JP2006349871A - Device for estimating driver's burden - Google Patents
Device for estimating driver's burden Download PDFInfo
- Publication number
- JP2006349871A JP2006349871A JP2005174346A JP2005174346A JP2006349871A JP 2006349871 A JP2006349871 A JP 2006349871A JP 2005174346 A JP2005174346 A JP 2005174346A JP 2005174346 A JP2005174346 A JP 2005174346A JP 2006349871 A JP2006349871 A JP 2006349871A
- Authority
- JP
- Japan
- Prior art keywords
- driver
- load
- utterance
- voice
- noun
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Abstract
Description
本発明は、概して、車両に搭載され、車両運転中の運転者の負荷を推定する運転者負荷推定装置に係り、特に、自由発話に対する運転者の対話負荷を推定する運転者負荷推定装置に関する。 The present invention generally relates to a driver load estimation device that is mounted on a vehicle and estimates a driver's load while driving the vehicle, and more particularly, to a driver load estimation device that estimates a driver's interaction load with respect to free speech.
従来、車両運転中の運転者の負荷を推定する装置及び方法が提案されている(例えば、特許文献1〜4参照)。
しかしながら、上記特許文献1〜4に開示された従来の手法はいずれも、自由発話についての運転者の対話負荷が考慮・推定されていないため、正確な運転者負荷推定が実現されていない。 However, none of the conventional methods disclosed in the above-mentioned Patent Documents 1 to 4 realizes accurate driver load estimation because the driver's interaction load regarding free speech is not considered or estimated.
例えば、上記特許文献1及び3に開示された手法では、対話負荷について何ら考慮されていない。 For example, the methods disclosed in Patent Documents 1 and 3 do not consider any interaction load.
また、上記特許文献2に開示された手法では、認知的負荷しか考慮されておらず、自由対話については何ら考慮されていない。 In the method disclosed in Patent Document 2, only a cognitive load is considered, and free dialogue is not considered at all.
さらに、上記特許文献4に開示された手法は、発話ピッチに基づいて負荷推定を実行するものであり、精度が良好とは言い難い。 Furthermore, the technique disclosed in Patent Document 4 performs load estimation based on the utterance pitch, and it is difficult to say that the accuracy is good.
本発明はこのような課題を解決するためのものであり、自由発話に対する運転者の対話負荷を推定する運転者負荷推定装置を提供することを主たる目的とする。 The present invention has been made to solve the above-described problems, and a main object of the present invention is to provide a driver load estimating device that estimates the driver's interaction load with respect to free speech.
上記目的を達成するための本発明の第一の態様は、車両に搭載され、車両運転中の運転者の負荷を推定する運転者負荷推定装置であって、車室内の音声を収集する音声収集手段と、該音声収集手段により収集された音声を単語単位で音声認識処理する音声認識手段と、該音声認識手段により認識された単語のうち、名詞及び動詞の単位発話時間あたりの出現回数をそれぞれ算出する算出手段と、該算出手段により算出された上記名詞及び動詞の単位発話時間あたりの出現回数の和を運転者の対話負荷の大きさを表す負荷パラメータとする対話負荷推定手段とを有する運転者負荷推定装置である。 In order to achieve the above object, a first aspect of the present invention is a driver load estimation device that is mounted on a vehicle and estimates a driver's load during driving of the vehicle. Means, speech recognition means for performing speech recognition processing on the speech collected by the speech collection means in units of words, and out of words recognized by the speech recognition means, the number of appearances per unit utterance time of nouns and verbs, respectively. Driving having calculation means for calculating, and conversation load estimation means using the sum of the number of appearances per unit utterance time of the noun and verb calculated by the calculation means as a load parameter representing the magnitude of the driver's conversation load It is a person load estimation device.
この第一の態様において、上記音声認識手段は、例えば、いわゆるn−gram型の音声認識を実行することにより、音声を単語単位で音声認識処理することが実現される。 In the first aspect, the voice recognition means performs voice recognition processing on a word-by-word basis, for example, by executing so-called n-gram type voice recognition.
