Nothing Special   »   [go: up one dir, main page]

JP2006305555A - Apparatus and method for treating waste water - Google Patents

Apparatus and method for treating waste water Download PDF

Info

Publication number
JP2006305555A
JP2006305555A JP2006059220A JP2006059220A JP2006305555A JP 2006305555 A JP2006305555 A JP 2006305555A JP 2006059220 A JP2006059220 A JP 2006059220A JP 2006059220 A JP2006059220 A JP 2006059220A JP 2006305555 A JP2006305555 A JP 2006305555A
Authority
JP
Japan
Prior art keywords
wastewater
tank
fluorine
treatment apparatus
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006059220A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yamazaki
和幸 山嵜
Kazuyuki Sakata
和之 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006059220A priority Critical patent/JP2006305555A/en
Publication of JP2006305555A publication Critical patent/JP2006305555A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for treating waste water, in which high-concentration nitrogen-containing waste water and acidic waste water, particularly, fluorine-containing waste water can be treated combinedly and the running cost of which is reduced and to provide a method for treating waste water. <P>SOLUTION: In each of the apparatus and the method for treating waste water, the pH of the waste water to be treated is adjusted by adding the treated water treated at a nitrogen removing step being the succeeding step for removing nitrogen from waste water. It is preferable that the waste water to be treated is introduced into an anaerobic denitrification tank 3 and then into a nitrification tank 4 the waste water in which is aerated by an aeration unit 16 and the pH of fluorine-containing waste water is adjusted by using the treated water which is filtered by a submerged membrane 19 and sent from the nitrification tank 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高濃度窒素排水と酸性排水、特にフッ素含有排水を複合的に処理できる排水処理装置および排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method capable of treating high-concentration nitrogen wastewater and acidic wastewater, particularly fluorine-containing wastewater, in a complex manner.

2004年4月から改正水質汚濁防止法が施行され、窒素排出量の総量規制がなされている。また、フッ素は、水質汚濁防止法の河川への放流基準では8mg/L以下でなければならず、環境基準では0.8mg/L以下である。さらに、フッ素は、PRTR(Pollutant Release and Transfer Register:化学物質排出移動量届出制度)の届出が必要な第1種指定化学物質に指定されており、計画的な排出量の削減が望まれる。   Since April 2004, the revised Water Pollution Control Law has been enforced, and the total amount of nitrogen emissions has been regulated. Fluorine must be 8 mg / L or less according to the release standard to rivers of the Water Pollution Control Law, and 0.8 mg / L or less according to the environmental standard. In addition, fluorine is designated as a Class 1 Designated Chemical Substance that requires notification by the PRTR (Pollutant Release and Transfer Register), and it is desirable to reduce planned emissions.

従来、アンモニア態窒素を含有する排水の処理方法として、特許文献1や特許文献2に記載されているように、排水を脱窒槽および硝化槽に順々に送り込んで、脱窒槽で排水を生物学的に脱窒処理し、脱窒槽で脱窒処理できないアンモニア性窒素や亜硝酸性窒素を硝化槽で硝酸性窒素にまで酸化分解して脱窒槽に返送する硝化脱窒方法が知られている。   Conventionally, as described in Patent Document 1 and Patent Document 2, wastewater is fed into a denitrification tank and a nitrification tank in order as a treatment method for wastewater containing ammonia nitrogen, and the wastewater is biologically treated in the denitrification tank. There is known a nitrification / denitrification method in which ammonia nitrogen or nitrite nitrogen that cannot be denitrified in a denitrification tank is oxidized and decomposed to nitrate nitrogen in a nitrification tank and returned to the denitrification tank.

しかしながら、高濃度アンモニア排水などの高濃度窒素排水は、毒性があるために微生物処理が困難であり、蒸発缶で濃縮して、その濃縮物を産業廃棄物として処理する必要があるが、短所として濃縮する際のエネルギー消費量が大きい。   However, high-concentration nitrogen wastewater such as high-concentration ammonia wastewater is difficult to treat with microorganisms because of its toxicity, and it is necessary to concentrate it in an evaporator and treat the concentrate as industrial waste. High energy consumption when concentrating.

また、排水中のフッ素を除去して0.8mg/L以下にする方法として、特許文献3には、排水にカルシウム化合物とリン酸類を加えてアパタイト主体の沈殿物を生成分離する方法が記載されている。   In addition, as a method for removing fluorine in wastewater to 0.8 mg / L or less, Patent Document 3 describes a method for generating and separating apatite-based precipitates by adding calcium compounds and phosphoric acids to wastewater. ing.

特許文献3の方法では、フッ素含有排水のpHを4以上、好ましくは6以上にする必要があり、酸性の排水に対してはアルカリ剤を使用しなければならない。
特許第3095620号公報 特許第3467671号公報 特許第3504248号公報
In the method of Patent Document 3, the pH of the fluorine-containing wastewater needs to be 4 or more, preferably 6 or more, and an alkaline agent must be used for acidic wastewater.
Japanese Patent No. 3095620 Japanese Patent No. 3467671 Japanese Patent No. 3504248

半導体工場では、フッ酸とフッ化アンモニウムを混合したバッファードフッ酸が多量に使用され、高濃度窒素排水に加えてフッ素含有高濃度窒素排水を処理する必要がある。   In semiconductor factories, a large amount of buffered hydrofluoric acid mixed with hydrofluoric acid and ammonium fluoride is used, and it is necessary to treat high-concentration nitrogen wastewater in addition to high-concentration nitrogen wastewater.

そこで、問題点に鑑みて、本発明は、高濃度窒素排水と酸性排水、特にフッ素含有排水を複合的に処理できるランニングコストの低い排水処理装置および排水処理方法を提供することを課題とする。   Therefore, in view of the problems, an object of the present invention is to provide a wastewater treatment apparatus and a wastewater treatment method with low running cost that can treat high-concentration nitrogen wastewater and acidic wastewater, particularly fluorine-containing wastewater, in a complex manner.

前記課題を解決するために、本発明による排水処理装置は、排水のpHを調整するpH調整槽と、該pH調整槽の下流で排水から窒素を除去する窒素処理装置とを備え、前記窒素処理装置で処理した処理水の一部を前記pH調整槽に導入するものとする。   In order to solve the above problems, a wastewater treatment apparatus according to the present invention includes a pH adjustment tank that adjusts the pH of wastewater, and a nitrogen treatment apparatus that removes nitrogen from wastewater downstream of the pH adjustment tank. A part of the treated water treated by the apparatus is introduced into the pH adjusting tank.

この構成によれば、排水処理に要するアルカリ剤などのpH処理剤の消費が少なくて済み、経済的である。   According to this structure, consumption of pH processing agents, such as an alkaline agent required for waste water treatment, is small, and it is economical.

また、本発明の排水処理装置において、前記窒素処理装置は、嫌気性微生物によって還元分解を行う脱窒槽と、曝気装置によって曝気され、好気性微生物によって酸化分解を行う硝化槽とからなり、前記硝化槽は、処理水を濾過して排出する液中膜を有するものとしてもよい。   Further, in the wastewater treatment apparatus of the present invention, the nitrogen treatment apparatus comprises a denitrification tank that performs reductive decomposition by anaerobic microorganisms, and a nitrification tank that is aerated by an aeration apparatus and oxidatively decomposes by aerobic microorganisms. The tank may have a submerged membrane for filtering and discharging treated water.

この構成によれば、硝化槽から排出される処理水のpHを6から9の間で制御可能であり、原排水や一次処理した排水のpH調整が可能である。   According to this configuration, the pH of the treated water discharged from the nitrification tank can be controlled between 6 and 9, and the pH of the raw waste water or the primary treated waste water can be adjusted.

また、本発明の排水処理装置において、前記曝気装置は、マイクロナノバブル発生装置を含んでもよい。   In the wastewater treatment apparatus of the present invention, the aeration apparatus may include a micro / nano bubble generation apparatus.

この構成によれば、マイクロナノバブルが水中に長く留まり、処理水の酸素濃度を高めるので、硝化槽における好気性微生物が活性化される。これによって、好気性微生物の硝化槽におけるアンモニア性窒素や亜硝酸性窒素の酸化分解の効率が向上する。   According to this configuration, the micro / nano bubbles stay in the water for a long time and increase the oxygen concentration of the treated water, so that the aerobic microorganisms in the nitrification tank are activated. This improves the efficiency of oxidative decomposition of ammonia nitrogen and nitrite nitrogen in the nitrification tank of aerobic microorganisms.

また、本発明の排水処理装置において、前記硝化槽は、前記液中膜が設置され、前記曝気装置によって曝気される好気部を構成する上部と、前記曝気装置の下方にあって曝気されない半嫌気部を構成する下部とからなり、前記脱窒槽の排水が前記半嫌気部に導入されるものとしてもよい。   Further, in the wastewater treatment apparatus of the present invention, the nitrification tank is provided with the submerged film, and is an upper part constituting an aerobic part that is aerated by the aeration apparatus and a lower part of the aeration apparatus that is not aerated. It is good also as what consists of the lower part which comprises an anaerobic part, and the waste_water | drain of the said denitrification tank is introduce | transduced into the said semi-anaerobic part.

この構成によれば、嫌気性の脱窒槽と硝化槽の好気部との間に半嫌気部を設けたので微生物に対する環境変化が穏やかであり、微生物の活動を活発に維持して高濃度窒素排水を効率よく処理できる。   According to this configuration, since the semi-anaerobic part is provided between the anaerobic denitrification tank and the aerobic part of the nitrification tank, the environmental change with respect to microorganisms is gentle, and the activity of microorganisms is actively maintained to maintain high concentration nitrogen. Effluent can be treated efficiently.

また、本発明の排水処理装置において、前記半嫌気部の底部がホッパー状をしており、前記半嫌気部の底部の汚泥を前記脱窒槽の底部に返送するポンプを有し、窒素を含有する排水が前記脱窒槽の底部に導入されれば、底部であるが故汚泥中の高濃度微生物が高濃度の硝酸性窒素を脱窒処理する場合に、微生物に対するストレスが少なく、処理効率が高くなる。   Further, in the waste water treatment apparatus of the present invention, the bottom of the semi-anaerobic part has a hopper shape, and has a pump for returning sludge at the bottom of the semi-anaerobic part to the bottom of the denitrification tank, and contains nitrogen If wastewater is introduced into the bottom of the denitrification tank, when high-concentration microorganisms in the sludge at the bottom denitrify high-concentration nitrate nitrogen, there is less stress on the microorganisms and treatment efficiency increases. .

また、本発明の排水処理装置において、前記曝気装置が、前記脱窒槽と前記硝化槽との間に設けたバブル発生槽に設置したマイクロナノバブル発生装置を含んでいれば、マイクロナノバブルの発生状況を目視により確認しながら排水の状態に合わせて適切な曝気ができるので、多様な排水を処理できる。   Further, in the wastewater treatment apparatus of the present invention, if the aeration apparatus includes a micro-nano bubble generation apparatus installed in a bubble generation tank provided between the denitrification tank and the nitrification tank, the generation status of micro-nano bubbles is determined. Appropriate aeration can be performed according to the state of the wastewater while visually confirming it, so that various wastewater can be treated.

また、本発明の排水処理装置において、前記液中膜が限外濾過膜であれば、pH調整後の排水の処理に悪影響を与える浮遊物質が処理水に含まれない。   Further, in the wastewater treatment apparatus of the present invention, if the submerged membrane is an ultrafiltration membrane, suspended matter that adversely affects the treatment of wastewater after pH adjustment is not included in the treated water.

