Nothing Special   »   [go: up one dir, main page]

JP2006308312A - Probe tip evaluation method for scan type probe microscope - Google Patents

Probe tip evaluation method for scan type probe microscope Download PDF

Info

Publication number
JP2006308312A
JP2006308312A JP2005128138A JP2005128138A JP2006308312A JP 2006308312 A JP2006308312 A JP 2006308312A JP 2005128138 A JP2005128138 A JP 2005128138A JP 2005128138 A JP2005128138 A JP 2005128138A JP 2006308312 A JP2006308312 A JP 2006308312A
Authority
JP
Japan
Prior art keywords
probe
tip
evaluation method
groove
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005128138A
Other languages
Japanese (ja)
Inventor
Takashi Morimoto
高史 森本
Toru Shinaki
徹 品木
Yoshiyuki Nagano
好幸 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery FineTech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery FineTech Co Ltd filed Critical Hitachi Construction Machinery FineTech Co Ltd
Priority to JP2005128138A priority Critical patent/JP2006308312A/en
Publication of JP2006308312A publication Critical patent/JP2006308312A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe tip evaluation method for scan type probe microscope capable of evaluating the degradation of sharpness of the probe tip with a simple procedure, when the tip of the probe under use is worn. <P>SOLUTION: The probe tip evaluation method for scan type microscope is constituted of a step S13 for measuring the groove A1 with the probe 12A and 12B regarding the reference specimen 11 on which the V-shape groove A1 is formed, the size of which is known, and a step S15 for estimating the sharpness of the tip of the probe, based on the measurement data obtained at the measurement step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は走査型プローブ顕微鏡の探針先端評価方法に関し、特に、探針の先端の太さの推定に好適な走査型プローブ顕微鏡の探針先端評価方法に関する。   The present invention relates to a probe tip evaluation method for a scanning probe microscope, and more particularly to a probe tip evaluation method for a scanning probe microscope suitable for estimating the thickness of the tip of the probe.

走査型プローブ顕微鏡による従来の探針評価方法としては特許文献1に開示される方法がある。この特許文献1に開示される探針の評価方法は、2以上の突起(同一凹凸パターンの繰返し)を備えた標準試料を複数用意し、これらの標準試料を用いて走査型プローブ顕微鏡で測定を行い、当該測定に使用した被検査探針の先端形状を推定する方法である。複数の標準試料の間において突起の凹凸パターン(半径R、高さH、ピッチP等のパラメータ)は異ならせている。この探針評価方法では、最初に適切に選択した標準試料を用いて、これを被検査探針で走査してその凹凸像(実像)を求める。次に探針の先端形状を適宜なパラメータを用いて関数で表現する。当該関数で表現された探針を用いてシミュレーションにより上記標準試料を走査してその凹凸像(シミュレーション像)を求める。次にこのシミュレーション像と上記実像とを比較して、その差が小さくなるように探針を表現する上記関数のパラメータを決定する。その後、再び上記のシミュレーション像の作成ステップと関数パラメータの決定ステップと繰り返し、最終的に被検査探針の先端形状を推定する。
特開平6−117844号公報
As a conventional probe evaluation method using a scanning probe microscope, there is a method disclosed in Patent Document 1. In the probe evaluation method disclosed in Patent Document 1, a plurality of standard samples having two or more protrusions (repetition of the same uneven pattern) are prepared, and measurement is performed with a scanning probe microscope using these standard samples. This is a method for estimating the tip shape of the inspection probe used for the measurement. The projections and depressions patterns (parameters such as radius R, height H, pitch P, etc.) are different among a plurality of standard samples. In this probe evaluation method, first, an appropriately selected standard sample is used, and this is scanned with a probe to be inspected to obtain a concavo-convex image (real image). Next, the tip shape of the probe is expressed by a function using appropriate parameters. The above-mentioned standard sample is scanned by simulation using the probe expressed by the function to obtain an uneven image (simulation image). Next, the simulation image is compared with the real image, and the parameters of the function expressing the probe are determined so that the difference is reduced. Thereafter, the simulation image creation step and the function parameter determination step are repeated again, and finally the tip shape of the probe to be inspected is estimated.
JP-A-6-117844

特許文献1に開示される走査型プローブ顕微鏡の探針先端の評価方法では、凹凸パターンのパラメータが異なる複数の標準試料を用意する必要があり、さらに、或る標準試料を用いて凹凸画像を取得してその結果から探針の形状をシミュレートし、評価に最適な標準試料に交換して再度画像を取得するという手順を繰り返す必要がある。従って、手順が複雑であるという問題を有する。   In the probe tip evaluation method disclosed in Patent Document 1, it is necessary to prepare a plurality of standard samples having different concavo-convex pattern parameters, and furthermore, a concavo-convex image is obtained using a certain standard sample. Then, it is necessary to repeat the procedure of simulating the shape of the probe from the result, exchanging it with a standard sample optimal for evaluation, and acquiring an image again. Therefore, there is a problem that the procedure is complicated.

