Nothing Special   »   [go: up one dir, main page]

JP2006344786A - Polishing material for polysilicon and polishing method thereof - Google Patents

Polishing material for polysilicon and polishing method thereof Download PDF

Info

Publication number
JP2006344786A
JP2006344786A JP2005169384A JP2005169384A JP2006344786A JP 2006344786 A JP2006344786 A JP 2006344786A JP 2005169384 A JP2005169384 A JP 2005169384A JP 2005169384 A JP2005169384 A JP 2005169384A JP 2006344786 A JP2006344786 A JP 2006344786A
Authority
JP
Japan
Prior art keywords
polysilicon
polishing
abrasive
polishing rate
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005169384A
Other languages
Japanese (ja)
Inventor
Masaya Nishiyama
雅也 西山
Toranosuke Ashizawa
寅之助 芦沢
Yasuo Kamigata
康雄 上方
Shunsuke Ueda
俊輔 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005169384A priority Critical patent/JP2006344786A/en
Publication of JP2006344786A publication Critical patent/JP2006344786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing material for polysilicon for finishing small stepped area between the polysilicon and silicon nitride and oxide film exposed with the polishing, by maintaining the polishing rate by higher CMP in the polysilicon polishing process to form a device on a semiconductor wafer. <P>SOLUTION: The polishing material for polishing a film is mainly formed of polysilicon in the semiconductor integrated circuit manufacturing process, aluminum oxide and water are included as polishing particle, and pH is ranged from 10.5 to 11.5. The polishing method uses the polishing material for polishing the film which is mainly formed of polysilicon in the semiconductor integrated circuit manufacturing process. In the polishing material for polysilicon, aluminum oxide and water are included as the polishing particle, one or more of hydrogen peroxide, periodate, perchlorate, or persulfate are included, and pH is ranged from 3 to 5.5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体製造工程におけるポリシリコン研磨工程に適したケミカル・メカニカル・プラナリゼーション(CMP)用研磨材に関する。   The present invention relates to an abrasive for chemical mechanical planarization (CMP) suitable for a polysilicon polishing process in a semiconductor manufacturing process.

超大規模集積回路製造の分野において実装密度を高めるために種々の微細加工技術が研究開発されており、既にデザインルールは、サブハーフミクロンのオーダーになっている。
このような厳しい微細化の要求を満足するために開発されている技術の一つにCMP技術がある。
近年、ポリシリコンを用いたプラグ形成にあたり、基板上に成膜した余分なポリシリコンを除去平坦化するためにもこのCMP研磨が用いられるようになってきた。ポリシリコンの研磨では余分なポリシリコンを除いた後に、その下層に形成された窒化珪素膜や酸化膜などが表面に露出した時点でCMP研磨は終了する。一般的に、ポリシリコンに対して窒化珪素などがどれだけ研磨され易いかを表す指標として、研磨材によりポリシリコンが研磨される速度と、窒化珪素及び酸化膜の研磨される速度との比である選択的研磨速度比(以下、「選択比」という)が用いられる。通常、ポリシリコンの研磨速度が速く、窒化珪素及び酸化膜の研磨速度が遅い選択比の大きな研磨材が望ましいが、選択比が大きすぎると窒化珪素または酸化膜が露出した時点でポリシリコンの表面だけが高速で研磨され続ける為に、ここにディッシングと呼ばれるくぼみが形成されて平坦性を悪化させる。したがって、より高い平坦性を得る為には窒化珪素及び酸化膜の研磨速度も幾分必要であり、選択比も2〜20程度が望ましい。
ポリシリコンも基本的に従来のコロイダルシリカを研磨粒子とする高pHの研磨材で研磨することが可能である。しかしながら、この研磨材は、窒化珪素の研磨速度が十分ではない為に窒化珪素が表面に露出するような研磨を行う場合には先述のディッシングの現象が発生し、十分な平坦性を得ることができない。
Various microfabrication techniques have been researched and developed in the field of ultra-large scale integrated circuit manufacturing in order to increase the mounting density, and the design rules are already in the order of sub-half microns.
One of the techniques that have been developed in order to satisfy such a demand for strict miniaturization is a CMP technique.
In recent years, in the formation of plugs using polysilicon, this CMP polishing has been used to remove and planarize excess polysilicon formed on a substrate. In the polishing of the polysilicon, after removing the excess polysilicon, the CMP polishing is finished when a silicon nitride film or an oxide film formed under the polysilicon is exposed on the surface. In general, as an index indicating how easily silicon nitride or the like is polished with respect to polysilicon, the ratio of the rate at which polysilicon is polished by an abrasive and the rate at which silicon nitride and an oxide film are polished A selective polishing rate ratio (hereinafter referred to as “selection ratio”) is used. A polishing material with a high selection ratio is generally desirable because the polishing speed of polysilicon is high and the polishing speed of silicon nitride and oxide film is low, but if the selection ratio is too high, the surface of the polysilicon is exposed when the silicon nitride or oxide film is exposed. Since only the polishing is continued at a high speed, a recess called dishing is formed here to deteriorate the flatness. Therefore, in order to obtain higher flatness, the polishing rate of silicon nitride and oxide film is somewhat necessary, and the selection ratio is preferably about 2 to 20.
Polysilicon can also basically be polished with a high pH abrasive using conventional colloidal silica as abrasive particles. However, since this polishing material does not have a sufficient polishing rate for silicon nitride, the above-described dishing phenomenon occurs when polishing such that silicon nitride is exposed on the surface, and sufficient flatness can be obtained. Can not.

