample air in the collection process. That is, reverse purging is performed, and the substance collected in the collection tube 2 is expelled and conveyed to the analyzer 10 through the different-diameter joint 12, the pipe 14a, and the valve 5, and analyzed.

上記脱離過程において、パージガスは捕集管2に流入する直前でオリフィス13を通過するので、パージガスの流れがここで絞られて流速が増加した状態で捕集管2に流入する。流速が増加すると、ベルヌーイ効果により圧力が降下し、捕集剤3に捕集されていた物質が脱離し易くなり、脱離効率が向上する。   In the above desorption process, the purge gas passes through the orifice 13 immediately before flowing into the collection tube 2, so that the purge gas flows into the collection tube 2 in a state where the flow rate is reduced and the flow velocity is increased. When the flow rate increases, the pressure drops due to the Bernoulli effect, and the substance collected in the collection agent 3 is easily desorbed, and the desorption efficiency is improved.

オリフィス13で絞られたパージガスの流れを詳しく見ると、オリフィス13からほぼ配管14bの内径dだけ上流の点から流れは縮小し始め、オリフィス13からd/2だけ下流の点で流れの断面積が最小となる。この点を縮流部と呼ぶ。縮流部では流速は最大となり、静圧は最小となる。縮流部から下流に向かう、即ち捕集管2中を図で左方に進むにつれて流れの断面積は徐々に大きくなり、オリフィス13から捕集管2の内径Dのほぼ5倍だけ下流の点で、流れの断面積が管の断面積と等しくなることが知られている。
従って、オリフィス13が捕集管2のパージガス流入側の端部に接して設けられている場合は、この端部から約5Dまでの範囲の捕集管2内部では、オリフィス13の影響を受けて圧力降下が生じ、脱離効果が向上することになる。このことからオリフィス13はパージガスの流入側流路の捕集管2直近に設けるべきこともわかる。
When the flow of the purge gas constricted at the orifice 13 is examined in detail, the flow starts to shrink from the point upstream from the orifice 13 by the inner diameter d of the pipe 14b, and the flow cross-sectional area at the point downstream from the orifice 13 by d / 2 is Minimal. This point is called a contracted portion. In the contracted area, the flow velocity is maximum and the static pressure is minimum. The cross-sectional area of the flow gradually increases as it goes downstream from the constricted flow portion, that is, to the left in the drawing pipe 2, and is a point downstream from the orifice 13 by about 5 times the inner diameter D of the collection pipe 2. It is known that the cross-sectional area of the flow is equal to the cross-sectional area of the pipe.
Therefore, when the orifice 13 is provided in contact with the end of the collecting gas 2 on the purge gas inflow side, the inside of the collecting tube 2 in the range from this end to about 5D is affected by the orifice 13. A pressure drop occurs and the desorption effect is improved. From this, it is also understood that the orifice 13 should be provided in the vicinity of the collecting pipe 2 in the purge gas inflow passage.

縮流部における圧力の降下量ΔPはベルヌーイの定理から導かれる下記の式により算出できる。
ΔP=P2−P1
=ρQ(1−k)/2gC…………(1)
ここで、Q:体積流量、ρ:流体密度、P1:オリフィス13上流側圧力、P2:縮流部における圧力、A:オリフィス13の断面積、A1:オリフィス13上流側断面積、A2:縮流部における流れの断面積、k=A2/A、C=Kk、m=A/A1、K:係数、g:重力加速度、である。
代表的な数値例として、捕集管2内径(D)1.6mm、配管14b内径(d)0.3mm、オリフィス13内径0.05mm等の数値を(1)式に代入して試算した結果、ΔPの値は最大およそ10kPaとなる。
The pressure drop ΔP at the contracted flow portion can be calculated by the following equation derived from Bernoulli's theorem.
ΔP = P2−P1
= ΡQ 2 (1-k 2 m 2 ) / 2 gC 2 A 2 (1)
Here, Q: volume flow rate, ρ: fluid density, P1: orifice 13 upstream pressure, P2: pressure in the contracted flow part, A: sectional area of the orifice 13, A1: orifice 13 upstream sectional area, A2: contracted flow The cross-sectional area of the flow in the part, k = A2 / A, C = Kk, m = A / A1, K: coefficient, g: gravitational acceleration.
As a representative numerical example, the result of trial calculation by substituting numerical values such as the collection tube 2 inner diameter (D) 1.6 mm, the piping 14 b inner diameter (d) 0.3 mm, the orifice 13 inner diameter 0.05 mm into the equation (1) , ΔP has a maximum value of about 10 kPa.