本発明の目的は、上記の課題に鑑み、使用中の探針の先端が摩耗したとき探針先端の太さの劣化を簡易な手順で評価できる走査型プローブ顕微鏡の探針先端評価方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a probe tip evaluation method for a scanning probe microscope that can evaluate the deterioration of the tip tip thickness in a simple procedure when the tip of the probe in use is worn. There is to do.

本発明に係る走査型プローブ顕微鏡の探針先端評価方法は、上記目的を達成するために、次のように構成される。   In order to achieve the above object, a probe tip evaluation method for a scanning probe microscope according to the present invention is configured as follows.

第1の本発明に係る走査型プローブ顕微鏡の探針先端評価方法(請求項1に対応)は、寸法が既知のV溝開口部が形成された基準試料について探針でV溝開口部を測定する測定ステップと、この測定ステップで得られた測定データに基づき探針の先端の太さを推定する推定ステップとから成る方法である。   The probe tip evaluation method for a scanning probe microscope according to the first aspect of the present invention (corresponding to claim 1) is to measure a V-groove opening with a probe for a reference sample having a V-groove opening of known dimensions. And a estimating step for estimating the thickness of the tip of the probe based on the measurement data obtained in this measuring step.

上記の探針先端評価方法では、既知寸法のV溝開口部が表面に形成された基準試料を探針によって通常の方式で測定すると、先端が太い探針ほど本来のV溝の深さよりも小さな深さが測定される。従って、探針使用前に当該探針をV溝を測定した時の深さ測定値を記録し、さらに探針使用後において当該探針で再度V溝を測定した時の深さ測定値を取得し、使用前後の深さ測定値を比較することにより探針先端の摩耗による劣化の様子を簡易に知ることが可能となる。   In the above-described probe tip evaluation method, when a reference sample having a V-groove opening of a known size formed on the surface is measured by a probe using a normal method, the probe with a thicker tip has a smaller depth than the original depth of the V-groove. The depth is measured. Therefore, record the depth measurement value when measuring the V groove with the probe before using the probe, and obtain the depth measurement value when measuring the V groove again with the probe after using the probe. In addition, by comparing the depth measurement values before and after use, it becomes possible to easily know the state of deterioration due to wear of the probe tip.

第2の本発明に係る走査型プローブ顕微鏡の探針先端評価方法(請求項2に対応)は、上記の方法において、好ましくは、上記の測定データはV溝開口部の深さデータであることで特徴づけられる。   In the probe tip evaluation method (corresponding to claim 2) of the scanning probe microscope according to the second aspect of the present invention, preferably, the measurement data is depth data of a V-groove opening. It is characterized by.

本発明によれば、寸法が既知であるV溝開口部が形成された基準試料を用意し、この基準試料を被検査対象である探針によって測定し、その測定データに基づいて探針の先端形状の摩耗状態を評価するようにしたため、探針の先端の摩耗前後の変化を確実に捉えることができる。さらに既知寸法としてV溝の開き角度が既知であれば、測定した深さデータから探針の先端の半径を推定することができる。
また本発明によれば、測定時の探針のすべりによる誤差のない評価が可能となる。
According to the present invention, a reference sample in which a V-groove opening having a known dimension is prepared, the reference sample is measured with a probe to be inspected, and the tip of the probe is based on the measurement data. Since the wear state of the shape is evaluated, changes in the tip of the probe before and after wear can be reliably captured. Furthermore, if the opening angle of the V-groove is known as a known dimension, the radius of the tip of the probe can be estimated from the measured depth data.
Further, according to the present invention, it is possible to evaluate without error due to the slip of the probe during measurement.

以下に、本発明の好適な実施形態(実施例)を添付図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Preferred embodiments (examples) of the present invention will be described below with reference to the accompanying drawings.

