Nothing Special   »   [go: up one dir, main page]

JP2006347534A - Bicycle drive crank pedal angle advancing device - Google Patents

Bicycle drive crank pedal angle advancing device Download PDF

Info

Publication number
JP2006347534A
JP2006347534A JP2006117217A JP2006117217A JP2006347534A JP 2006347534 A JP2006347534 A JP 2006347534A JP 2006117217 A JP2006117217 A JP 2006117217A JP 2006117217 A JP2006117217 A JP 2006117217A JP 2006347534 A JP2006347534 A JP 2006347534A
Authority
JP
Japan
Prior art keywords
pedal
eccentric
gear
shaft
bicycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006117217A
Other languages
Japanese (ja)
Other versions
JP2006347534A5 (en
Inventor
Yasukazu Nagayama
泰和 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAYAMA SEIKI KOSAKUSHO KK
Original Assignee
NAGAYAMA SEIKI KOSAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAYAMA SEIKI KOSAKUSHO KK filed Critical NAGAYAMA SEIKI KOSAKUSHO KK
Priority to JP2006117217A priority Critical patent/JP2006347534A/en
Publication of JP2006347534A publication Critical patent/JP2006347534A/en
Publication of JP2006347534A5 publication Critical patent/JP2006347534A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bicycle drive crank pedal angle advancing device capable of reducing the invalid labor in the vicinity of a top dead center of a pedal when a bicycle travels, and having the function for enjoying the efficient and comfortable cycling. <P>SOLUTION: The bicycle drive crank pedal angle advancing device makes the angle advance of the top dead center of a pedal by dividing a crank shaft into right and left portions 5, 6, and connecting them to offset gears 7B, 7C on a coupling shaft 8, and offset gears 7A, 7D on the crank shafts 5A, 5B. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自転車の人力による駆動走行される時、下側のペダルが下死点時、上側ペダルが上死点を通過し、前方に角進させる機能を搭載した自転車に係わる、技術分野に属する。  TECHNICAL FIELD The present invention relates to a technical field related to a bicycle equipped with a function of causing the bicycle to travel forward by a human power when the lower pedal is at the bottom dead center and the upper pedal passes through the top dead center to advance forward. Belongs.

本発明は、自転車走行時の、人力エネルギーの効率を改善に寄与する駆動装置、連結装置、等に関する。  The present invention relates to a drive device, a coupling device, and the like that contribute to improving the efficiency of human energy during bicycle travel.

従来 自転車の人力エネルギーの効率改善は、主に変速装置、チエンの架けかえ変速機構、後輪ハブ内装変速装置、軽量化程度のものであった。  Conventionally, the improvement of the efficiency of the manpower energy of the bicycle has been mainly about the transmission, the chain changing transmission mechanism, the rear wheel hub internal transmission, and the weight reduction.

上述の如く、従来の運行に関する技術は、変速機能の改善、車体重量の軽減等に、重きを置き、加える力の無効分の軽減、または除去等に無関心な処があった。
故に、お年寄りの方、お子様、ご婦人の方々には、無駄な労力を掛けさせてきました。従来の自転車は、ペダルを踏んで漕ぐ、走行する時、上側になるペダルは、下側のペダルが、下死点の時、必ず上死点にある。
ここから踏み始めるのであるが、下押し直線運動を、回転運動に変える場合、上、下死点近傍は、エネルギー使用効率が悪く、ロスが多くなる。
自転車の通常の走行は、クランク〜ペダルが惰力で回転しているところもあり無意識の内に漕いでいるのが現状で、向かい風、上り坂、等で上死点が顔を出してくる。
お年より、女性たちは前に進めなくなり、子供は、立ち上がって走行している状態である。
電動アシスト自転車も普及してきたが、バッテリーの充電等の不便さと、走行距離等に問題がある。
As described above, the conventional technology related to operation has been indifferent to the improvement of the speed change function, the reduction of the vehicle body weight, etc., and the ineffective part of the applied force is reduced or eliminated.
Therefore, the elderly, children, and ladies have been wasted. In conventional bicycles, when pedaling and running, the upper pedal is always at the top dead center when the lower pedal is at the bottom dead center.
Starting from here, when the downward linear motion is changed to a rotational motion, the energy use efficiency is poor and the loss increases near the top and bottom dead centers.
The normal driving of bicycles is that the crank-pedal is rotating with repulsive force and is currently unconsciously scooping, and the top dead center appears in the headwind, uphill, etc.
From year onwards, women are no longer able to move forward, and children are standing up and running.
Electric assist bicycles have also become widespread, but there are problems with inconvenience such as battery charging and travel distance.