この第一の態様によれば、例えば接続詞や感嘆詞などの他の単語と比較して発話負荷及び聴取負荷が特に高いと考えられる名詞及び動詞に特化して、その単位時間あたりの出現回数によって運転者の対話負荷を推定するため、精度の良い推定が可能となる。 According to this first aspect, specializing in nouns and verbs that are considered to have a particularly high speech load and listening load compared to other words such as conjunctions and exclamations, the number of appearances per unit time Since the driver's interaction load is estimated, accurate estimation is possible.
上記目的を達成するための本発明の第二の態様は、上記第一の態様に係る運転者負荷推定装置において、上記対話負荷推定手段が上記名詞及び動詞の単位発話時間あたりの出現回数に所定の重み付け処理を行う補正手段を含む、運転者負荷推定装置である。 The second aspect of the present invention for achieving the above object is that, in the driver load estimating device according to the first aspect, the dialogue load estimating means determines the number of appearances per unit utterance time of the noun and verb. It is a driver | operator load estimation apparatus containing the correction | amendment means which performs this weighting process.
この第二の態様において、上記補正手段は、例えば、認識された各単語の信頼度や出現間隔に応じて、上記負荷パラメータが増加又は減少するように上記名詞及び動詞の単位発話時間あたりの出現回数に重み付けを行う。 In this second aspect, the correction means, for example, the appearance of the noun and the verb per unit utterance time so that the load parameter increases or decreases according to the reliability and the appearance interval of each recognized word. Weight the number of times.
より具体的には、例えば、1)上記音声認識手段が更に音声認識処理した各単語について信頼度を算出するようにし、この信頼度が低い名詞及び動詞については通常の会話にはあまり登場しない単語であると判断して負荷パラメータが増加するように重み付けするようにしてもよく、或いは、2)上記算出手段が更に上記音声認識手段により認識された各単語について出現間隔を測定するようにし、この出現間隔が所定時間より短い(すなわち、頻繁に繰り返された)名詞及び動詞については発話負荷及び聴取負荷がいずれも低いと判断して負荷パラメータが減少するように重み付けし、出現間隔が所定時間より長い(すなわち、たまにしか発せられない)名詞及び動詞については発話負荷及び聴取負荷がいずれも高いと判断して負荷パラメータが増加するように重み付けするようにしてもよい。 More specifically, for example, 1) The reliability is calculated for each word further processed by the voice recognition means, and the nouns and verbs with low reliability are words that do not appear much in normal conversation. The load parameter may be weighted so as to increase, or 2) the calculation means further measures the appearance interval for each word recognized by the voice recognition means, and this For nouns and verbs whose appearance interval is shorter than a predetermined time (that is, repeated frequently), weighting is performed so that the load parameter decreases by judging that both the speech load and the listening load are low, and the appearance interval is longer than the predetermined time. For nouns and verbs that are long (that is, only occasionally emitted), it is determined that both the utterance load and the listening load are high, and the load parameters May be weighted so that other increases.
この第二の態様によれば、音声認識により認識された名詞及び動詞について、さらにその各々の信頼度や出現間隔に応じて負荷パラメータを上げる又は下げる補正が行われるため、運転者対話負荷推定の精度を更に向上させることができる。 According to this second aspect, nouns and verbs recognized by voice recognition are further corrected to increase or decrease the load parameter according to their reliability and appearance interval. The accuracy can be further improved.
上記目的を達成するための本発明の第三の態様は、上記第二の態様に係る運転者負荷推定装置において、上記音声収集手段が収集された音声の発声源を特定する発声源特定手段を含み、上記対話負荷推定手段は、上記発声源特定手段により特定された発声源に応じて、上記名詞及び動詞の単位発話時間あたりの出現回数を運転者から発話された単語と運転者により聴取された単語とに分けて算出する、運転者負荷推定装置である。 According to a third aspect of the present invention for achieving the above object, in the driver load estimating device according to the second aspect, a voice source specifying means for specifying the voice source of the voice collected by the voice collecting means is provided. The dialogue load estimating means is listened to by the driver and the words spoken by the driver and the number of appearances per unit utterance time of the noun and verb according to the utterance source specified by the utterance source specifying means. This is a driver load estimation device that calculates and divides into different words.