また、本発明の排水処理装置において、前記脱窒槽に生物処理した処理水または生物処理汚泥を導入すれば、微生物の活動に必要なミネラルが供給できるので処理効率を高く維持できる。   Further, in the wastewater treatment apparatus of the present invention, if treated water or biologically treated sludge is introduced into the denitrification tank, minerals necessary for the activity of microorganisms can be supplied, so that the treatment efficiency can be maintained high.

また、本発明の排水処理装置は、前記硝化槽のpHをアルカリ性に保つように前記曝気装置の曝気量を制御する制御手段を有すれば、酸性排水を効率よく処理できる。   Moreover, if the waste water treatment apparatus of this invention has a control means which controls the amount of aeration of the said aeration apparatus so that pH of the said nitrification tank may be kept alkaline, it can treat acidic waste water efficiently.

また、本発明の排水処理装置において、前記pH調整槽のpHが低いときは、前記曝気装置の曝気量を少なくすれば硝化槽のpHが高くなるので、処理水で前記pH調整槽のpHを適正な値に調整できる。   Further, in the wastewater treatment apparatus of the present invention, when the pH of the pH adjustment tank is low, the pH of the nitrification tank becomes high if the aeration amount of the aeration apparatus is reduced. It can be adjusted to an appropriate value.

また、本発明の排水処理装置において、前記窒素処理装置で処理した処理水の流量が低下したときは、前記曝気装置の曝気量を多くすれば、液中膜の付着物を空気の泡で除去して液中膜の閉塞を解消できるので処理水の流量を確保できる。   Further, in the wastewater treatment apparatus of the present invention, when the flow rate of treated water treated by the nitrogen treatment apparatus decreases, if the aeration amount of the aeration apparatus is increased, the deposits in the submerged film are removed with air bubbles. In addition, since the clogging of the submerged membrane can be eliminated, the flow rate of the treated water can be secured.

また、本発明の排水処理装置において、前記窒素処理装置で処理した処理水の流量が低下したときは、硝化槽の水位を高くすれば、水頭差によって処理水の排出圧力を高めて処理水の流量を確保できる。   Further, in the wastewater treatment apparatus of the present invention, when the flow rate of the treated water treated by the nitrogen treatment apparatus is lowered, if the water level of the nitrification tank is increased, the discharge pressure of the treated water is increased due to the water head difference and the treated water is discharged. A flow rate can be secured.

また、本発明の排水処理装置において、前記窒素処理装置に、高濃度アンモニア含有排水、または、現像廃液が導入されても、脱窒槽と硝化槽で披処理水中のアンモニアや窒素化合物を窒素を処理できる。   Further, in the wastewater treatment apparatus of the present invention, even if high-concentration ammonia-containing wastewater or development waste liquid is introduced into the nitrogen treatment apparatus, ammonia and nitrogen compounds in the treated water are treated with nitrogen in the denitrification tank and nitrification tank. it can.

また、本発明の排水処理装置は、前記pH調整槽にはフッ素を含有する排水が導入され、前記pH調整槽でpHを調整した排水中のフッ素を難溶性のフッ化物として分離するフッ素処理装置を備え、前記フッ素処理装置で処理した排水を、前記窒素処理装置に導入してもよい。   Moreover, the wastewater treatment apparatus of the present invention is a fluorine treatment apparatus in which wastewater containing fluorine is introduced into the pH adjusting tank, and fluorine in the wastewater whose pH is adjusted in the pH adjusting tank is separated as hardly soluble fluoride. The waste water treated by the fluorine treatment device may be introduced into the nitrogen treatment device.

この構成によれば、排水のpHを適切な値に調整してフッ素を除去した後に残留するミネラル分を窒素を除去する微生物に消費させるので、フッ素を含む排水と窒素を含む排水を複合的に効率よく処理できる。   According to this configuration, since the mineral content remaining after removing the fluorine by adjusting the pH of the wastewater to an appropriate value is consumed by the microorganisms that remove nitrogen, wastewater containing fluorine and wastewater containing nitrogen are combined. Can be processed efficiently.

また、本発明の排水処理装置において、前記フッ素処理装置は、リン酸カルシウム塩類からなるフッ素難溶性物質形成剤を充填した晶析物反応塔であればフッ素を効率よく処理でき、さらに、リン酸を含むフッ素難溶性物質形成補助剤を注入する装置を有すればフッ素をより高度に処理できる。   In the wastewater treatment apparatus of the present invention, the fluorine treatment apparatus can efficiently treat fluorine as long as it is a crystallized substance reaction column filled with a poorly soluble fluorine-containing substance forming agent made of calcium phosphate salts, and further contains phosphoric acid. If a device for injecting a fluorine-insoluble substance forming auxiliary agent is provided, fluorine can be processed to a higher degree.

また、本発明の排水処理装置において、前記pH調整槽は、排水に難溶性物質形成剤を投入して難溶性のフッ化物を形成し、排水からフッ素を分離するフッ素処理装置の一部を構成する水槽であり、前記フッ素処理装置で処理した排水を、前記窒素処理装置に導入すれば、高濃度のフッ素を含有する排水を処理できる。   Further, in the wastewater treatment apparatus of the present invention, the pH adjusting tank constitutes a part of a fluorine treatment apparatus that forms a poorly soluble fluoride by introducing a poorly soluble substance forming agent into the wastewater and separates fluorine from the wastewater. If wastewater treated by the fluorine treatment device is introduced into the nitrogen treatment device, wastewater containing high concentration of fluorine can be treated.

また、本発明の排水処理装置の前記フッ素処理装置において、リン酸を含むフッ素難溶性物質形成補助剤を投入すれば、より高度にフッ素を除去できる。   Moreover, in the said fluorine treatment apparatus of the waste water treatment apparatus of this invention, if a fluorine poorly soluble substance formation adjuvant containing phosphoric acid is thrown in, fluorine can be removed more highly.

また、本発明の排水処理装置において、前記フッ素処理装置で分離した難溶性のフッ化物の少なくとも一部分を、前記窒素処理装置に導入すれば、フッ化物の粒子が前記硝化槽の液中膜の目詰まりを防止する。   Further, in the wastewater treatment apparatus of the present invention, if at least a part of the sparingly soluble fluoride separated by the fluorine treatment apparatus is introduced into the nitrogen treatment apparatus, the fluoride particles are in the submerged membrane of the nitrification tank. Prevent clogging.

また、本発明の排水処理装置において、排水からリンを除去可能なリン除去装置を備え、前記フッ素処理装置で処理した排水を前記リン除去装置を介して前記窒素処理装置に導入すれば、前記窒素処理装置の微生物が消費しきれない量のリンが処理水に残留することがない。   Further, in the wastewater treatment apparatus of the present invention, if the phosphorus removal apparatus capable of removing phosphorus from wastewater is provided, and the wastewater treated by the fluorine treatment apparatus is introduced into the nitrogen treatment apparatus via the phosphorus removal apparatus, the nitrogen An amount of phosphorus that cannot be consumed by the microorganisms in the treatment apparatus does not remain in the treated water.

また、本発明の排水処理装置において、前記フッ素処理装置において、リン濃度(重量換算)がフッ素濃度の1.2倍以上になるようにリン化合物を投入すれば、フッ素をアパタイトに固定した後に残るリンを、前記窒素処理装置の微生物の栄養源にすることができる。   Further, in the wastewater treatment apparatus of the present invention, in the fluorine treatment apparatus, if a phosphorus compound is introduced so that the phosphorus concentration (weight conversion) is 1.2 times or more of the fluorine concentration, the fluorine remains in the apatite. Phosphorus can be a nutrient source for microorganisms in the nitrogen treatment apparatus.

また、本発明の排水処理装置において、前記pH調整槽に導入される排水は、バッファードフッ酸を含有する排水またはバッファードフッ酸を含有する排水を1次処理した後の排水であっても、排水中のフッ素とアンモニアの両方を複合的に処理できる。   Moreover, in the waste water treatment apparatus of the present invention, the waste water introduced into the pH adjusting tank may be waste water containing buffered hydrofluoric acid or waste water after primary treatment of waste water containing buffered hydrofluoric acid. In addition, both fluorine and ammonia in wastewater can be treated in a complex manner.

また、本発明による排水処理方法は、処理すべき排水のpHを、後工程である排水から窒素を除去する窒素処理工程で処理した処理水を加えることで調整する。   Moreover, the waste water treatment method by this invention adjusts the pH of the waste water which should be processed by adding the treated water processed by the nitrogen treatment process which removes nitrogen from the waste water which is a post process.

この方法によれば、排水処理に要するアルカリ剤などのpH処理剤の消費が少なくて済み、経済的である。   According to this method, the consumption of a pH treating agent such as an alkaline agent required for wastewater treatment can be reduced, which is economical.

また、本発明の排水処理方法において、前記窒素処理工程は、排水を嫌気性の脱窒槽と曝気装置で曝気される硝化槽とに順に導入する工程であり、前記硝化槽は、処理水を濾過して排出する液中膜を有してもよい。   In the wastewater treatment method of the present invention, the nitrogen treatment step is a step of sequentially introducing wastewater into an anaerobic denitrification tank and a nitrification tank that is aerated by an aeration apparatus, and the nitrification tank filters the treated water. Then, it may have a submerged membrane that is discharged.

この方法によれば、硝化槽から排出される処理水のpHを6から9の間で制御可能であり、原水や一次処理した排水のpH調整が可能である。   According to this method, the pH of the treated water discharged from the nitrification tank can be controlled between 6 and 9, and the pH of the raw water and the waste water subjected to the primary treatment can be adjusted.

また、本発明の排水処理方法において、前記曝気装置は、マイクロナノバブル発生装置を含んでもよい。   In the wastewater treatment method of the present invention, the aeration apparatus may include a micro / nano bubble generating apparatus.

この構成によれば、マイクロナノバブルが水中に長く留まり、処理水の酸素濃度を高めるので、硝化槽における好気性微生物が活性化される。これによって、好気性微生物の硝化槽におけるアンモニア性窒素や亜硝酸性窒素の酸化分解の効率が向上する。   According to this configuration, the micro / nano bubbles stay in the water for a long time and increase the oxygen concentration of the treated water, so that the aerobic microorganisms in the nitrification tank are activated. This improves the efficiency of oxidative decomposition of ammonia nitrogen and nitrite nitrogen in the nitrification tank of aerobic microorganisms.

また、本発明の排水処理方法において、前記曝気装置は、前記脱窒槽と前記硝化槽との間に設けたバブル発生槽内に設置したマイクロナノバブル発生装置を含み、前記曝気を、前記脱窒槽の排水を前記バブル発生槽に導入し、前記マイクロナノバブル発生装置によって排水中にマイクロナノバブルを発生させてから前記硝化槽に導入して行えば、マイクロナノバブルの発生状況を目視によって確認しながら排水の状態に合わせて運用できるので、多様な排水を処理できる。   Moreover, in the wastewater treatment method of the present invention, the aeration apparatus includes a micro / nano bubble generation apparatus installed in a bubble generation tank provided between the denitrification tank and the nitrification tank, and the aeration is performed in the denitrification tank. If the wastewater is introduced into the bubble generation tank and micronanobubbles are generated in the wastewater by the micronanobubble generator and then introduced into the nitrification tank, the state of the wastewater is confirmed while visually confirming the micronanobubble generation status. Because it can be operated according to the situation, it can treat a variety of wastewater.

また、本発明の排水処理方法において、前記硝化槽のpHをアルカリ性に保つように前記曝気装置の曝気量を制御すれば、酸性排水を中和するためのアルカリ剤が節約できる。   Further, in the wastewater treatment method of the present invention, if the aeration amount of the aeration apparatus is controlled so as to keep the pH of the nitrification tank alkaline, an alkaline agent for neutralizing acidic wastewater can be saved.