なお、本発明に関連する公知、公開技術として、次の特許文献1、2等を挙げることができる。
特開平11−070889号公報 特開平06−263079号公報
In addition, the following patent documents 1, 2 etc. can be mentioned as a well-known and public technique relevant to this invention.
Japanese Patent Laid-Open No. 11-070889 Japanese Patent Laid-Open No. 06-263079

上述の如く、従来の自転車走行に関する技術は、変速機能の改善、車体重量の軽減等に重きを置き、普通に街中を走っている方々も、何気無くペダルを漕いでいる。
また、ペダルの上死点付近では無意識の内に労力を、熱に変換して、エネルギーのロスを生じているのが現状である。
As described above, conventional bicycle driving techniques place emphasis on improving the shifting function, reducing the weight of the vehicle body, etc., and even those who normally run around the city casually pedal.
In addition, in the vicinity of the top dead center of the pedal, the current situation is that energy is lost by unconsciously converting labor into heat.

本発明は、このような点に鑑みて発明されたものであり、上述の目的を達成する本発明は、自転車の駆動クランクペダル角進装置で、上ペダルの上死点近傍の労力伝達効率を、改善する為の機構構造で、容易に力率改善を実現できるようにすることにある。
少しでも、楽に省エネをしながら、自転車を漕ぎ街中を走りまわり、ひいては、地球温暖化の遅延に、少しでもお役に立てるペダル角進装置にすることを特徴とする。
The present invention has been invented in view of the above points, and the present invention that achieves the above-described object is a bicycle drive crank pedal angle advancer, which improves the labor transmission efficiency near the top dead center of the upper pedal. The purpose is to make it possible to easily improve the power factor with a mechanism structure for improvement.
It is characterized by a pedal angle device that can be used as much as possible in order to save energy and make it easy to save energy while riding around the city and running around the city.

前述の課題を解決するため、本発明に係る自転車の駆動クランクペダル角進装置は、次のような手段を、用い解決する。  In order to solve the above-described problems, the bicycle drive crank pedal advancing device according to the present invention solves the problem by using the following means.

即ち、請求項1及び、請求項2に記載のように、目的を達成する、本発明の自転車の駆動クランクペダル角進装置は、クランク軸を、左右に二分すると共に、左右の軸の回転駆動に、角速度を可変にする、軸芯をずらせた偏芯歯車、機構を組み合わせた構造体で、連結したことを特徴とする、ペダル角進装置である。
また請求項3に記載の目的を達する装置は、
軸芯をずらせた、偏芯歯車を組み合わせた機構の連結軸を出力軸とし、逆回転の同軸を、歯車を介して、片側クランク軸上に配した中空チエンスプロケット軸を、駆動回転し回転出力を得ることを特徴とする、同軸入出力装置である。
That is, as described in claim 1 and claim 2, the bicycle drive crank pedal advancing device of the present invention that achieves the object bisects the crankshaft to the left and right, and rotationally drives the left and right shafts. In addition, the pedal angular advance device is characterized in that it is connected by a structure in which an angular gear is made variable, an eccentric gear having a shifted axis, and a mechanism.
An apparatus for achieving the object of claim 3 is provided.
A hollow chain sprocket shaft arranged on one side of the crankshaft via a gear is driven and rotated via a gear, with the shaft connected to the output shaft that is a combination of eccentric gears and an output shaft. It is a coaxial input / output device characterized by obtaining.

