Nothing Special   »   [go: up one dir, main page]

JP2006220363A - 1 pump heat source equipment - Google Patents

1 pump heat source equipment Download PDF

Info

Publication number
JP2006220363A
JP2006220363A JP2005034285A JP2005034285A JP2006220363A JP 2006220363 A JP2006220363 A JP 2006220363A JP 2005034285 A JP2005034285 A JP 2005034285A JP 2005034285 A JP2005034285 A JP 2005034285A JP 2006220363 A JP2006220363 A JP 2006220363A
Authority
JP
Japan
Prior art keywords
heat medium
pump
heat source
bypass valve
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005034285A
Other languages
Japanese (ja)
Inventor
Noriomi Okazaki
徳臣 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2005034285A priority Critical patent/JP2006220363A/en
Publication of JP2006220363A publication Critical patent/JP2006220363A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】熱媒ポンプおよび熱媒機器の運転を外部負荷に見合う最適運転とすることにより消費電力の削減を図ると同時に、熱源機器の通水流量を確保し不安定化を回避する。
【解決手段】熱媒ポンプ3A〜3Cをポンプ揚程を変更可能とするとともに、外部負荷機器5の循環流量を測定する流量計10と、前記熱源機器2A〜2Cの通水量を測定する流量計11と、前記バイパス弁9を跨ぐ間の差圧を測定する差圧計12とを配設し、かつ前記循環流量に基づき熱媒ポンプ3A〜3Cの揚程を制御するとともに、熱源機器通水量を前記バイパス弁9の開度により制御し、前記熱媒ポンプ3A〜3Cの周波数変更の影響を打ち消すようにバイパス弁開度に修正を加えるとともに、バイパス弁開度変更の影響を打ち消すように熱媒ポンプ3A〜3Cの周波数に修正を加えることにより相互干渉を抑える制御装置15とを備える。
【選択図】図1
[PROBLEMS] To reduce power consumption by optimizing the operation of a heat medium pump and a heat medium device in accordance with an external load, and at the same time, ensuring a water flow rate of the heat source device and avoiding instability.
SOLUTION: The heat pumps 3A to 3C can change the pump head, the flow meter 10 for measuring the circulation flow rate of the external load device 5, and the flow meter 11 for measuring the water flow rate of the heat source devices 2A to 2C. And a differential pressure gauge 12 that measures the differential pressure across the bypass valve 9 and controls the heads of the heat medium pumps 3A to 3C based on the circulation flow rate, and the water flow rate of the heat source device is bypassed. Controlled by the opening of the valve 9, the bypass valve opening is corrected so as to cancel the influence of the frequency change of the heat medium pumps 3A to 3C, and the heating medium pump 3A is canceled so as to cancel the influence of the bypass valve opening change. And a control device 15 that suppresses mutual interference by modifying the frequency of ˜3C.
[Selection] Figure 1

Description

本発明は、地域冷暖房施設等の熱源供給システムや、工場、一般ビルなどの熱源供給システムとして用いられる1ポンプ方式熱源設備に関する。   The present invention relates to a one-pump heat source facility used as a heat source supply system such as a district cooling and heating facility, or a heat source supply system such as a factory or a general building.

冷凍機や温水機等の複数の熱源機器群を備える1ポンプ方式熱源設備の増減段制御システムとして、図6に示されるものが知られている。   As an increase / decrease stage control system for a one-pump heat source facility including a plurality of heat source device groups such as a refrigerator and a water heater, the one shown in FIG. 6 is known.

熱源システム50は、熱媒を加熱又は冷却する第1〜第3の熱源機器51A〜51C、及び各熱源51A〜51Cで加熱又は冷却された熱媒を圧送する各熱媒ポンプ52A〜52C、各熱媒ポンプ52A〜52Cで圧送された熱媒を集め、外部負荷機器54に送る送りヘッダ53と、外部負荷機器54から還ってきた熱媒を各熱源機器51A〜51Cに分配する戻りヘッダ55と、前記送りヘッダ53と戻りヘッダ55とを繋ぐバイパス路56とを備える構成となっている。そして、運転制御のための機器類として、前記バイパス路56を流れる熱媒の流量を調整するバイパス弁57と、送りヘッダ53と戻りヘッダ55との間の熱媒の差圧(ΔP)を計測する差圧計58と、外部負荷機器54に送られる熱媒の温度(往水温度TS)を検出する温度計59と、熱源機器51A〜51Cに流入する熱媒の温度(熱源機器流入温度TI)を検出する温度計60と、戻りヘッダ55に戻される熱媒の流量を測定する流量計61と、熱源機器51A〜51Cの制御及びバイパス弁57の開度制御を行う制御装置62とを備える。   The heat source system 50 includes first to third heat source devices 51A to 51C that heat or cool the heat medium, and each heat medium pump 52A to 52C that pumps the heat medium heated or cooled by each of the heat sources 51A to 51C. A feed header 53 that collects the heat medium pumped by the heat medium pumps 52A to 52C and sends it to the external load device 54, and a return header 55 that distributes the heat medium returned from the external load device 54 to the heat source devices 51A to 51C. The bypass header 56 connecting the feed header 53 and the return header 55 is provided. As a device for operation control, the pressure difference (ΔP) of the heat medium between the bypass valve 57 for adjusting the flow rate of the heat medium flowing through the bypass path 56 and the feed header 53 and the return header 55 is measured. Differential pressure gauge 58, thermometer 59 for detecting the temperature of the heat medium (outgoing water temperature TS) sent to the external load device 54, and temperature of the heat medium flowing into the heat source devices 51A to 51C (heat source device inflow temperature TI) , A flow meter 61 that measures the flow rate of the heat medium returned to the return header 55, and a control device 62 that controls the heat source devices 51A to 51C and the opening degree of the bypass valve 57.