この第三の態様において、上記発声源特定手段は、例えば、車両に搭載されたハンズフリー通話機能やそれに接続された携帯電話の作動状態からハンズフリー通話からの発話であるか否かを判断したり、マイクロホンアレイを用いて発話の到来方向を検出することによって同乗者の発話であるか否かを判断したりする。 In this third aspect, the utterance source specifying means determines whether the utterance is from a hands-free call based on, for example, a hands-free call function installed in the vehicle or an operating state of a mobile phone connected thereto. Or by detecting the arrival direction of the utterance using the microphone array, it is determined whether the utterance is the passenger's utterance.
また、この第三の態様において、上記発声源特定手段による特定結果は、例えば、上記音声認識手段による音声認識処理や上記補正手段による重み付け処理に用いられる。 In this third aspect, the identification result by the utterance source identification unit is used for, for example, a voice recognition process by the voice recognition unit or a weighting process by the correction unit.
より具体的には、例えば、1)同乗者は運転者とハンズフリー電話の通話相手よりも運転者の状態や車両の走行状況を考慮して運転者に話し掛けるであろうという洞察に基づき、上記発声源特定手段が運転者への発話をハンズフリー電話からの発話か又は同乗者からの発話か識別し、上記補正手段が、上記名詞及び動詞の単位発話時間あたりの出現回数が等しいときにはハンズフリー電話からの発話の方が同乗者からの発話よりも上記負荷パラメータが増加するように、上記名詞及び動詞の単位発話時間あたりの出現回数に重み付け処理するようにしてもよく、及び/又は、2)運転者は音楽やラジオ等のオーディオ出力については聞き流して運転操作に集中できるであろうという洞察に基づき、上記音声認識手段が上記発声源特定手段によりオーディオ出力であると特定された音声は音声認識処理しないようにしてもよい。 More specifically, for example, 1) Based on the insight that the passenger will talk to the driver in consideration of the driver's condition and vehicle driving situation rather than the driver and the other party of the hands-free phone When the utterance source identifying means identifies whether the utterance to the driver is a utterance from a hands-free telephone or a fellow passenger, and the correction means is hands-free when the number of appearances per unit utterance time of the noun and verb is equal The number of appearances per unit utterance time of the nouns and verbs may be weighted so that the load parameter increases in the utterance from the telephone than the utterance from the passenger, and / or 2 ) Based on the insight that the driver will be able to listen to audio output such as music and radio and concentrate on driving operation, the voice recognition means will Speech that have been identified as the audio output may not be the speech recognition process.
この第三の態様によれば、運転者に対する発話音声について発話発信元に応じて運転者の聴取負荷をきめ細かく推定することができるため、運転者対話負荷推定の精度が一層向上する。 According to the third aspect, since the driver's listening load can be estimated in detail according to the utterance source for the utterance voice to the driver, the accuracy of the driver interaction load estimation is further improved.
本発明によれば、自由発話に対する運転者の対話負荷を推定する運転者負荷推定装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the driver load estimation apparatus which estimates the driver | operator's dialog load with respect to free speech can be provided.
以下、本発明を実施するための最良の形態について、添付図面を参照しながら実施例を挙げて説明する。なお、音声認識処理の基本概念、並びにそれを実現するためのハードウェア構成及びソフトウェア構造等については当業者には既知であるため、詳しい説明を省略する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the accompanying drawings. Note that the basic concept of the speech recognition processing, the hardware configuration and the software structure for realizing the basic concept are known to those skilled in the art, and detailed description thereof will be omitted.
以下、図1及び2を用いて、本発明の一実施例に係る運転者負荷推定装置の構成及び動作について説明する。 Hereinafter, the configuration and operation of the driver load estimation device according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
図1は、本実施例に係る運転者負荷推定装置100の概略構成図である。運転者負荷推定装置100は、主として、音声収集部101と、音声認識エンジン102と、対話負荷推定部103とから構成される。
FIG. 1 is a schematic configuration diagram of a driver
音声収集部101は、車室内の音声を例えばマイクロホンを用いて集音すると共に、集音された音声の出所を検出・特定する。
The
ここで、車室内の音声は、運転者による発話か否かによって、A)運転者発話か、B)運転者聴取かに大きく分類できる。A)運転者発話は、更に、a1)ハンズフリー電話への発話か、a2)同乗者(例えば、助手席に乗っている乗員)への発話かに分類することができる。B)運転者聴取は、更に、b1)ハンズフリー電話からの聴取か、b2)同乗者(例えば、助手席に乗っている乗員)からの聴取か、b3)音楽やラジオ等のオーディオ出力の聴取かに分類することができる。 Here, the voice in the passenger compartment can be roughly classified into A) driver utterance and B) driver listening depending on whether the utterance is made by the driver. A) Driver utterances can be further classified into a1) utterances to hands-free phones or a2) utterances to passengers (for example, passengers in the passenger seat). B) Listening to the driver is further b1) listening from a hands-free phone, b2) listening from a passenger (for example, a passenger in the passenger seat), or b3) listening to audio output such as music or radio. Can be classified.