以上説明したように本発明は、自転車のペダルの片側が下死点の時、反対側のペダルが上死点を通過、角進させることにより、上死点近傍の無効エネルギーの消費を無くし、また、運行周回中のベダル位置による、負荷変動を少なくなることにより、快適な走行ができる。
また発車時も滑らかにスタートできる。
このことによって、無駄な労力の低減に、極めて有効である。
As described above, the present invention eliminates the consumption of reactive energy in the vicinity of the top dead center by causing the pedal on the opposite side to pass the top dead center and making it advance when one side of the pedal of the bicycle is at the bottom dead center. Moreover, comfortable travel can be achieved by reducing load fluctuations due to the bedal position during operation.
You can also start smoothly when you leave.
This is extremely effective for reducing unnecessary labor.

以下、本発明に係る、自転車の駆動クランクペダル角進装置、及び自転車の実施形態を、図面を用いて説明する。  DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a bicycle drive crank pedal angle advancing device and bicycle according to the present invention will be described below with reference to the drawings.

図1〜図10は、本発明の実施形態に係り、図1は、自転車の概観図、図2は、ペダル水平位置斜視図、図3は、角進状態のペダル上下位置斜視図、図4は、偏芯歯車角進装置平面断面図、図5は、偏芯歯車角進装置平面抜粋略図,図6は、偏芯歯車角進装置歯車連結軸図、図7は、偏芯歯車主要詳細図,図8は、チエンスプロケット中空軸、図9は2分割クランク  1 to 10 relate to an embodiment of the present invention, FIG. 1 is a schematic view of a bicycle, FIG. 2 is a perspective view of a pedal horizontal position, FIG. 3 is a perspective view of a pedal up and down position in an angular state, and FIG. Fig. 5 is a plan sectional view of the eccentric gear angular advancer, Fig. 5 is a schematic excerpt from the plane of the eccentric gear angular advancer, Fig. 6 is an eccentric gear angular advancer gear connection shaft diagram, and Fig. 7 is the main details of the eccentric gear. Figures 8 and 8 are chain sprocket hollow shafts, and Figure 9 is a two-part crank.

この実施の形態は、図2に示すように、分割クランク軸5A,5B、連結軸8、中空軸9、以上4本の軸と、クランクアーム4A,4B、ペダル3A,3B,偏芯歯車6A,6B,6C,6D、偏芯平歯車(又は偏芯歯車に用いた時、同等の機能を有する歯車)、歯車7A,7B、チエンスプロケット10を、主な部品にして構成されている。  In this embodiment, as shown in FIG. 2, the divided crankshafts 5A and 5B, the connecting shaft 8, the hollow shaft 9, the above four shafts, the crank arms 4A and 4B, the pedals 3A and 3B, and the eccentric gear 6A. , 6B, 6C, 6D, an eccentric spur gear (or a gear having an equivalent function when used in an eccentric gear), gears 7A, 7B, and chain sprocket 10 are configured as main components.

図7は偏芯歯車6(A〜D)の主要詳細図で、歯車本来の,センター点P,偏芯回転軸センター点o、偏芯量W、歯車基準半径R、偏芯回転最高点H,偏芯回転最低点L、を示す。  FIG. 7 is a main detailed view of the eccentric gear 6 (A to D). The original center point P, the eccentric rotation shaft center point o, the eccentric amount W, the gear reference radius R, and the eccentric rotation maximum point H. , The eccentric rotation lowest point L.

連結軸8には、図6に示すように、偏芯歯車6B,6C,の偏芯方向を180度位相をずらして芯を合わせ軸に固定し、偏芯歯車6B,の外側に歯車7B,を同軸に取り付け、一体化している。  As shown in FIG. 6, the connecting shaft 8 has an eccentric direction of the eccentric gears 6B, 6C, 180 degrees out of phase and fixed to the shaft. The gears 7B, 6B, Are installed coaxially and integrated.