かかる熱源設備50においては、熱媒ポンプ52A〜52Cにより圧送された熱媒は、熱源機器51A〜51Cにより冷却又は加熱され、送りヘッダ53において混合され、往水管路を介して外部負荷機器54へ供給される。そして、外部負荷機器54において熱交換された後、還水管路を介して戻りヘッダ55に戻され、再び熱媒ポンプ52A〜52Cによって圧送され循環する。この熱媒循環制御に当たり、前記制御装置62は、送りヘッダ53と戻りヘッダ55との間の差圧(ΔP)を監視し、この差圧ΔPを一定とするようにバイパス弁57の開度、すなわちバイパス路56を流れる熱媒の流量を制御するとともに、流量計61が計測する負荷流量に応じて熱源機器51A〜51C及び熱媒ポンプ52A〜52Cの運転台数を制御する(下記特許文献1〜3等参照)。   In the heat source facility 50, the heat medium pumped by the heat medium pumps 52A to 52C is cooled or heated by the heat source devices 51A to 51C, mixed in the feed header 53, and sent to the external load device 54 via the outgoing water pipeline. Supplied. And after heat exchange in the external load apparatus 54, it returns to the return header 55 via a return water pipe, is pumped by the heat medium pumps 52A-52C again, and circulates. In this heat medium circulation control, the control device 62 monitors the differential pressure (ΔP) between the feed header 53 and the return header 55, and the degree of opening of the bypass valve 57 so as to keep this differential pressure ΔP constant. That is, the flow rate of the heat medium flowing through the bypass path 56 is controlled, and the number of operating heat source devices 51A to 51C and the heat medium pumps 52A to 52C is controlled according to the load flow rate measured by the flow meter 61 (Patent Documents 1 to 5 below). (See 3 etc.).

また、熱源機器51A〜51Cの増減段制御は、例えば最初に1台の熱源機器51Aと、対応する1台の熱媒ポンプ52Aを稼働させる。この熱媒ポンプ52Aの稼働は定格流量で稼働させる。この状態で、例えば、熱媒は熱源機器51Aにおいて5℃に冷却され、外部負荷機器54で熱交換され14℃の熱媒となり、戻りヘッダ55に戻される。   In the increase / decrease stage control of the heat source devices 51A to 51C, for example, one heat source device 51A and one corresponding heat medium pump 52A are operated first. The heat medium pump 52A is operated at a rated flow rate. In this state, for example, the heat medium is cooled to 5 ° C. in the heat source device 51 </ b> A, is heat-exchanged by the external load device 54, becomes a heat medium of 14 ° C., and is returned to the return header 55.

その後、外部負荷機器54から要求される熱量が増えるに従って、増段閾値を超えた段階で、第2の熱源機器51Bと、対応する熱媒ポンプ52Bを稼働させる。さらに、増段閾値を超えた段階で第3の熱源機器51Cと、対応する熱媒ポンプ52Cを稼働させることにより、外部負荷機器54の負荷熱量増減に対応するようにしている。
特開2000−18683号公報 特開2004−184052号公報 特開2004−245560号公報
Thereafter, as the amount of heat required from the external load device 54 increases, the second heat source device 51B and the corresponding heat medium pump 52B are operated at a stage where the step increase threshold is exceeded. Furthermore, by operating the third heat source device 51C and the corresponding heat medium pump 52C at a stage where the step increase threshold is exceeded, the load heat amount increase / decrease of the external load device 54 is accommodated.
JP 2000-18683 A JP 2004-184052 A JP 2004-245560 A

しかしながら、前記1ポンプ方式熱源設備においては、熱媒ポンプ52A〜52Cを定格で稼働し、吐出圧を一定とすることで、熱源機器51A〜51Cにおける流量を確保し、不安定化(ハンチング等)を回避するようにしているため、小負荷時においてもポンプ動力を低減することができないなどの問題があった。   However, in the one-pump system heat source facility, the heat medium pumps 52A to 52C are operated at their ratings and the discharge pressure is kept constant, so that the flow rate in the heat source devices 51A to 51C is secured and destabilized (hunting, etc.) Therefore, there is a problem that the pump power cannot be reduced even at a small load.