走査型プローブ顕微鏡(SPM)の一例として原子間力顕微鏡(AFM)の基本的な構成を概説する。通常、表面に集積回路等が形成された半導体基板等の試料が試料ステージに載置され、この試料の表面に接近させて探針が配置される。探針はカンチレバーの先端に形成され、極めて微細な形状を有する針部材である。測定の際、探針は試料に対して原子間力が発生するような距離にて接近される。また試料表面の特定領域を測定する時、探針を試料表面を走査するように移動させる。試料表面に対する探針の相対的な走査移動は試料側の粗動機構と探針側の微動機構によって行われる。上記試料ステージは粗動機構として機能する。微動機構は、探針を、試料表面に平行な方向、および試料表面に対して略直角な方向に移動させる。微動機構は例えば圧電素子を利用して構成される。   The basic configuration of an atomic force microscope (AFM) will be outlined as an example of a scanning probe microscope (SPM). Usually, a sample such as a semiconductor substrate having an integrated circuit formed on the surface is placed on a sample stage, and a probe is placed close to the surface of the sample. The probe is a needle member formed at the tip of the cantilever and having a very fine shape. During the measurement, the probe is brought close to the sample at such a distance that an atomic force is generated. Further, when measuring a specific region of the sample surface, the probe is moved so as to scan the sample surface. The relative scanning movement of the probe with respect to the sample surface is performed by a coarse movement mechanism on the sample side and a fine movement mechanism on the probe side. The sample stage functions as a coarse movement mechanism. The fine movement mechanism moves the probe in a direction parallel to the sample surface and in a direction substantially perpendicular to the sample surface. The fine movement mechanism is configured using, for example, a piezoelectric element.

原子間力顕微鏡では、探針が試料の表面に接近したときに探針・試料間に生じる原子間力を利用して試料表面の凹凸形状を測定する機能を有する。探針・試料間の原子間力は、探針が試料表面を走査する時に一定に保持されるように制御される。この制御を行うために探針を備えたカンチレバーの撓みと捩れを検出するための例えば光てこ式光学検出装置が設けられる。この光てこ式光学検出装置によって検出されたカンチレバーの変位・変形検出情報は制御部に入力され、そこで基準値と比較される。検出されたデータが基準値と一致するように制御信号が生成され、当該制御信号は上記探針(カンチレバー)の位置を決める上記微動機構にフィードバックされ、カンチレバーの変位・変形状態が基準値に一致にするように制御が行われる。   The atomic force microscope has a function of measuring the concavo-convex shape of the sample surface by utilizing the atomic force generated between the probe and the sample when the probe approaches the sample surface. The interatomic force between the probe and the sample is controlled so as to be kept constant when the probe scans the sample surface. In order to perform this control, for example, an optical lever type optical detection device is provided for detecting bending and twisting of a cantilever provided with a probe. The displacement / deformation detection information of the cantilever detected by the optical lever type optical detection device is input to the control unit, where it is compared with a reference value. A control signal is generated so that the detected data matches the reference value, the control signal is fed back to the fine movement mechanism that determines the position of the probe (cantilever), and the displacement / deformation state of the cantilever matches the reference value Control is performed to

上記の状態に保持するように、探針を試料の表面に沿って移動させ、その時の試料表面に対する探針の位置変化に係る情報を得ることにより、試料表面の原子レベルの凹凸形状を測定することが可能となる。   By moving the probe along the surface of the sample so as to maintain the above state, and obtaining information related to the change in position of the probe with respect to the sample surface at that time, the uneven shape at the atomic level on the sample surface is measured. It becomes possible.

試料の表面の凹凸形状を高い精度で測定するためには探針の先端の先鋭度が重要な要素である。そこで、探針の先端の先鋭度(または摩耗度)を正確に評価する方法を図を参照して以下に説明する。   The sharpness of the tip of the probe is an important factor for measuring the uneven shape of the sample surface with high accuracy. Therefore, a method for accurately evaluating the sharpness (or wear) of the tip of the probe will be described below with reference to the drawings.