また、本発明の排水処理方法において、処理すべき排水のpHが低いときは、前記曝気装置の曝気量を少なくすれば、前記硝化槽のpHが高くなるので、導入する処理水の量を少なくでき、処理すべき排水の量が必要以上に多くならない。   In the wastewater treatment method of the present invention, when the pH of the wastewater to be treated is low, if the aeration amount of the aeration apparatus is reduced, the pH of the nitrification tank is increased, so that the amount of treated water to be introduced is reduced. The amount of wastewater to be treated is not more than necessary.

また、本発明の排水処理方法において、前記pHを調整した排水に難溶性物質形成剤を投入して形成した難溶性のフッ化物を分離するフッ素処理工程で処理してから前記脱窒槽に導入すれば、フッ素と窒素の両方を除去できる。   Further, in the wastewater treatment method of the present invention, the wastewater whose pH has been adjusted is introduced into the denitrification tank after being treated in a fluorine treatment step of separating the hardly soluble fluoride formed by introducing a poorly soluble substance forming agent. For example, both fluorine and nitrogen can be removed.

また、本発明の排水処理方法の前記フッ素処理工程において、リン酸を含有するフッ素難溶性物質形成補助剤を投入すれば、フッ素を高度に処理できる。   Moreover, in the said fluorine treatment process of the waste water treatment method of this invention, if the fluorine poorly soluble substance formation adjuvant containing phosphoric acid is thrown in, a fluorine can be processed highly.

また、本発明の排水処理方法において、前記フッ素難処理工程において、リン濃度(重量換算)がフッ素濃度の1.2倍以上になるようにリン化合物を投入し、残留するリンを前記窒素処理工程において微生物に消費させれば、高度のフッ素処理と高効率の窒素処理が実現される。   Further, in the wastewater treatment method of the present invention, in the fluorine difficult treatment step, a phosphorus compound is added so that the phosphorus concentration (weight conversion) is 1.2 times or more of the fluorine concentration, and residual phosphorus is removed from the nitrogen treatment step. If it is consumed by microorganisms, high fluorine treatment and highly efficient nitrogen treatment can be realized.

また、本発明の排水処理方法において、前記フッ素処理工程で分離した難溶性のフッ化物の一部を前記脱窒槽または前記硝化槽に導入すれば、フッ化物の粒子が硝化槽の液中膜の詰まりを防止する。   Further, in the wastewater treatment method of the present invention, if a part of the hardly soluble fluoride separated in the fluorine treatment step is introduced into the denitrification tank or the nitrification tank, the fluoride particles are formed in the submerged membrane of the nitrification tank. Prevent clogging.

また、本発明の排水処理方法において、前記硝化槽は、前記液中膜が設置され、前記曝気装置で曝気される好気部を構成する上部と、前記曝気装置の下方にあって曝気されない半嫌気部を構成する下部とからなり、前記脱窒槽の排水を前記半嫌気部に導入すれば、微生物に対する環境変化が穏やかであり、微生物の活発な活動を維持して窒素処理の効率を高くできる。   Further, in the wastewater treatment method of the present invention, the nitrification tank is provided with the submerged membrane and is located above the upper part of the aerobic part to be aerated by the aeration apparatus and below the aeration apparatus and is not aerated. If the waste water from the denitrification tank is introduced into the semi-anaerobic part, the environmental change with respect to microorganisms is moderate, and the active activity of microorganisms can be maintained and the efficiency of nitrogen treatment can be increased. .

また、本発明の排水処理方法において、前記半嫌気部の底部がホッパー状をしており、前記半嫌気部の底部の汚泥を前記脱窒槽の底部に返送すれば、汚泥中の高濃度の微生物が高濃度の窒素化合物を脱窒するので微生物のストレスが少なく、処理効率が高くなる。   Further, in the wastewater treatment method of the present invention, the bottom of the semi-anaerobic part has a hopper shape, and if the sludge at the bottom of the semi-anaerobic part is returned to the bottom of the denitrification tank, high-concentration microorganisms in the sludge Denitrifies high-concentration nitrogen compounds, reducing the stress of microorganisms and increasing the treatment efficiency.

また、本発明の排水処理方法において、前記脱窒槽に、前記フッ素処理装置で処理した処理水の他に、高濃度窒素排水と、生物処理した処理水または生物処理汚泥とを導入すれば、微生物の活動に必要なミネラルが供給できるので窒素処理装置の処理効率を高く維持できる。   Further, in the wastewater treatment method of the present invention, if high-concentration nitrogen wastewater and biologically treated water or biologically treated sludge are introduced into the denitrification tank in addition to the treated water treated by the fluorine treatment apparatus, microorganisms Since the minerals necessary for this activity can be supplied, the treatment efficiency of the nitrogen treatment device can be maintained high.

以上のように、本発明によれば、熱処理を行わないのでエネルギー消費量が小さく、処理後の処理水で処理前の排水のpHを調整するのでアルカリ剤の消費も少なく、ランニングコストが低い。また、本発明によって、排水処理の総合的な効率化と高度処理化が実現できる。   As described above, according to the present invention, since heat treatment is not performed, the energy consumption is small, and the pH of the waste water before treatment is adjusted with the treated water after treatment, so that the consumption of the alkaline agent is small and the running cost is low. Further, according to the present invention, comprehensive efficiency and advanced treatment of wastewater treatment can be realized.

これより、本発明による排水処理装置および排水処理方法を、実施形態を図示しながら説明する。
図1は、本発明の第1実施形態の排水処理装置のフローシートである。本実施形態の排水処理装置は、フッ素含有排水を受け入れてpH調整をするフッ素系原水槽(pH調整槽)1と、フッ素処理装置2と、脱窒槽3および硝化槽4からなる窒素処理装置5とからなっている。
From this, the waste water treatment apparatus and waste water treatment method by this invention are demonstrated, showing embodiment.
FIG. 1 is a flow sheet of the waste water treatment apparatus according to the first embodiment of the present invention. The wastewater treatment apparatus of this embodiment is a nitrogen treatment apparatus 5 comprising a fluorine-based raw water tank (pH adjustment tank) 1 that receives fluorine-containing wastewater and adjusts pH, a fluorine treatment apparatus 2, a denitrification tank 3, and a nitrification tank 4. It is made up of.

pH調整槽1には、バッファードフッ酸廃液などのフッ素含有排水が導入される。また、pH調整槽1には、攪拌機6と排水のpHを測定するpH計7が設けられている。pH調整槽1に貯留された排水は、ポンプ8で引き抜かれてフッ素処理装置2に送られる。   Fluorine-containing wastewater such as buffered hydrofluoric acid waste liquid is introduced into the pH adjustment tank 1. The pH adjusting tank 1 is provided with a stirrer 6 and a pH meter 7 for measuring the pH of the waste water. The wastewater stored in the pH adjustment tank 1 is drawn out by the pump 8 and sent to the fluorine treatment apparatus 2.

フッ素処理装置2は、顆粒状のリン酸カルシウム塩類が充填された晶析物反応塔であり、リン酸を含む酸からなるフッ素難溶性物質形成補助剤が貯蔵された難溶性物質形成補助剤タンク9と、難溶性物質形成補助剤タンク9からフッ素難溶性物質形成補助剤を晶析物反応塔2に注入するための難溶性物質形成補助剤注入ポンプ10とを有している。晶析物反応塔2から流出する排水は、脱窒槽3に導入される。   The fluorine treatment apparatus 2 is a crystallized product reaction tower filled with granular calcium phosphate salts, and a hardly soluble substance forming auxiliary agent tank 9 in which a fluorine hardly soluble substance forming auxiliary agent made of an acid containing phosphoric acid is stored. And a poorly soluble substance formation auxiliary agent injection pump 10 for injecting a fluorine poorly soluble substance formation auxiliary agent from the hardly soluble substance formation auxiliary agent tank 9 into the crystallized product reaction tower 2. Waste water flowing out from the crystallized product reaction tower 2 is introduced into the denitrification tank 3.

脱窒槽3には、晶析物反応塔2で処理した排水に加え、高濃度のアンモニアを含有する廃液や現像廃液などの高濃度窒素排水と、合弁浄化槽の処理水などの生物処理した処理水または生物処理汚泥と、アミノエタノール含有排水とが導入される。脱窒槽3は、攪拌機11を備えるが、酸素は供給されず、嫌気性の微生物(脱窒菌)が繁殖する。脱窒槽3からオーバーフローした排水は、連通管12を通して硝化槽4の底部に流入する。   In the denitrification tank 3, in addition to the wastewater treated in the crystallized product reaction tower 2, high-concentration nitrogen drainage such as waste liquid containing a high concentration of ammonia and development waste liquid, and biologically treated treated water such as treated water in the joint septic tank Alternatively, biological treatment sludge and aminoethanol-containing wastewater are introduced. The denitrification tank 3 includes a stirrer 11, but oxygen is not supplied, and anaerobic microorganisms (denitrification bacteria) are propagated. Waste water overflowed from the denitrification tank 3 flows into the bottom of the nitrification tank 4 through the communication pipe 12.

硝化槽4は、分離壁13によって排水の移動が制限され、上方の好気部14と下方の半嫌気部15とに区分されている。好気部14には曝気装置16が設けられブロワー17から送り込まれた空気を液中に放出して酸素が供給される。また、ブロワー17からの空気を利用したエアリフトポンプ18は、硝化槽4の半嫌気部15の底部に沈殿する汚泥を脱窒槽3に返送するようになっている。また、硝化槽4の好気部14には、限外濾過膜からなる液中膜19が設けられ、好気部14に滞留する被処理水を濾過してから浮遊固形分や微生物を取り除いた処理水が重力によって、または、ポンプ20によって流量計21を介して排出される。また、液中膜19を介してポンプ22で抜き出した処理水は、pH調整槽1に導入される。   In the nitrification tank 4, the movement of the drainage is restricted by the separation wall 13 and is divided into an upper aerobic part 14 and a lower semi-anaerobic part 15. The aerobic unit 14 is provided with an aeration device 16, and the air sent from the blower 17 is discharged into the liquid and supplied with oxygen. Further, the air lift pump 18 using the air from the blower 17 returns the sludge that precipitates at the bottom of the semi-anaerobic portion 15 of the nitrification tank 4 to the denitrification tank 3. Further, the aerobic part 14 of the nitrification tank 4 is provided with a submerged film 19 made of an ultrafiltration membrane, and the water to be treated staying in the aerobic part 14 is filtered and suspended solids and microorganisms are removed. The treated water is discharged by gravity or by the pump 20 via the flow meter 21. The treated water extracted by the pump 22 through the submerged film 19 is introduced into the pH adjustment tank 1.

