JP2006315813A - Movable body diagnosis system - Google Patents
Movable body diagnosis system Download PDFInfo
- Publication number
- JP2006315813A JP2006315813A JP2005140726A JP2005140726A JP2006315813A JP 2006315813 A JP2006315813 A JP 2006315813A JP 2005140726 A JP2005140726 A JP 2005140726A JP 2005140726 A JP2005140726 A JP 2005140726A JP 2006315813 A JP2006315813 A JP 2006315813A
- Authority
- JP
- Japan
- Prior art keywords
- moving body
- abnormality
- overhead traveling
- traveling vehicle
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Warehouses Or Storage Devices (AREA)
Abstract
Description
この発明は、天井走行車やスタッカークレーン等の有軌道台車、物品の移載装置、工作機械のツール送り装置、等の移動体の診断に関する。 The present invention relates to diagnosis of a moving body such as a tracked carriage such as an overhead traveling vehicle or a stacker crane, an article transfer device, a tool feeding device of a machine tool, and the like.
天井走行車システムを例に説明すると、このシステムは主としてクリーンルーム内に設けられるので、人手による点検を嫌う性質がある。またこのシステムは天井付近に設けられるので、点検は容易ではない。その一方で大規模なシステムでは100台以上の天井走行車が運用されるので、システムを維持するには天井走行車の故障を防止するため、異常を早期に検出する必要がある。 The overhead traveling vehicle system will be described as an example. Since this system is mainly provided in a clean room, it has the property of disabling manual inspection. Since this system is installed near the ceiling, inspection is not easy. On the other hand, since 100 or more overhead traveling vehicles are operated in a large-scale system, in order to maintain the system, it is necessary to detect an abnormality early in order to prevent a failure of the overhead traveling vehicle.
天井走行車には、各種のエンコーダや地上側のステーションの荷の有無を検出するセンサ、障害物センサ、コントローラや他の天井走行車との通信機器等が搭載されているが、これらの不良は制御上の異常となって現れやすいので、検出は容易である。これに対してモータや車輪、軸受け、カムなどの機構の異常、特に経年変化により徐々に蓄積されて行く異常は、天井走行車を地上へ降ろして分解点検しないと判別できないものが多い。そこで天井走行車を地上へ降ろさずに走行させたまま、特にメカニカルな機構部分の異常を早期に検出できると、本格的な故障の予防に有効である。 The overhead traveling vehicle is equipped with various encoders, sensors that detect the presence or absence of loads on the station on the ground, obstacle sensors, controllers and communication devices with other overhead traveling vehicles, etc. Detection is easy because it tends to appear as a control abnormality. In contrast, abnormalities in mechanisms such as motors, wheels, bearings, and cams, especially abnormalities that gradually accumulate due to secular change, can often be determined only after the overhead traveling vehicle is lowered to the ground and overhauled. Therefore, it is effective for preventing a full-scale failure, especially when an abnormality of a mechanical mechanism portion can be detected at an early stage while the overhead traveling vehicle is traveling without being lowered to the ground.
この発明の課題は、移動体の診断を自動的に行い、故障を予防することにある。
請求項2の発明での追加の課題は、移動体の正常/異常の他に、異常の症状も自動的に求めることができるようにすることにある。
請求項3の発明での追加の課題は、既知の異常データとは異質の異常を見逃さないようにすることにある。
請求項4の発明での追加の課題は、一般に人手による点検が難しい有軌道台車の診断を自動的に行えるようにすることにある。
請求項5の発明での追加の課題は、クリーンルーム内などでの点検の回数を減らし、かつ複数台の天井走行車の異常を早期に検出し、さらに天井走行車の異常か走行レールなどの地上側設備の異常かを弁別できるようにすることにある。
An object of the present invention is to automatically diagnose a moving body and prevent a failure.
An additional problem in the invention of
An additional problem in the invention of claim 3 is to not miss an abnormality which is different from known abnormality data.
It is an additional object of the invention of claim 4 to automatically diagnose a tracked carriage that is generally difficult to inspect manually.
An additional problem in the invention of claim 5 is that the number of inspections in a clean room or the like is reduced, and an abnormality of a plurality of overhead traveling vehicles is detected at an early stage. The purpose is to be able to discriminate whether the side equipment is abnormal.
この発明は、有限かつ所定の移動経路に沿って、加速、定速移動及び減速からなる所定の速度パターンに従って移動する移動体の診断システムであって、移動体の振動検出用のセンサと、移動体の移動用モータの状態を監視するための監視手段と、前記センサの出力及び監視手段の出力から、移動体の移動開始から停止までの行程、もしくはこれを加速域、定速域、減速域に区分した区間毎の特徴を示す、複数の特徴量を求めるための特徴量算出手段と、求めた複数の特徴量を多次元ベクトル空間のベクトルとして、該ベクトル空間での位置から移動体の正常/異常を判別するための判別手段、とを設けたことを特徴とする。 The present invention relates to a diagnostic system for a moving body that moves according to a predetermined speed pattern consisting of acceleration, constant speed movement, and deceleration along a finite and predetermined movement path. Monitoring means for monitoring the state of the body moving motor, and the process from the output of the sensor and the output of the monitoring means to the start and stop of movement of the moving body, or the acceleration range, constant speed range, deceleration range A feature amount calculation means for obtaining a plurality of feature amounts, each of which indicates a feature for each section divided into a plurality of feature amounts as vectors in a multi-dimensional vector space, and the normality of the moving object from the position in the vector space / A discriminating means for discriminating an abnormality is provided.