先述のように従来のコロイダルシリカを研磨粒子とする高pHの研磨材には、窒化珪素の研磨速度が十分ではない為に窒化珪素が表面に露出するような研磨を行う場合には十分な平坦性を得ることができないなどの問題があった。
本発明は、CMPによるポリシリコンの高い研磨速度を維持し、なおかつ、窒化珪素など下層の膜と適当な選択性を発揮して高い平坦性を得ることのできる研磨材および研磨方法を提供するものである。
As described above, the high pH polishing material using conventional colloidal silica as abrasive particles is not flat enough when polishing such that silicon nitride is exposed on the surface because the polishing rate of silicon nitride is not sufficient. There were problems such as being unable to get sex.
The present invention provides an abrasive and a polishing method capable of maintaining a high polishing rate of polysilicon by CMP and obtaining high flatness by exhibiting appropriate selectivity with a lower layer film such as silicon nitride. It is.

本発明の研磨材は水と砥粒として酸化アルミニウムを含むことを特徴とする。酸化アルミニウムはα−アルミナ、またはα−アルミナと他のアルミナの混合砥粒であることが好ましい。砥粒には酸化アルミニウムに、シリカ、酸化セリウム、ジルコニア等の他の砥粒を混合して用いることも可能である。高pHの場合には研磨材のpHは10.5〜11.5が好ましい。本発明の研磨材を酸性で用いる場合のpHは3〜5.5が好ましく、これに酸化剤を添加することができる。添加する酸化剤は過酸化水素、過ヨウ素塩、過塩素酸塩または過硫酸塩であることが好ましい。
本発明の研磨方法は上記のポリシリコン用研磨材を使用して半導体ウェハ表面に形成されたポリシリコンの研磨工程において、ポリシリコンの高い研磨速度を維持し、なおかつ、窒化珪素など下層の膜と適当な選択性を発揮して高い平坦性を得ることのできる研磨方法である。
前記砥粒は、前記研磨材中に0.1〜10重量%含有されることが好ましい。前記砥粒の含有量を0.1重量%未満にすると、その効果を十分に達成することが困難になる。一方、前記砥粒の含有量が10重量%を超えても、ポリシリコンの研磨速度が速くなりにくいため、前記砥粒のロスが大きい。より好ましい前記砥粒の含有量は、0.3〜5重量%である。
The abrasive according to the present invention is characterized by containing water and aluminum oxide as abrasive grains. The aluminum oxide is preferably α-alumina or a mixed abrasive of α-alumina and other alumina. As the abrasive grains, it is possible to mix aluminum oxide with other abrasive grains such as silica, cerium oxide and zirconia. In the case of a high pH, the pH of the abrasive is preferably 10.5 to 11.5. When the abrasive of the present invention is used in an acidic condition, the pH is preferably from 3 to 5.5, and an oxidizing agent can be added thereto. The oxidizing agent to be added is preferably hydrogen peroxide, periodate, perchlorate or persulfate.
The polishing method of the present invention maintains a high polishing rate of polysilicon in a polishing step of polysilicon formed on the surface of a semiconductor wafer using the above-described polysilicon polishing material, and further, a lower layer film such as silicon nitride It is a polishing method that can achieve high flatness by exhibiting appropriate selectivity.
The abrasive is preferably contained in the abrasive in an amount of 0.1 to 10% by weight. If the content of the abrasive grains is less than 0.1% by weight, it is difficult to sufficiently achieve the effect. On the other hand, even if the content of the abrasive grains exceeds 10% by weight, the polishing rate of the polysilicon is difficult to increase, so that the loss of the abrasive grains is large. The content of the abrasive grains is more preferably 0.3 to 5% by weight.

本発明のポリシリコン用研磨材は、水、アルミナ砥粒を含有し、pHの調整と酸化剤の使用により十分なポリシリコンの研磨速度が得られる。同時に窒化珪素、BPSG等の酸化膜に対するポリシリコンの選択比の適切な値が得られるため、段差が小さく、平坦性を改善することが可能である。   The abrasive for polysilicon of the present invention contains water and alumina abrasive grains, and a sufficient polysilicon polishing rate can be obtained by adjusting the pH and using an oxidizing agent. At the same time, since an appropriate value of the selection ratio of polysilicon to an oxide film such as silicon nitride or BPSG can be obtained, the level difference is small and the flatness can be improved.