続いて、以上の構成からなる排水処理装置の処理操作を説明する。
pH調整槽1に導入されるフッ素含有排水は酸性を示すが、pH調整槽1においてpH6.5〜8.5に調整される。高濃度窒素排水を処理する窒素処理装置5の硝化槽4の処理水はアンモニア性窒素によってpH9程度のアルカリ性を示すため、pH調整槽1における排水のpH調整は、ポンプ22によって硝化槽4の処理水をpH調整槽1に導入することで実現される。勿論、アルカリ剤を併用してもかまわない。
Subsequently, a treatment operation of the wastewater treatment apparatus having the above configuration will be described.
The fluorine-containing wastewater introduced into the pH adjusting tank 1 is acidic, but is adjusted to pH 6.5 to 8.5 in the pH adjusting tank 1. Since the treated water in the nitrification tank 4 of the nitrogen treatment apparatus 5 that treats high-concentration nitrogen wastewater exhibits an alkaline property of about pH 9 due to ammonia nitrogen, the pH adjustment of the wastewater in the pH adjustment tank 1 is performed by the pump 22 in the treatment of the nitrification tank 4. This is realized by introducing water into the pH adjustment tank 1. Of course, an alkali agent may be used in combination.

pH調整槽1でpHを調整した排水は、ポンプ8で晶析物反応塔2に送り込まれる。予めリン酸を含むフッ素難溶性物質形成補助剤が難溶性物質形成補助剤注入ポンプ10によって注入された排水中のフッ素は、晶析物反応塔2の内部に充填されたフッ素難溶性物質形成剤と反応して、フッ素難溶性物質(リンおよびカルシウムと結合した難溶性のフッ化物であるアパタイト)を形成する。フッ素難溶性物質はフッ素難溶性物質形成剤の表面に付着して成長する結果、晶析物反応塔2の内部で排水中のフッ素が除去される。   The wastewater whose pH is adjusted in the pH adjusting tank 1 is sent to the crystallized product reaction tower 2 by the pump 8. The fluorine in the waste water into which the fluorine poorly soluble substance forming auxiliary agent containing phosphoric acid has been previously injected by the poorly soluble substance forming auxiliary agent injection pump 10 is the fluorine poorly soluble substance forming agent filled in the crystallized substance reaction tower 2. To form a fluorine poorly soluble substance (apatite, which is a poorly soluble fluoride combined with phosphorus and calcium). As a result of the poorly fluorine-soluble substance growing on the surface of the fluorine-insoluble substance forming agent, fluorine in the waste water is removed inside the crystallized product reaction tower 2.

難溶性物質形成補助剤注入ポンプ10で注入するフッ素難溶性物質形成補助剤の量は、リン濃度(重量換算)がフッ素濃度の1.2倍以上になるように定める。この量は、晶析物反応塔2において、排水中のフッ素を全て難溶性物質に固定したときに消費されるよりもリン濃度を高くすることを意味する。これによって、フッ素難溶性物質の形成を最大限に促進することができ、フッ素を高度に除去できる。   The amount of the poorly soluble substance formation auxiliary agent injected by the hardly soluble substance formation auxiliary agent injection pump 10 is determined so that the phosphorus concentration (weight conversion) is 1.2 times or more the fluorine concentration. This amount means that the phosphorus concentration is higher than that consumed in the crystallized product reaction tower 2 when all the fluorine in the wastewater is fixed to the hardly soluble substance. As a result, formation of a fluorine-insoluble substance can be promoted to the maximum, and fluorine can be highly removed.

フッ素が除去された排水は、窒素処理装置5の脱窒槽3に導入される。さらに、脱窒槽3には、高濃度窒素排水、生物処理した処理水または生物処理汚泥、アミノエタノール含有排水が導入される。   The waste water from which the fluorine has been removed is introduced into the denitrification tank 3 of the nitrogen treatment device 5. Further, high-concentration nitrogen wastewater, biologically treated water or biologically treated sludge, and aminoethanol-containing wastewater are introduced into the denitrification tank 3.

脱窒槽3では、排水中の酸素が全て消費され、嫌気性微生物である脱窒菌が増殖する。嫌気性微生物は、晶析物反応塔2でフッ素と共に固定されずに残留しているリンと、生物処理した処理水または生物処理汚泥に含まれるミネラルを栄養として消費しながら排水中の窒素を窒素ガスに還元する。つまり、晶析物反応塔2において含有するフッ素を除去するのに必要な量を超えてフッ素難溶性物質形成補助剤を注入することで、嫌気性微生物の活動に必要な栄養を付加でき、脱窒槽3における窒素の還元が促進できる。   In the denitrification tank 3, all the oxygen in the waste water is consumed, and denitrifying bacteria that are anaerobic microorganisms grow. Anaerobic microorganisms use nitrogen remaining in the effluent while consuming the phosphorus contained in the crystallized substance reaction tower 2 without being fixed together with fluorine and the minerals contained in the biologically treated water or biologically treated sludge as nutrients. Reduce to gas. That is, by injecting a fluorine-insoluble substance forming auxiliary agent in excess of the amount necessary for removing fluorine contained in the crystallized product reaction tower 2, it is possible to add nutrients necessary for the activity of anaerobic microorganisms. Reduction of nitrogen in the nitrogen tank 3 can be promoted.

また、半導体工場において排出されるアミノエタノール含有排水中のアミノエタノールは嫌気性微生物の活動に必要な水素供与体として作用するが、アミノエタノール含有排水がなければメタノールを使用してもよい。   In addition, aminoethanol contained in the wastewater containing aminoethanol discharged at the semiconductor factory acts as a hydrogen donor necessary for the activity of anaerobic microorganisms, but methanol may be used if there is no wastewater containing aminoethanol.

また、脱窒槽3では、窒素以外の有機物も嫌気性微生物によって生化学的に分解される。しかしながら、嫌気性微生物は、アンモニア性窒素だけは分解することができず、脱窒槽3からはアンモニア性窒素を含有する排水がオーバーフローし、連通管12を通して硝化槽4の半嫌気部15に導入される。   In the denitrification tank 3, organic substances other than nitrogen are also biochemically decomposed by anaerobic microorganisms. However, anaerobic microorganisms cannot decompose only ammonia nitrogen, and waste water containing ammonia nitrogen overflows from the denitrification tank 3 and is introduced into the semi-anaerobic portion 15 of the nitrification tank 4 through the communication pipe 12. The

硝化槽4の半嫌気部15は、曝気装置16によって酸素が供給された好気部14から僅かながら酸素が供給され、0.5ppm以下の溶存酸素を含む。この条件では、脱窒槽3から供給された嫌気性微生物は、急激な環境変化に晒されることがないので活動が極端に低下しない。そして、硝化槽5の底部に沈殿した嫌気性微生物の濃度が高い汚泥は、活性を維持したままエアリフトポンプ18によって脱窒槽3に返送される。このとき、エアリフトポンプ18で供給される酸素は微生物の量に比して少量であり、すぐに消費されるので、脱窒槽3の溶存酸素が増加することはない。   The semi-anaerobic part 15 of the nitrification tank 4 is slightly supplied with oxygen from the aerobic part 14 supplied with oxygen by the aeration device 16 and contains 0.5 ppm or less of dissolved oxygen. Under this condition, the anaerobic microorganisms supplied from the denitrification tank 3 are not exposed to a rapid environmental change, so that the activity is not extremely reduced. The sludge having a high concentration of anaerobic microorganisms precipitated at the bottom of the nitrification tank 5 is returned to the denitrification tank 3 by the air lift pump 18 while maintaining the activity. At this time, the amount of oxygen supplied by the air lift pump 18 is small compared to the amount of microorganisms and is consumed immediately, so that the dissolved oxygen in the denitrification tank 3 does not increase.

好気部14では、曝気装置16の曝気によってアンモニア性窒素を硝酸性窒素に酸化分解する硝化が行われる。硝化された硝酸性窒素は、エアリフトポンプ18によって汚泥と共に脱窒槽3に返送され、嫌気性微生物によって窒素ガスに還元される。   In the aerobic section 14, nitrification is performed by oxidizing and decomposing ammoniacal nitrogen into nitrate nitrogen by aeration of the aeration device 16. Nitrified nitrate nitrogen is returned to the denitrification tank 3 together with sludge by an air lift pump 18 and reduced to nitrogen gas by anaerobic microorganisms.

また、硝化槽5の好気部14で液中膜19によって濾過された処理水は自重によって流量計21を通って次の処理工程に送られる。しかし、液中膜19の開口が微生物や不溶性浮遊物によって目詰まりを起こすと流れ出す処理水の水量が少なくなる。そこで、ポンプ20による強制的な濾過排出を併用することで、適切な処理水の流出量を確保するようになっている。   Moreover, the treated water filtered by the submerged membrane 19 in the aerobic part 14 of the nitrification tank 5 is sent to the next treatment process through the flowmeter 21 by its own weight. However, when the opening of the submerged film 19 is clogged with microorganisms or insoluble suspended matter, the amount of treated water flowing out decreases. Therefore, an appropriate flow rate of treated water is ensured by using a forced filtration discharge by the pump 20 together.

硝化槽4は、上記のように、脱窒槽3から供給されるアンモニア性窒素を含んでいるためにアルカリ性に傾向しやすい。曝気装置16の曝気により硝酸性窒素に酸化分解されると酸性に傾向するが、ポンプ22がpH調整槽1に供給する処理水は、通常の条件ではアルカリ性であるので酸性のフッ素含有排水を中和するのに好都合である。   As described above, the nitrification tank 4 tends to be alkaline because it contains ammonia nitrogen supplied from the denitrification tank 3. Although it tends to be acidic when it is oxidatively decomposed into nitrate nitrogen by aeration of the aeration device 16, the treated water supplied to the pH adjusting tank 1 by the pump 22 is alkaline under normal conditions, so that acidic fluorine-containing wastewater is contained in the inside. Convenient to reconcile.

図2に、本実施形態の排水処理のタイミングチャートを示す。図2は、pH調整槽1に貯留されるフッ素含有排水のフッ素濃度が、6ppmであり、脱窒槽3に導入される晶析物反応塔(フッ素処理装置)2からの排水、高濃度窒素排水、生物処理した処理水または生物処理汚泥およびアミノエタノール含有排水の総合窒素濃度が46ppmである場合を示す。   In FIG. 2, the timing chart of the waste water treatment of this embodiment is shown. FIG. 2 shows that the fluorine concentration of the fluorine-containing wastewater stored in the pH adjusting tank 1 is 6 ppm, the wastewater from the crystallized substance reaction tower (fluorine treatment device) 2 introduced into the denitrification tank 3, and the high-concentration nitrogen wastewater. The case where the total nitrogen concentration of the biologically treated treated water or the biologically treated sludge and the aminoethanol-containing wastewater is 46 ppm is shown.

フッ素含有排水は、pH調整槽(原水槽)1でpHを調整されるが、ここでの滞留時間は約1時間である。ポンプ8は、排水が晶析物反応塔2を約1時間で通過するように駆動され、晶析物反応塔2を通過する間に排水中のフッ素が除去される。晶析物反応塔2からの排水、高濃度窒素排水、生物処理した処理水または生物処理汚泥は、脱窒槽3および硝化槽4を循環して分解処理されるが、脱窒槽3および硝化槽4での平均滞留時間はそれぞれ約4時間および約8時間である。   The pH of the fluorine-containing wastewater is adjusted in a pH adjusting tank (raw water tank) 1, and the residence time here is about 1 hour. The pump 8 is driven so that the wastewater passes through the crystallized product reaction tower 2 in about 1 hour, and fluorine in the wastewater is removed while passing through the crystallized product reaction tower 2. Waste water from the crystallized product reaction tower 2, high-concentration nitrogen waste water, treated water or biologically treated sludge is decomposed by circulating through the denitrification tank 3 and the nitrification tank 4, but the denitrification tank 3 and the nitrification tank 4 The average residence time at is about 4 hours and about 8 hours, respectively.

図3は、pH調整槽1に貯留されるフッ素含有排水のフッ素濃度が、12ppmであり、脱窒槽3に導入される晶析物反応塔(フッ素処理装置)2からの排水、高濃度窒素排水、生物処理した処理水または生物処理汚泥およびアミノエタノール含有排水の総合窒素濃度が92ppmである場合を示す。   FIG. 3 shows that the fluorine concentration of the fluorine-containing wastewater stored in the pH adjusting tank 1 is 12 ppm, the wastewater from the crystallized substance reaction tower (fluorine treatment device) 2 introduced into the denitrification tank 3, and the high-concentration nitrogen wastewater. The case where the total nitrogen concentration of the biologically treated treated water or the biologically treated sludge and the aminoethanol-containing wastewater is 92 ppm is shown.