また、前記熱源機器51A〜51Cにおいては、所定の熱媒温度差(上記例では9℃)である場合に、その最大能力を発揮するようになっている。しかし、実際には、特に小負荷時において、水の往き還り温度差が低下する現象が発生している。この往き還り温度差の低下は、バルブの開け過ぎや圧力の掛かりすぎにより外部負荷機器54に必要以上の冷水が流入していたり、外部負荷機器54を通過する風量が不足していたり、熱交換器が劣化していたりする場合に起こることもあるし、或いは外部負荷機器54をバイパスする末端バイパスを設けたことが原因していたり、更にはバイパス管56を流れる熱媒の流量増大等、様々な原因で生じるものであるが、熱媒の往き還り温度差が低下することにより、熱媒ポンプ52A〜52Cは定格稼働しているが、熱源機器51A〜51Cは自己の冷却能力を絞った運転をしている状態となる。この状態で、外部負荷機器54が要求する熱量が増大すると、第1の熱源機器51Aが絞り運転しているにも拘わらず、第2、第3の熱源機器51B、51Cへの増段が図られてしまうことになっていた。すなわち、各熱源機器51Aが最大能力を発揮する前に、第2、第3の熱源機器51B、51Cへの不要な増段が行われ、不経済な運転が行われていた。   Moreover, in the said heat source apparatus 51A-51C, when it is a predetermined heat-medium temperature difference (in the said example, 9 degreeC), the maximum capability is exhibited. In practice, however, a phenomenon occurs in which the temperature difference between the return and return of water decreases, especially at a small load. This drop in the return temperature difference is due to excessive cold water flowing into the external load device 54 due to excessive opening of the valve or excessive pressure, insufficient air volume passing through the external load device 54, heat exchange, etc. May occur when the vessel is deteriorated, or it may be caused by the provision of a terminal bypass that bypasses the external load device 54, or an increase in the flow rate of the heat medium flowing through the bypass pipe 56. Although the heat medium pumps 52A to 52C are operating at a rated speed due to a decrease in the temperature difference between the return and return of the heat medium, the heat source devices 51A to 51C are operated with their own cooling ability reduced. It will be in the state which is doing. In this state, when the amount of heat required by the external load device 54 increases, the steps to the second and third heat source devices 51B and 51C are increased even though the first heat source device 51A is in the throttle operation. It was supposed to be done. That is, before each heat source device 51A exhibits its maximum capacity, unnecessary stages are added to the second and third heat source devices 51B and 51C, and an uneconomic operation is performed.

そこで本発明の主たる課題は、熱媒ポンプおよび熱媒機器の運転を外部負荷に見合う最適運転とすることにより消費電力の削減を図ると同時に、熱源機器の通水流量を確保し、不安定化を回避するようにした1ポンプ方式熱源設備を提供することにある。   Therefore, the main problem of the present invention is to reduce the power consumption by optimizing the operation of the heat medium pump and the heat medium device according to the external load, and at the same time, ensure the water flow rate of the heat source device and destabilize it. Is to provide a one-pump heat source facility.

前記課題を解決するために請求項1に係る本発明として、熱媒を冷却又は加熱する1又は複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する熱媒ポンプと、前記熱源機器からの熱媒を集約する送りヘッダと、この送りヘッダから熱媒を供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐバイパス路と、このバイパス路を流れる熱媒の流量を調整するバイパス弁とを備える1ポンプ方式熱源設備において、
前記熱媒ポンプを周波数制御によりポンプ揚程を変更可能とするとともに、前記外部負荷機器を循環する循環流量を測定するための流量計と、前記熱源機器の通水量を測定するための流量計と、前記バイパス弁を跨ぐ間の差圧を測定する差圧計とを配設し、
かつ前記循環流量に基づき熱媒ポンプの周波数変更によりポンプ揚程を制御するとともに、熱源機器通水量を前記バイパス弁の開度により制御し、さらに前記熱媒ポンプの周波数変更の影響を打ち消すようにバイパス弁開度に修正を加えるとともに、バイパス弁開度変更の影響を打ち消すように熱媒ポンプの周波数に修正を加えることにより相互干渉を抑えるように制御するための制御装置とを備えることを特徴とする1ポンプ方式熱源設備が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, one or a plurality of heat source devices for cooling or heating the heat medium, and a heat medium cooled or heated provided corresponding to each heat source device A heat medium pump for pumping, a feed header for collecting the heat medium from the heat source device, an external load device to which the heat medium is supplied from the feed header, and a heat medium exchanged by the external load device are returned. A return header that is distributed to each heat source device, a bypass passage that connects the feed header portion or the vicinity thereof and the return header portion or the vicinity thereof, and a bypass valve that adjusts the flow rate of the heat medium flowing through the bypass passage. In one-pump heat source equipment,
The heat pump can change the pump head by frequency control, a flow meter for measuring a circulating flow rate circulating through the external load device, and a flow meter for measuring the water flow rate of the heat source device, A differential pressure gauge that measures the differential pressure across the bypass valve, and
In addition, the pump head is controlled by changing the frequency of the heat medium pump based on the circulating flow rate, and the amount of water passing through the heat source device is controlled by the opening of the bypass valve, and further bypassed to cancel the influence of the frequency change of the heat medium pump. And a controller for controlling the mutual interference to be suppressed by correcting the frequency of the heat medium pump so as to cancel the influence of the change of the bypass valve opening while correcting the valve opening. A one-pump heat source facility is provided.

上記請求項1記載の本発明では、従来は定格で稼働されていた熱媒ポンプを周波数制御(回転数)によりポンプ揚程を変更可能とする。そして、流量減少時にはポンプの吐出圧を下げることにより、往き還り温度差の低下を防止するとともに、ポンプ動力の低減を図るようにする。一方で、熱源機器には所定の通水量が確保されていないと、ハンチング等の不安定化を引き起こすことになるので、熱源機器通水量が一定となるようにバイパス弁を制御する。この際、ポンプ揚程変更の影響と、バイパス弁の開度変更の影響は互いに干渉し合う関係にあるため、ポンプ揚程が変化した時は、その影響を打ち消す動作をバイパス弁開度に修正を加える。また、バイパス弁開度が変化した時には、その影響を打ち消す動作をポンプ運転周波数に修正を加えることにより、相互の干渉を抑え、熱源機器通水流量を確保し、運転状態を安定させるようにする。   In the present invention according to the first aspect, the pump head can be changed by frequency control (the number of rotations) of a heat medium pump that has been operated at a rating. When the flow rate is reduced, the pump discharge pressure is lowered to prevent a drop in the return temperature difference and to reduce the pump power. On the other hand, if the predetermined amount of water flow is not ensured in the heat source device, instability such as hunting is caused. Therefore, the bypass valve is controlled so that the water flow amount of the heat source device is constant. At this time, the effect of changing the pump head and the effect of changing the opening of the bypass valve interfere with each other. Therefore, when the pump head changes, the operation to cancel the influence is corrected to the bypass valve opening. . In addition, when the bypass valve opening changes, the operation that cancels the influence is corrected to the pump operating frequency to suppress mutual interference, secure the water flow rate of the heat source equipment, and stabilize the operating state .

請求項2に係る本発明として、前記相互干渉を抑える制御は、熱媒ポンプ及びバイパス弁基本特性に基づき、バイパス弁流量又はバイパス弁差圧が一定であることを条件として、前記熱媒ポンプの運転周波数とバイパス弁開度との関係から求めた非干渉制御モデルとする請求項1記載の1ポンプ方式熱源設備が提供される。   As the present invention according to claim 2, the control for suppressing the mutual interference is based on the basic characteristics of the heat medium pump and the bypass valve, on condition that the bypass valve flow rate or the bypass valve differential pressure is constant. The one-pump heat source facility according to claim 1, wherein the non-interference control model is obtained from the relationship between the operation frequency and the opening degree of the bypass valve.

以上詳説のとおり本発明によれば、熱媒ポンプおよび熱媒機器の運転を外部負荷に見合う最適運転とすることにより消費電力の削減を図ると同時に、熱源機器の通水流量を確保し、不安定化を回避できるようになる。   As described above in detail, according to the present invention, the operation of the heat medium pump and the heat medium device is optimized for the external load, and at the same time, the power consumption is reduced, and the water flow rate of the heat source device is ensured. Stabilization can be avoided.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔熱源設備の構成〕
図1に示される1ポンプ方式熱源設備1は、熱媒を冷却又は加熱する複数の熱源機器2A〜2Cと、各熱源機器2A〜2Cに対応して設けられるとともに、熱媒を圧送する熱媒ポンプ3A〜3Cと、前記熱源機器2A〜2Cからの熱媒を集約する送りヘッダ4と、送りヘッダ4から熱媒が供給される外部負荷機器5と、外部負荷機器5に設けられた空調負荷制御弁6と、外部負荷機器5で熱交換された熱媒が戻されるとともに、各熱源機器2A〜2Cに分配する戻りヘッダ7と、前記送りヘッダ部4又はその近傍と戻りヘッダ部7又はその近傍とを繋ぐバイパス路8と、このバイパス路8を流れる熱媒の流量を調整するバイパス弁9とを備えるものであり、本制御のために、前記熱媒ポンプ3A〜3Cを周波数制御によりポンプ揚程を変更可能とするとともに、前記外部負荷機器5を循環する循環流量を測定するための流量計10と、熱源機器2A〜2Cの通水量を測定するための流量計11と、前記バイパス弁9を跨ぐ間の差圧を測定する差圧計12と、往水温度を測定するための温度計13と、熱源機器流入温度を測定するための温度計14と、これら各計測器による測定値に基づいて熱媒ポンプ3A〜3Cの周波数制御と、バイパス弁9の開度制御等を行う制御装置15を備えている。なお、図1に破線で示すように、前記外部負荷機器5をバイパスする末端バイパス回路16を設けるようにしてもよい。
[Configuration of heat source equipment]
A one-pump heat source facility 1 shown in FIG. 1 is provided corresponding to a plurality of heat source devices 2A to 2C for cooling or heating a heat medium and each of the heat source devices 2A to 2C, and a heat medium that pumps the heat medium. Pumps 3 </ b> A to 3 </ b> C, a feed header 4 that collects the heat medium from the heat source devices 2 </ b> A to 2 </ b> C, an external load device 5 that is supplied with the heat medium from the feed header 4, and an air conditioning load provided in the external load device 5 The heating medium exchanged by the control valve 6 and the external load device 5 is returned, the return header 7 distributed to each of the heat source devices 2A to 2C, the feed header portion 4 or the vicinity thereof, and the return header portion 7 or the A bypass path 8 connecting the vicinity and a bypass valve 9 for adjusting the flow rate of the heat medium flowing through the bypass path 8 are provided. For this control, the heat medium pumps 3A to 3C are pumped by frequency control. The head can be changed And a flow meter 10 for measuring the circulation flow rate circulating through the external load device 5, a flow meter 11 for measuring the water flow rate of the heat source devices 2A to 2C, and the bypass valve 9 A differential pressure gauge 12 for measuring the differential pressure, a thermometer 13 for measuring the temperature of the outgoing water, a thermometer 14 for measuring the inflow temperature of the heat source equipment, and a heat medium pump based on the measured values by these measuring instruments A control device 15 that performs frequency control of 3A to 3C, opening degree control of the bypass valve 9 and the like is provided. In addition, you may make it provide the terminal bypass circuit 16 which bypasses the said external load apparatus 5 as shown with a broken line in FIG.

具体的に前記制御装置15は、外部負荷機器5からの要求に基づく熱媒の循環流量に基づいて、図5に示されるように、必要循環流量が多くなれば吐出圧(揚程)が多くなるように、また必要循環流量が少なくなれば吐出圧(揚程)が少なくなるように熱媒ポンプ3A〜3Cの周波数(回転数)を比例制御することによりポンプ揚程を調整する。これによって、外部負荷機器5の小負荷時には、ポンプ運転周波数を下げることでポンプ揚程を下げ、低温の往き冷水が熱交換されずに戻りヘッダ7に入り込むことを防止するとともに、ポンプ動力の削減を図る。   Specifically, as shown in FIG. 5, the control device 15 increases the discharge pressure (lift) based on the circulating flow rate of the heat medium based on the request from the external load device 5 as shown in FIG. 5. As described above, the pump head is adjusted by proportionally controlling the frequency (rotational speed) of the heat medium pumps 3A to 3C so that the discharge pressure (lift) is reduced when the required circulation flow rate is reduced. As a result, when the external load device 5 is lightly loaded, the pump head is lowered by lowering the pump operating frequency to prevent the low-temperature forward chilled water from entering the return header 7 without heat exchange and reducing the pump power. Plan.

また、ポンプ揚程の変化により熱源機器の通水量が変化するのを抑えるためにバイパス弁9の開度を制御する。この際に、ポンプ揚程(ポンプ運転周波数)の変更と、バイパス弁の開度変更とは互いに干渉し合う関係にあるため、前記熱媒ポンプ3A〜3Cの周波数変更の影響を打ち消すようにバイパス弁9の開度に修正を加えるとともに、バイパス弁9の開度変更の影響を打ち消すように熱媒ポンプ3A〜3Cの周波数に修正を加えることにより、相互干渉を抑えるように制御する。   Further, the opening degree of the bypass valve 9 is controlled in order to suppress the change in the water flow rate of the heat source device due to the change in the pump head. At this time, since the change in the pump head (pump operating frequency) and the change in the opening degree of the bypass valve are in an interfering relationship with each other, the bypass valve is designed to cancel the influence of the frequency change in the heat medium pumps 3A to 3C. 9 is corrected, and the frequency of the heat medium pumps 3 </ b> A to 3 </ b> C is corrected so as to suppress the mutual interference so as to cancel the influence of the change in the opening of the bypass valve 9.

前記制御装置15における相互干渉を抑える制御は、熱媒ポンプ3A〜3Cの基本特性及びバイパス弁9の基本特性に基づき、バイパス弁流量又はバイパス弁差圧が一定であることを条件として、熱媒ポンプ3A〜3Cの運転周波数とバイパス弁9の開度との関係から求めた、下記非干渉モデル(その1)及び非干渉モデル(その2)により実行するものとする。   The control for suppressing the mutual interference in the control device 15 is based on the basic characteristic of the heat medium pumps 3A to 3C and the basic characteristic of the bypass valve 9 on the condition that the bypass valve flow rate or the bypass valve differential pressure is constant. The following non-interference model (part 1) and non-interference model (part 2) obtained from the relationship between the operation frequency of the pumps 3A to 3C and the opening degree of the bypass valve 9 are assumed to be executed.

〔非干渉制御モデル〕
以下、前記熱媒ポンプ3A〜3Cの周波数変更の影響を打ち消すようにバイパス弁9の開度に修正を加える非干渉制御モデル(その1)と、バイパス弁9の開度変更の影響を打ち消すように熱媒ポンプ3A〜3Cの周波数に修正を加える非干渉制御モデル(その2)とについて詳述する。
[Non-interference control model]
Hereinafter, the non-interference control model (part 1) for correcting the opening degree of the bypass valve 9 so as to cancel the influence of the frequency change of the heat medium pumps 3A to 3C, and the influence of the opening degree change of the bypass valve 9 are canceled out. The non-interference control model (part 2) for correcting the frequency of the heat medium pumps 3A to 3C will be described in detail.

(1)非干渉制御モデル(その1)
非干渉制御モデル(その1)は、バイパス弁差圧が変化してもバイパス流量が変化しないようにバイパス弁9の開度を補正するものである。
(1) Non-interference control model (1)
The non-interference control model (part 1) corrects the opening degree of the bypass valve 9 so that the bypass flow rate does not change even when the bypass valve differential pressure changes.

先ず、熱媒ポンプ3の基本特性として次式(1)〜(3)が成立する。   First, the following expressions (1) to (3) are established as basic characteristics of the heat medium pump 3.

ポンプ揚程と運転周波数の関係式として次式(1)が成立する。   The following equation (1) is established as a relational expression between the pump head and the operating frequency.

Figure 2006220363
Figure 2006220363

次いで、ポンプ流量とポンプ運転周波数との関係式として次式(2)が成立する。   Next, the following equation (2) is established as a relational expression between the pump flow rate and the pump operation frequency.

Figure 2006220363
Figure 2006220363

さらに、ポンプ揚程とバイパス弁差圧との関係式として次式(3)が成立する。   Further, the following equation (3) is established as a relational expression between the pump head and the bypass valve differential pressure.

Figure 2006220363
Figure 2006220363

運転周波数変更後のポンプ揚程変動幅(dP=P−Pn−1)は、上記(1)式及び(3)式より、下式(4)となる(図3参照)。 The pump head fluctuation range (dP n = P n −P n−1 ) after changing the operating frequency is expressed by the following expression (4) from the above expressions (1) and (3) (see FIG. 3).

Figure 2006220363
Figure 2006220363

運転周波数変更後は、ポンプ揚程だけでなく流量も変動するが、その変動幅は小さいので無視しても良いと仮定する。   After the operation frequency is changed, not only the pump head but also the flow rate fluctuates, but it is assumed that the fluctuation range is small and can be ignored.

よって、運転周波数変更後のバイパス弁差圧(Pb)は、次式(5)となる。 Therefore, the bypass valve differential pressure (Pb n ) after changing the operating frequency is expressed by the following equation (5).

Figure 2006220363
Figure 2006220363

次に、バイパス弁差圧が変動しても、バイパス流量(Qb)は変動しないバルブ開度を算出する。   Next, a valve opening is calculated in which the bypass flow rate (Qb) does not vary even if the bypass valve differential pressure varies.

バイパス弁の流量(Qb)と、弁開度特性(Cv)と、弁差圧(Pb)との関係は次式(6)となる。   The relationship among the flow rate (Qb) of the bypass valve, the valve opening characteristic (Cv), and the valve differential pressure (Pb) is expressed by the following equation (6).

Figure 2006220363
Figure 2006220363

リニア特性の場合、任意バイパス弁開度時の流量係数は、次式(7)となる。   In the case of linear characteristics, the flow coefficient when the arbitrary bypass valve is opened is expressed by the following equation (7).

Figure 2006220363
Figure 2006220363

バイパス弁流量(Qb)について、上式(6)を解くと、運転周波数変更後のバイパス弁流量Qbは、次式(8)となる。   When the above equation (6) is solved for the bypass valve flow rate (Qb), the bypass valve flow rate Qb after changing the operating frequency is expressed by the following equation (8).

Figure 2006220363
Figure 2006220363

運転周波数変更前のバイパス弁流量(Qb)は、次式(9)となる。   The bypass valve flow rate (Qb) before changing the operating frequency is expressed by the following equation (9).

Figure 2006220363
Figure 2006220363

よって、バイパス弁流量(Qb)は変わらないので上式(7)〜(9)より、下式(10)が成立する。   Accordingly, since the bypass valve flow rate (Qb) does not change, the following equation (10) is established from the above equations (7) to (9).

Figure 2006220363
Figure 2006220363

上式(10)をσについて解くと、下式(11)となる。 When the above equation (10) is solved for σ n , the following equation (11) is obtained.

Figure 2006220363
Figure 2006220363

従って、上式(11)により、ポンプ運転周波数変更の影響を打ち消すバイパス弁9の開度σnを求めることができる。   Therefore, the opening degree σn of the bypass valve 9 that cancels the influence of the change of the pump operation frequency can be obtained by the above equation (11).

(2)非干渉制御モデル(その2)
非干渉制御モデル(その2)は、バイパス流量Qbが変化してもバイパス弁差圧Pbが変化しないように、ポンプ運転周波数を補正するものである。
(2) Non-interference control model (2)
The non-interference control model (part 2) corrects the pump operation frequency so that the bypass valve differential pressure Pb does not change even when the bypass flow rate Qb changes.

まず、上式(6)を用いてバイパス弁開度変更後のバイパス弁差圧Pbについて解くと、下式(12)となる   First, when the bypass valve differential pressure Pb after the bypass valve opening change is solved using the above equation (6), the following equation (12) is obtained.

Figure 2006220363
Figure 2006220363

従って、バイパス弁開度変更前のバイパス弁差圧Pbは、下式(13)となる。   Therefore, the bypass valve differential pressure Pb before the bypass valve opening change is expressed by the following equation (13).

Figure 2006220363
Figure 2006220363

バイパス弁差圧Pbは変わらないので、上式(7)、(12)、(13)より、下式(14)が成立する。   Since the bypass valve differential pressure Pb does not change, the following equation (14) is established from the above equations (7), (12), and (13).

Figure 2006220363
Figure 2006220363

バイパス弁開度変更後のバイパス流量Qbは、上式(14)より次式(15)となる。 Bypass flow rate Qb n after bypass valve opening changes, the following equation from the above equation (14) (15).

Figure 2006220363
Figure 2006220363

また、バイパス弁開度変更後のバイパス流量の変動幅(dQb=Qb−Qbn−1)は、次式(16)となる。 Further, the fluctuation range (dQb n = Qb n −Qb n−1 ) of the bypass flow rate after changing the bypass valve opening is expressed by the following equation (16).

Figure 2006220363
Figure 2006220363

バイパス弁変更前のポンプ流量をQn−1、バイパス弁開度変更後のポンプ流量をQとすると、次式(17)が成立する(図4参照)。 When the pump flow rate before changing the bypass valve is Q n-1 and the pump flow rate after changing the bypass valve opening is Q n , the following equation (17) is established (see FIG. 4).

Figure 2006220363
Figure 2006220363

バイパス弁開度変更後は、ポンプ流量だけでなく揚程も変動するが、その変動幅は小さいので無視しても良いと仮定すると、ポンプの基本特性式上式(3)と(17)とにより、バイパス弁開度変更後のポンプ運転周波数INVは、次式(18)となる。 After changing the bypass valve opening, not only the pump flow but also the head fluctuates, but the fluctuation range is small, so assuming that it can be ignored, the basic characteristic equation of the pump (3) and (17) The pump operating frequency INV n after the bypass valve opening change is expressed by the following equation (18).

Figure 2006220363
Figure 2006220363

従って、上式(18)により、バイパス弁開度変更の影響を打ち消すポンプ運転周波数INVを求めることができる。 Therefore, the pump operating frequency INV n that cancels the influence of the change in the bypass valve opening can be obtained by the above equation (18).

本発明に係る1ポンプ方式熱源設備1のブロック図である。It is a block diagram of 1 pump system heat source equipment 1 concerning the present invention. 非干渉制御モデルの概念図である。It is a conceptual diagram of a non-interference control model. 非干渉制御モデル(その1)のポンプ揚程変動状態図である。It is a pump head fluctuation state figure of a non-interference control model (the 1). 非干渉制御モデル(その2)のバイパス流量変動状態図である。It is a bypass flow rate fluctuation | variation state figure of a non-interference control model (the 2). ポンプ揚程と流量との相関概念図である。It is a correlation conceptual diagram of a pump head and flow volume. 従来の1ポンプ方式熱源設備50のブロック図である。It is a block diagram of the conventional 1 pump system heat source equipment.

符号の説明Explanation of symbols

1…1ポンプ方式熱源設備、2A〜2C…熱源機器、3A〜3C…熱媒ポンプ、4…送りヘッダ、5…外部負荷機器、6…空調負荷制御弁、7…戻りヘッダ、8…バイパス路、9…バイパス弁、10・11…流量計、12…差圧計、13・14…温度計、15…制御装置   DESCRIPTION OF SYMBOLS 1 ... 1 pump system heat source equipment, 2A-2C ... Heat source equipment, 3A-3C ... Heat medium pump, 4 ... Feed header, 5 ... External load equipment, 6 ... Air-conditioning load control valve, 7 ... Return header, 8 ... Bypass path , 9: Bypass valve, 10.11 ... Flow meter, 12 ... Differential pressure gauge, 13.14 ... Thermometer, 15 ... Control device

Claims (2)

熱媒を冷却又は加熱する1又は複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する熱媒ポンプと、前記熱源機器からの熱媒を集約する送りヘッダと、この送りヘッダから熱媒を供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐバイパス路と、このバイパス路を流れる熱媒の流量を調整するバイパス弁とを備える1ポンプ方式熱源設備において、
前記熱媒ポンプを周波数制御によりポンプ揚程を変更可能とするとともに、前記外部負荷機器を循環する循環流量を測定するための流量計と、前記熱源機器の通水量を測定するための流量計と、前記バイパス弁を跨ぐ間の差圧を測定する差圧計とを配設し、
かつ前記循環流量に基づき熱媒ポンプの周波数変更によりポンプ揚程を制御するとともに、熱源機器通水量を前記バイパス弁の開度により制御し、さらに前記熱媒ポンプの周波数変更の影響を打ち消すようにバイパス弁開度に修正を加えるとともに、バイパス弁開度変更の影響を打ち消すように熱媒ポンプの周波数に修正を加えることにより相互干渉を抑えるように制御するための制御装置とを備えることを特徴とする1ポンプ方式熱源設備。
One or a plurality of heat source devices that cool or heat the heat medium, a heat medium pump that is provided corresponding to each heat source device, and that pumps the cooled or heated heat medium, and the heat medium from the heat source device are aggregated A feed header, an external load device to which a heat medium is supplied from the feed header, a heat header exchanged by the external load device and a return header distributed to each heat source device, and the feed header unit or In a one-pump heat source facility comprising a bypass path connecting the vicinity thereof and the return header portion or the vicinity thereof, and a bypass valve for adjusting the flow rate of the heat medium flowing through the bypass path,
The heat pump can change the pump head by frequency control, and the flow meter for measuring the circulation flow rate circulating through the external load device, the flow meter for measuring the water flow rate of the heat source device, A differential pressure gauge that measures the differential pressure across the bypass valve, and
In addition, the pump head is controlled by changing the frequency of the heat medium pump based on the circulating flow rate, and the amount of water passing through the heat source device is controlled by the opening of the bypass valve, and further bypassed to cancel the influence of the frequency change of the heat medium pump. And a controller for controlling the mutual interference to be suppressed by correcting the frequency of the heat medium pump so as to cancel the influence of the bypass valve opening change while correcting the valve opening. 1 pump heat source equipment.
前記相互干渉を抑える制御は、熱媒ポンプ及びバイパス弁基本特性に基づき、バイパス弁流量又はバイパス弁差圧が一定であることを条件として、前記熱媒ポンプの運転周波数とバイパス弁開度との関係から求めた非干渉制御モデルとする請求項1記載の1ポンプ方式熱源設備。
The control for suppressing the mutual interference is based on the basic characteristics of the heat medium pump and the bypass valve, on the condition that the bypass valve flow rate or the bypass valve differential pressure is constant, the operating frequency of the heat medium pump and the bypass valve opening. The one-pump heat source facility according to claim 1, wherein the non-interference control model is obtained from the relationship.
JP2005034285A 2005-02-10 2005-02-10 1 pump heat source equipment Pending JP2006220363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034285A JP2006220363A (en) 2005-02-10 2005-02-10 1 pump heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034285A JP2006220363A (en) 2005-02-10 2005-02-10 1 pump heat source equipment

Publications (1)

Publication Number Publication Date
JP2006220363A true JP2006220363A (en) 2006-08-24

Family

ID=36982808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034285A Pending JP2006220363A (en) 2005-02-10 2005-02-10 1 pump heat source equipment

Country Status (1)

Country Link
JP (1) JP2006220363A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224182A (en) * 2007-03-15 2008-09-25 Shin Nippon Air Technol Co Ltd Operation control method for 1 pump heat source equipment
JP2008241326A (en) * 2007-03-26 2008-10-09 Shin Nippon Air Technol Co Ltd Flow rate measurement method for piping system equipment
JP2009036422A (en) * 2007-08-01 2009-02-19 Techno Ryowa Ltd Heat source system
JP2011169533A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Heat source system and method of controlling the same
WO2013129349A1 (en) * 2012-02-28 2013-09-06 三菱重工業株式会社 Heat source system and method of controlling flow rate of heating medium thereof
EP2246650A4 (en) * 2008-02-27 2017-09-13 Mitsubishi Heavy Industries, Ltd. Turbo-refrigerator, refrigerating system, and their control method
CN114061112A (en) * 2021-11-26 2022-02-18 珠海格力电器股份有限公司 Air conditioning system and control method thereof
WO2023084698A1 (en) * 2021-11-11 2023-05-19 三菱電機株式会社 Air-conditioning system
WO2024100832A1 (en) * 2022-11-10 2024-05-16 三菱電機株式会社 Heat source system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329155A (en) * 1986-07-21 1988-02-06 日本電信電話株式会社 Method of controlling air conditioner
JP2004184052A (en) * 2002-12-06 2004-07-02 Mitsubishi Jisho Sekkei Inc Control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329155A (en) * 1986-07-21 1988-02-06 日本電信電話株式会社 Method of controlling air conditioner
JP2004184052A (en) * 2002-12-06 2004-07-02 Mitsubishi Jisho Sekkei Inc Control device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224182A (en) * 2007-03-15 2008-09-25 Shin Nippon Air Technol Co Ltd Operation control method for 1 pump heat source equipment
JP2008241326A (en) * 2007-03-26 2008-10-09 Shin Nippon Air Technol Co Ltd Flow rate measurement method for piping system equipment
JP2009036422A (en) * 2007-08-01 2009-02-19 Techno Ryowa Ltd Heat source system
EP2246650A4 (en) * 2008-02-27 2017-09-13 Mitsubishi Heavy Industries, Ltd. Turbo-refrigerator, refrigerating system, and their control method
JP2011169533A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Heat source system and method of controlling the same
WO2013129349A1 (en) * 2012-02-28 2013-09-06 三菱重工業株式会社 Heat source system and method of controlling flow rate of heating medium thereof
CN103958980A (en) * 2012-02-28 2014-07-30 三菱重工业株式会社 Heat source system and method of controlling flow rate of heating medium thereof
KR101613031B1 (en) 2012-02-28 2016-04-15 미츠비시 쥬고교 가부시키가이샤 Heat source system and method of controlling flow rate of heating medium thereof
US9414521B2 (en) 2012-02-28 2016-08-09 Mitsubishi Heavy Industries, Ltd. Heat source system and method of controlling flow rate of heating medium thereof
WO2023084698A1 (en) * 2021-11-11 2023-05-19 三菱電機株式会社 Air-conditioning system
CN114061112A (en) * 2021-11-26 2022-02-18 珠海格力电器股份有限公司 Air conditioning system and control method thereof
WO2024100832A1 (en) * 2022-11-10 2024-05-16 三菱電機株式会社 Heat source system

Similar Documents

Publication Publication Date Title
US10612794B2 (en) Controlled hydronic distribution system
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
US7637315B2 (en) Constant temperature liquid circulating device and method of controlling temperature in the device
US9874880B2 (en) Device and method for controlling opening of a valve in an HVAC system
CN101354170B (en) Air-conditioning control system and air-conditioning control method
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
JP5905077B2 (en) Air conditioning system
US20140041848A1 (en) Temperature control system, air conditioning system and control method
CN107525217B (en) Air conditioner control method and device and air conditioner
JP2013194975A (en) Heat pump type heater
JP2006220363A (en) 1 pump heat source equipment
JP4693645B2 (en) Air conditioning system
WO2014157347A1 (en) Cold water circulation system
JP4249591B2 (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP5492712B2 (en) Water supply temperature control apparatus and method
JP2010025466A (en) Heat source system
JP5379650B2 (en) Primary pump type heat source variable flow rate control system and method
US20140090408A1 (en) System and Method for Managing HVAC Excess Air Condition
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP4523461B2 (en) Operation control method for 1-pump heat source equipment
US11353234B2 (en) Air conditioning system
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP3957309B2 (en) Operation control method for two-pump heat source equipment
JP2018128211A (en) Refrigeration system
US20240255170A1 (en) Weighted Return Temperature Limitation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070501