音声収集部101は、集音した車室内の音声を上記a1)〜a2)及びb1)〜b3)のいずれかに分類する。分類する具体的手法は既知の任意のものでよい。例えば、車両に搭載されたハンズフリー通話機能やそれに接続された携帯電話の作動状態からハンズフリー通話からの発話であるか否かを判断することができる。また、マイクロホンアレイ(例えば、ビームフォーム型、など)を用いて発話の到来方向を検出することによって、同乗者の発話であるか否かを判断することができる。
The
ここで、マイクロホンアレイとは、空間的に配置された複数のマイクロホンから構成される受音装置であり、音の空間的情報を取得することによって音の到来方向を検出できるものである。 Here, the microphone array is a sound receiving device composed of a plurality of spatially arranged microphones, and can detect the direction of arrival of sound by acquiring spatial information of sound.
また、音声収集部101は、予め運転者の声紋を車両に登録しておくことにより、声紋認証処理によって、運転者の発話であるか、同乗者の発話であるかを識別することもできる。
The
なお、オーディオ出力は、運転者は聞き流して運転操作に集中できる、すなわち運転者聴取負荷とはならない、と考えられる。したがって、音声収集部101は、オーディオ出力については単に識別するだけでなく、例えばLMS(Least−Mean−Squares)アルゴリズムなどを用いて、収集された音声から直ちに除去する。
In addition, it is thought that the driver can listen to the driver and concentrate on the driving operation, that is, the driver's listening load does not occur. Therefore, the
また、音声収集部101は、このようにして収集・分類された発話の各々について、発話時間も測定する。
The
音声収集部101は、収集された音声情報を音声認識エンジン102へ送ると共に、発話時間及び発話元に関する情報を対話負荷算出部103へ送る。
The
音声認識エンジン102は、音声収集部101によって収集された発話音声に対して逐次文字を出す音声認識処理を行い、発せられた各単語を認識する。ここで、単語単位での音声認識処理が可能なアルゴリズムとしては、例えばn−gram(エヌグラム)型の音声認識が挙げられる。n−gramは、単語列を統計的・確率的に取り扱う統計的言語モデルの代表例であり、n個の単語が連なる確率を予め計算(学習)しておくことで、実際に発声された文章の信頼度(もっともらしさ)を計算することができるものである。
The
本装置は、発話文章の意味内容の解読が主目的ではなく、あくまで運転者の対話負荷の推定が目的であるため、音声認識エンジン102は、音声認識処理後、認識された各単語の品詞と信頼度を算出し、これらを対話負荷推定部103へ送る。
Since the main purpose of this device is not to interpret the semantic content of the utterance text but to estimate the driver's interaction load, the
対話負荷推定部103は、音声収集部101から取得した発話元に関する情報及び発話時間と、音声認識エンジン102から取得した認識された単語の品詞及び信頼度とに基づいて、運転者の対話負荷を推定する。対話負荷推定部103における処理については下記の図2の説明において詳述する。
The dialogue load estimating
図2は、本実施例に係る運転者負荷推定装置100の処理の流れを示すフローチャートである。
FIG. 2 is a flowchart illustrating a process flow of the driver
本装置100は、まず、音声入力を監視・待機する(S201)。音声が入力されると(S201の「YES」)、それがオーディオ出力であるか否かを判定する(S202)。
The
入力された音声が音楽やラジオ等のオーディオ出力であった場合(S202の「YES」)、上述のように、例えばLMSアルゴリズムを用いて除去するなどして、そのデータを破棄する(S208)。 If the input sound is an audio output such as music or radio (“YES” in S202), as described above, the data is discarded, for example, by using the LMS algorithm (S208).