特徴量は、センサの信号や監視手段の信号を統計化した統計量でも、これらの信号をフィルタバンクやウェーブレット変換、短時間フーリエ変換などで処理して求めたものでも良い。特徴量はセンサの正常/異常と相関が高いもののみを用いても良いが、相関の低いものが寄与しないように判別手段で処理して、相関の有無を評価せずに特徴量としても良い。診断システムには例えば移動体と診断装置とを備え、特徴量は例えば診断装置で算出するが、移動体で算出しても良い。1台のスタッカークレーンや1台の工作機械等を対象とする小規模な診断システムでは、診断装置をスタッカークレーンや工作機械などに内蔵させても良い。 The feature amount may be a statistical amount obtained by statistically analyzing the sensor signal or the monitoring unit signal, or may be obtained by processing these signals by a filter bank, a wavelet transform, a short-time Fourier transform, or the like. Only features having high correlation with sensor normality / abnormality may be used. However, it is possible to use feature values without evaluating the presence or absence of correlation by processing with a discriminator so that low correlation does not contribute. . The diagnostic system includes, for example, a moving body and a diagnostic device, and the feature amount is calculated by, for example, the diagnostic device, but may be calculated by the moving body. In a small-scale diagnostic system for one stacker crane, one machine tool, or the like, the diagnostic device may be built in the stacker crane or machine tool.
好ましくは、前記判別手段を移動体の異常の種別に対応させて複数設ける。 Preferably, a plurality of the discriminating means are provided corresponding to the type of abnormality of the moving body.
また好ましくは、前記ベクトルで正常な移動体から得られたもののみからなるクラスターを記憶するための手段と、移動体から入力された複数の特徴量からなるベクトルが該クラスターに属するか否かを判別するためのクラスター解析手段とを更に設ける。 Also preferably, means for storing a cluster consisting only of the vector obtained from a normal moving body, and whether or not a vector consisting of a plurality of feature values inputted from the moving body belongs to the cluster. Cluster analysis means for discriminating is further provided.
特に好ましくは、移動体が走行レールに沿って走行すると共に物品の昇降を行う有軌道台車で、少なくとも有軌道台車の走行と昇降とに対して正常/異常を診断する。有軌道台車は例えば天井走行車や地上走行の有軌道台車、あるいはスタッカークレーン等とする。 Particularly preferably, the track is a tracked carriage that travels along the traveling rail and moves the article up and down, and the normality / abnormality is diagnosed for at least the travel and lift of the tracked carriage. The tracked truck is, for example, an overhead traveling vehicle, a grounded tracked cart, or a stacker crane.
最も好ましくは、移動体がクリーンルーム内の天井空間に設けられた走行レールを走行する複数台の天井走行車で、天井走行車に振動検出用のセンサと走行モータ及び昇降モータの状態を監視するための監視手段とを設け、診断装置では、前記センサと監視手段の信号の特徴量からなるベクトルに基づいて、天井走行車の正常/異常を判別し、かつ異常であると判別した天井走行車に対して、走行レールの他の区間でのデータから再診断する。 Most preferably, the mobile body is a plurality of overhead traveling vehicles traveling on a traveling rail provided in a ceiling space in a clean room, and the overhead traveling vehicle monitors the state of vibration detection sensors, traveling motors, and lifting motors. The monitoring device determines whether the overhead traveling vehicle is normal or abnormal based on a vector composed of the sensor and the characteristic amount of the signal of the monitoring means, and determines whether the overhead traveling vehicle is abnormal. On the other hand, re-diagnosis is performed from data in other sections of the traveling rail.
この発明では、振動センサと移動用のモータの状態の監視手段により、移動体のメカニカルな状態をチェックする。移動体は有限かつ所定の移動経路に沿って移動し、かつ加速、定速走行、減速からなる所定の速度パターンに従って移動するので、センサや監視手段の信号は同じパターンの信号の繰り返しのはずである。このためセンサや監視手段の信号を特徴量に変換し、多次元ベクトル空間内での位置を調べると、正常か異常かを判別できる。このようにすると正常状態からのずれを高感度で判別できるので、移動体の異常が故障に発展する前に自動的に検出できる。この発明は、センサや通信機器などの電気/電子機器類の異常の診断にも利用できるが、移動用モータや軸受け、車輪、カム、スプロケットなどのメカニカルないしメカトロニクス機器の異常の有無の診断に適している。 In this invention, the mechanical state of the moving body is checked by means of the state monitoring means of the vibration sensor and the moving motor. Since the moving body moves along a finite and predetermined moving path and moves according to a predetermined speed pattern consisting of acceleration, constant speed running, and deceleration, the signal of the sensor and monitoring means should be a repetition of the signal of the same pattern is there. For this reason, it is possible to determine whether the signal is normal or abnormal by converting the signal of the sensor or the monitoring means into a feature value and examining the position in the multidimensional vector space. In this way, the deviation from the normal state can be discriminated with high sensitivity, so that it can be automatically detected before the abnormality of the moving body develops into a failure. The present invention can be used to diagnose abnormalities in electrical / electronic devices such as sensors and communication devices, but is suitable for diagnosing abnormalities in mechanical or mechatronic devices such as moving motors, bearings, wheels, cams and sprockets. ing.
請求項2の発明では、異常の有無のみでなく、異常の症状、言い換えると異常の種類も同時に判別する。 According to the second aspect of the invention, not only the presence / absence of an abnormality, but also an abnormality symptom, in other words, an abnormality type is simultaneously determined.
既知の異常データとはタイプが異なる異常データが発生した場合、判別手段では異常を見逃すことがある。例えば判別手段が異常の種類毎に設けられ、判別手段を設けていないタイプの異常が発生した場合、判別手段に多くを期待できない。また判別手段は例えば既知の異常データと正常データとのいき値となる超平面を求めるものであり、既知の異常データからかけ離れている異常データを検出できるかどうかは疑問である。このような場合、請求項3の発明では、正常データのみからなるクラスターに属さないものを検出するので、未知の異常データでも見逃すことが少ない。 When abnormal data having a type different from known abnormal data occurs, the determination means may miss the abnormality. For example, when a determination unit is provided for each type of abnormality and a type of abnormality that does not include a determination unit occurs, a large amount cannot be expected of the determination unit. The discriminating means obtains a hyperplane that is a threshold between known abnormal data and normal data, for example, and it is doubtful whether abnormal data far from the known abnormal data can be detected. In such a case, the invention of claim 3 detects the data that does not belong to the cluster consisting only of normal data, so that unknown abnormal data is rarely overlooked.