図1〜図3を参照して本発明に係る探針評価方法の実施形態を説明する。図1は基準試料11の表面に形成された複数の溝A1を被検査探針12A,12Bが測定する状態が示されている。図1で、被検査探針12Aは摩耗前の先端13Aを有する探針であり、被検査探針12Bは摩耗後の先端13Bを有する探針である。図2は探針先端評価方法を実施するフローチャートを示す。図3は、図1の測定で、V字溝の角度θが既知であるときの被検査探針と溝との関係を数学的に表現した図である。   An embodiment of a probe evaluation method according to the present invention will be described with reference to FIGS. FIG. 1 shows a state in which the inspection probes 12A and 12B measure a plurality of grooves A1 formed on the surface of the reference sample 11. In FIG. 1, the probe 12A to be inspected is a probe having a tip 13A before wear, and the probe 12B to be inspected is a probe having a tip 13B after wear. FIG. 2 shows a flowchart for implementing the probe tip evaluation method. FIG. 3 is a diagram mathematically expressing the relationship between the probe to be inspected and the groove when the angle θ of the V-shaped groove is known in the measurement of FIG.

図1では、先端が摩耗される前の探針12Aと先端が摩耗された後の探針12Bが示されている。溝A1を有した基準試料11において、溝A1は断面V字の形状を有し、かつ溝A1の深さDは既知であるとする。溝A1を有した基準試料11を測定対象として探針12Aで当該溝A1を原子間力顕微鏡の原理で測定すると、図1に示されるごとく計測深さDaのデータを取得する。同様にして、基準試料11に対して探針12Bで当該溝A1を測定すると、図1に示されるごとく計測深さDbを取得する。   FIG. 1 shows a probe 12A before the tip is worn and a probe 12B after the tip is worn. In the reference sample 11 having the groove A1, the groove A1 has a V-shaped cross section, and the depth D of the groove A1 is known. When the reference sample 11 having the groove A1 is used as a measurement object and the groove A1 is measured by the probe 12A according to the principle of an atomic force microscope, data of the measurement depth Da is acquired as shown in FIG. Similarly, when the groove A1 is measured with the probe 12B with respect to the reference sample 11, the measurement depth Db is obtained as shown in FIG.

従って、被検査探針を装着した原子間力顕微鏡によって上記の基準試料11の溝A1を測定すると、被検査探針(12A,12B)の先端(13A,13B)の太さに依存してV形状の溝A1の深さ計測値が異なる。探針の先端が細いほど、溝A1の深さは深く計測され、溝A1の本来の深さの値Dに近くなり、先端が太いほど溝A1の深さは浅く計測される。この結果、探針の摩耗前と磨耗後の劣化を確実に捉えることができる。   Accordingly, when the groove A1 of the reference sample 11 is measured by an atomic force microscope equipped with the probe to be inspected, V depends on the thickness of the tip (13A, 13B) of the probe to be inspected (12A, 12B). The measured depth of the groove A1 is different. The deeper the tip of the probe, the deeper the depth of the groove A1 is measured, which is closer to the original depth value D of the groove A1, and the deeper the tip, the shallower the depth of the groove A1 is measured. As a result, the deterioration of the probe before and after wear can be reliably captured.

以上に基づきこの実施形態による探針先端評価方法は、図2に示すごとく、被検査探針の取付け(ステップS11)、基準試料11のセット(ステップS12)、被検査探針による基準試料11の測定(ステップS13)、計測深さデータの取得(ステップS14)、被検査探針の先端の評価(ステップS15)によって構成される。   Based on the above, the probe tip evaluation method according to this embodiment, as shown in FIG. 2, attaches the inspection probe (step S11), sets the reference sample 11 (step S12), and sets the reference sample 11 by the inspection probe. It consists of measurement (step S13), acquisition of measurement depth data (step S14), and evaluation of the tip of the probe to be inspected (step S15).

また、図3に示されるごとく上記の基準試料11におけるV字形状の溝A1の角度θが既知である場合には、探針12Cの先端13Cを形成する丸みの半径が「r」であるとき、計測深さの値Dと計測深さdに基づいて、探針先端13Cの半径rを次式(2)によって推測することができる。   In addition, when the angle θ of the V-shaped groove A1 in the reference sample 11 is known as shown in FIG. 3, the radius of the roundness forming the tip 13C of the probe 12C is “r”. Based on the measurement depth value D and the measurement depth d, the radius r of the probe tip 13C can be estimated by the following equation (2).