フッ素含有排水は、pH調整槽1で水質を安定化させる為に約2時間滞留し、晶析物反応塔2を約4時間かけて通過する。晶析物反応塔2からの排水、高濃度窒素排水、生物処理した処理水または生物処理汚泥が導入される脱窒槽3および硝化槽4での平均滞留時間は、それぞれ約8時間および約16時間である。   The fluorine-containing wastewater stays for about 2 hours in order to stabilize the water quality in the pH adjusting tank 1 and passes through the crystallized product reaction tower 2 over about 4 hours. The average residence times in the denitrification tank 3 and the nitrification tank 4 into which the waste water from the crystallized product reaction tower 2, high-concentration nitrogen waste water, biologically treated water or biologically treated sludge are introduced are about 8 hours and about 16 hours, respectively. It is.

排水処理装置が時間あたりに除去できるフッ素および窒素の量は上限があるので、図2および図3に示すように、排水のフッ素濃度および窒素濃度に比例して排水の滞留時間を設定、つまり流量を変更する必要がある。   Since there is an upper limit on the amount of fluorine and nitrogen that can be removed per hour by the waste water treatment device, as shown in FIGS. 2 and 3, the residence time of the waste water is set in proportion to the fluorine concentration and nitrogen concentration of the waste water, that is, the flow rate. Need to be changed.

次に、図4に、本発明の第2実施形態を示す。以降、上記実施形態と同じ構成要素には同じ符号を付して説明を省略する。   Next, FIG. 4 shows a second embodiment of the present invention. Hereinafter, the same components as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態では、高濃度窒素排水および生物処理水や生活汚泥は、窒素系原水槽23に一度貯留され、ポンプ25で脱窒槽3の底部に供給される。   In the present embodiment, high-concentration nitrogen wastewater, biologically treated water and domestic sludge are stored once in the nitrogen-based raw water tank 23 and supplied to the bottom of the denitrification tank 3 by the pump 25.

窒素処理装置5の脱窒槽3および硝化槽4には、塩化ビニリデンからなる充填物26が配置されている。また、エアリフトポンプ18のために専用のブロワー27が設けられている。さらに、硝化槽4は、好気部14のpHを測定するpH計28を備える。   A filling 26 made of vinylidene chloride is disposed in the denitrification tank 3 and the nitrification tank 4 of the nitrogen treatment apparatus 5. A dedicated blower 27 is provided for the air lift pump 18. Furthermore, the nitrification tank 4 includes a pH meter 28 that measures the pH of the aerobic part 14.

また、晶析物反応塔2から排出される排水は、リン難溶性物質形成槽29を介して脱窒槽3に導入される。   Further, the waste water discharged from the crystallized product reaction tower 2 is introduced into the denitrification tank 3 through the phosphorus poorly soluble substance forming tank 29.

本実施形態では、窒素系原水槽23によって原水を均質化するとともに、窒素処理装置5への供給量を調節することが可能である。これにより、窒素処理装置5における排水の前記適正な滞留時間を確保するために導入量を調整でき、排水量の増減によって処理条件が変動せず、安定した窒素除去が可能である。また、脱窒槽3および硝化槽4の充填物26には、微生物が付着繁殖し、窒素処理装置5内の微生物が全体に高濃度になるので、排水処理能力が向上する。   In the present embodiment, the raw water is homogenized by the nitrogen-based raw water tank 23 and the supply amount to the nitrogen treatment device 5 can be adjusted. Thereby, in order to ensure the said appropriate residence time of the waste_water | drain in the nitrogen treatment apparatus 5, an introduction amount can be adjusted, a process condition does not fluctuate by increase / decrease in a waste_water | drain amount, and stable nitrogen removal is possible. In addition, microorganisms adhere to and propagate in the filling 26 of the denitrification tank 3 and the nitrification tank 4, and the microorganisms in the nitrogen treatment apparatus 5 become a high concentration as a whole, so that the wastewater treatment capacity is improved.

また、本実施形態は、硝化槽4の好気部のpHを9.0に保つように、曝気量を調節するためにブロワー17の出力を制御する制御手段を備える。曝気量を多くすればアンモニア性窒素の硝酸性窒素への酸化分解を促進してアルカリ度を下げることができ、曝気装置16の能力が十分に大きければ、アンモニア性窒素をほぼ硝酸性窒素に分解してpH5程度まで酸性化することも可能である。   Moreover, this embodiment is provided with the control means which controls the output of the blower 17 in order to adjust the amount of aeration so that pH of the aerobic part of the nitrification tank 4 may be maintained at 9.0. If the amount of aeration is increased, the oxidative decomposition of ammonia nitrogen to nitrate nitrogen can be promoted and the alkalinity can be lowered. If the capacity of the aeration device 16 is sufficiently large, ammonia nitrogen is decomposed into nitrate nitrogen. It is also possible to acidify to about pH 5.

リン難溶性物質形成槽29は、フッ素含有排水が最初から多量のリンを含有する場合に、窒素処理装置5において微生物が消費するリン含量を超えないようにするものであり、リン難溶性物質形成剤を投入して沈殿する難溶性のリン化合物を抜き出すことができる。これによって、リンが処理水に残留して後工程に流れることを防止できる。   When the fluorine-containing wastewater contains a large amount of phosphorus from the beginning, the phosphorus-poorly soluble substance forming tank 29 prevents the phosphorus content consumed by microorganisms in the nitrogen treatment apparatus 5 from being formed. The poorly soluble phosphorus compound that precipitates when the agent is added can be extracted. This can prevent phosphorus from remaining in the treated water and flowing to the subsequent process.

図5に、本発明の第3実施形態を示す。
本実施形態は、以下に特記する以外は、図1の第1実施形態に図4の窒素系原水槽23を備えた装置と同じである。硝化槽4の半嫌気部15は、円錐形のホッパー形状をしており、半嫌気部15の底部の汚泥は電動のポンプ30によって脱窒槽3の底部に返送される。また、硝化槽4は、水位を検出するレベルスイッチ31を有している。
FIG. 5 shows a third embodiment of the present invention.
This embodiment is the same as the apparatus provided with the nitrogen-based raw water tank 23 of FIG. 4 in the first embodiment of FIG. 1 except as noted below. The semi-anaerobic part 15 of the nitrification tank 4 has a conical hopper shape, and the sludge at the bottom of the semi-anaerobic part 15 is returned to the bottom of the denitrification tank 3 by an electric pump 30. The nitrification tank 4 has a level switch 31 for detecting the water level.

本実施形態では、液中膜19が目詰まりして硝化槽4からの処理水の流量が少なくなった場合、液中膜19の直下に設けた曝気装置16の曝気量を多くするように、ブロワー17の出力を大きくする。これによって、液中膜19の表面に付着した微生物や不溶性浮遊物を空気の泡によって取り除く。   In the present embodiment, when the submerged film 19 is clogged and the flow rate of the treated water from the nitrification tank 4 is reduced, the aeration amount of the aeration apparatus 16 provided immediately below the submerged film 19 is increased. Increase the output of the blower 17. As a result, microorganisms and insoluble suspended matters adhering to the surface of the submerged film 19 are removed by air bubbles.

それでも処理水の流量が確保できない場合、硝化槽4の液面を高くするように、ポンプ30の吐出量を少なくして、水頭差によって処理水の流量を確保することができる。   Even if the flow rate of the treated water cannot be ensured, the discharge amount of the pump 30 can be reduced so that the liquid level of the nitrification tank 4 is increased, and the flow rate of the treated water can be ensured by the water head difference.

また、半嫌気部15の円錐形のホッパー形状により、最も微生物濃度が高い部分の汚泥を脱窒槽3に返送できる。また、汚泥を脱窒槽3の底部に返送することで、脱窒槽3内において窒素濃度と微生物濃度とが共に下方ほど高くなる。このため、各嫌気性微生物が分解すべき窒素の量にバラツキがないので、嫌気性微生物に対する負荷変動のストレス小さく、活性が維持される。   Further, due to the conical hopper shape of the semi-anaerobic portion 15, the sludge having the highest microorganism concentration can be returned to the denitrification tank 3. Further, by returning the sludge to the bottom of the denitrification tank 3, both the nitrogen concentration and the microorganism concentration in the denitrification tank 3 become higher in the lower part. For this reason, since there is no variation in the amount of nitrogen to be decomposed by each anaerobic microorganism, the activity is maintained with a small load fluctuation stress on the anaerobic microorganism.

図6に、本発明の第4実施形態を示す。
本実施形態は、以下に特記する以外は、図5の第3実施形態と同じである。本実施形態では、フッ素含有排水は、フッ素系原水槽32から、フッ素難溶性物質形成槽33、凝集槽34および沈殿槽35で構成されるフッ素処理装置36で処理されてから窒素処理装置5に導入される。フッ素難溶性物質形成槽33において、フッ素難溶性物質形成剤が投入されて攪拌機37で撹拌され、排水中のフッ素がアパタイトのような難溶性物質に固定され、難溶性物質の懸濁液になる。
FIG. 6 shows a fourth embodiment of the present invention.
This embodiment is the same as the third embodiment of FIG. 5 except as noted below. In the present embodiment, the fluorine-containing waste water is treated from the fluorine-based raw water tank 32 to the nitrogen treatment apparatus 5 after being treated by the fluorine treatment apparatus 36 including the fluorine hardly soluble substance forming tank 33, the aggregation tank 34, and the precipitation tank 35. be introduced. In the fluorine poorly soluble substance forming tank 33, the fluorine hardly soluble substance forming agent is charged and stirred by the stirrer 37, and the fluorine in the waste water is fixed to the hardly soluble substance such as apatite to become a suspension of the hardly soluble substance. .

この懸濁液が凝集槽(pH調整槽)34にオーバーフローし、高分子凝集剤が投入されて攪拌機38によって撹拌されると難溶性物質が凝集して大きな粒子のフロックとなる。さらにpH計39の検出結果を基に硝化槽4の処理水でpH調整される。そして、これを掻取り装置40を有する沈殿槽35で沈殿分離することでフッ素が除去された排水が脱窒槽3に導入される。   When this suspension overflows into the agglomeration tank (pH adjustment tank) 34 and a polymer flocculant is added and stirred by the stirrer 38, the hardly soluble substance aggregates to form large particle flocs. Further, the pH is adjusted with the treated water in the nitrification tank 4 based on the detection result of the pH meter 39. And the waste_water | drain from which the fluorine was removed is introduce | transduced into the denitrification tank 3 by carrying out precipitation separation in the precipitation tank 35 which has the scraping apparatus 40.

ここで、フッ素含有排水にカルシウムやリンが含まれている場合、フッ素難溶性物質形成剤は、排水中のフッ素をアパタイトに固定するに必要なカルシウムおよびリンを補う組成とする。   Here, when calcium and phosphorus are contained in the fluorine-containing wastewater, the fluorine-insoluble substance forming agent has a composition that supplements calcium and phosphorus necessary for fixing fluorine in the wastewater to the apatite.

沈殿槽35で沈殿したフロックのスラリーは、ポンプ41で引き抜かれるが、その一部分は、脱窒槽3および難溶性物質形成槽33にそれぞれ導入される。   The floc slurry precipitated in the settling tank 35 is pulled out by the pump 41, and a part thereof is introduced into the denitrification tank 3 and the hardly soluble substance forming tank 33.