分割クランク軸5A,5Bには、図9に示すように各軸端に偏芯歯車6A,6D,反対軸端には、クランクアーム4A,4Bを、図7の最低点Lが軸心から見て、クランクアームと同一方向になるように取り付け、一体化している。  As shown in FIG. 9, the split crankshafts 5A and 5B have eccentric gears 6A and 6D at their shaft ends, crank arms 4A and 4B at their opposite shaft ends, and the lowest point L in FIG. So that it is in the same direction as the crank arm.

チエンスプロケットの一部断面図の図8は、中空軸9の片端に歯車7Aを、反対端に、チエンスプロケット10を、固定取り付けした図である。FIG. 8 of a partial cross-sectional view of the chain sprocket is a diagram in which a gear 7A is fixed to one end of the hollow shaft 9 and a chain sprocket 10 is fixedly attached to the opposite end.

一体化された各軸,クランク軸、連結軸、及び、中空軸は、図2のように配置する。
分割クランク軸5A,5Bの軸芯は、同一線上に配し、クランクアームは、水平で前方後方に、位相を、180度向きを変えた状態に配置する。
連結軸8の偏芯歯車6B,6Cと、クランク軸5A,5Bの偏芯歯車6A,6D,との位相関係は、図5のように、各偏芯歯車の偏芯回転最高点Hと、偏芯回転最低点Lを、噛み合うように、配置する。
連結軸8の歯車7Bと、中空軸9の歯車7Aは、噛み合わせると共に、中空軸内を、クランク軸5Aが通っている。
The integrated shafts, crankshaft, connecting shaft, and hollow shaft are arranged as shown in FIG.
The shaft centers of the split crankshafts 5A and 5B are arranged on the same line, and the crank arms are arranged horizontally and forward and rearward, with the phase changed by 180 degrees.
The phase relationship between the eccentric gears 6B and 6C of the connecting shaft 8 and the eccentric gears 6A and 6D of the crankshafts 5A and 5B is, as shown in FIG. The eccentric rotation lowest point L is arranged so as to mesh with each other.
The gear 7B of the connecting shaft 8 and the gear 7A of the hollow shaft 9 mesh with each other, and the crankshaft 5A passes through the hollow shaft.

各軸は、図4を例として、クランク軸5A,5B,連結軸8,及び中空軸9は、ベアリング等の軸受けで、各軸独立保持される。  As shown in FIG. 4, the crankshafts 5 </ b> A and 5 </ b> B, the connecting shaft 8, and the hollow shaft 9 are each independently held by a bearing such as a bearing.

以上をケースに収め、図1の自転車のクランク軸ケース2、とする。The above is housed in a case, and the crankshaft case 2 of the bicycle shown in FIG.

図7、図10を用いて角進装置の、符号と簡単な動作機能を説明する。  7 and 10 will be used to explain the symbols and simple operation functions of the angle advancement device.

符号の定義Definition of sign

A 偏芯歯車6Aの偏芯回転歯角換算角度
B 偏芯歯車6Bの偏芯回転歯角換算角度
C 偏芯歯車6Cの偏芯回転歯角換算角度
D 偏芯歯車6Dの偏芯回転歯角換算角度
H 偏芯歯車の偏芯回転最高点
L 偏芯歯車の偏芯回転最低点
K 偏芯歯車回転方向
P 歯車基準半径中心点
o 偏芯歯車の偏芯回転中心点
R 歯車基準半径
W 偏芯歯車の量(偏芯距離)
S=クランクペダルが水平時、2歯車が基準半径点で噛み合っている交点。
S+(添え字A,B,C,D、)=クランク軸5Aが下死点まで回転した時、各偏芯歯車のS点の回転位置。
A Eccentric rotation tooth angle conversion angle of eccentric gear 6A B Eccentric rotation tooth angle conversion angle of eccentric gear 6B C Eccentric rotation tooth angle conversion angle of eccentric gear 6C D Eccentric rotation tooth angle of eccentric gear 6D Conversion angle H Eccentric rotation highest point of eccentric gear L Eccentric rotation lowest point of eccentric gear K Eccentric gear rotation direction P Gear reference radius center point o Eccentric rotation center point of eccentric gear R Gear reference radius W Offset Amount of core gear (eccentric distance)
S = Intersection where the two gears mesh at the reference radius when the crank pedal is horizontal.
S + (subscripts A, B, C, D) = the rotational position of the S point of each eccentric gear when the crankshaft 5A rotates to the bottom dead center.