D−d=r/sinθ−r …(1)
r=(D−d)sinθ/(1−sinθ) …(2)
D−d = r / sin θ−r (1)
r = (D−d) sin θ / (1-sin θ) (2)

従って、角度θが既知である場合に上記の式(1),(2)を用いて被検査探針の先端評価のステップS15を実行するように構成すれば、本実施形態の探針評価方法によれば、探針先端の半径を推定することも可能となる。   Therefore, when the angle θ is known, the probe evaluation method according to the present embodiment can be configured so that the tip evaluation step S15 of the probe tip to be inspected is executed using the above formulas (1) and (2). Accordingly, it is possible to estimate the radius of the tip of the probe.

以上の実施形態で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および各構成の組成(材質)については例示にすぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。   The configurations, shapes, sizes, and arrangement relationships described in the above embodiments are merely shown to the extent that the present invention can be understood and implemented, and the numerical values and the compositions (materials) of the respective configurations are as follows. It is only an example. Therefore, the present invention is not limited to the described embodiments, and can be variously modified without departing from the scope of the technical idea shown in the claims.

例えば基準試料11に形成される複数のV字型溝A1は図1に示すように隙間なく連続的に形成することもできるし、間隔をあけて形成することもできる。
また、V字型溝が複数方向に形成された、または組み合わせた基準試料を用いることにより、探針の先端評価方向が複数となり、走査型プローブ顕微鏡(SPM)で測定する対象との整合性が向上する。
また、本発明での探針半径とは、V字型溝と接する部分を主として推定するつもりであり、各種V字型を用いれば、より複雑な針形状を推定できることは言うまでもない。
For example, the plurality of V-shaped grooves A1 formed in the reference sample 11 can be formed continuously without a gap as shown in FIG. 1, or can be formed at intervals.
In addition, by using a reference sample in which V-shaped grooves are formed or combined in a plurality of directions, the tip evaluation direction of the probe becomes a plurality, and consistency with an object to be measured by a scanning probe microscope (SPM) is improved. improves.
The probe radius in the present invention intends to mainly estimate the portion in contact with the V-shaped groove, and it goes without saying that a more complicated needle shape can be estimated by using various V-shapes.

本発明は、走査型プローブ顕微鏡での測定で使用される探針の先端部の正確な評価に利用される。   The present invention is used for accurate evaluation of the tip of a probe used in measurement with a scanning probe microscope.

本発明に係る探針先端評価方法の実施形態を説明するための図である。It is a figure for demonstrating embodiment of the probe tip evaluation method which concerns on this invention. 本実施形態の探針先端評価方法を実施するフローチャートである。It is a flowchart which implements the probe tip evaluation method of this embodiment. 図1の測定で、V字溝の角度(θ)が既知であるときの被検査探針と溝との関係を数学的に表現した図である。It is the figure which expressed mathematically the relationship between a to-be-inspected probe and a groove | channel when the angle ((theta)) of a V-shaped groove | channel is known by the measurement of FIG.

符号の説明Explanation of symbols

11 基準試料
12A,12B,12C 被検査探針
13A,13B,13C 被検査探針の先端
A1 溝
11 Reference Sample 12A, 12B, 12C Inspection Probe 13A, 13B, 13C Tip of Inspection Probe A1 Groove

Claims (2)

寸法が既知のV溝開口部が形成された基準試料について探針で前記V溝開口部を測定する測定ステップと、
前記測定ステップで得られた測定データに基づき前記探針の先端の太さを推定する推定ステップと、
から成ることを特徴とする走査型プローブ顕微鏡の探針先端評価方法。
A measuring step of measuring the V-groove opening with a probe with respect to a reference sample having a V-groove opening of known dimensions;
An estimation step for estimating the thickness of the tip of the probe based on the measurement data obtained in the measurement step;
A probe tip evaluation method for a scanning probe microscope, comprising:
前記測定データは前記V溝開口部の深さデータであることを特徴とする請求項1記載の走査型プローブ顕微鏡の探針先端評価方法。
2. The probe tip evaluation method for a scanning probe microscope according to claim 1, wherein the measurement data is depth data of the V groove opening.
JP2005128138A 2005-04-26 2005-04-26 Probe tip evaluation method for scan type probe microscope Pending JP2006308312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128138A JP2006308312A (en) 2005-04-26 2005-04-26 Probe tip evaluation method for scan type probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128138A JP2006308312A (en) 2005-04-26 2005-04-26 Probe tip evaluation method for scan type probe microscope

Publications (1)

Publication Number Publication Date
JP2006308312A true JP2006308312A (en) 2006-11-09