本実施形態のフッ素処理装置は、装置構成が簡単でイニシャルコストが低く、充填物の寿命がある晶析物反応塔に比べてより多くのフッ素を除去することができ、充填物の取り替え作業がないのでランニングコストも低い。   The fluorine treatment apparatus of the present embodiment has a simple apparatus configuration, a low initial cost, can remove more fluorine than a crystallized substance reaction tower with a long packing life, and can replace the packing. Since there is no running cost.

また、脱窒槽3に導入されたフロックは、硝化槽4との間で循環するが、粒子が大きく、液中膜19に微生物汚泥や不溶性浮遊物質が付着するのを防止したり、付着した微生物汚泥や不溶性浮遊物質を掻き落としたりする効果がある。フロックは、脱窒槽3でなく硝化槽4に導入してもよい。   The floc introduced into the denitrification tank 3 circulates between the nitrification tank 4, but the particles are large and prevent microbial sludge and insoluble suspended matter from adhering to the submerged membrane 19, It has the effect of scraping off sludge and insoluble suspended solids. The floc may be introduced into the nitrification tank 4 instead of the denitrification tank 3.

また、難溶性物質形成槽33に導入されたフロックは、フッ素難溶性物質が形成されるときの核になり、難溶性物質の形成を促進する作用がある。   Further, the floc introduced into the hardly soluble substance forming tank 33 becomes a nucleus when the fluorine hardly soluble substance is formed, and has an action of promoting the formation of the hardly soluble substance.

また、抜き出したスラリーのフロックは、リサイクル可能な物質である。   Further, the floc of the extracted slurry is a recyclable substance.

また、本実施形態において、原水槽32や難溶性物質形成槽33を硝化槽4の処理水でpH調整するようにしてもよい。   In the present embodiment, the pH of the raw water tank 32 and the hardly soluble substance forming tank 33 may be adjusted with the treated water of the nitrification tank 4.

また、本実施形態では、pH調整槽(凝集槽)34のpHが低いほど曝気装置16の曝気量が少なくなるようにブロワー17の出力を低くするようになっている。硝化槽4の曝気量を少なくすることで、アンモニア性窒素を硝酸性窒素に分解する能力が低くなり、硝化槽4のpHが高くなることになる。これによって、pH調整槽34で排水を中和するのに必要な処理水の量の増減を緩和し、安定したフッ素除去が可能になる。   Moreover, in this embodiment, the output of the blower 17 is made low so that the aeration amount of the aeration apparatus 16 decreases as the pH of the pH adjustment tank (aggregation tank) 34 decreases. By reducing the amount of aeration in the nitrification tank 4, the ability to decompose ammonia nitrogen into nitrate nitrogen decreases, and the pH of the nitrification tank 4 increases. As a result, the increase or decrease in the amount of treated water necessary for neutralizing the wastewater in the pH adjustment tank 34 is alleviated, and stable fluorine removal becomes possible.

図7に、本発明の第5実施形態を示す。
本実施形態は、以下に特記する以外は図5の第3実施形態と同じである。本実施形態において、フッ素含有排水は、難溶性物質形成凝集槽45と沈殿槽46からなるフッ素1次処理装置47で1次処理されてからpH調整槽1に貯留される。難溶性物質凝集槽45では、攪拌機48で撹拌しつつ難溶性物質形成剤と高分子凝集剤を投入してフッ素を難溶性物質に固定する。そして、沈殿槽46で沈殿分離してからpH調整槽1でpHを調整し、晶析物反応塔2でさらにフッ素を除去する。
FIG. 7 shows a fifth embodiment of the present invention.
This embodiment is the same as the third embodiment of FIG. 5 except as noted below. In the present embodiment, the fluorine-containing wastewater is firstly treated by the fluorine primary treatment device 47 including the hardly soluble substance forming aggregation tank 45 and the precipitation tank 46 and then stored in the pH adjusting tank 1. In the hardly soluble substance agglomeration tank 45, the hardly soluble substance forming agent and the polymer flocculant are charged while stirring with the stirrer 48 to fix the fluorine to the hardly soluble substance. Then, the precipitate is separated in the precipitation tank 46, the pH is adjusted in the pH adjustment tank 1, and fluorine is further removed in the crystallized product reaction tower 2.

本実施形態では、フッ素含有排水を1次処理してから晶析物反応塔2で処理するので、より高度にフッ素を除去可能であるが、イニシャルコストおよびランニングコストが割高な晶析物反応塔2の処理容量が小さくて済む。このため、高濃度のフッ素を含有する排水が大量に排出される場合にも、安価な設備で安価にフッ素を処理することができる。   In this embodiment, since the fluorine-containing waste water is firstly treated and then treated in the crystallization product reaction tower 2, the crystallization product reaction tower 2 can remove fluorine to a higher degree, but the initial cost and running cost are high. The processing capacity of 2 is small. For this reason, even when a large amount of wastewater containing high-concentration fluorine is discharged, fluorine can be treated at low cost with inexpensive equipment.

図8に、本発明の第6実施形態を示す。
本実施形態は、図1の第1実施形態の硝化槽4の好気部14に、さらに、第2の曝気装置として、マイクロナノバブル発生装置51を備える。マイクロナノバブル発生装置51は、マイクロナノバブル発生器52、ポンプ53および調整弁54からなる。マイクロナノバブル発生器52は、ポンプ53によって好気部14の処理水が注入されると、処理水の流速によって発生した負圧により調整弁54を介して空気を自給し、処理水の水流によって空気を剪断することで微細な気泡であるマイクロナノバブルを発生させ、このマイクロナノバブルを含む処理水を吐出する。
FIG. 8 shows a sixth embodiment of the present invention.
In this embodiment, the aerobic part 14 of the nitrification tank 4 of the first embodiment of FIG. 1 is further provided with a micro / nano bubble generator 51 as a second aeration device. The micro / nano bubble generator 51 includes a micro / nano bubble generator 52, a pump 53, and a regulating valve 54. When the treated water of the aerobic part 14 is injected by the pump 53, the micro / nano bubble generator 52 self-supplies air through the regulating valve 54 due to the negative pressure generated by the flow rate of the treated water, and the air is generated by the treated water flow. Is generated to generate micro-nano bubbles which are fine bubbles, and treated water containing the micro-nano bubbles is discharged.

マイクロナノバブルは、すぐに水面に上昇することなく処理水中に長時間留まるので、好気部の溶存酸素濃度を上昇させることができる。これによって、好気性微生物を活性化させることができ、特に高濃度のアンモニア性窒素や亜硝酸性窒素を含む排水を処理する場合にも、硝化槽4において十分な酸化分解を行わせることができる。   Since the micro / nano bubbles stay in the treated water for a long time without immediately rising to the water surface, the dissolved oxygen concentration in the aerobic part can be increased. As a result, aerobic microorganisms can be activated, and sufficient oxidative decomposition can be performed in the nitrification tank 4 even when wastewater containing particularly high concentrations of ammonia nitrogen and nitrite nitrogen is treated. .

本実施形態において、曝気装置16は、専ら液中膜19に付着した微生物や不溶性浮遊物の除去に用いられ、好気性微生物のために酸素を供給する役割を果たすのは、主にマイクロナノバブル発生装置51である。また、本実施形態において、排水の状態に応じて調整弁54の開度を調節すれば、マイクロナノバブルの発生量を変化させて溶存酸素濃度を最適な濃度に保つことができる。   In the present embodiment, the aeration device 16 is used exclusively for removing microorganisms and insoluble suspended matters adhering to the submerged membrane 19, and the role of supplying oxygen for aerobic microorganisms is mainly the generation of micro-nano bubbles. Device 51. Moreover, in this embodiment, if the opening degree of the regulating valve 54 is adjusted according to the state of waste water, the dissolved oxygen concentration can be maintained at an optimum concentration by changing the amount of micro-nano bubbles generated.

図9に、本発明の第7実施形態を示す。
本実施形態は、図8の第6実施形態の硝化槽4から分離壁13を無くし、マイクロナノバブル発生器52を硝化槽4の底部に配置することで、半嫌気部15の無い硝化槽4を有する構成としている。また、本実施形態の排水処理装置は、硝化槽4の処理水のpHを測定するpH計28を備え、硝化槽4のpHに応じて、マイクロナノバブル発生器52に処理水を注入するポンプ53を起動、停止することができるようになっている。
FIG. 9 shows a seventh embodiment of the present invention.
In the present embodiment, the separation wall 13 is eliminated from the nitrification tank 4 of the sixth embodiment of FIG. It has the composition to have. Moreover, the waste water treatment apparatus of this embodiment includes a pH meter 28 that measures the pH of the treated water in the nitrification tank 4, and a pump 53 that injects the treated water into the micro / nano bubble generator 52 according to the pH of the nitrification tank 4. Can be started and stopped.

本実施形態では、図4の第2実施形態と同様に、曝気量を調整して硝化槽4の処理水のpHを9.0程度に保ち、pH調整槽1において酸性のフッ素含有排水を効果的に中和できる。また、本実施形態が示すように、本発明において、硝化槽4に半嫌気部15を形成することは必ずしも必須ではないが、この場合、急激な酸素濃度の変化に耐えられるように、微生物の濃度を高くすることが望ましい。   In the present embodiment, as in the second embodiment of FIG. 4, the aeration amount is adjusted to maintain the pH of the treated water in the nitrification tank 4 at about 9.0, and acidic fluorine-containing wastewater is effective in the pH adjustment tank 1. Neutralize. Further, as shown in the present embodiment, in the present invention, it is not always essential to form the semi-anaerobic portion 15 in the nitrification tank 4, but in this case, in order to withstand a rapid change in oxygen concentration, It is desirable to increase the concentration.

図10に、本発明の第8実施形態を示す。
本実施形態は、図9の第7実施形態のマイクロナノバブル発生装置51を、脱窒槽3と硝化槽4との間に設けた小容量のバブル発生槽55内に配置したものである。本実施形態では、脱窒槽3からオーバーフローした排水を、一旦、バブル発生槽55に貯留し、バブル発生槽55内の排水をポンプ53で抜き出してバブル発生槽55内に配置したマイクロナノバブル発生器52に注入することで、マイクロナノバブル発生器52が調整弁54を介して空気を自給してマイクロナノバブルを発生させるようになっている。こうして、マイクロナノバブルを含むこととなったバブル発生槽55内の排水を、ポンプ56によって硝化槽4の底部に導入することで、硝化槽4の曝気が行われる。
FIG. 10 shows an eighth embodiment of the present invention.
In this embodiment, the micro / nano bubble generator 51 of the seventh embodiment of FIG. 9 is arranged in a small-capacity bubble generator tank 55 provided between the denitrification tank 3 and the nitrification tank 4. In this embodiment, the waste water overflowed from the denitrification tank 3 is temporarily stored in the bubble generation tank 55, and the waste water in the bubble generation tank 55 is extracted by the pump 53 and disposed in the bubble generation tank 55. The micro / nano bubble generator 52 is self-supplied with air via the regulating valve 54 to generate micro / nano bubbles. In this way, the waste water in the bubble generation tank 55 containing micro / nano bubbles is introduced into the bottom of the nitrification tank 4 by the pump 56, whereby the nitrification tank 4 is aerated.