図10は、ペダル水平位置からペダル3Aが、下死点まで90度回転する想定図である。
即ち、偏芯歯車6Aは、回転中心軸の中心点oを中心に、歯車初期噛み合い点SがSAまで∠S o SA度回転する。
FIG. 10 is an assumption diagram in which the pedal 3A rotates 90 degrees from the pedal horizontal position to the bottom dead center.
That is, the eccentric gear 6A rotates around the center point o of the rotation center axis by ∠S o SA degrees until the gear initial mesh point S reaches SA.

この回転角を偏芯歯車の基準半径中心点Pの開角に換算すると
∠A度=∠S P SA度となる。
6AのSは、偏芯回転最高点H側のため、距離So>SPであり、∠A度 > ∠So SA度となる。
偏芯歯車の基準半径中心点Pから見ると、元の回転角 90度分と ∠Aの差分が角進角の要素となる。
When this rotation angle is converted into the opening angle of the reference radius center point P of the eccentric gear, ∠A degree = ∠SPSA degree.
Since S of 6A is the eccentric rotation maximum point H side, the distance So> SP, and ∠A degree> ∠So SA degree.
When viewed from the reference radius center point P of the eccentric gear, the difference between the original rotation angle of 90 degrees and ∠A is an element of the angular advance angle.

偏芯歯車6Bは、6Aと歯車噛み合い回転のため、偏芯歯車の基準半径中心点Pを中心に見た場合、∠A度分回転する。
その回転した点を、SBと仮定する。
実際は、偏芯歯車の回転中心点oを、軸に回転するため、歯車初期噛み合い点Sが、回転した点をSBに達するには、∠B=∠S o SB=度分回転しなければならない。
6BのSは,偏芯回転最低点L側のため,距離So<SPとなっている。
故に∠A度 < ∠B度となり、その差分は、角進角の1要素となる。
Since the eccentric gear 6B rotates in mesh with 6A, the eccentric gear 6B rotates by ∠A degrees when viewed from the reference radius center point P of the eccentric gear.
The rotated point is assumed to be SB.
Actually, since the rotation center point o of the eccentric gear rotates on the shaft, the initial meshing point S of the gear must rotate by ∠B = ∠S o SB = degree in order to reach the rotated point SB. .
Since S in 6B is the lowest eccentric rotation point L side, the distance So <SP.
Therefore, ∠A degree <∠B degree, and the difference is one element of the advance angle.

偏芯歯車6Cは、偏芯歯車6Bと、連結軸8で直結しており、偏芯歯車の回転中心点を軸に、∠B度分回転する。
以降、偏芯歯車6C、6Dも、同様に、偏芯歯車の回転中心点oと,軸偏芯歯車の基準半径中心点Pと、交互に少しずつ角進を繰り返し、対向ベダル3Bは3B’に達する、その角進角度は、各段の角進要素の累計である。
即ち、対向ペダル3Bの、回転角∠D度=∠S o SD度と、初期回転角90度との差分∠D度−90度となる。
The eccentric gear 6C is directly connected to the eccentric gear 6B by the connecting shaft 8, and rotates by ∠B degrees around the rotation center point of the eccentric gear.
Thereafter, the eccentric gears 6C and 6D similarly repeat the rotation of the rotation center point o of the eccentric gear and the reference radius center point P of the shaft eccentric gear little by little. The angular advance angle reaching is the sum of the angular advance elements of each stage.
That is, the difference between the rotation angle ∠D degree = ∠S o SD degree of the counter pedal 3B and the initial rotation angle 90 degrees is ∠D degree−90 degrees.