以上、一実施例について説明したが、本発明はこれに限定されるものではない。例えば、6ポートのバルブ5の代りに2個の4ポートバルブを用いる等の変形例を挙げることができる。   Although one embodiment has been described above, the present invention is not limited to this. For example, a modification example in which two 4-port valves are used instead of the 6-port valve 5 can be given.

本発明は、例えば空気中の環境汚染物質の分析など微量試料の分析に利用できる。   The present invention can be used for analysis of trace samples such as analysis of environmental pollutants in the air.

本発明の一実施例を示す図である。It is a figure which shows one Example of this invention. 従来の構成の一例を示す図である。It is a figure which shows an example of the conventional structure.

符号の説明Explanation of symbols

1 試料導入口
2 捕集管
3 捕集剤
4 ポンプ
5 バルブ
6 カラム
7 検出器
8 キャリアガス源
9 データ処理装置
10 分析装置
11 冷却加熱装置
12 異径接手
13 オリフィス
14a 配管
14b 配管
15 排出口
DESCRIPTION OF SYMBOLS 1 Sample introduction port 2 Collection pipe 3 Collection agent 4 Pump 5 Valve 6 Column 7 Detector 8 Carrier gas source 9 Data processing apparatus 10 Analyzing apparatus 11 Cooling heating apparatus 12 Different diameter joint 13 Orifice 14a Piping 14b Piping 15 Outlet

Claims (1)

試料気体を低温の捕集管に通して試料成分を捕集した後、前記捕集管を加熱すると共に前記捕集管内にパージガスを流すことにより捕集された試料成分を脱離させて分析装置に導入するように構成された試料濃縮装置において、前記捕集管への前記パージガスの流入側流路にオリフィスを設けたことを特徴とする試料濃縮装置。 The sample gas is collected by passing the sample gas through a low-temperature collection tube, and then the collected sample component is desorbed by heating the collection tube and flowing a purge gas through the collection tube. In the sample concentrator configured to be introduced into the sample concentrator, an orifice is provided in the flow path on the inflow side of the purge gas to the collection tube.
JP2005161759A 2005-06-01 2005-06-01 Sample concentration device Pending JP2006337158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161759A JP2006337158A (en) 2005-06-01 2005-06-01 Sample concentration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161759A JP2006337158A (en) 2005-06-01 2005-06-01 Sample concentration device

Publications (1)

Publication Number Publication Date
JP2006337158A true JP2006337158A (en) 2006-12-14

Family

ID=37557846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161759A Pending JP2006337158A (en) 2005-06-01 2005-06-01 Sample concentration device

Country Status (1)