入力された音声がオーディオ出力でなかった場合、すなわち人間の発話であった場合(S202の「NO」)、次いで、音声認識エンジン102が例えばn−gram型などを用いてこの音声を単語単位で音声認識処理する(S203)。
If the input voice is not an audio output, that is, if it is a human utterance (“NO” in S202), then the
音声認識エンジン102は、更に、認識された各単語について、品詞及び信頼度を判定する(S204)。
The
このようにして認識された各単語の品詞及び信頼度が判定されると、次いで、対話負荷推定部103が、音声収集部101により測定された発話時間と、音声認識エンジン102により認識された単語の品詞とから単位発話時間あたりの名詞及び動詞それぞれの出現回数を算出し、これら出現回数の和を対話負荷の大きさを表す対話負荷パラメータとする(S205)。
When the part of speech and the reliability of each word recognized in this way are determined, the dialogue
ここで、名詞及び動詞に絞り込むのは、例えば接続詞や感嘆詞などの他の単語と比較して、名詞及び動詞の発話負荷及び聴取負荷が特に高いと考えられるためである。 Here, the reason for narrowing down to nouns and verbs is that the speaking load and listening load of nouns and verbs are considered to be particularly high compared to other words such as conjunctions and exclamations.
次いで、対話負荷推定部103は、この単位時間あたりの名詞及び動詞の出現回数の和に相当する対話負荷パラメータを認識された各単語の信頼度及び出現間隔で補正する(S206)。
Next, the conversation
具体的には、信頼度が低い名詞及び動詞については、通常の会話にはあまり登場しない単語であると判断して、対話負荷パラメータが増加するように重み付け処理を行う。 Specifically, nouns and verbs with low reliability are determined to be words that do not appear much in normal conversation, and weighting processing is performed so that the dialogue load parameter increases.
また、出現間隔が所定時間より短い(すなわち、頻繁に繰り返された)名詞及び動詞については、発話負荷及び聴取負荷がいずれも低いと判断して、対話負荷パラメータが減少するように重み付け処理を行う。 For nouns and verbs whose appearance interval is shorter than a predetermined time (that is, repeated frequently), it is determined that both the speech load and the listening load are low, and weighting processing is performed so that the conversation load parameter decreases. .
さらに、出現間隔が所定時間より長い(すなわち、たまにしか発せられない)名詞及び動詞については、発話負荷及び聴取負荷がいずれも高いと判断して、対話負荷パラメータが増加するように重み付け処理する。 Furthermore, for nouns and verbs whose appearance interval is longer than a predetermined time (that is, they are uttered only occasionally), it is determined that both the speech load and the listening load are high, and weighting processing is performed so that the conversation load parameter increases.
これら出現間隔に基づく増減補正は、例えば、出現間隔tとして、1/(1−e−τt)を対話負荷パタメータの乗じることによって実現される。 The increase / decrease correction based on the appearance interval is realized, for example, by multiplying the interaction load parameter by 1 / (1-e− τt ) as the appearance interval t.
次いで、対話負荷推定部103は、音声収集部101から取得した発話元情報に基づいて、対話負荷パラメータを発話負荷と聴取負荷とに分ける。さらに、聴取負荷としてにんしきされた運転者に対する発話について、同乗者から運転者への発話か、或いは、ハンズフリー電話の通話相手から運転者への発話か、識別する。
Next, the conversation
そして、対話負荷推定部103は、名詞及び動詞の単位発話時間あたりの出現回数が等しいときにはハンズフリー電話からの発話の方が同乗者からの発話よりも対話負荷パラメータが増加するように、名詞及び動詞の単位発話時間あたりの出現回数に重み付けする。これは、同乗者は、ハンズフリー電話の通話相手よりも運転者の状態や車両の走行状況を考慮して運転者に話し掛けている(例えば、歩行者に注意しながら交差点を右左折しているときには込み入ったことを話し掛けない、など)であろうという洞察に基づくものである。これにより、同乗者から運転者への発話は、ハンズフリー電話の通話相手からの発話よりも聴取負荷が相対的に低いという評価が反映されることになる。
Then, the conversation
このような一連の補正(重み付け)処理後の対話負荷パラメータが最終的に運転者の対話負荷を表すものとして運転者負荷の推定に用いられる。 The dialogue load parameter after such a series of correction (weighting) processing is used for estimating the driver load as a final representation of the driver's dialogue load.