各歯車に数値を代入した計算例を示す。
各歯車基準半径 R = 15.75mm。
上記の歯車6個用いて内2個を7A,7B,に対応。
残4個を 偏芯量 W = 1.5mm、の偏芯歯車にして、
6A,6B,6C,6D,に対応。
図2のペダル位置から、ペダル3Aを図3のように下死点まで下押し回転した場合の、角進角18の計算結果
角進角18 ≒ 21.5度。
上記の設定でペダルを回転させたときの、
噛み合い偏芯歯車の基準半径、中心点間距離変動量≒0.15mm。
A calculation example in which a numerical value is substituted for each gear is shown.
Each gear reference radius R = 15.75 mm.
Two of the above gears correspond to 7A and 7B.
Make the remaining 4 eccentric gears with eccentricity W = 1.5 mm,
Corresponding to 6A, 6B, 6C, 6D.
The calculation result of the angular advance angle 18 when the pedal 3A is pushed down to the bottom dead center as shown in FIG. 3 from the pedal position in FIG. 2; the angular advance angle 18≈21.5 degrees.
When the pedal is rotated with the above settings,
The reference radius of the meshing eccentric gear, the distance variation between the center points ≈ 0.15 mm.

以上のように設定して、
偏芯歯車の偏芯量Wは、4段の歯車で少しずつ角進を繰り返すため歯車基準半径Rに対し小さくしてもよく、回転軸間ピッチに対し、基準半径中心点間、距離変動量を、実用上、差し支えの無いものに抑えることができる。
Set as above,
The eccentric amount W of the eccentric gear may be small with respect to the gear reference radius R because the four-stage gear repeats the angular advance little by little. Can be suppressed to a practically acceptable one.

また、副次的な効用として、下記をあげることができる。
偏芯歯車主動側と従動側噛み合い点における半径の差により、変速率が変る。
図10の、角進位置ペダル3B’から、回転水平位置までの、偏芯歯車半径比率,(二つの偏芯歯車噛み合い点Sと、偏芯歯車主動側o間。噛み合い点Sと、従動側o間の比率)が、
1:1 から 17.25:14.25 ≒1.2 まで変化し、その割合の逆数で、変速比も変化する。
また角進位置ペダル3B’から、回転水平位置までの、有効負荷変動率を、(有効値/(有効値+無効値))*100とすると、26%から100%まで変化する。
有効率の26%と低いペダル3B’の処では、偏芯歯車の変速比が≒1:1で、労力を伝達する。
また有効率が1:1と高い水平位置では,偏芯歯車変速比率により≒1.2倍に増速する。
故に、力の伝達変化係数を、
水平ペダル時の伝達係数=1/1.2≒0.83
角進位置ペダル3B’時の伝達係数=0.26/1=0.26
とすると,
伝達変化係数=(水平ペダル時の伝達係数/角進位置ペダル3B’時の伝達係数)=0.83/0.26≒3.2となる。
故に、力の加え具合が平均化して、スムースな走行となる。
また水平位置から下死点までは、上記と逆動作をするが、力に対する作用は、平均化、スムース化は、同様に働く。
Moreover, the following can be mention | raise | lifted as a secondary utility.
The gear ratio changes due to the difference in radius between the eccentric gear main driving side and the driven side meshing point.
In FIG. 10, the eccentric gear radius ratio from the angular position pedal 3B ′ to the rotational horizontal position (between the two eccentric gear meshing points S and the eccentric gear main driving side o. The meshing point S and the driven side o ratio) is
It changes from 1: 1 to 17.25: 14.25≈1.2, and the gear ratio also changes with the reciprocal of the ratio.
Further, if the effective load fluctuation rate from the angular position pedal 3B ′ to the rotational horizontal position is (effective value / (effective value + invalid value)) * 100, it changes from 26% to 100%.
In the case of the pedal 3B ′, which is as low as 26% of the effective rate, the transmission ratio of the eccentric gear is approximately 1: 1, and labor is transmitted.
In the horizontal position where the effective ratio is as high as 1: 1, the speed is increased by approximately 1.2 times depending on the eccentric gear transmission ratio.
Therefore, the transmission change coefficient of force is
Transmission coefficient for horizontal pedal = 1 / 1.2 ≒ 0.83
Transmission coefficient at angular position pedal 3B '= 0.26 / 1 = 0.26
Then,
Transmission change coefficient = (Transmission coefficient at the time of the horizontal pedal / Transmission coefficient at the time of the angular position pedal 3B ′) = 0.83 / 0.26≈3.2.
Therefore, the amount of force applied is averaged, resulting in smooth running.
The operation from the horizontal position to the bottom dead center is the reverse of the above, but the effect on the force is the same for averaging and smoothing.