走行レールに沿って走行し、かつ物品の昇降を行う有軌道台車は、自動倉庫や搬送システムなどでの中心的な装置であり、一般に人手による点検が困難で、かつ稼働率を高く保つ必要がある。請求項4の発明では有軌道台車の異常を自動的にかつ早期に検出できる。 A tracked carriage that travels along a traveling rail and raises and lowers articles is a central device in automated warehouses and transport systems, and is generally difficult to inspect manually and must maintain a high operating rate. is there. According to the invention of claim 4, the abnormality of the tracked carriage can be automatically and early detected.
請求項5の発明では、クリーンルーム内の高所を走行するため、人手による点検が特に困難な天井走行車の正常/異常を診断し、さらに走行レールなどの地上側設備の異常か天井走行車の異常かも判別できる。このため多数台の天井走行車を備えた天井走行車システムでも、天井走行車の異常が本格的な故障に発展する前に検出できる。 According to the invention of claim 5, since the vehicle travels in a high place in a clean room, the normal / abnormality of the overhead traveling vehicle, which is particularly difficult to inspect manually, is diagnosed. You can also determine whether something is abnormal. For this reason, even an overhead traveling vehicle system having a large number of overhead traveling vehicles can be detected before an abnormality of the overhead traveling vehicle develops into a full-scale failure.
以下に本発明を実施するための最良の形態を示す。 The best mode for carrying out the present invention will be described below.
図1〜図6に、実施例を示す。図において、2は天井走行車システムで、地上走行の有軌道台車システムや、クリーンルーム内で液晶基板などを搬送するスタッカークレーン、移載装置、あるいは工作機械の刃先台とツールボックスとの間を往復して、ツールを交換するツールエクスチェンジャー、などの移動体でも良い。天井走行車システム2はクリーンルーム内の天井空間を利用して設けられ、4はインターベイルート、6はイントラベイルートで、8はメンテナンスベイルートで、イントラベイルート6の特別な種類である。メンテナンスベイルート8には周回ルート10を設けて、天井走行車16が周回走行できるようにする。12は分岐合流部、14はカーブである。16は天井走行車で、図1の矢印の向きに沿って走行し、例えば100〜数100台程度の天井走行車16が、システム2内に存在する。
An example is shown in FIGS. In the figure,
18はステーションで、半導体処理装置などに設けられ、天井走行車16との間で物品のやりとりを行い、20はバッファで、物品の一時保管に用いる。メンテナンスベイルート8にはメンテナンスエリア22を設けて、天井走行車16の点検、分解、修理などのメンテナンスを行えるようにする。24は天井走行車コントローラで、天井走行車16に対して搬送指令や、メンテナンスベイルート8へ走行してメンテナンスを受ける、などの指令を送信する。26は診断装置で、例えばコントローラ24を介して天井走行車16の状態を受信し、診断を行う。
A
図2に、天井走行車16とその走行レール30とを示す。なおインターベイルートもイントラベイルートも共通の走行レール30を使用する。走行レール30には上部レール31と下部レール32とがあり、下部レール32にリッツ線33を配置して、天井走行車16の受電部40へ非接触給電を行う。34は走行台車で、例えば駆動輪35と従動輪36並びにガイド輪37を備え、走行モータ38により走行する。39は振動センサで、例えば加速度センサなどを用い、走行台車34に取り付けて、そのx方向,y方向,z方向の振動を独立して測定する。
FIG. 2 shows the
受電部40は前記のリッツ線33から非接触給電により受電し、これと同時にリッツ線33を介して天井走行車コントローラや他の天井走行車との間で通信する。41はフレーム、42は横送り部で、ターンテーブル44〜昇降台48を走行レール30の側方に横送りし、前記のバッファとの間で物品を受け渡しする際などに用いる。43は横送りモータである。44はターンテーブルで、回動モータ45を備えて、昇降駆動部46及び昇降台48を水平面内で回動させて、バッファやステーションとの受け渡しに適した向きに昇降台を回動させる。46は昇降駆動部で、昇降モータ47と図示しない吊持材の巻き取り/繰り出しにより昇降台48を昇降させる。
The
49はカバーで、天井走行車16の例えば前後に設け、50は物品で、ここでは半導体カセットである。実施例では各モータ38,43,45,47に対して、サーボ駆動を行うので、その駆動電流などから出力トルクを求め、モータの軸等に設けたエンコーダなどにより、モータの回転数を監視する。また実施例では、走行台車34に振動センサ39を設けたが、これ以外の部分に設けても良く、例えば昇降台48に設けると、搬送中に物品50が受ける振動を測定できる。
天井走行車の動作は、加速,定速運動,減速の組合せである。図3の走行速度パターン51の場合、52は加速区間,53は定速区間,54は減速区間で、これらをそれぞれ1つの区間として、各区間での走行台車のx方向,y方向,z方向のそれぞれの振動と、走行モータの出力トルク並びに回転数を監視する。なお定速区間53が長すぎる場合、例えば1秒以上の場合、これを複数の区間に分割しても良い。
The operation of an overhead traveling vehicle is a combination of acceleration, constant speed motion, and deceleration. In the case of the traveling
昇降速度パターン55では、56は下降区間で昇降台を下降させ、区間56の終了後に、昇降台のチャックを動作させて物品を受け渡しする。その後、昇降台を上昇させるのが上昇区間57である。下降区間56や上昇区間57は一般に1秒以下と短いので、これらを分割せずに1つの区間とする。横送り速度パターン58では、59が進出区間で、横送り部により昇降駆動部などを走行レールの側方に進出させ、復帰区間60で昇降駆動部などを復帰させる。進出区間59と復帰区間60との間で、昇降台の動作や物品を受け渡しを行う。進出区間59や復帰区間60はそれぞれ短い区間なので、これらをそれぞれ1つの区間とする。
In the ascending /