Family

ID=37475384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128138A Pending JP2006308312A (en) 2005-04-26 2005-04-26 Probe tip evaluation method for scan type probe microscope

Country Status (1)

Country Link
JP (1) JP2006308312A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449294C2 (en) * 2010-06-03 2012-04-27 Институт прикладной математики им. М.В. Келдыша РАН Method of determining shape and dimensions of probe microscope needle points
US9138149B2 (en) 2012-03-19 2015-09-22 Welch Allyn, Inc. Systems and methods for determining patient temperature
US9265427B2 (en) 2012-03-19 2016-02-23 Welch Allyn, Inc. Systems and methods for determining patient temperature
JP2017219454A (en) * 2016-06-09 2017-12-14 住友金属鉱山株式会社 Evaluation method of probe for atomic force microscope
US10234482B2 (en) 2015-11-30 2019-03-19 Samsung Electronics Co., Ltd. Probe card with a needle and a testing apparatus including the same
WO2022137600A1 (en) * 2020-12-21 2022-06-30 株式会社島津製作所 Probe assessment method and spm

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449294C2 (en) * 2010-06-03 2012-04-27 Институт прикладной математики им. М.В. Келдыша РАН Method of determining shape and dimensions of probe microscope needle points
US9138149B2 (en) 2012-03-19 2015-09-22 Welch Allyn, Inc. Systems and methods for determining patient temperature
US9265427B2 (en) 2012-03-19 2016-02-23 Welch Allyn, Inc. Systems and methods for determining patient temperature
US9795305B2 (en) 2012-03-19 2017-10-24 Welch Allyn, Inc. Systems and methods for determining patient temperature
US10517486B2 (en) 2012-03-19 2019-12-31 Welch Allyn, Inc. Systems and methods for determining patient temperature
US10234482B2 (en) 2015-11-30 2019-03-19 Samsung Electronics Co., Ltd. Probe card with a needle and a testing apparatus including the same
JP2017219454A (en) * 2016-06-09 2017-12-14 住友金属鉱山株式会社 Evaluation method of probe for atomic force microscope
WO2022137600A1 (en) * 2020-12-21 2022-06-30 株式会社島津製作所 Probe assessment method and spm
JP7563486B2 (en) 2020-12-21 2024-10-08 株式会社島津製作所 Probe evaluation method and SPM

Similar Documents

Publication Publication Date Title
US7911206B2 (en) Method and apparatus for evaluating length of defect in eddy current testing
JP2006308312A (en) Probe tip evaluation method for scan type probe microscope
JP5051295B2 (en) Fine structure inspection method, fine structure inspection apparatus, and fine structure inspection program
US20050283985A1 (en) Method for observation of microstructural surface features in heterogeneous materials
KR20060102810A (en) Joint roughness profiler and method thereof
JP4689988B2 (en) Calibration specimen for surface texture measuring machine
Leach Introduction to surface texture measurement
JP2010085376A (en) Method for measuring pattern using scanning electron microscope
Colson et al. Comparison of silicon and OH-modified AFM tips for adhesion force analysis on functionalised surfaces and natural polymers
JP2006308313A (en) Scanning probe microscope and evaluation method of its probe
JP2007078679A (en) Standard specimen for probe geometry evaluation
JP3675406B2 (en) Micromaterial testing apparatus and mechanical property evaluation method using the same
US12123895B2 (en) Method of determining dimensions of features of a subsurface topography, scanning probe microscopy system and computer program
JP2018179623A (en) Hardness evaluation method
JP6515873B2 (en) Evaluation method of probe for atomic force microscope
JP5874995B2 (en) Method for determining spring constant of cantilever and scanning probe microscope employing the method
JP2008058150A (en) Marking inspection apparatus
JP2007046974A (en) Displacement quantity measuring instrument using multiprobe and displacement quantity measuring method using it
JP5176821B2 (en) Pattern adhesion evaluation method
KR101371136B1 (en) Method for calibrating 3d scan data of atomic force microscope
JP2005201908A (en) Micro material testing apparatus
JP7400645B2 (en) How to obtain the probe tip diameter and SPM
NL2022516B1 (en) Method of and arrangement for mapping structural features on a surface of a sample by scanning probe microscopy.
JP2009058480A (en) Scanning probe microscope and cantilever management method
Kneedler et al. 3D metrology solution for the 65-nm node