従来の自転車は、有効率0%の上死点から、100%の水平位置までの変化があり、また、ペダルとチエンホイールが直結している為、伝達変化係数は、100/0=無限大(ペダルが上死点では単純な下向きの力に対しては回転しない)となり、力の掛け具合は、滑らかと言えず、また無駄なエネルギーを消費していた。The conventional bicycle has a change from the top dead center with an effective rate of 0% to a horizontal position of 100%, and since the pedal and the chain wheel are directly connected, the transmission change coefficient is 100/0 = infinity. (The pedal does not rotate for a simple downward force at the top dead center), and the force is not smooth and wastes energy.

自転車の概観図    Bicycle overview ペダル水平位置斜視図    Pedal horizontal position perspective view 角進状態のペダル上下位置斜視図    Perspective view of the vertical position of the pedal in a square state 偏芯歯車角進装置平面断面図    Eccentric gear angular advance device plan sectional view 偏芯歯車角進装置平面抜粋略図    Plane excerpt of eccentric gear angular advancer 偏芯歯車角進装置歯車連結軸    Eccentric gear angular advancer gear connecting shaft 偏芯歯車主要詳細図    Eccentric gear main details チエンスプロケット中空軸    Chain sprocket hollow shaft 2分割クランク軸    2-part crankshaft 偏芯歯車角進装置演算図    Eccentric gear angular advance device calculation diagram

主な部分番号の定義Definition of main part numbers

1 自転車本体
2 クランク軸ケース
3 (添え字付) ペダル
4 (添え字付) クランクアーム
5 (添え字付) クランク軸
6 (添え字付) 偏芯歯車
7 (添え字付) 歯車
8 歯車連結軸
9 中空軸
10 チエンホイール
11〜17 軸受け
18 角進角度
1 Bicycle body 2 Crankshaft case 3 (with subscript) Pedal 4 (with subscript) Crank arm 5 (with subscript) Crankshaft 6 (with subscript) Eccentric gear 7 (with subscript) Gear 8 Gear connecting shaft 9 Hollow shaft 10 Chain wheel 11-17 Bearing 18 Angular advance angle

Claims (3)

自転車の駆動クランク軸を左右に分割し、分離した軸に周速を可変にした機構、構造体を介して、力の伝達をすることを特徴とする、自転車の駆動クランク軸機構である。The bicycle drive crankshaft mechanism is characterized in that force is transmitted through a structure and a structure in which the drive crankshaft of the bicycle is divided into left and right and the peripheral speed is made variable on the separated shaft. 請求項1の周速を可変にした機構、構造体に、軸芯をずらせた偏芯歯車を組み合わせた機構で、連結したことを特徴とする、ペダル角進装置である。  A pedal angle advancing device comprising: a mechanism and a structure having variable peripheral speeds according to claim 1 and a mechanism in which an eccentric gear having a shifted axis is combined. 請求項2の、軸芯をずらせた偏芯歯車を組み合わせた機構の連結軸を、出力軸とし、中空軸を経て、クランク軸と同一軸上に、チエンスプロケット出力を得ることを特徴とする、同一軸入出力装置である。  The connecting shaft of the mechanism combining the eccentric gears with the shaft axis shifted according to claim 2 is used as an output shaft, and a chain sprocket output is obtained on the same shaft as the crankshaft through the hollow shaft. The same axis input / output device.
JP2006117217A 2005-05-18 2006-03-24 Bicycle drive crank pedal angle advancing device Pending JP2006347534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117217A JP2006347534A (en) 2005-05-18 2006-03-24 Bicycle drive crank pedal angle advancing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005175663 2005-05-18
JP2006117217A JP2006347534A (en) 2005-05-18 2006-03-24 Bicycle drive crank pedal angle advancing device