マイクロナノバブル発生器52は、空気を水流で剪断するものなので、空気と水流の状態が変わるとマイクロナノバブルを適切に生成できなくなる場合がある。本実施形態では、小容量のバブル発生槽55内でマイクロナノバブルを発生させるので、マイクロナノバブル発生器52から吐出するマイクロナノバブルを直接目視によって確認できる。つまり、排水の状態に応じて作業者が確認しながらマイクロナノバブルの発生量を調整することで、多様な排水を処理することができる。   Since the micro / nano bubble generator 52 shears air with a water flow, the micro / nano bubble may not be generated properly when the state of the air and the water flow changes. In the present embodiment, since micro-nano bubbles are generated in the small-capacity bubble generation tank 55, the micro-nano bubbles discharged from the micro-nano bubble generator 52 can be directly visually confirmed. That is, various wastewater can be treated by adjusting the generation amount of micro / nano bubbles while the operator confirms according to the state of wastewater.

本発明の第1実施形態の排水処理装置のフローシート。The flow sheet of the waste water treatment equipment of a 1st embodiment of the present invention. 図1の排水処理装置の運転のタイムチャートの例。The example of the time chart of the driving | operation of the waste water treatment apparatus of FIG. 図1の排水処理装置の異なる条件における運転のタイムチャートの例。The example of the time chart of the driving | operation in the different conditions of the waste water treatment equipment of FIG. 本発明の第2実施形態の排水処理装置のフローシート。The flow sheet of the waste water treatment equipment of a 2nd embodiment of the present invention. 本発明の第3実施形態の排水処理装置のフローシート。The flow sheet of the waste water treatment equipment of a 3rd embodiment of the present invention. 本発明の第4実施形態の排水処理装置のフローシート。The flow sheet of the waste water treatment equipment of a 4th embodiment of the present invention. 本発明の第5実施形態の排水処理装置のフローシート。The flow sheet of the waste water treatment equipment of a 5th embodiment of the present invention. 本発明の第6実施形態の排水処理装置のフローシート。The flow sheet of the waste water treatment equipment of a 6th embodiment of the present invention. 本発明の第7実施形態の排水処理装置のフローシート。The flow sheet of the waste water treatment equipment of a 7th embodiment of the present invention. 本発明の第8実施形態の排水処理装置のフローシート。The flow sheet of the waste water treatment equipment of an 8th embodiment of the present invention.

符号の説明Explanation of symbols

1 原水槽(pH調整槽)
2 晶析物反応塔(フッ素処理装置)
3 脱窒槽
4 硝化槽
5 窒素処理装置
7 pH計
10 難溶性物質形成補助剤注入ポンプ
13 分離壁
14 好気部
15 半嫌気部
16 曝気装置
18 エアリフトポンプ
19 液中膜(限外濾過膜)
21 流量計
26 pH計
29 リン難溶性物質形成槽(リン除去装置)
31 レベルスイッチ
33 難溶性物質形成槽
34 凝集槽(pH調整槽)
35 沈殿槽
36 フッ素処理装置
45 フッ素難溶性物質形成凝集槽
46 沈殿槽
47 フッ素1次処理装置
51 マイクロナノバブル発生装置(曝気装置)
55 バブル発生槽
1 Raw water tank (pH adjustment tank)
2 Crystallized product reaction tower (fluorine treatment equipment)
DESCRIPTION OF SYMBOLS 3 Denitrification tank 4 Nitrification tank 5 Nitrogen treatment apparatus 7 pH meter 10 Poorly soluble substance formation auxiliary agent injection pump 13 Separation wall 14 Aerobic part 15 Semi-anaerobic part 16 Aeration apparatus 18 Air lift pump 19 Submerged membrane (ultrafiltration membrane)
21 Flow meter 26 pH meter 29 Phosphorus poorly soluble substance formation tank (phosphorus removal device)
31 Level switch 33 Slightly soluble substance formation tank 34 Coagulation tank (pH adjustment tank)
35 Precipitation tank 36 Fluorine treatment device 45 Fluorine insoluble substance formation coagulation tank 46 Precipitation tank 47 Fluorine primary treatment device 51 Micro-nano bubble generator (aeration device)
55 Bubble generation tank

Claims (36)