本発明における研磨材は半導体製造CMP研磨工程に使用される。被研磨材料としてはポリシリコン、酸化シリコンあるいはBPSGそしてストッパとして使用される窒化珪素などの混在する材料であり、ポリシリコンとこれらの材料との研磨速度比を2〜50程度に設定することにより、BPSGおよび窒化珪素の間に段差を生じることなく研磨が可能になる。本発明のポリシリコン用研磨材の第一の形態は、水、砥粒としてのアルミナを必須成分とし、必要によりpH調整剤を添加し、pHを10.5以上11.5以下とする。
本発明のポリシリコン用研磨材の第一の形態においてpHを10.5以上11.5以下とするとポリシリコンの研磨速度が高速になり、好ましい。一方pHを10.5未満とすると、十分なポリシリコンの研磨速度が得られない。また、pHが9〜10ではアルミナの等電点付近となるため、凝集する傾向にあり、好ましくない。pHが11.5以上の場合にはポリシリコンの研磨速度が高速になるが窒化珪素の研磨速度が遅くなり、最適な選択比が得られず、段差を解消できない。
The abrasive in the present invention is used in a semiconductor manufacturing CMP polishing process. The material to be polished is a mixed material such as polysilicon, silicon oxide or BPSG and silicon nitride used as a stopper. By setting the polishing rate ratio between polysilicon and these materials to about 2 to 50, Polishing is possible without causing a step between BPSG and silicon nitride. In the first embodiment of the abrasive for polysilicon of the present invention, water and alumina as abrasive grains are essential components, and if necessary, a pH adjuster is added to adjust the pH to 10.5 or more and 11.5 or less.
In the first embodiment of the abrasive for polysilicon of the present invention, it is preferable that the pH is 10.5 or more and 11.5 or less because the polishing rate of polysilicon becomes high. On the other hand, if the pH is less than 10.5, a sufficient polysilicon polishing rate cannot be obtained. Moreover, since it becomes the isoelectric point of an alumina at pH 9-10, it exists in the tendency to aggregate and is unpreferable. When the pH is 11.5 or higher, the polishing rate of polysilicon is increased, but the polishing rate of silicon nitride is decreased, so that an optimum selection ratio cannot be obtained and the step cannot be eliminated.

本発明のポリシリコン用研磨材の第二の形態は、水、砥粒としてのアルミナを必須成分とし、必要により酸化剤およびpH調整剤を添加し、pHを3以上、5.5以下とする。
本発明のポリシリコン用研磨材の第二の形態においてpHを3未満とするとポリシリコンの研磨速度が十分に得られず、pHが5.5を超えるとポリシリコン膜の研磨速度が十分に得られず、かつ、BPSG膜の研磨速度が増大し、選択比が低下する。
In the second embodiment of the abrasive for polysilicon of the present invention, water and alumina as abrasive grains are essential components, and if necessary, an oxidizing agent and a pH adjuster are added to adjust the pH to 3 or more and 5.5 or less. .
In the second embodiment of the polishing material for polysilicon of the present invention, when the pH is less than 3, the polysilicon polishing rate cannot be sufficiently obtained, and when the pH exceeds 5.5, the polysilicon film polishing rate is sufficiently obtained. In addition, the polishing rate of the BPSG film increases and the selectivity decreases.

本発明における砥粒の酸化アルミニウムはいずれでもよいが、硬度が大きく高い研磨速度が得られ、かつ微細粒子の製造技術が確立しており、微細粒子の入手が容易なα−アルミナが好ましい。α−アルミナの製造方法は水酸化アルミニウムの焼成による方法や、アルミニウムアルコキシドの加水分解により精製したベーマイトの焼成による方法が知られている。このα−アルミナ粒子に同じアルミナであるが準安定相であるγ−アルミナ、δ−アルミナなどの中間アルミナ、シリカ、ジルコニアなど他の砥粒を混合してもよい。   Any aluminum oxide may be used for the abrasive grains in the present invention, but α-alumina is preferred because it has a high hardness and a high polishing rate, and a fine particle production technique has been established. As a method for producing α-alumina, a method by firing aluminum hydroxide or a method by firing boehmite purified by hydrolysis of aluminum alkoxide is known. The α-alumina particles may be mixed with other abrasive grains such as silica, zirconia, intermediate alumina such as γ-alumina and δ-alumina which are the same alumina but metastable phase.

本発明のいずれの形態においても、砥粒の平均粒径は0.05〜1.0μmがスクラッチを少なくできるという点で好ましく、より好ましくは0.1〜0.4μmとすることができる。平均粒径の測定は例えばMalvern社製Zetasizer 3000HSを用いて、屈折率1.77、吸収係数0.00 の条件で行い、Z Average Meanを求める。   In any form of the present invention, the average grain size of the abrasive grains is preferably 0.05 to 1.0 μm from the viewpoint that scratches can be reduced, and more preferably 0.1 to 0.4 μm. The average particle diameter is measured using, for example, a Zetasizer 3000HS manufactured by Malvern under the conditions of a refractive index of 1.77 and an absorption coefficient of 0.00 to obtain Z Average Mean.

本発明においてポリシリコンの研磨速度を向上させる為に酸化剤を使用する場合には、過酸化水素、過ヨウ素塩、過塩素酸塩または過硫酸塩が好ましい。その中でも基板を汚染する材料を含まないため後工程の洗浄が容易である過酸化水素が特に好ましい。   In the present invention, when an oxidizing agent is used to improve the polishing rate of polysilicon, hydrogen peroxide, periodate, perchlorate or persulfate is preferred. Among these, hydrogen peroxide is particularly preferable because it does not contain a material that contaminates the substrate and can be easily cleaned in a subsequent process.

本発明における砥粒の配合量は全重量に対して0.3〜10重量%であることが好ましく、0.3〜5重量%であることがより好ましい。砥粒の添加量が0.3重量%未満の場合は物理的な研削作用が小さいため研磨速度が小さく、10%を超えると研磨速度は飽和し、それ以上加えても研磨速度の増加はわずかである。   The blending amount of the abrasive grains in the present invention is preferably from 0.3 to 10% by weight, more preferably from 0.3 to 5% by weight, based on the total weight. When the added amount of abrasive grains is less than 0.3% by weight, the polishing rate is small because the physical grinding action is small, and when it exceeds 10%, the polishing rate is saturated. It is.