このように、本実施例によれば、単語単位での認識が可能な音声認識処理を用いることによって、例えば接続詞や感嘆詞などの他の単語と比較して発話負荷及び聴取負荷が特に高いと考えられる名詞及び動詞に特化し、その単位時間あたりの出現回数によって運転者の対話負荷を推定するため、精度の良い推定が可能となる。 As described above, according to the present embodiment, when speech recognition processing capable of recognition in units of words is used, the speech load and the listening load are particularly high compared to other words such as conjunctions and exclamations. Specializing in possible nouns and verbs, and estimating the driver's interaction load based on the number of appearances per unit time, accurate estimation is possible.
また、本実施例によれば、音声認識により認識された名詞及び動詞について、さらにその各々の信頼度や出現間隔に応じて対話負荷パラメータを増減させる重み付け処理が行われるため、運転者対話負荷推定の精度を更に向上させることができる。 Further, according to this embodiment, the noun and the verb recognized by the speech recognition are further weighted to increase / decrease the interaction load parameter according to the reliability and appearance interval of each, so that the driver interaction load estimation is performed. The accuracy can be further improved.
さらに、本実施例によれば、運転者に対する発話音声について発話発信元に応じて運転者の聴取負荷をきめ細かく推定することができるため、運転者対話負荷推定の精度が一層向上する。 Furthermore, according to the present embodiment, it is possible to precisely estimate the driver's listening load according to the utterance source for the utterance voice to the driver, so that the accuracy of the driver interaction load estimation is further improved.
本発明は、車両に搭載され、車両運転中の運転者の負荷を推定する運転者負荷推定装置に利用できる。搭載される車両の外観、重量、サイズ、走行性能等は問わない。 INDUSTRIAL APPLICABILITY The present invention can be used in a driver load estimation device that is mounted on a vehicle and estimates a driver's load while driving the vehicle. The appearance, weight, size, running performance, etc. of the vehicle to be mounted are not limited.
100 運転者負荷推定装置
101 音声収集部
102 音声認識エンジン
103 対話負荷推定部
DESCRIPTION OF
Claims (8)
車室内の音声を収集する音声収集手段と、
前記音声収集手段により収集された音声を単語単位で音声認識処理する音声認識手段と、
前記音声認識手段により認識された単語のうち、名詞及び動詞の単位発話時間あたりの出現回数をそれぞれ算出する算出手段と、
前記算出手段により算出された前記名詞及び動詞の単位発話時間あたりの出現回数の和を運転者の対話負荷の大きさを表す負荷パラメータとする対話負荷推定手段と、を有することを特徴とする運転者負荷推定装置。 A driver load estimation device that is mounted on a vehicle and estimates a driver's load while driving the vehicle,
A voice collecting means for collecting voice in the passenger compartment;
Voice recognition means for performing voice recognition processing on a voice basis by the voice collected by the voice collection means;
Of the words recognized by the speech recognition means, calculating means for calculating the number of appearances per unit utterance time of nouns and verbs,
A dialogue load estimating means that uses a sum of the number of appearances per unit utterance time of the noun and verb calculated by the calculation means as a load parameter that represents the magnitude of the driver's dialogue load. Person load estimation device.
前記対話負荷推定手段は、前記名詞及び動詞の単位発話時間あたりの出現回数に所定の重み付け処理を行う補正手段を含む、ことを特徴とする運転者負荷推定装置。 The driver load estimating device according to claim 1,
The said driver | operator load estimation means contains the correction | amendment means which performs a predetermined weighting process to the frequency | count of appearance per unit utterance time of the said noun and a verb, The driver | operator load estimation apparatus characterized by the above-mentioned.
前記音声認識手段は、更に、音声認識処理した各単語について信頼度を算出し、
前記補正手段は、前記信頼度が低い名詞及び動詞については前記負荷パラメータが増加するように前記名詞及び動詞の単位発話時間あたりの出現回数に重み付け処理する、ことを特徴とする運転者負荷推定装置。 The driver load estimating device according to claim 2,
The speech recognition means further calculates a reliability for each word subjected to speech recognition processing,
The correcting means weights the number of appearances per unit utterance time of the noun and verb so that the load parameter increases for the noun and verb with low reliability, the driver load estimating device, .