図4に、診断装置26の構成を示すと、天井走行車16はx,y,zの各方向の振動の程度やモータのトルク並びにモータの回転数を送信する。天井走行車16はこれ以外に、現在位置や時刻並びに走行中,昇降台の昇降中、横送り中などの動作内容を送信する。診断装置26の入力インターフェース62は、これらのデータを天井走行車コントローラなどから入力され、例えば生データを記憶部64で記憶し、これらのデータに対する統計量を統計化部66で求める。記憶部64では生データを天井走行車毎に区別して記憶し、後で読み出せるようにする。また天井走行車からのデータが複数に分割して送信される場合、これらを接続して1まとまりのデータとする。記憶部64では、生データを記憶する代わりに、統計化部66で得た統計量を記憶しても良い。
4 shows the configuration of the
統計化部66では天井走行車のデータを統計量に変換する。統計量としては、例えば図3の各区間に対して、振動やモータトルク、あるいはモータの回転数などの、分散,最大値と最小値の差の絶対値,移動平均の分散などを求め、これ以外に平均値や3次あるいは4次のモーメントなどを求めても良い。統計化部66に代えて、フィルタバンクやウェーブレット変換部、短時間フーリエ変換部などのフィルタを設けて、特徴量を抽出しても良い。
The
得られた統計量を一群のSVM群68及びクラスター解析部70へ入力する。SVM群68では診断対象の症状毎にSVM(サポートベクトルマシン)を設け、例えば天井走行車の走行台車のガイドローラが緩んでいることを1つの症状とすると、緩みが無く正常/ガイドローラがやや緩んでいる/ガイドローラが更に緩んでいる、の3段階に、2つのSVMで診断できる。例えば最初のSVMで、ガイドローラの緩みがないものと、ガイドローラがやや緩んでいる及び更に緩んでいるを区別し、第2のSVMで、ガイドローラが正常もしくはやや緩んでいるものと、更に緩んでいるものとを区別する。診断対象の症状毎にSVMを設けることにより、異常を検出すると共にその症状も検出できる。SVMは症状毎に設け、例えばガイドローラの緩みと、駆動輪や従動輪のがたつきは別の症状である。クラスター解析部70では、正常データのみから成るクラスターを抽出し、クラスターの外部に位置するデータが入力されてくると異常であると診断する。この場合症状は診断できない。
The obtained statistics are input to a group of
図5に、1つのSVMでの判別を模式的に示すと、天井走行車からの入力データは、x,y,zの各方向の振動と、モータ回転数,モータのトルクなどから成る多次元のベクトルと見なすことができる。診断の精度を増す必要がある場合、走行レールの直線区間と分岐合流部やカーブ区間などを区別し、これらの種類を示すデータを付加して、走行位置の種類の次元を加えても良い。また空荷か物品を搬送中かなどの影響を考慮して、これらの次元を加えても良い。診断を行うベクトル空間は多次元空間で、SVMは正常データと異常データとを最も確実に弁別する超平面(ベクトル空間よりも1次元次元の低い空間)を発生させる。超平面は一般に各次元のデータの1次結合で表され、正常/異常のラベル付きで入力された教師データからSVMが自動的に発生させる。そしてこの超平面を境として正常データと異常データを弁別でき、入力データが超平面のいずれの側にあるかから正常/異常を診断できる。 FIG. 5 schematically shows the discrimination with one SVM. The input data from the overhead traveling vehicle is multidimensional including vibration in each direction of x, y, z, motor rotation speed, motor torque, and the like. It can be considered as a vector. When it is necessary to increase the accuracy of diagnosis, a linear section of a traveling rail and a branching / merging portion or a curved section may be distinguished, and data indicating these types may be added to add the dimension of the type of traveling position. In addition, these dimensions may be added in consideration of an influence such as whether an empty cargo or an article is being conveyed. The vector space for diagnosis is a multidimensional space, and the SVM generates a hyperplane (a space with a one-dimensional dimension lower than the vector space) that most reliably discriminates between normal data and abnormal data. A hyperplane is generally represented by a linear combination of data of each dimension, and an SVM is automatically generated from teacher data input with normal / abnormal labels. Normal data and abnormal data can be discriminated from this hyperplane as a boundary, and normality / abnormality can be diagnosed from which side of the hyperplane the input data is.
図6はクラスター解析を模式的に示し、例えば正常データのみの集合を求めて、それらを含むエリアをクラスターとして発生させる。なおクラスターの内部に異常データが含まれないことを確認することが好ましい。異常データを含む場合、クラスターを変形して異常データを除くようにする。入力ベクトルが、正常データのクラスター内に含まれるかどうかを判別し、含まれない場合、異常の疑いがあるものとする。 FIG. 6 schematically shows cluster analysis. For example, a set of only normal data is obtained, and an area including them is generated as a cluster. It is preferable to confirm that abnormal data is not included in the cluster. If abnormal data is included, deform the cluster to remove the abnormal data. It is determined whether or not the input vector is included in a cluster of normal data.