本発明において酸化剤を配合する場合の配合量は全重量に対して、0.3〜 5mol/kgとすることが好ましく、1〜4mol/kgとすることがより好ましい。配合量が1mol/kg未満ではポリシリコンの研磨速度が低く、5mol/kgを超えるとポリシリコンの研磨面に荒れが生じる傾向がある。   In the present invention, the blending amount when blending the oxidizing agent is preferably 0.3 to 5 mol / kg, more preferably 1 to 4 mol / kg, based on the total weight. If the blending amount is less than 1 mol / kg, the polishing rate of polysilicon is low, and if it exceeds 5 mol / kg, the polishing surface of the polysilicon tends to be rough.

本発明においてpH調整を行う為に加える酸またはアルカリは、特に限定しないが、研磨剤として安定した特性を保つ為にはpHが経時的に変化せず、安定なものが好ましい。特に第二の発明におけるpH3から5.5に保つ為には、安息香酸などの有機酸を使用するのが好ましい。   The acid or alkali added to adjust the pH in the present invention is not particularly limited, but in order to maintain stable properties as an abrasive, the pH does not change with time and is preferably stable. In particular, in order to keep the pH from 3 to 5.5 in the second invention, it is preferable to use an organic acid such as benzoic acid.

以下、実施例により本発明を説明する。本発明はこれらの実施例により制限されるものではない。   Hereinafter, the present invention will be described by way of examples. The present invention is not limited by these examples.

実施例1
《ポリシリコン用研磨材の作製方法》
純度99.9%のα−アルミナ粉末350gを純水650g中に懸濁し、撹拌しながら超音波分散を10分間施した後、24時間沈降分級により粗大粒子を取り除き平均粒径0.30μm、濃度10wt%のα−アルミナ懸濁液を作製した。このα−アルミナ懸濁液100gに純水900gを加えた後、濃度10wt%の水酸化カリウム水溶液を加えてpHを10.9に調整し、ポリシリコン用研磨材とした。得られたポリシリコン用研磨材の平均粒径 Z Average Meanは0.31μmであった。
上記ポリシリコン膜用研磨材を定盤に貼り付けたパッドに滴下しながら、下記に示す評価基板および研磨条件でCMPを行い、下記に示す評価を行った。
《評価基板》
基板1:Si基板上に厚さ0.4μmのポリシリコンを形成したブランケット基板。
基板2:Si基板上に厚さ0.4μmのBPSGを形成したブランケット基板。
基板3:Si基板上に厚さ0.2μmの窒化珪素を形成したブランケット基板。
《評価条件》
研磨装置:定盤寸法250mmφ、ロータリータイプ
研磨パッド:ニッタアンドハース社製IC−1000/Suba400 格子溝付き発泡二層パッド
研磨圧力:25kPa
定盤回転数:120min−1 (基板は定盤の回転力で自動的に回転)
研磨材流量:15ml/min
研磨時間:1min
《評価項目および評価方法》
CMPによるポリシリコン研磨速度:基板1のCMP前後での膜厚差を光学式膜厚測定装置で求めた。
CMPによるBPSG研磨速度:基板2のCMP前後での膜厚差を光学式膜厚測定装置で求めた。
CMPによる窒化珪素研磨速度:基板3のCMP前後での膜厚差を光学式膜厚測定装置で求めた。

評価の結果、ポリシリコンの研磨速度は180nm/min、BPSGの研磨速度は49nm/min、窒化珪素の研磨速度は25nm/minで、ポリシリコン/BPSGの研磨速度比は3.7、ポリシリコン/窒化珪素の研磨速度比は7.2であった。
Example 1
<Production method of polishing material for polysilicon>
350 g of α-alumina powder having a purity of 99.9% was suspended in 650 g of pure water, subjected to ultrasonic dispersion for 10 minutes with stirring, then coarse particles were removed by sedimentation classification for 24 hours, and the average particle size was 0.30 μm. A 10 wt% α-alumina suspension was prepared. After adding 900 g of pure water to 100 g of this α-alumina suspension, a 10 wt% aqueous potassium hydroxide solution was added to adjust the pH to 10.9 to obtain an abrasive for polysilicon. The average particle diameter Z Average Mean of the obtained abrasive for polysilicon was 0.31 μm.
While dropping the above-mentioned polysilicon film polishing material onto a pad attached to a surface plate, CMP was performed with the following evaluation substrate and polishing conditions, and the following evaluation was performed.
<Evaluation board>
Substrate 1: A blanket substrate in which polysilicon having a thickness of 0.4 μm is formed on a Si substrate.
Substrate 2: A blanket substrate in which BPSG having a thickness of 0.4 μm is formed on a Si substrate.
Substrate 3: A blanket substrate in which silicon nitride having a thickness of 0.2 μm is formed on a Si substrate.
<Evaluation conditions>
Polishing apparatus: platen size 250 mmφ, rotary type polishing pad: IC-1000 / Suba400 made of Nita and Haas Co. Foamed two-layer pad with lattice grooves Polishing pressure: 25 kPa
Surface plate rotation speed: 120 min -1 (The substrate is automatically rotated by the rotational force of the surface plate)
Abrasive flow rate: 15 ml / min
Polishing time: 1 min
<< Evaluation Items and Evaluation Method >>
Polysilicon polishing rate by CMP: The film thickness difference of the substrate 1 before and after CMP was determined by an optical film thickness measuring device.
BPSG polishing rate by CMP: The difference in film thickness of the substrate 2 before and after CMP was determined with an optical film thickness measuring device.
Polishing speed of silicon nitride by CMP: The film thickness difference between before and after the CMP of the substrate 3 was determined by an optical film thickness measuring device.