前記算出手段は、更に、前記音声認識手段により認識された各単語について出現間隔を測定し、
前記補正手段は、前記出現間隔が所定時間より短い名詞及び動詞については前記負荷パラメータが減少するように前記名詞及び動詞の単位発話時間あたりの出現回数に重み付け処理する、ことを特徴とする運転者負荷推定装置。 The driver load estimation device according to claim 2 or 3,
The calculation means further measures an appearance interval for each word recognized by the voice recognition means,
The correction means weights the number of appearances per unit utterance time of the noun and verb so that the load parameter decreases for the noun and verb whose appearance interval is shorter than a predetermined time. Load estimation device.
前記算出手段は、更に、前記音声認識手段により認識された各単語について出現間隔を測定し、
前記補正手段は、前記出現間隔が所定時間より長い名詞及び動詞については前記負荷パラメータが増加するように前記名詞及び動詞の単位発話時間あたりの出現回数に重み付け処理する、ことを特徴とする運転者負荷推定装置。 The driver load estimation device according to any one of claims 2 to 4,
The calculation means further measures an appearance interval for each word recognized by the voice recognition means,
The correction means weights the number of appearances per unit utterance time of the noun and verb so that the load parameter increases for the noun and verb whose appearance interval is longer than a predetermined time. Load estimation device.
前記音声収集手段は、収集された音声の発声源を特定する発声源特定手段を含み、
前記対話負荷推定手段は、前記発声源特定手段により特定された発声源に応じて、前記名詞及び動詞の単位発話時間あたりの出現回数を運転者から発話された単語と運転者により聴取された単語とに分けて算出する、ことを特徴とする運転者負荷推定装置。 The driver load estimating device according to any one of claims 2 to 5,
The voice collecting means includes a voice source specifying means for specifying a voice source of the collected voice,
The dialogue load estimating means includes a word uttered by the driver and a word heard by the driver based on the utterance source specified by the utterance source specifying means, and the number of appearances per unit utterance time of the noun and verb. A driver load estimation device characterized by being calculated separately.
前記発声源特定手段は、運転者への発話をハンズフリー電話からの発話か又は同乗者からの発話か識別し、
前記補正手段は、前記名詞及び動詞の単位発話時間あたりの出現回数が等しいときにはハンズフリー電話からの発話の方が同乗者からの発話よりも前記負荷パラメータが増加するように、前記名詞及び動詞の単位発話時間あたりの出現回数に重み付け処理する、ことを特徴とする運転者負荷推定装置。 The driver load estimating device according to claim 6, wherein
The utterance source specifying means identifies whether the utterance to the driver is an utterance from a hands-free telephone or from a passenger,
The correction means is configured so that when the number of appearances per unit utterance time of the noun and the verb is equal, the load parameter is increased for the utterance from the hands-free phone than the utterance from the passenger. A driver load estimation device, characterized by weighting the number of appearances per unit utterance time.
前記音声認識手段は、前記発声源特定手段によりオーディオ出力であると特定された音声は音声認識処理しない、ことを特徴とする運転者負荷推定装置。 The driver load estimation device according to claim 6 or 7,
The driver recognition apparatus according to claim 1, wherein the voice recognition means does not perform voice recognition processing on the voice identified as the audio output by the voice source identification means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005174346A JP4507996B2 (en) | 2005-06-14 | 2005-06-14 | Driver load estimation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005174346A JP4507996B2 (en) | 2005-06-14 | 2005-06-14 | Driver load estimation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006349871A true JP2006349871A (en) | 2006-12-28 |
JP4507996B2 JP4507996B2 (en) | 2010-07-21 |
Family
ID=37645827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005174346A Expired - Fee Related JP4507996B2 (en) | 2005-06-14 | 2005-06-14 | Driver load estimation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4507996B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009223745A (en) * | 2008-03-18 | 2009-10-01 | Internatl Business Mach Corp <Ibm> | Apparatus, method, and program for acquiring evaluation information of object of interest |
JP2016149014A (en) * | 2015-02-12 | 2016-08-18 | 株式会社デンソー | Interactive device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02131299A (en) * | 1988-11-11 | 1990-05-21 | Nec Corp | State decision device |
JP2001215993A (en) * | 2000-01-31 | 2001-08-10 | Sony Corp | Device and method for interactive processing and recording medium |