SVM群68以外に、クラスター解析部70を設けるのは、全ての異常モードや全ての種類の異常データを予め収集しておくことが困難なためである。SVM群68では、予期しない異常モードを検出し、あるいは過去の異常データとは異質なデータを異常と判別することは困難である。そこでクラスター解析部70により、正常データから何らかの意味で離れたデータが発生すると検出する。
The reason why the
図4に戻り、SVM群68やクラスター解析部70での診断結果はGUI(グラフィカルユーザインターフェース)72やメンテナンス管理部74へ送られ、GUI72を介してのオペレータの入力やメンテナンス管理部74での処理により、天井走行車16に対して、メンテナンスベイルート8へ走行して点検を受ける、もしくは他の区間から再度診断データを送信するなどの指示を行う。この指示は例えば天井走行車コントローラ24を介して行う。
Returning to FIG. 4, the diagnosis results from the
天井走行車16に関して何らかの異常を検出した場合、天井走行車に基づく異常か、走行レールなどの側に原因がある異常かが不明な場合がある。そこで他の区間でのデータを基に再診断するか、あるいはメンテナンスベイルート8を走行させて再診断すると、天井走行車の異常か、走行レール側の異常かを判別できる。教師データ入力76からは、統計化部66で得られたデータのうちで診断が終了し、正常もしくは異常を区別できたものを、SVM群68やクラスター解析部70へ入力する。これによってSVM群68での超平面やクラスター解析部70でのクラスターは徐々に学習して変更される。
When any abnormality is detected with respect to the
実施例では以下の効果が得られる。
(1) 天井走行車の状態を自動的に診断できる。このためクリーンルーム内に、天井走行車のメンテナンス用に人が出入りすることを最小限に止めることができ、また故障の発生前に異常を検出できる。
(2) SVM群68を用いることにより、異常の検出と共にその症状を判別できる。
(3) クラスター解析部70により、予期しない異常モードでも見逃しを減らすことができる。
(4) ガイドローラのゆるみなどの軽微な異常も検出でき、かつ移動用のモータや軸受け、車輪などの、検出が困難な異常も検出できる。そのためこれらの機器の、経年変化などによる異常も検出できる。
(5) 走行レール側の異常か、天井走行車側の異常かも識別できる。
(6) 加速や定速走行,減速などの各区間での天井走行車の動作は実質的に同じなので、天井走行車が異なっても、また位置が異なっても、正常の場合得られるデータはほぼ同じである。このため天井走行車毎にSVM群やクラスター解析部を設ける必要がなく、多数台の天井走行車のデータを同じSVM群やクラスター解析部で処理できる。
(7) 生データではなく、統計量や特徴量を用いることにより、診断が容易になる。
In the embodiment, the following effects can be obtained.
(1) The state of overhead vehicles can be automatically diagnosed. For this reason, it is possible to minimize the entry of people into and out of the clean room for maintenance of the overhead traveling vehicle, and it is possible to detect an abnormality before a failure occurs.
(2) By using the
(3) The
(4) It can detect minor abnormalities such as loose guide rollers, and it can also detect abnormalities that are difficult to detect such as motors, bearings, and wheels for movement. Therefore, abnormalities due to aging of these devices can be detected.
(5) It is possible to identify whether there is an abnormality on the traveling rail side or an abnormality on the overhead traveling vehicle side.
(6) Since the operation of the overhead traveling vehicle in each section such as acceleration, constant speed traveling, deceleration, etc. is substantially the same, the data that can be obtained under normal conditions regardless of whether the overhead traveling vehicle is different or the position is different. It is almost the same. For this reason, it is not necessary to provide an SVM group or cluster analysis unit for each overhead traveling vehicle, and data of a large number of overhead traveling vehicles can be processed by the same SVM group or cluster analysis unit.
(7) Diagnosis is facilitated by using statistics and features rather than raw data.
実施例では天井走行車システム2を例としたが、地上走行の有軌道台車システムやクリーンルーム内で物品を搬送するスタッカークレーン、搬送台車とステーションとの間で物品を移載する移載装置、などにも同様に適用できる。また工作機械のツールボックスと刃先台の間でツールを交換するツールエクスチェンジャーなどの場合も同様に適用できる。またSVMに代えて、判別分析などの他の解析手法を用いても良い。
In the embodiment, the overhead traveling
2 天井走行車システム
4 インターベイルート
6 イントラベイルート
8 メンテナンスベイルート
10 周回ルート
12 分岐合流部
14 カーブ
16 天井走行車
18 ステーション
20 バッファ
22 メンテナンスエリア
24 天井走行車コントローラ
26 診断装置
30 走行レール
31 上部レール
32 下部レール
33 リッツ線
34 走行台車
35 駆動輪
36 従動輪
37 ガイド輪
38 走行モータ
39 振動センサ
40 受電部
41 フレーム
42 横送り部
43 横送りモータ
44 ターンテーブル
45 回動モータ
46 昇降駆動部
47 昇降モータ
48 昇降台
49 カバー
50 物品
51 走行速度パターン
52 加速区間
53 定速区間
54 減速区間
55 昇降速度パターン
56 下降区間
57 上昇区間
58 横送り速度パターン
59 進出区間
60 復帰区間
62 入力インターフェース
64 記憶部
66 統計化部
68 SVM(サポートベクトルマシン)群
70 クラスター解析部
72 GUI(グラフィカルユーザインターフェース)
74 メンテナンス管理部
76 教師データ入力部
2 Overhead traveling vehicle system 4 Interbay route 6 Intrabay route 8
74
Claims (5)
移動体の振動検出用のセンサと、移動体の移動用モータの状態を監視するための監視手段と、
前記センサの出力及び監視手段の出力から、移動体の移動開始から停止までの行程、もしくはこれを加速域、定速域、減速域に区分した区間毎の特徴を示す、複数の特徴量を求めるための特徴量算出手段と、
求めた複数の特徴量を多次元ベクトル空間のベクトルとして、該ベクトル空間での位置から移動体の正常/異常を判別するための判別手段、とを設けたことを特徴とする、移動体の診断システム。 A moving body diagnostic system that moves according to a predetermined speed pattern consisting of acceleration, constant speed movement and deceleration along a finite and predetermined movement path,
A sensor for detecting vibrations of the moving body, and a monitoring means for monitoring the state of the moving motor of the moving body;
From the sensor output and the output of the monitoring means, a plurality of feature quantities indicating the process from the start to the stop of the moving body, or the characteristics of each section divided into an acceleration area, a constant speed area, and a deceleration area are obtained. A feature amount calculating means for
A moving body diagnosis comprising: a plurality of obtained feature amounts as vectors in a multidimensional vector space; and a determination unit for determining normality / abnormality of the moving body from a position in the vector space. system.