As a result of the evaluation, the polishing rate of polysilicon is 180 nm / min, the polishing rate of BPSG is 49 nm / min, the polishing rate of silicon nitride is 25 nm / min, the polishing rate ratio of polysilicon / BPSG is 3.7, polysilicon / The polishing rate ratio of silicon nitride was 7.2.

実施例2
《ポリシリコン用研磨材の作製方法》
純度99.9%のα−アルミナ粉末350gを純水650g中に懸濁し、撹拌しながら超音波分散を10分間施した後、24時間沈降分級により粗大粒子を取り除き平均粒径0.30μm、濃度10wt%のα−アルミナ懸濁液を作製した。このα−アルミナ懸濁液100gに純水400gを加えてポリシリコン用研磨材濃縮液とした。このポリシリコン用研磨材濃縮液500gに濃度20%の過酸化水素水500gを加えてポリシリコン用研磨材とした。得られたポリシリコン用研磨材のpHは3.8、平均粒径Z Average Meanは0.28μmであった。
上記ポリシリコン用研磨材を定盤に貼り付けたパッドに滴下しながら、実施例1に示したのと同じ研磨条件でCMPを行った。
評価の結果、ポリシリコンの研磨速度は170nm/min、BPSGの研磨速度は50nm/min、窒化珪素の研磨速度は30nm/minで、ポリシリコン/BPSGの研磨速度比は3.4、ポリシリコン/窒化珪素の研磨速度比は5.8であった。
Example 2
<Production method of polishing material for polysilicon>
350 g of α-alumina powder having a purity of 99.9% was suspended in 650 g of pure water, subjected to ultrasonic dispersion for 10 minutes with stirring, then coarse particles were removed by sedimentation classification for 24 hours, the average particle size was 0.30 μm, and the concentration A 10 wt% α-alumina suspension was prepared. 400 g of pure water was added to 100 g of this α-alumina suspension to obtain a polishing material concentrate for polysilicon. A polysilicon abrasive was prepared by adding 500 g of a 20% hydrogen peroxide solution to 500 g of this polysilicon abrasive concentrate. The obtained abrasive for polysilicon had a pH of 3.8 and an average particle size Z Average Mean of 0.28 μm.
CMP was performed under the same polishing conditions as shown in Example 1 while dripping the polysilicon polishing material onto a pad attached to a surface plate.
As a result of the evaluation, the polishing rate of polysilicon was 170 nm / min, the polishing rate of BPSG was 50 nm / min, the polishing rate of silicon nitride was 30 nm / min, the polishing rate ratio of polysilicon / BPSG was 3.4, The polishing rate ratio of silicon nitride was 5.8.

実施例3
《ポリシリコン用研磨材の作製方法》
純度99.9%のα−アルミナ粉末350gを純水650g中に懸濁し、撹拌しながら超音波分散を10分間施した後、24時間沈降分級により粗大粒子を取り除き平均粒径0.30μm、濃度10wt%のα−アルミナ懸濁液を作製した。このα−アルミナ懸濁液100gに純水400gを加えてポリシリコン用研磨材濃縮液とした。このポリシリコン用研磨材濃縮液450gに濃度20%の過酸化水素水50gを加えてポリシリコン用研磨材とした。得られたポリシリコン用研磨材のpHは4.3、平均粒径Z Average Meanは0.29μmであった。上記ポリシリコン用研磨材を定盤に貼り付けたパッドに滴下しながら、実施例1に示したのと同じ研磨条件でCMPを行った。
評価の結果、ポリシリコンの研磨速度は140nm/min、BPSG膜の研磨速度は45nm/min、窒化珪素の研磨速度は34nm/minで、ポリシリコン/BPSGの研磨速度比は3.1、ポリシリコン/窒化珪素の研磨速度比は4.1であった。
Example 3
<Production method of polishing material for polysilicon>
350 g of α-alumina powder having a purity of 99.9% was suspended in 650 g of pure water, subjected to ultrasonic dispersion for 10 minutes with stirring, then coarse particles were removed by sedimentation classification for 24 hours, the average particle size was 0.30 μm, and the concentration A 10 wt% α-alumina suspension was prepared. 400 g of pure water was added to 100 g of this α-alumina suspension to obtain a polishing material concentrate for polysilicon. 50 g of 20% hydrogen peroxide solution was added to 450 g of this polysilicon abrasive concentrate to obtain a polysilicon abrasive. The obtained abrasive for polysilicon had a pH of 4.3 and an average particle size Z Average Mean of 0.29 μm. CMP was performed under the same polishing conditions as shown in Example 1 while dripping the polysilicon polishing material onto a pad attached to a surface plate.
As a result of the evaluation, the polishing rate of polysilicon is 140 nm / min, the polishing rate of BPSG film is 45 nm / min, the polishing rate of silicon nitride is 34 nm / min, and the polishing rate ratio of polysilicon / BPSG is 3.1. / The polishing rate ratio of silicon nitride was 4.1.