排水のpHを調整するpH調整槽と、該pH調整槽の下流で排水から窒素を除去する窒素処理装置とを備え、
前記窒素処理装置で処理した処理水の一部を前記pH調整槽に導入することを特徴とする排水処理装置。
A pH adjusting tank for adjusting the pH of the waste water, and a nitrogen treatment device for removing nitrogen from the waste water downstream of the pH adjusting tank,
A wastewater treatment apparatus, wherein a part of treated water treated by the nitrogen treatment apparatus is introduced into the pH adjustment tank.
前記窒素処理装置は、嫌気性微生物によって生化学的分解を行う脱窒槽と、曝気装置によって曝気され、好気性微生物によって酸化分解を行う硝化槽とからなり、
前記硝化槽は、処理水を濾過して排出する液中膜を有することを特徴とする請求項1に記載の排水処理装置。
The nitrogen treatment apparatus comprises a denitrification tank that performs biochemical decomposition by anaerobic microorganisms, and a nitrification tank that is aerated by an aeration apparatus and oxidatively decomposes by aerobic microorganisms,
The waste water treatment apparatus according to claim 1, wherein the nitrification tank has a submerged membrane for filtering and discharging treated water.
前記曝気装置は、マイクロナノバブル発生装置を含むことを特徴とする請求項2に記載の排水処理装置。   The waste water treatment apparatus according to claim 2, wherein the aeration apparatus includes a micro / nano bubble generation apparatus. 前記硝化槽は、前記液中膜が設置され、前記曝気装置によって曝気される好気部を構成する上部と、
前記曝気装置の下方にあって曝気されない半嫌気部を構成する下部とからなり、
前記脱窒槽の排水が前記半嫌気部に導入されることを特徴とする請求項2または3に記載の排水処理装置。
The nitrification tank is provided with the submerged membrane, and constitutes an aerobic part that is aerated by the aeration apparatus,
It consists of a lower part constituting a semi-anaerobic part below the aeration apparatus and not aerated,
The wastewater treatment apparatus according to claim 2 or 3, wherein wastewater from the denitrification tank is introduced into the semi-anaerobic part.
前記半嫌気部の底部は、ホッパー状をしており、
前記半嫌気部の底部の汚泥を前記脱窒槽の底部に返送するポンプを有し、
窒素を含有する排水が前記脱窒槽の底部に導入されることを特徴とする請求項4に記載の排水処理装置。
The bottom part of the semi-anaerobic part has a hopper shape,
A pump that returns the sludge at the bottom of the semi-anaerobic part to the bottom of the denitrification tank;
The waste water treatment apparatus according to claim 4, wherein waste water containing nitrogen is introduced into a bottom of the denitrification tank.
前記曝気装置は、前記脱窒槽と前記硝化槽との間に設けたバブル発生槽に設置したマイクロナノバブル発生装置を含むことを特徴とする請求項2に記載の排水処理装置。   The waste water treatment apparatus according to claim 2, wherein the aeration apparatus includes a micro / nano bubble generation apparatus installed in a bubble generation tank provided between the denitrification tank and the nitrification tank. 前記液中膜は、限外濾過膜であることを特徴とする請求項2から6のいずれかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 2 to 6, wherein the submerged membrane is an ultrafiltration membrane. 前記脱窒槽に、生物処理した処理水または生物処理汚泥を導入することを特徴とする請求項2から7のいずれかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 2 to 7, wherein biologically treated water or biologically treated sludge is introduced into the denitrification tank. 前記硝化槽のpHをアルカリ性に保つように前記曝気装置の曝気量を制御する制御手段を有することを特徴とする請求項2から8のいずれかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 2 to 8, further comprising control means for controlling an aeration amount of the aeration apparatus so as to keep a pH of the nitrification tank alkaline. 前記pH調整槽のpHが低いときは、前記曝気装置の曝気量を少なくすることを特徴とする請求項2から8のいずれかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 2 to 8, wherein when the pH of the pH adjustment tank is low, an aeration amount of the aeration apparatus is reduced. 前記窒素処理装置で処理した処理水の流量が低下したときは、前記曝気装置の曝気量を多くすることを特徴とする請求項2から8のいずれかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 2 to 8, wherein when the flow rate of treated water treated by the nitrogen treatment apparatus decreases, the aeration amount of the aeration apparatus is increased. 前記窒素処理装置で処理した処理水の流量が低下したときは、硝化槽の水位を高くすることを特徴とする請求項2から11のいずれかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 2 to 11, wherein when the flow rate of treated water treated by the nitrogen treatment apparatus decreases, the water level of the nitrification tank is increased. 前記窒素処理装置に、高濃度アンモニア含有排水が導入されることを特徴とする請求項2から12のいずれかに記載の排水処理装置。 The wastewater treatment apparatus according to any one of claims 2 to 12, wherein wastewater containing high-concentration ammonia is introduced into the nitrogen treatment apparatus. 前記窒素処理装置に、現像廃液が導入されることを特徴とする請求項2から12のいずれかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 2 to 12, wherein a developing waste liquid is introduced into the nitrogen treatment apparatus. 前記pH調整槽にはフッ素を含有する排水が導入され、
前記pH調整槽でpHを調整した排水中のフッ素を難溶性のフッ化物として分離するフッ素処理装置を備え、
前記フッ素処理装置で処理した排水は、前記窒素処理装置に導入されることを特徴とする請求項1から14のいずれかに記載の排水処理装置。
Wastewater containing fluorine is introduced into the pH adjustment tank,
A fluorine treatment device that separates fluorine in the wastewater whose pH is adjusted in the pH adjustment tank as sparingly soluble fluoride,
The wastewater treatment apparatus according to any one of claims 1 to 14, wherein the wastewater treated by the fluorine treatment apparatus is introduced into the nitrogen treatment apparatus.
前記フッ素処理装置は、リン酸カルシウム塩類からなるフッ素難溶性物質形成剤を充填した晶析物反応塔であることを特徴とする請求項15に記載の排水処理装置。   The wastewater treatment apparatus according to claim 15, wherein the fluorine treatment apparatus is a crystallized substance reaction tower filled with a fluorine poorly soluble substance forming agent made of calcium phosphate salts. 前記晶析物反応塔は、リン酸を含むフッ素難溶性物質形成補助剤を注入する装置を有することを特徴とする請求項15に記載の排水処理装置。   The wastewater treatment apparatus according to claim 15, wherein the crystallized product reaction tower has a device for injecting a fluorine-insoluble substance forming auxiliary agent containing phosphoric acid. 前記pH調整槽は、排水に難溶性物質形成剤を投入して難溶性のフッ化物を形成し、排水からフッ素を分離するフッ素処理装置の一部を構成する水槽であり、
前記フッ素処理装置で処理した排水は、前記窒素処理装置に導入されることを特徴とする請求項15に記載の排水処理装置。
The pH adjustment tank is a water tank that forms a part of a fluorine treatment apparatus that forms a poorly soluble fluoride by introducing a poorly soluble substance forming agent into the wastewater, and separates fluorine from the wastewater,
The wastewater treatment apparatus according to claim 15, wherein the wastewater treated by the fluorine treatment apparatus is introduced into the nitrogen treatment apparatus.
前記フッ素処理装置において、リン酸を含むフッ素難溶性物質形成補助剤が投入されることを特徴とする請求項18に記載の排水処理装置。   19. The wastewater treatment apparatus according to claim 18, wherein in the fluorine treatment apparatus, a fluorine poorly soluble substance forming auxiliary agent containing phosphoric acid is introduced. 前記フッ素処理装置で分離した難溶性のフッ化物の少なくとも一部分は、前記窒素処理装置に導入されることを特徴とする請求項18または19に記載の排水処理装置。   The wastewater treatment apparatus according to claim 18 or 19, wherein at least a part of the hardly soluble fluoride separated by the fluorine treatment apparatus is introduced into the nitrogen treatment apparatus. 排水からリンを除去可能なリン除去装置を備え、
前記フッ素処理装置で処理した排水は、前記リン除去装置を介して前記窒素処理装置に導入されることを特徴とする請求項15から20のいずれかに記載の排水処理装置。
Equipped with a phosphorus removal device that can remove phosphorus from wastewater,
The wastewater treatment apparatus according to any one of claims 15 to 20, wherein the wastewater treated by the fluorine treatment apparatus is introduced into the nitrogen treatment apparatus through the phosphorus removal apparatus.
前記フッ素処理装置において、排水中のリン濃度(重量換算)がフッ素濃度の1.2倍以上になるように、リン化合物を投入することを特徴とする請求項15から21のいずれかに記載の排水処理装置。   The phosphorus treatment apparatus according to any one of claims 15 to 21, wherein in the fluorine treatment apparatus, a phosphorus compound is added so that a phosphorus concentration (weight conversion) in waste water is 1.2 times or more of a fluorine concentration. Wastewater treatment equipment. 前記pH調整槽に導入される排水は、バッファードフッ酸を含有する排水またはバッファードフッ酸を含有する排水を1次処理した排水であることを特徴とする請求項15から22のいずれかに記載の排水処理装置。   23. The waste water introduced into the pH adjusting tank is waste water containing buffered hydrofluoric acid or waste water obtained by first treating waste water containing buffered hydrofluoric acid. The waste water treatment apparatus as described. 処理すべき排水のpHを、後工程である排水から窒素を除去する窒素処理工程で処理した処理水を加えることで調整することを特徴とする排水処理方法。   A wastewater treatment method characterized in that the pH of wastewater to be treated is adjusted by adding treated water treated in a nitrogen treatment step of removing nitrogen from wastewater as a subsequent step. 前記窒素処理工程は、排水を、嫌気性微生物によって生化学的分解を行う脱窒槽と、曝気装置によって曝気され、好気性微生物によって酸化分解を行う硝化槽とに順に導入する工程であり、
前記硝化槽は、処理水を濾過して排出する液中膜を有することを特徴とする請求項24に記載の排水処理方法。
The nitrogen treatment step is a step of sequentially introducing wastewater into a denitrification tank that performs biochemical decomposition by anaerobic microorganisms and a nitrification tank that is aerated by an aeration apparatus and oxidatively decomposes by aerobic microorganisms,
The waste water treatment method according to claim 24, wherein the nitrification tank has a submerged membrane for filtering and discharging treated water.
前記曝気装置は、前記硝化槽内に設置したマイクロナノバブル発生装置を含むことを特徴とする請求項25に記載の排水処理方法。   26. The waste water treatment method according to claim 25, wherein the aeration apparatus includes a micro / nano bubble generator installed in the nitrification tank. 前記曝気装置は、前記脱窒槽と前記硝化槽との間に設けたバブル発生槽内に設置したマイクロナノバブル発生装置を含み、
前記曝気は、前記脱窒槽の排水を前記バブル発生槽に導入し、前記マイクロナノバブル発生装置によって排水中にマイクロナノバブルを発生させてから前記硝化槽に導入することによって行うことを特徴とする請求項25に記載の排水処理方法。
The aeration apparatus includes a micro / nano bubble generation apparatus installed in a bubble generation tank provided between the denitrification tank and the nitrification tank,
The aeration is performed by introducing waste water from the denitrification tank into the bubble generation tank, generating micro / nano bubbles in the waste water by the micro / nano bubble generation apparatus, and then introducing the micro / nano bubbles into the nitrification tank. The wastewater treatment method according to 25.
前記硝化槽のpHをアルカリ性に保つように前記曝気装置による曝気量を制御することを特徴とする請求項25から27のいずれかに記載の排水処理方法。   The wastewater treatment method according to any one of claims 25 to 27, wherein the aeration amount by the aeration apparatus is controlled so as to keep the pH of the nitrification tank alkaline. 前記処理すべき排水のpHが低いときは、前記曝気装置の曝気量を少なくすることを特徴とする請求項25から27のいずれかに記載の排水処理方法。   The wastewater treatment method according to any one of claims 25 to 27, wherein when the pH of the wastewater to be treated is low, the aeration amount of the aeration apparatus is reduced. 前記pHを調整した排水に難溶性物質形成剤を投入して形成した難溶性のフッ化物を分離するフッ素処理工程で処理してから前記脱窒槽に導入することを特徴とする請求項25から29のいずれかに記載の排水処理方法。   30. The method according to claim 25, wherein the pH-adjusted wastewater is introduced into the denitrification tank after being treated in a fluorine treatment step for separating the hardly soluble fluoride formed by introducing a poorly soluble substance-forming agent. The waste water treatment method in any one of. 前記フッ素処理工程において、リン酸を含有するフッ素難溶性物質形成補助剤を投入することを特徴とする請求項30に記載の排水処理方法。   The wastewater treatment method according to claim 30, wherein, in the fluorine treatment step, a fluorine poorly soluble substance forming auxiliary agent containing phosphoric acid is added. 前記フッ素処理工程において、リン濃度(重量換算)がフッ素濃度の1.2倍以上になるようにリン化合物を投入し、残留するリンを前記窒素処理工程において微生物に消費させることを特徴とする請求項30または31に記載の排水処理方法。   In the fluorine treatment step, a phosphorus compound is added so that the phosphorus concentration (weight conversion) is 1.2 times or more of the fluorine concentration, and the remaining phosphorus is consumed by microorganisms in the nitrogen treatment step. Item 32. The wastewater treatment method according to Item 30 or 31. 前記フッ素処理工程で分離した難溶性のフッ化物の一部を前記脱窒槽または前記硝化槽に導入することを特徴とする請求項30から32のいずれかに記載の排水処理方法。   The wastewater treatment method according to any one of claims 30 to 32, wherein a part of the hardly soluble fluoride separated in the fluorine treatment step is introduced into the denitrification tank or the nitrification tank. 前記硝化槽は、前記液中膜が設置され、前記曝気装置で曝気される好気部を構成する上部と、
前記曝気装置の下方にあって曝気されない半嫌気部を構成する下部とからなり、
前記脱窒槽の排水を前記半嫌気部に導入することを特徴とする請求項25から33のいずれかに記載の排水処理方法。
The nitrification tank is provided with the submerged membrane, and an upper part constituting an aerobic part to be aerated by the aeration apparatus,
It consists of a lower part constituting a semi-anaerobic part below the aeration apparatus and not aerated,
The wastewater treatment method according to any one of claims 25 to 33, wherein wastewater from the denitrification tank is introduced into the semi-anaerobic part.
前記半嫌気部の底部は、ホッパー状をしており、
前記半嫌気部の底部の汚泥を前記脱窒槽の底部に返送することを特徴とする請求項34に記載の排水処理方法。
The bottom part of the semi-anaerobic part has a hopper shape,
The wastewater treatment method according to claim 34, wherein sludge at the bottom of the semi-anaerobic part is returned to the bottom of the denitrification tank.
前記脱窒槽に、前記フッ素処理工程で処理した排水の他に、高濃度窒素排水と、生物処理した処理水または生物処理汚泥とを導入することを特徴とする請求項33から35のいずれかに記載の排水処理方法。   36. The high concentration nitrogen waste water and the biologically treated water or the biologically treated sludge are introduced into the denitrification tank in addition to the waste water treated in the fluorine treatment step. The described waste water treatment method.
JP2006059220A 2005-03-29 2006-03-06 Apparatus and method for treating waste water Pending JP2006305555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059220A JP2006305555A (en) 2005-03-29 2006-03-06 Apparatus and method for treating waste water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005093569 2005-03-29
JP2006059220A JP2006305555A (en) 2005-03-29 2006-03-06 Apparatus and method for treating waste water

Publications (1)

Publication Number Publication Date
JP2006305555A true JP2006305555A (en) 2006-11-09

Family

ID=37473060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059220A Pending JP2006305555A (en) 2005-03-29 2006-03-06 Apparatus and method for treating waste water

Country Status (1)

Country Link
JP (1) JP2006305555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090206A (en) * 2005-09-28 2007-04-12 Sharp Corp Wastewater treatment method and wastewater treatment apparatus
JP2007136409A (en) * 2005-11-22 2007-06-07 Sharp Corp Water treatment method and water treatment apparatus
CN109879550A (en) * 2019-04-08 2019-06-14 重庆港力环保股份有限公司 Photovoltaic cell produces waste water purification system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192187A (en) * 1995-01-18 1996-07-30 Kurita Water Ind Ltd Biological filtration device
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JP2003334589A (en) * 2002-05-17 2003-11-25 Toray Ind Inc Wastewater treatment method and treatment apparatus therefor
JP2003340485A (en) * 2002-05-23 2003-12-02 Toray Ind Inc Method for treating organic waste water and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JPH08192187A (en) * 1995-01-18 1996-07-30 Kurita Water Ind Ltd Biological filtration device
JP2003334589A (en) * 2002-05-17 2003-11-25 Toray Ind Inc Wastewater treatment method and treatment apparatus therefor
JP2003340485A (en) * 2002-05-23 2003-12-02 Toray Ind Inc Method for treating organic waste water and apparatus therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090206A (en) * 2005-09-28 2007-04-12 Sharp Corp Wastewater treatment method and wastewater treatment apparatus
JP4485444B2 (en) * 2005-09-28 2010-06-23 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP2007136409A (en) * 2005-11-22 2007-06-07 Sharp Corp Water treatment method and water treatment apparatus
JP4490904B2 (en) * 2005-11-22 2010-06-30 シャープ株式会社 Water treatment equipment
CN109879550A (en) * 2019-04-08 2019-06-14 重庆港力环保股份有限公司 Photovoltaic cell produces waste water purification system
CN109879550B (en) * 2019-04-08 2023-11-21 重庆港力环保股份有限公司 Photovoltaic cell production wastewater purification system

Similar Documents

Publication Publication Date Title
EP1313669B1 (en) Method and apparatus for treating wastewater using membrane filters
US8894857B2 (en) Methods and systems for treating wastewater
AU2001280766A1 (en) Method and apparatus for treating wastewater using membrane filters
JP2008284427A (en) Apparatus and method for treating waste water
CN101626983A (en) Processing contains the method and apparatus of the waste water of sulfide and ammonium
CN105565581B (en) Coal ethylene wastewater integrated conduct method
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
CN105585218A (en) Machining wastewater treatment technology
JPH1190483A (en) Method and apparatus for treating waste water
KR101133330B1 (en) Advanced wastwater treatment system for membrane water through eliminating phosphorus and membrane fouling materials of sidestream
JP4212588B2 (en) Waste water treatment apparatus and waste water treatment method
JP4774120B2 (en) Apparatus and method for treating radioactive nitrate waste liquid
KR20090030397A (en) Apparatus for high rate removal of nitrogen and phosphorus from swtp/wwtp
JP2008114215A (en) Method and apparatus for treating sludge
JP2000140884A (en) Waste water treatment and waste water treatment device
JPH0751686A (en) Treatment of sewage
KR102108870B1 (en) Membrane Treatment Device for Eliminating Nitrogen and/or Phosphorus
JP2000015287A (en) Waste water treatment method and apparatus
JP5333953B2 (en) Nitrogen removal system and nitrogen removal method of dehydrated filtrate
KR101278475B1 (en) Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor
JP2006305555A (en) Apparatus and method for treating waste water
KR100403864B1 (en) A wastewater treatment methods
KR100869304B1 (en) High effective treatment apparatus of sewage and wastewater
IL155193A (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025