天井走行車に振動検出用のセンサと走行モータ及び昇降モータの状態を監視するための監視手段とを設け、
診断装置では、前記センサと監視手段の信号の特徴量からなるベクトルに基づいて、天井走行車の正常/異常を判別し、かつ異常であると判別した天井走行車に対して、走行レールの他の区間でのデータから再診断を行うようにしたことを特徴とする、請求項4の移動体の診断システム。 With a plurality of overhead traveling vehicles where the moving body travels on the traveling rail provided in the ceiling space in the clean room,
The overhead traveling vehicle is provided with a vibration detection sensor and a monitoring means for monitoring the state of the traveling motor and the lifting motor,
In the diagnostic device, normality / abnormality of the overhead traveling vehicle is determined based on a vector composed of the feature amount of the signal from the sensor and the monitoring means, and other than the traveling rail for the overhead traveling vehicle determined to be abnormal. 5. The mobile body diagnosis system according to claim 4, wherein re-diagnosis is performed from the data in the section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005140726A JP2006315813A (en) | 2005-05-13 | 2005-05-13 | Movable body diagnosis system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005140726A JP2006315813A (en) | 2005-05-13 | 2005-05-13 | Movable body diagnosis system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006315813A true JP2006315813A (en) | 2006-11-24 |
Family
ID=37536827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005140726A Pending JP2006315813A (en) | 2005-05-13 | 2005-05-13 | Movable body diagnosis system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006315813A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008265884A (en) * | 2007-04-16 | 2008-11-06 | Hitachi Plant Technologies Ltd | Abnormality detection method for stacker crane |
JP2011174765A (en) * | 2010-02-23 | 2011-09-08 | Chugoku Electric Power Co Inc:The | Apparatus deterioration evaluation support method and apparatus deterioration evaluation support device |
KR101249576B1 (en) * | 2010-09-13 | 2013-04-01 | 한국수력원자력 주식회사 | Rotating Machinery Fault Diagnostic Method and System Using Support Vector Machines |
CN103523625A (en) * | 2013-07-27 | 2014-01-22 | 安徽理工大学 | Coal mine vertical shaft cage gallop and falling preventing method based on algorithm of support vector machine |
CN103900824A (en) * | 2014-03-27 | 2014-07-02 | 哈尔滨工程大学 | Method for diagnosing faults of diesel engine based on instant rotary speed clustering analysis |
JP2015203646A (en) * | 2014-04-15 | 2015-11-16 | 三菱重工業株式会社 | Diagnosis method of machine tool and system thereof |
KR101702779B1 (en) * | 2015-10-29 | 2017-02-03 | 세메스 주식회사 | Hand unit of overhead hoist transport |
WO2017126236A1 (en) * | 2016-01-20 | 2017-07-27 | 三菱電機株式会社 | Abnormality detection device and abnormality detection system |
CN108475666A (en) * | 2016-01-28 | 2018-08-31 | 三菱电机株式会社 | Power module |
CN109856494A (en) * | 2019-01-02 | 2019-06-07 | 广东工业大学 | A kind of Diagnosis Method of Transformer Faults based on support vector machines |
KR20190107080A (en) * | 2017-01-13 | 2019-09-18 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Cloud-based vehicle fault diagnosis method, apparatus and system |
JP2020076750A (en) * | 2018-10-11 | 2020-05-21 | トーヨーカネツソリューションズ株式会社 | Component exchange prediction system and component exchange prediction method of material handling apparatus |
WO2020195200A1 (en) * | 2019-03-22 | 2020-10-01 | 村田機械株式会社 | Transfer vehicle system |
KR20200129868A (en) * | 2019-05-10 | 2020-11-18 | 주식회사 에스에프에이 | Real-time sensing data processing system for smart factory and processing method the same |
KR20200129869A (en) * | 2019-05-10 | 2020-11-18 | 주식회사 에스에프에이 | Real-time sensing data processing system for smart factory and processing method the same |
WO2021039077A1 (en) | 2019-08-28 | 2021-03-04 | 村田機械株式会社 | Overhead carrier vehicle and overhead carrier vehicle system |
KR20210055291A (en) * | 2019-11-07 | 2021-05-17 | 세메스 주식회사 | Transport apparatus |
WO2021229948A1 (en) * | 2020-05-12 | 2021-11-18 | 村田機械株式会社 | Rail-guided carrier system |
WO2021229947A1 (en) * | 2020-05-12 | 2021-11-18 | 村田機械株式会社 | Learning system |
KR20220057013A (en) * | 2020-10-29 | 2022-05-09 | 세메스 주식회사 | Overhead hoist transport apparatus and control method thereof |
JP2022088165A (en) * | 2020-12-02 | 2022-06-14 | 本田技研工業株式会社 | Diagnostic device for transport rail |
US20220199441A1 (en) * | 2020-12-18 | 2022-06-23 | Semes Co., Ltd. | Transport vehicle for suppressing vibration of goods, and goods transport system including same vehicle and for use in manufacturing plant |
KR20230138179A (en) * | 2022-03-23 | 2023-10-05 | 주식회사 에스에프에이 | System and Method for Managing Abnormality of Mobile Facilities |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000259222A (en) * | 1999-03-04 | 2000-09-22 | Hitachi Ltd | Device monitoring and preventive maintenance system |
JP2000351422A (en) * | 1999-06-09 | 2000-12-19 | Fujitsu Ltd | Commodity arranging plan support system and storage medium for storing program for performing processing in this system by computer |
JP2001178565A (en) * | 1999-12-27 | 2001-07-03 | Kongo Co Ltd | Electrically-driven movable shelf apparatus |
JP2003016067A (en) * | 2001-07-02 | 2003-01-17 | Communication Research Laboratory | Processing method for translation of tense, aspect and modality, and system therefor |