実施例4
《ポリシリコン用研磨材の作製方法》
純度99.9%のα−アルミナ粉末350gを純水650g中に懸濁し、撹拌しながら超音波分散を10分間施した後、24時間沈降分級により粗大粒子を取り除き平均粒径0.30μm、濃度10wt%のα−アルミナ懸濁液を作製した。このα−アルミナ懸濁液100gに純水400gを加えてポリシリコン用研磨材濃縮液とした。このポリシリコン用研磨材濃縮液150gに濃度5%の安息香酸水溶液を加え、pHを4.3に調整した。さらに前記pH調整したポリシリコン用研磨材濃縮液に純水を合計200gとなるように加えてポリシリコン用研磨材を作製した。得られたポリシリコン用研磨材のpHは4.5、平均粒径Z Average Meanは0.32μmであった。
上記ポリシリコン用研磨材を定盤に貼り付けたパッドに滴下しながら、実施例1に示したのと同じ研磨条件でCMPを行った。
評価の結果、ポリシリコンの研磨速度は110nm/min、BPSG膜の研磨速度は50nm/min、窒化珪素の研磨速度は34nm/minで、ポリシリコン/BPSGの研磨速度比は2.2、ポリシリコン/窒化珪素の研磨速度比は3.7であった。また、安息香酸水溶液を用いてpH調整したことにより、硝酸などの無機酸で調整したものと比較してpHが安定し、研磨特性も安定することが分かった。
Example 4
<Production method of polishing material for polysilicon>
350 g of α-alumina powder having a purity of 99.9% was suspended in 650 g of pure water, subjected to ultrasonic dispersion for 10 minutes with stirring, then coarse particles were removed by sedimentation classification for 24 hours, and the average particle size was 0.30 μm. A 10 wt% α-alumina suspension was prepared. 400 g of pure water was added to 100 g of this α-alumina suspension to obtain a polishing material concentrate for polysilicon. A benzoic acid aqueous solution having a concentration of 5% was added to 150 g of this polysilicon abrasive concentrate to adjust the pH to 4.3. Further, a polysilicon abrasive was prepared by adding pure water to the pH-adjusted polysilicon abrasive concentrate to a total of 200 g. The obtained abrasive for polysilicon had a pH of 4.5 and an average particle size Z Average Mean of 0.32 μm.
CMP was performed under the same polishing conditions as shown in Example 1 while dripping the polysilicon polishing material onto a pad attached to a surface plate.
As a result of the evaluation, the polishing rate of polysilicon is 110 nm / min, the polishing rate of BPSG film is 50 nm / min, the polishing rate of silicon nitride is 34 nm / min, and the polishing rate ratio of polysilicon / BPSG is 2.2. / The polishing rate ratio of silicon nitride was 3.7. Moreover, it turned out that pH was stabilized and the grinding | polishing characteristic was stabilized by adjusting pH using benzoic acid aqueous solution compared with what was adjusted with inorganic acids, such as nitric acid.

比較例1
《ポリシリコン用研磨材の作製方法》
純度99.9%のα−アルミナ粉末350gを純水650g中に懸濁し、撹拌しながら超音波分散を10分間施した後、24時間沈降分級により粗大粒子を取り除き平均粒径0.55μm、濃度10wt%のα−アルミナ懸濁液を作製した。このα−アルミナ懸濁液100gに純水900gを加えた後、濃度10wt%の水酸化カリウム水溶液を加えてpHを8.5に調整し、ポリシリコン用研磨材とした。得られたポリシリコン用研磨材の平均粒径Z Average Meanは0.34μmであった。
上記ポリシリコン用研磨材を定盤に貼り付けたパッドに滴下しながら、実施例1に示したのと同じ研磨条件でCMPを行った。
評価の結果、ポリシリコンの研磨速度は85nm/min、BPSGの研磨速度は130nm/min、窒化珪素の研磨速度は48nm/minで、ポリシリコン/BPSGの研磨速度比は0.65、ポリシリコン/窒化珪素の研磨速度比は1.8であった。
Comparative Example 1
<Production method of polishing material for polysilicon>
350 g of α-alumina powder having a purity of 99.9% was suspended in 650 g of pure water, subjected to ultrasonic dispersion for 10 minutes with stirring, then coarse particles were removed by sedimentation classification for 24 hours, and the average particle size was 0.55 μm. A 10 wt% α-alumina suspension was prepared. After adding 900 g of pure water to 100 g of this α-alumina suspension, a 10 wt% potassium hydroxide aqueous solution was added to adjust the pH to 8.5 to obtain an abrasive for polysilicon. The average particle diameter Z Average Mean of the obtained abrasive for polysilicon was 0.34 μm.
CMP was performed under the same polishing conditions as shown in Example 1 while dripping the polysilicon polishing material onto a pad attached to a surface plate.
As a result of the evaluation, the polishing rate of polysilicon was 85 nm / min, the polishing rate of BPSG was 130 nm / min, the polishing rate of silicon nitride was 48 nm / min, the polishing rate ratio of polysilicon / BPSG was 0.65, The polishing rate ratio of silicon nitride was 1.8.