Country Link
JP (1) JP2006337158A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236589A (en) * 2008-03-26 2009-10-15 Yazaki Corp Sample gas collection device and gas chromatograph device
JP2009236590A (en) * 2008-03-26 2009-10-15 Yazaki Corp Gas chromatograph device and gas component desorption method
JP2009236585A (en) * 2008-03-26 2009-10-15 Yazaki Corp Gas chromatograph device and gas component detection method
JP2009257839A (en) * 2008-04-14 2009-11-05 Kajima Corp Rapid analyzing system of voc and analyzing method of voc
CN102661992A (en) * 2012-05-14 2012-09-12 华瑞科学仪器(上海)有限公司 Ammonia gas concentration detection system and detection method thereof
JP2015141134A (en) * 2014-01-29 2015-08-03 大阪瓦斯株式会社 Gas sampling device, method for driving the same, and method for detecting gas component using the gas sampling device
CN106093251A (en) * 2015-04-30 2016-11-09 塞莫费雪科学有限公司 Method and apparatus for pre-concentration gaseous sample
CN110187037A (en) * 2019-07-04 2019-08-30 山东大学 The measurement system and method for 57 kinds of volatile organic contents in surrounding air
WO2020152897A1 (en) * 2019-01-25 2020-07-30 株式会社島津製作所 Gas analysis system and filter maintenance method for gas analysis system
JP7448952B2 (en) 2020-08-19 2024-03-13 日本分析工業株式会社 Volatile organic compound analysis device and volatile organic compound analysis method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236589A (en) * 2008-03-26 2009-10-15 Yazaki Corp Sample gas collection device and gas chromatograph device
JP2009236590A (en) * 2008-03-26 2009-10-15 Yazaki Corp Gas chromatograph device and gas component desorption method
JP2009236585A (en) * 2008-03-26 2009-10-15 Yazaki Corp Gas chromatograph device and gas component detection method
JP2009257839A (en) * 2008-04-14 2009-11-05 Kajima Corp Rapid analyzing system of voc and analyzing method of voc
CN102661992A (en) * 2012-05-14 2012-09-12 华瑞科学仪器(上海)有限公司 Ammonia gas concentration detection system and detection method thereof
JP2015141134A (en) * 2014-01-29 2015-08-03 大阪瓦斯株式会社 Gas sampling device, method for driving the same, and method for detecting gas component using the gas sampling device
CN106093251A (en) * 2015-04-30 2016-11-09 塞莫费雪科学有限公司 Method and apparatus for pre-concentration gaseous sample
WO2020152897A1 (en) * 2019-01-25 2020-07-30 株式会社島津製作所 Gas analysis system and filter maintenance method for gas analysis system
CN110187037A (en) * 2019-07-04 2019-08-30 山东大学 The measurement system and method for 57 kinds of volatile organic contents in surrounding air
CN110187037B (en) * 2019-07-04 2021-06-04 山东大学 System and method for measuring content of 57 volatile organic compounds in ambient air
JP7448952B2 (en) 2020-08-19 2024-03-13 日本分析工業株式会社 Volatile organic compound analysis device and volatile organic compound analysis method

Similar Documents

Publication Publication Date Title
JP2006337158A (en) Sample concentration device
JP4903056B2 (en) Gas chromatograph
EP3423821B1 (en) Multi-capillary column pre-concentration system for enhanced sensitivity in gas chromatography (gc) and gas chromatography-mass spectrometry (gcms)
KR100815999B1 (en) Methods and systems for characterizing a sorbent tube
EP1451553B1 (en) Device and method for micro sorbent extraction and desorption
JP2010112761A5 (en)
JP2021501880A (en) High-speed quasi-ambient temperature multicapillary column preconcentration system for volatile chemical analysis by gas chromatography
US11169124B2 (en) System and method for real time monitoring of a chemical sample
US11549921B2 (en) System and method for real time monitoring of a chemical sample
US8062610B2 (en) Apparatus and methods for use in concentration of gas and particle-laden gas flows
JP5067873B2 (en) Apparatus and method for selectively concentrating and detecting complex gaseous chemical substances
US5047073A (en) Sorption separation apparatus and methods
Sukaew et al. Evaluating the dynamic retention capacities of microfabricated vapor preconcentrators as a function of flow rate
JPH04274728A (en) Method and apparatus for preliminary enrichment for analyzing minute amount of component in gas
US20020182746A1 (en) Method and device for sample introduction of volatile analytes
Zhong et al. Rapid determination of ETS markers with a prototype field-portable GC employing a microsensor array detector
CN113791133B (en) Direct measurement method and detection system for non-methane total hydrocarbons
CN113804780A (en) Online chromatographic analysis method for VOCs in water
EP4379369A1 (en) Sampling device for sampling and concentrating trace compounds from an air sample
JP2004354332A (en) Enrichment analyzer and method for enrichment analysis
JP5184170B2 (en) Gas chromatograph apparatus and gas component detection method
KR20190098601A (en) Method of analyzing gas samples and analyzing apparatus thereof
US20050281710A1 (en) Low thermal mass multiple tube capillary sampling array
CN216816568U (en) Online chromatographic analysis device for VOCs in water
US6368559B1 (en) Device for analyzing organic compounds particularly in aqueous and gaseous samples