JP2003044853A (en) * | 2001-05-22 | 2003-02-14 | Matsushita Electric Ind Co Ltd | Face detection device, face pose detection device, partial image extraction device and methods for the devices |
JP2003122750A (en) * | 2001-10-09 | 2003-04-25 | Communication Research Laboratory | Language analytical processing system using machine learning method, teacher data generation processing method, language analytical processing method using machine learning method and language omission analytical processing system using machine learning method |
JP2003257808A (en) * | 2002-03-05 | 2003-09-12 | Toshiba Corp | Semiconductor manufacturing device, its controller, its part controller, and semiconductor wafer housing container transfer device |
-
2005
- 2005-05-13 JP JP2005140726A patent/JP2006315813A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000259222A (en) * | 1999-03-04 | 2000-09-22 | Hitachi Ltd | Device monitoring and preventive maintenance system |
JP2000351422A (en) * | 1999-06-09 | 2000-12-19 | Fujitsu Ltd | Commodity arranging plan support system and storage medium for storing program for performing processing in this system by computer |
JP2001178565A (en) * | 1999-12-27 | 2001-07-03 | Kongo Co Ltd | Electrically-driven movable shelf apparatus |
JP2003044853A (en) * | 2001-05-22 | 2003-02-14 | Matsushita Electric Ind Co Ltd | Face detection device, face pose detection device, partial image extraction device and methods for the devices |
JP2003016067A (en) * | 2001-07-02 | 2003-01-17 | Communication Research Laboratory | Processing method for translation of tense, aspect and modality, and system therefor |
JP2003122750A (en) * | 2001-10-09 | 2003-04-25 | Communication Research Laboratory | Language analytical processing system using machine learning method, teacher data generation processing method, language analytical processing method using machine learning method and language omission analytical processing system using machine learning method |
JP2003257808A (en) * | 2002-03-05 | 2003-09-12 | Toshiba Corp | Semiconductor manufacturing device, its controller, its part controller, and semiconductor wafer housing container transfer device |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008265884A (en) * | 2007-04-16 | 2008-11-06 | Hitachi Plant Technologies Ltd | Abnormality detection method for stacker crane |
JP2011174765A (en) * | 2010-02-23 | 2011-09-08 | Chugoku Electric Power Co Inc:The | Apparatus deterioration evaluation support method and apparatus deterioration evaluation support device |
KR101249576B1 (en) * | 2010-09-13 | 2013-04-01 | 한국수력원자력 주식회사 | Rotating Machinery Fault Diagnostic Method and System Using Support Vector Machines |
CN103523625A (en) * | 2013-07-27 | 2014-01-22 | 安徽理工大学 | Coal mine vertical shaft cage gallop and falling preventing method based on algorithm of support vector machine |
CN103900824A (en) * | 2014-03-27 | 2014-07-02 | 哈尔滨工程大学 | Method for diagnosing faults of diesel engine based on instant rotary speed clustering analysis |
JP2015203646A (en) * | 2014-04-15 | 2015-11-16 | 三菱重工業株式会社 | Diagnosis method of machine tool and system thereof |
KR101702779B1 (en) * | 2015-10-29 | 2017-02-03 | 세메스 주식회사 | Hand unit of overhead hoist transport |
CN106809656A (en) * | 2015-10-29 | 2017-06-09 | 细美事有限公司 | Lift the handgrip unit of conveyer |
CN106809656B (en) * | 2015-10-29 | 2020-12-08 | 细美事有限公司 | Gripper unit for hoisting conveyor |
WO2017126236A1 (en) * | 2016-01-20 | 2017-07-27 | 三菱電機株式会社 | Abnormality detection device and abnormality detection system |
JPWO2017126236A1 (en) * | 2016-01-20 | 2018-10-25 | 三菱電機株式会社 | Abnormality detection device and abnormality detection system |
CN108475666A (en) * | 2016-01-28 | 2018-08-31 | 三菱电机株式会社 | Power module |
CN108475666B (en) * | 2016-01-28 | 2021-06-29 | 三菱电机株式会社 | Power module |
KR20190107080A (en) * | 2017-01-13 | 2019-09-18 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Cloud-based vehicle fault diagnosis method, apparatus and system |
JP2020507748A (en) * | 2017-01-13 | 2020-03-12 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Cloud-based vehicle failure diagnosis method, apparatus and system |
US12086165B2 (en) | 2017-01-13 | 2024-09-10 | Huawei Technologies Co., Ltd. | Cloud-based vehicle fault diagnosis method, apparatus, and system |
KR102263337B1 (en) * | 2017-01-13 | 2021-06-09 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Cloud-based vehicle breakdown diagnosis method, device and system |
US11468715B2 (en) | 2017-01-13 | 2022-10-11 | Huawei Technologies Co., Ltd. | Cloud-based vehicle fault diagnosis method, apparatus, and system |
JP2020076750A (en) * | 2018-10-11 | 2020-05-21 | トーヨーカネツソリューションズ株式会社 | Component exchange prediction system and component exchange prediction method of material handling apparatus |
JP7500898B2 (en) | 2018-10-11 | 2024-06-18 | トーヨーカネツ株式会社 | Material handling equipment part replacement prediction system and part replacement prediction method |
CN109856494A (en) * | 2019-01-02 | 2019-06-07 | 广东工业大学 | A kind of Diagnosis Method of Transformer Faults based on support vector machines |
WO2020195200A1 (en) * | 2019-03-22 | 2020-10-01 | 村田機械株式会社 | Transfer vehicle system |
CN113557487A (en) * | 2019-03-22 | 2021-10-26 | 村田机械株式会社 | Transport vehicle system |