比較例2
《ポリシリコン用研磨材の作製方法》
純度99.9%のα−アルミナ粉末350gを純水650g中に懸濁し、撹拌しながら超音波分散を10分間施した後、24時間沈降分級により粗大粒子を取り除き平均粒径0.30μm、濃度10wt%のα−アルミナ懸濁液を作製した。このα−アルミナ懸濁液400gに濃度10%の硝酸を加えてpHを2.0に調整した。前記pHを調整したα−アルミナ懸濁液に純水を加えて全体で500gとし、ポリシリコン用研磨材を作製した。得られたポリシリコン用研磨材の平均粒径Z Average Meanは0.30μm、pHは2.3であった。上記ポリシリコン用研磨材を定盤に貼り付けたパッドに滴下しながら、実施例1に示したのと同じ研磨条件でCMPを行った。
評価の結果、ポリシリコンの研磨速度は42nm/min、BPSGの研磨速度は40nm/min、窒化珪素の研磨速度は10nm/minで、ポリシリコン/BPSGの研磨速度比は1.0、ポリシリコン/窒化珪素の研磨速度比は2であった。
Comparative Example 2
<Production method of polishing material for polysilicon>
350 g of α-alumina powder having a purity of 99.9% was suspended in 650 g of pure water, subjected to ultrasonic dispersion for 10 minutes with stirring, then coarse particles were removed by sedimentation classification for 24 hours, the average particle size was 0.30 μm, and the concentration A 10 wt% α-alumina suspension was prepared. To 400 g of this α-alumina suspension, nitric acid having a concentration of 10% was added to adjust the pH to 2.0. Pure water was added to the pH-adjusted α-alumina suspension to make a total of 500 g to prepare a polishing material for polysilicon. The average particle diameter Z Average Mean of the obtained abrasive for polysilicon was 0.30 μm, and the pH was 2.3. CMP was performed under the same polishing conditions as shown in Example 1 while dripping the polysilicon polishing material onto a pad attached to a surface plate.
As a result of the evaluation, the polishing rate of polysilicon was 42 nm / min, the polishing rate of BPSG was 40 nm / min, the polishing rate of silicon nitride was 10 nm / min, the polishing rate ratio of polysilicon / BPSG was 1.0, The polishing rate ratio of silicon nitride was 2.

比較例3
《ポリシリコン用研磨材の作製方法》
純度99.9%のα−アルミナ粉末350gを純水650g中に懸濁し、撹拌しながら超音波分散を10分間施した後、24時間沈降分級により粗大粒子を取り除き平均粒径0.30μm、濃度10wt%のα−アルミナ懸濁液を作製した。このα−アルミナ懸濁液60gに純水240gを加え、さらに、濃度10%の水酸化カリウムを加えてpHを12.3に調整した。前記pH調整したα−アルミナ懸濁液に純水を加えたて全体で500gのポリシリコン用研磨材とした。得られたポリシリコン用研磨材の平均粒径Z Average Meanは0.30μm、pHは12.0であった。上記ポリシリコン用研磨材を定盤に貼り付けたパッドに滴下しながら、実施例1に示したのと同じ研磨条件でCMPを行った。
評価の結果、ポリシリコンの研磨速度は300nm/min、BPSGの研磨速度は10nm/min、窒化珪素の研磨速度は1nm/minで、ポリシリコン/BPSGの研磨速度比は30、ポリシリコン/窒化珪素の研磨速度比は300であった。
Comparative Example 3
<Production method of polishing material for polysilicon>
350 g of α-alumina powder having a purity of 99.9% was suspended in 650 g of pure water, subjected to ultrasonic dispersion for 10 minutes with stirring, then coarse particles were removed by sedimentation classification for 24 hours, and the average particle size was 0.30 μm. A 10 wt% α-alumina suspension was prepared. To 60 g of this α-alumina suspension, 240 g of pure water was added, and potassium hydroxide having a concentration of 10% was further added to adjust the pH to 12.3. Pure water was added to the pH-adjusted α-alumina suspension to give a total of 500 g of an abrasive for polysilicon. The average particle diameter Z Average Mean of the obtained abrasive for polysilicon was 0.30 μm, and the pH was 12.0. CMP was performed under the same polishing conditions as shown in Example 1 while dripping the polysilicon polishing material onto a pad attached to a surface plate.
As a result of the evaluation, the polishing rate of polysilicon is 300 nm / min, the polishing rate of BPSG is 10 nm / min, the polishing rate of silicon nitride is 1 nm / min, the polishing rate ratio of polysilicon / BPSG is 30, and polysilicon / silicon nitride The polishing rate ratio was 300.

Figure 2006344786
Figure 2006344786




Claims (6)