Publications (2)

Publication Number Publication Date
JP2006347534A true JP2006347534A (en) 2006-12-28
JP2006347534A5 JP2006347534A5 (en) 2007-03-15

Family

ID=37643797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117217A Pending JP2006347534A (en) 2005-05-18 2006-03-24 Bicycle drive crank pedal angle advancing device

Country Status (1)

Country Link
JP (1) JP2006347534A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863208B1 (en) 2007-12-18 2008-10-13 제너럴로터(주) Driving unit for bicycle
WO2009035517A1 (en) * 2007-09-10 2009-03-19 Hui Yan Human powered vehicle with two reciprocal pedals
WO2020081004A1 (en) * 2018-10-19 2020-04-23 Bhushan Kumar Oberoi Gear mechanism, pedal-powered vehicle comprising the same, and method for forming the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035517A1 (en) * 2007-09-10 2009-03-19 Hui Yan Human powered vehicle with two reciprocal pedals
KR100863208B1 (en) 2007-12-18 2008-10-13 제너럴로터(주) Driving unit for bicycle
WO2020081004A1 (en) * 2018-10-19 2020-04-23 Bhushan Kumar Oberoi Gear mechanism, pedal-powered vehicle comprising the same, and method for forming the same
GB2591914A (en) * 2018-10-19 2021-08-11 Kumar Oberoi Bhushan Gear mechanism, pedal-powered vehicle comprising the same, and method for forming the same
GB2591914B (en) * 2018-10-19 2022-09-21 Kumar Oberoi Bhushan Gear mechanism, pedal-powered vehicle comprising the same, and method for forming the same
US11851132B2 (en) * 2018-10-19 2023-12-26 Bhushan Kumar Oberoi Gear mechanism, pedal-powered vehicle comprising the same, and method for forming the same

Similar Documents

Publication Publication Date Title
CN104260817B (en) Bicycle electric boosting device
TWI481162B (en) Double motor drive device and its internal variable speed double motor and clutch deceleration drive device
TWI772952B (en) An off-axis automatic stepless hybrid transmission system and a power-assisted bicycle
JP2006347534A (en) Bicycle drive crank pedal angle advancing device
CN106080949B (en) The automatically controlled double shift mode bicycle middle shaft gearboxes of line traffic control with more gear speed-changings
TWM606074U (en) Hub motor system and power assisted bicycle
CN106428405A (en) Bicycle driving middle shaft with no dead point
CN207520329U (en) A kind of multifunctional massaging mechanism
CN2209102Y (en) Coaxal output variable-speed device for man drawn vehicle
US20070234846A1 (en) Variable geared bicycle pedal
CN213566340U (en) Gear bicycle
WO1992006886A1 (en) Rotational power mechanism with horizontal arms
CN201951658U (en) High-speed double-driving double-speed-change power-assisted vehicle
CN206087171U (en) Bicycle does not have dead point drive axis
KR101248494B1 (en) Bicycle with ascending and descending pedal
TWM587148U (en) Electric auxiliary drive unit for bicycle
CN2594129Y (en) Foldable bicycle with composite transmission
TWM424298U (en) Bi-harmonic super power-bike
JP3239796U (en) electric assist bicycle
CN2455607Y (en) Bidirectional driving mechanism of bicycle
CN103482003B (en) A kind of built crank mechanism
CN104210597B (en) A kind of dismantling type electric bicycle
KR102237461B1 (en) Full body exercise bicycle driven by the user&#39;s upper and lower body
CN207257894U (en) scooter driver
CN206394805U (en) It is a kind of new without chain double-driving bicycle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925