CN113557487B (en) * | 2019-03-22 | 2024-05-17 | 村田机械株式会社 | Conveying vehicle system |
KR20200129869A (en) * | 2019-05-10 | 2020-11-18 | 주식회사 에스에프에이 | Real-time sensing data processing system for smart factory and processing method the same |
KR20200129868A (en) * | 2019-05-10 | 2020-11-18 | 주식회사 에스에프에이 | Real-time sensing data processing system for smart factory and processing method the same |
KR102246006B1 (en) * | 2019-05-10 | 2021-04-29 | 주식회사 에스에프에이 | Real-time sensing data processing system for smart factory and processing method the same |
KR102246005B1 (en) * | 2019-05-10 | 2021-04-29 | 주식회사 에스에프에이 | Real-time sensing data processing system for smart factory and processing method the same |
WO2021039077A1 (en) | 2019-08-28 | 2021-03-04 | 村田機械株式会社 | Overhead carrier vehicle and overhead carrier vehicle system |
US12043498B2 (en) | 2019-08-28 | 2024-07-23 | Murata Machinery, Ltd. | Overhead carrier vehicle and overhead carrier vehicle system |
CN114245935A (en) * | 2019-08-28 | 2022-03-25 | 村田机械株式会社 | Overhead transport vehicle and overhead transport vehicle system |
KR20220047872A (en) | 2019-08-28 | 2022-04-19 | 무라다기카이가부시끼가이샤 | Ceiling Carrier and Ceiling Carrier Systems |
KR20210055291A (en) * | 2019-11-07 | 2021-05-17 | 세메스 주식회사 | Transport apparatus |
KR102283392B1 (en) * | 2019-11-07 | 2021-07-29 | 세메스 주식회사 | Transport apparatus |
JP7449489B2 (en) | 2020-05-12 | 2024-03-14 | 村田機械株式会社 | Track guided trolley system |
WO2021229948A1 (en) * | 2020-05-12 | 2021-11-18 | 村田機械株式会社 | Rail-guided carrier system |
JP2021178530A (en) * | 2020-05-12 | 2021-11-18 | 村田機械株式会社 | Rail track carriage system |
WO2021229947A1 (en) * | 2020-05-12 | 2021-11-18 | 村田機械株式会社 | Learning system |
KR20220057013A (en) * | 2020-10-29 | 2022-05-09 | 세메스 주식회사 | Overhead hoist transport apparatus and control method thereof |
KR102573505B1 (en) | 2020-10-29 | 2023-08-31 | 세메스 주식회사 | Overhead hoist transport apparatus and control method thereof |
JP7204723B2 (en) | 2020-12-02 | 2023-01-16 | 本田技研工業株式会社 | Conveyor rail diagnostic device |
JP2022088165A (en) * | 2020-12-02 | 2022-06-14 | 本田技研工業株式会社 | Diagnostic device for transport rail |
KR102534256B1 (en) | 2020-12-18 | 2023-05-17 | 세메스 주식회사 | Transport vehicle for supressing vibration of article and article transport system of manufacturing factory including the same |
US12020966B2 (en) * | 2020-12-18 | 2024-06-25 | Semes Co., Ltd. | Transport vehicle for suppressing vibration of goods, and goods transport system including same vehicle and for use in manufacturing plant |
KR20220087951A (en) * | 2020-12-18 | 2022-06-27 | 세메스 주식회사 | Transport vehicle for supressing vibration of article and article transport system of manufacturing factory including the same |
US20220199441A1 (en) * | 2020-12-18 | 2022-06-23 | Semes Co., Ltd. | Transport vehicle for suppressing vibration of goods, and goods transport system including same vehicle and for use in manufacturing plant |
KR20230138179A (en) * | 2022-03-23 | 2023-10-05 | 주식회사 에스에프에이 | System and Method for Managing Abnormality of Mobile Facilities |
KR102699298B1 (en) * | 2022-03-23 | 2024-08-27 | 주식회사 에스에프에이 | System and Method for Managing Abnormality of Mobile Facilities |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006315813A (en) | Movable body diagnosis system | |
TWI485539B (en) | Traveling vehicle system and self-diagnosis method for the traveling vehicle system | |
JP6008995B2 (en) | Elevator equipment | |
CN102947210B (en) | Elevator system | |
TWI638766B (en) | Inspection method for the truck system and the truck system, and inspection trolley | |
US10564632B2 (en) | Systems and methods for sensory automated material handing | |
JP2010247685A (en) | Conveyance vehicle system | |
KR100500230B1 (en) | Automatic carrying system and controlling method | |
CN113401764A (en) | Elevator inspection system having a robotic platform configured to inspect components in a hoistway | |
CN105992939A (en) | Travel wheel degradation detection method and detection system, and travel carriage | |
CN107635895B (en) | Container searching and detecting system | |
JP2014010002A (en) | Vehicle surface contamination monitor and vehicle surface contamination monitoring facility | |
KR101924276B1 (en) | A System for Investing a Wheel and a Bearing of a Train | |
CN113401755A (en) | Elevator inspection system with robotic platform configured with platform mover | |
CN113401756A (en) | Elevator inspection system with robotic platform forming hoistway model data | |
CN109841551B (en) | Automated material handling method and system | |
CN114764953B (en) | Transport vehicle management method | |
KR101564543B1 (en) | Safety guide system and wafer box horizontal and vertical transfer system with the same | |
CN107585650A (en) | Elevator | |
CN113879799A (en) | Transport vehicle attitude anomaly detection device and method and goods transport system | |
KR20230047003A (en) | Rail inspection device | |
JPH06195121A (en) | Sensor check system for unmanned carrying car | |
JP2663045B2 (en) | Self-failure detection method of detection device in mechanical parking device | |
CN118865653A (en) | Vehicle control system | |
JPH1095508A (en) | Positioning method for stacker crane, operating-control method for stacker crane and system thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110804 |