半導体集積回路製造工程においてポリシリコンを主体とする膜を研磨する為の研磨材で、砥粒として酸化アルミニウム、及び水を含み、pHが10.5〜11.5であることを特徴とするポリシリコン用研磨材。 A polishing material for polishing a film mainly composed of polysilicon in a semiconductor integrated circuit manufacturing process, which contains aluminum oxide and water as abrasive grains and has a pH of 10.5 to 11.5. Abrasive material for silicon. 半導体集積回路製造工程においてポリシリコンを主体とする膜を研磨する為の研磨材で、砥粒として酸化アルミニウム、及び水を含み、pHが3〜5.5であることを特徴とするポリシリコン用研磨材。 A polishing material for polishing a film mainly composed of polysilicon in a semiconductor integrated circuit manufacturing process, comprising aluminum oxide and water as abrasive grains, and having a pH of 3 to 5.5. Abrasive. 酸化剤を含む請求項2記載のポリシリコン用研磨材。 The abrasive for polysilicon according to claim 2 containing an oxidizing agent. 酸化剤が過酸化水素、過ヨウ素酸塩、過塩素酸塩、及び過流酸塩のいずれか1つ以上であることを特徴とする請求項2または3記載のポリシリコン用研磨材。 4. The abrasive for polysilicon according to claim 2, wherein the oxidizing agent is one or more of hydrogen peroxide, periodate, perchlorate, and persulfate. 酸化アルミニウムがα−アルミナである請求項1〜4のいずれかに記載のポリシリコン用研磨材。 The abrasive for polysilicon according to any one of claims 1 to 4, wherein the aluminum oxide is α-alumina. 請求項1〜5のいずれかに記載のポリシリコン用研磨材を用いた研磨方法

A polishing method using the polysilicon polishing material according to claim 1.

JP2005169384A 2005-06-09 2005-06-09 Polishing material for polysilicon and polishing method thereof Pending JP2006344786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169384A JP2006344786A (en) 2005-06-09 2005-06-09 Polishing material for polysilicon and polishing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169384A JP2006344786A (en) 2005-06-09 2005-06-09 Polishing material for polysilicon and polishing method thereof

Publications (1)

Publication Number Publication Date
JP2006344786A true JP2006344786A (en) 2006-12-21

Family

ID=37641516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169384A Pending JP2006344786A (en) 2005-06-09 2005-06-09 Polishing material for polysilicon and polishing method thereof

Country Status (1)

Country Link
JP (1) JP2006344786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037903A1 (en) * 2007-09-21 2009-03-26 Hitachi Chemical Co., Ltd. Cmp slurry for silicon film polishing and polishing method
WO2015146363A1 (en) * 2014-03-27 2015-10-01 株式会社 フジミインコーポレーテッド Polishing composition, method for using same, and substrate production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064072A (en) * 2002-07-16 2004-02-26 Hynix Semiconductor Inc Chemical mechanical polishing (cmp) slurry composition for oxide film, and semiconductor device metal wiring contact plug formation method using the same
JP2004146780A (en) * 2002-08-28 2004-05-20 Kao Corp Polishing liquid composition
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP2005175498A (en) * 2003-12-12 2005-06-30 Samsung Electronics Co Ltd Slurry compositions and method of manufacturing semiconductor device including chemical mechanical polishing processes using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064072A (en) * 2002-07-16 2004-02-26 Hynix Semiconductor Inc Chemical mechanical polishing (cmp) slurry composition for oxide film, and semiconductor device metal wiring contact plug formation method using the same
JP2004146780A (en) * 2002-08-28 2004-05-20 Kao Corp Polishing liquid composition
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP2005175498A (en) * 2003-12-12 2005-06-30 Samsung Electronics Co Ltd Slurry compositions and method of manufacturing semiconductor device including chemical mechanical polishing processes using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037903A1 (en) * 2007-09-21 2009-03-26 Hitachi Chemical Co., Ltd. Cmp slurry for silicon film polishing and polishing method
US8778803B2 (en) 2007-09-21 2014-07-15 Hitachi Chemical Company, Ltd. CPM slurry for silicon film polishing and polishing method
WO2015146363A1 (en) * 2014-03-27 2015-10-01 株式会社 フジミインコーポレーテッド Polishing composition, method for using same, and substrate production method
JP2015189806A (en) * 2014-03-27 2015-11-02 株式会社フジミインコーポレーテッド Composition for polishing, usage of the same and substrate production method

Similar Documents

Publication Publication Date Title
JP6762390B2 (en) Polishing composition, polishing method and substrate manufacturing method
EP3470487B1 (en) Mixed abrasive polishing compositions
US20050208883A1 (en) Polishing composition
JP6375623B2 (en) Abrasive, abrasive set, and substrate polishing method
US20030041526A1 (en) Polishing composition
TWI736623B (en) Chemical mechanical polishing slurry composition
JP2006120728A (en) Composition for selectively polishing silicon nitride film and polishing method using it
WO2015171423A1 (en) Polishing composition for edge roll-off improvement
JP4027929B2 (en) Polishing liquid composition for semiconductor substrate
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP2007335847A (en) Silicon nitride film abrasive powder and abrading method
JP2003347248A (en) Cmp polishing agent for semiconductor insulating film and method of polishing substrate
CN101868511A (en) A chemical-mechanical polishing liquid for polysilicon
JP2005048125A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP2006344786A (en) Polishing material for polysilicon and polishing method thereof
JP2001115146A (en) Abrasive for barrier film
WO2018179062A1 (en) Polishing liquid, polishing liquid set, additive liquid, and polishing method
JP6601209B2 (en) Polishing liquid for CMP and polishing method using the same
JP2019182987A (en) Polishing liquid composition for synthetic quartz glass substrate
WO2022168860A1 (en) Polishing composition
JP2024505893A (en) Compositions and methods for polishing boron-doped polysilicon
KR101613359B1 (en) Nano ceria slurry composition for chemical-mechanical polishing and preparation method for thereof
JP6551053B2 (en) Polishing liquid for CMP and polishing method using the same
JPH1088111A (en) Composition for grinding use
JP2006269908A (en) Chemical mechanical polishing slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110714