JP2003323424A (en) * | 2002-04-30 | 2003-11-14 | Nippon Hoso Kyokai <Nhk> | Subject presuming device, method and program |
JP2004233676A (en) * | 2003-01-30 | 2004-08-19 | Honda Motor Co Ltd | Interaction controller |
JP2006251898A (en) * | 2005-03-08 | 2006-09-21 | Fuji Xerox Co Ltd | Information processor, information processing method, and program |
-
2005
- 2005-06-14 JP JP2005174346A patent/JP4507996B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02131299A (en) * | 1988-11-11 | 1990-05-21 | Nec Corp | State decision device |
JP2001215993A (en) * | 2000-01-31 | 2001-08-10 | Sony Corp | Device and method for interactive processing and recording medium |
JP2003323424A (en) * | 2002-04-30 | 2003-11-14 | Nippon Hoso Kyokai <Nhk> | Subject presuming device, method and program |
JP2004233676A (en) * | 2003-01-30 | 2004-08-19 | Honda Motor Co Ltd | Interaction controller |
JP2006251898A (en) * | 2005-03-08 | 2006-09-21 | Fuji Xerox Co Ltd | Information processor, information processing method, and program |
Non-Patent Citations (1)
Title |
---|
西本 卓也 TAKUYA NISHIMOTO: "音声インタフェースのための対話負荷測定法 Measurement of Workload for Voice User Interface Systems", 電子情報通信学会論文誌 (J87−D−II) 第2号 THE IEICE TRANSACTIONS ON INFORMATION AND SYST, vol. 第J87-D-II巻, JPN6009039931, 1 February 2004 (2004-02-01), JP, pages 513 - 520, ISSN: 0001588884 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009223745A (en) * | 2008-03-18 | 2009-10-01 | Internatl Business Mach Corp <Ibm> | Apparatus, method, and program for acquiring evaluation information of object of interest |
JP2016149014A (en) * | 2015-02-12 | 2016-08-18 | 株式会社デンソー | Interactive device |
Also Published As
Publication number | Publication date |
---|---|
JP4507996B2 (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8639508B2 (en) | User-specific confidence thresholds for speech recognition | |
US8831939B2 (en) | Voice data transferring device, terminal device, voice data transferring method, and voice recognition system | |
US10339930B2 (en) | Voice interaction apparatus and automatic interaction method using voice interaction apparatus | |
CN105529026B (en) | Speech recognition apparatus and speech recognition method | |
US9542947B2 (en) | Method and apparatus including parallell processes for voice recognition | |
US9082414B2 (en) | Correcting unintelligible synthesized speech | |
US20170323653A1 (en) | Speech Enhancement and Audio Event Detection for an Environment with Non-Stationary Noise | |
US8442833B2 (en) | Speech processing with source location estimation using signals from two or more microphones | |
JP4246703B2 (en) | Automatic speech recognition method | |
JP2006259164A (en) | Voice recognition system, voice recognition method and computer program | |
US20200045166A1 (en) | Acoustic signal processing device, acoustic signal processing method, and hands-free communication device | |
US9473094B2 (en) | Automatically controlling the loudness of voice prompts | |
CN112397065A (en) | Voice interaction method and device, computer readable storage medium and electronic equipment | |
US20150215716A1 (en) | Audio based system and method for in-vehicle context classification | |
US20070198268A1 (en) | Method for controlling a speech dialog system and speech dialog system | |
EP1493993A1 (en) | Method and device for controlling a speech dialog system | |
EP3574499B1 (en) | Methods and apparatus for asr with embedded noise reduction | |
JP6459330B2 (en) | Speech recognition apparatus, speech recognition method, and speech recognition program | |
JP2007288242A (en) | Operator evaluation method, device, operator evaluation program, and recording medium | |
JP5803125B2 (en) | Suppression state detection device and program by voice | |
WO2020223304A1 (en) | Speech dialog system aware of ongoing conversations | |
US20120197643A1 (en) | Mapping obstruent speech energy to lower frequencies | |
EP1477965A1 (en) | Spoken keyword recognition apparatus and method | |
JP4507996B2 (en) | Driver load estimation device | |
JP2020148805A (en) | Voice recognition system and voice recognition method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100413 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100426 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |