Nothing Special   »   [go: up one dir, main page]

JP2006210692A - Group iii nitride compound semiconductor light emitting device - Google Patents

Group iii nitride compound semiconductor light emitting device Download PDF

Info

Publication number
JP2006210692A
JP2006210692A JP2005021445A JP2005021445A JP2006210692A JP 2006210692 A JP2006210692 A JP 2006210692A JP 2005021445 A JP2005021445 A JP 2005021445A JP 2005021445 A JP2005021445 A JP 2005021445A JP 2006210692 A JP2006210692 A JP 2006210692A
Authority
JP
Japan
Prior art keywords
layer
well layer
region
compound semiconductor
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005021445A
Other languages
Japanese (ja)
Other versions
JP2006210692A5 (en
Inventor
Tetsuya Taki
瀧  哲也
Mitsuhisa Ubukawa
満久 生川
Masataka Aoki
真登 青木
Koji Okuno
浩司 奥野
Yusuke Toyoda
優介 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2005021445A priority Critical patent/JP2006210692A/en
Priority to KR1020050126528A priority patent/KR100752007B1/en
Priority to TW094146488A priority patent/TWI284994B/en
Priority to CNB2006100027584A priority patent/CN100403566C/en
Priority to US11/340,746 priority patent/US7629619B2/en
Publication of JP2006210692A publication Critical patent/JP2006210692A/en
Publication of JP2006210692A5 publication Critical patent/JP2006210692A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve characteristics of a light emitting device by preventing generation of misfit dislocation and edge dislocation and raising crystallinity. <P>SOLUTION: A region changes its composition for relaxing a lattice constant of a barrier layer 41 and a well layer 43. The region is provided by using a ternary or binary compound of a group III nitride compound semiconductor between clad layers 3, 5 or the barrier layer 41 and the well layer 43, or in a junction to the well layer 43 inside the clad layers 3, 5 or the barrier layer 41. For example, the composition is changed in the order of AlGaN to GaN to InGaN. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、量子井戸構造を有する3族窒化物系化合物半導体発光素子に関する。   The present invention relates to a group III nitride compound semiconductor light emitting device having a quantum well structure.

従来、3族窒化物系化合物半導体発光素子においては、バンドギャップエネルギーの異なる層を交互に所定周期で積層した多重量子井戸(MQW)構造を用いている。例えば、膜厚2.5nmのIn0.2Ga0.8N から成る井戸層と、膜厚5nmのIn0.05Ga0.95N若しくはGaNから成るバリア層とを交互に積層する多重量子井戸(MQW)構造、膜厚3nm程度の井戸層を一層有する単一量子井戸(SQW)構造とした青色発光ダイオード(LED)や緑色LEDがある。また、最近では、発光波長が380nm程度の近紫外領域のLEDや405nm青紫色レーザダイオード(LD)が提案されており、その構造においては、InGaNからなる井戸層をAlGaNからなるバリア層で挟む構造となっている。一般的に、上記構造を含むヘテロ接合においては、ヘテロ接合面における格子不整合を起因とする転位の発生により、発光素子においては、光度、出力低下や劣化に伴う寿命短縮といった問題を生じる。3族窒化物系化合物半導体においても図1に示すように格子定数に差があり、同様な問題を有している。特に、最近の380nm程度の近紫外領域のLEDや405nm青紫色LDにおいては、バリア層にAlGaNを用いているので、転位の発生が顕著になってきている。 Conventionally, a group III nitride compound semiconductor light-emitting device uses a multiple quantum well (MQW) structure in which layers having different band gap energies are alternately stacked at a predetermined period. For example, a multiple quantum in which a well layer made of In 0.2 Ga 0.8 N with a thickness of 2.5 nm and a barrier layer made of In 0.05 Ga 0.95 N or GaN with a thickness of 5 nm are alternately stacked. There are blue light emitting diodes (LEDs) and green LEDs having a well (MQW) structure and a single quantum well (SQW) structure having a single well layer with a thickness of about 3 nm. Recently, a near-ultraviolet LED having a light emission wavelength of about 380 nm and a 405 nm blue-violet laser diode (LD) have been proposed. It has become. In general, in a heterojunction including the above structure, the occurrence of dislocations due to lattice mismatch at the heterojunction surface causes problems such as a reduction in luminous intensity, a decrease in output due to a decrease in output and deterioration in a light emitting element. The group III nitride compound semiconductor also has a similar problem due to a difference in lattice constant as shown in FIG. In particular, in recent LEDs in the near ultraviolet region of about 380 nm and 405 nm blue-violet LD, since AlGaN is used for the barrier layer, the occurrence of dislocation has become remarkable.

一方、3族窒化物系化合物半導体発光素子に関する上記の格子不整合に関する問題を解決するための手段が以下の公知文献に開示されている。
特開昭和64−17484号公報 特開平11−26812号公報 特開2001−230447号公報
On the other hand, means for solving the above-described problem of lattice mismatch related to the group III nitride compound semiconductor light-emitting device is disclosed in the following publicly known documents.
Japanese Patent Laid-Open No. 64-17484 JP-A-11-26812 JP 2001-230447 A

特許文献1によれば、格子不整合の緩和のみを前提とし、実施例1及び実施例2共に3元系のInGaNの発光層を単一の4元系のAlInGaN層の電流注入層(クラッド層)で挟んだ構造となっている。しかしながら、良好な結晶性を有する4元系のAlInGaNは実現されておらず、格子不整合の緩和の面で改善されたとしても発光強度、出力強度の発光素子として最も重要な特性を優れたものとすることはできない。
また、特許文献2によれば、発光層である井戸層のInの組成をバリア層との界面において略等しくさせ、厚さ方向の略中央部において最大になるように連続的に変化して形成した構造となっている。しかしながら、井戸層の組成変化は、井戸層内に複数の準位を形成することになり、結果的に多数の発光準位、即ち、多数の発光波長を発生させることになり好ましくない。また、一般的には、井戸層は非常に薄いため、井戸層内で組成変化を行うことは困難である。
さらに特許文献3によれば、基板とnコンタクト層との間の格子不整合を緩和するため、バッファ層である窒化アルミニウム(AlN)とnコンタクト層である窒化ガリウム(GaN)層との間にAlGaN層を挿入し、そのAlの組成を段階的に変化させた構造となっている。しかしながら、この構造を発光層に適用できるかどうか、どのように適用するかに関し、開示も示唆もされていない。
従って、本発明の目的は、上記課題に鑑み、量子井戸構造を有する3族窒化物系化合物半導体発光素子に関し、井戸層の界面近傍におけるミスフィット転位の発生を抑制し、ミスフィット転位に起因する刃状転位の発生を防止し、結晶性を高めると同時に、更に素子特性(発光強度、出力強度や寿命)が向上した3族窒化物系化合物半導体発光素子を実現することである。
According to Patent Document 1, only the relaxation of lattice mismatch is premised, and in both Example 1 and Example 2, a ternary InGaN light-emitting layer is formed as a current injection layer (cladding layer) of a single quaternary AlInGaN layer. ). However, quaternary AlInGaN with good crystallinity has not been realized, and even if improved in terms of relaxation of lattice mismatch, it has the most important characteristics as a light emitting element with light emission intensity and output intensity. It cannot be.
According to Patent Document 2, the In composition of the well layer, which is a light emitting layer, is made to be substantially the same at the interface with the barrier layer and continuously changed so as to be maximized at the substantially central portion in the thickness direction. It has a structure. However, a change in the composition of the well layer is not preferable because a plurality of levels are formed in the well layer, and as a result, a large number of emission levels, that is, a large number of emission wavelengths are generated. In general, since the well layer is very thin, it is difficult to change the composition in the well layer.
Further, according to Patent Document 3, in order to alleviate lattice mismatch between the substrate and the n-contact layer, between the aluminum nitride (AlN) that is the buffer layer and the gallium nitride (GaN) layer that is the n-contact layer. In this structure, an AlGaN layer is inserted and the Al composition is changed stepwise. However, there is no disclosure or suggestion as to whether or how this structure can be applied to the light emitting layer.
Therefore, in view of the above problems, an object of the present invention relates to a group III nitride compound semiconductor light-emitting device having a quantum well structure, which suppresses the occurrence of misfit dislocations in the vicinity of the interface of the well layer and is caused by misfit dislocations. An object of the present invention is to realize a group III nitride compound semiconductor light emitting device in which the occurrence of edge dislocations is prevented, the crystallinity is enhanced, and at the same time, the device characteristics (emission intensity, output intensity and life) are further improved.

上記の課題を解決するために、請求項1に記載の手段によれば、量子井戸構造を有する3族窒化物系化合物半導体発光素子であって、井戸層の上下に形成される層と井戸層との接合部近傍に該井戸層の上下に形成される層の格子定数が該井戸層の格子定数に近づくように変化して形成されている領域を有することを特徴とする。この構造を採用することにより、井戸層の界面近傍におけるミスフィット転位の発生を抑制すると同時に、井戸層における複数の準位発生を抑えることができるので、結晶性を高めると同時に、更に素子特性を向上させることができる。 In order to solve the above-mentioned problem, according to the means of claim 1, it is a group III nitride compound semiconductor light emitting device having a quantum well structure, and a layer and a well layer formed above and below the well layer And a region where the lattice constant of the layer formed above and below the well layer is changed so as to approach the lattice constant of the well layer. By adopting this structure, it is possible to suppress the occurrence of misfit dislocations in the vicinity of the interface of the well layer and at the same time to suppress the generation of multiple levels in the well layer. Can be improved.

上記の課題を解決するために、請求項2に記載の手段によれば、前記領域は前記井戸層の上下に形成される層内に形成されていることを特徴とする。新たな層とすることなく井戸層の上下に形成される層から井戸層へと連続的に変化させることができる。
上記の課題を解決するために、請求項3に記載の手段によれば、前記井戸層の上下に形成される層はクラッド層であることを特徴とする。単一量子井戸構造においては、井戸層の上下に形成される層はクラッド層としても作用するため、この領域の存在により井戸層の界面近傍におけるミスフィット転位の発生を抑制すると同時に、井戸層における複数の準位発生を抑えることができるので、結晶性を高めると同時に、更に素子特性を向上させることができる。
上記課題を解決するために、請求項4に記載の手段によれば、前記井戸層の上下に形成される層は障壁層(バリア層)であることを特徴とする。多重量子井戸(MQW)構造に適用した場合にもこの領域の存在により井戸層の界面近傍におけるミスフィット転位の発生を抑制すると同時に、井戸層における複数の準位発生を抑えることができるので、結晶性を高めると同時に、更に素子特性を向上させることができる。
上記課題を解決するために、請求項5に記載の手段によれば、前記井戸層の上下に形成される層はAlGa1−xN(0<x<1)で、前記井戸層はInGa1−yN(0≦y<1)で、前記領域はAlx’Ga1−x ’N(0≦x’<1)であり、前記領域におけるx’がx’=xからx’=0の方向に変化して形成されていることを特徴とする。結晶性の良好な3元系の3族窒化物半導体を用いることにより、かつ井戸層との界面においては、最も結晶性の良好なGaN(Alx’Ga1−x ’Nにおけるx’=0)を用いることにより、井戸層の界面近傍におけるミスフィット転位の発生を抑制すると同時に、井戸層における複数の準位発生を抑えることができるので、結晶性を高めると同時に、更に素子特性を向上させることができる。
上記課題を解決するために、請求項6に記載の手段によれば、前記井戸層の上下に形成される層はAlGa1−xN(0<x<1)で、前記井戸層はInGa1−yN(0<y<1)であり、前記領域は前記井戸層側からIny’Ga1−y’N(0≦y’<1)とAlx’Ga1−x ’N(0≦x’<1)で形成され、更にy’とx’は前記井戸層側から、yからy’=x’=0を経由してxにいたるように変化して形成されていることを特徴とする。結晶性の良好な3元系(AlGaNとInGaN)と最も結晶性の良好なGaN(Alx’Ga1−x ’Nにおけるx’=0及びIny’Ga1−y’Nにおけるy’=0)を組合せることにより井戸層の界面近傍におけるミスフィット転位の発生を抑制すると同時に、井戸層における複数の準位発生を抑えることができるので、結晶性を高めると同時に、更に素子特性を向上させることができる。
In order to solve the above-mentioned problem, according to the means described in claim 2, the region is formed in layers formed above and below the well layer. It is possible to continuously change from the layers formed above and below the well layer to the well layer without forming a new layer.
In order to solve the above problems, according to the means described in claim 3, the layers formed above and below the well layer are clad layers. In a single quantum well structure, the layers formed above and below the well layer also act as cladding layers, so the presence of this region suppresses the occurrence of misfit dislocations near the interface of the well layer and at the same time, Since generation of a plurality of levels can be suppressed, the crystallinity can be improved and the device characteristics can be further improved.
In order to solve the above-mentioned problem, according to the means described in claim 4, the layers formed above and below the well layer are barrier layers (barrier layers). Even when applied to a multiple quantum well (MQW) structure, the presence of this region suppresses the generation of misfit dislocations in the vicinity of the interface of the well layer and at the same time suppresses the generation of a plurality of levels in the well layer. The device characteristics can be further improved at the same time as improving the properties.
In order to solve the above problem, according to the means of claim 5, the layers formed above and below the well layer are Al x Ga 1-x N (0 <x <1), and the well layer is In y Ga 1-y N (0 ≦ y <1), the region is Al x ′ Ga 1-x ′ N (0 ≦ x ′ <1), and x ′ in the region is from x ′ = x. It is characterized by being changed in the direction of x ′ = 0. By using a ternary group III-nitride semiconductor with good crystallinity and at the interface with the well layer, GaN (Al x ′ Ga 1- x′N with the best crystallinity is x ′ = 0. ) Can suppress the generation of misfit dislocations in the vicinity of the interface of the well layer, and can also suppress the generation of a plurality of levels in the well layer. be able to.
In order to solve the above-described problem, according to the means of claim 6, the layers formed above and below the well layer are Al x Ga 1-x N (0 <x <1), and the well layer is In y Ga 1-y N (0 <y <1), and the region is In y ′ Ga 1-y ′ N (0 ≦ y ′ <1) and Al x ′ Ga 1-x from the well layer side. N” (0 ≦ x ′ <1), and y ′ and x ′ are changed from y to y through y ′ = x ′ = 0 to x from the well layer side. It is characterized by. Ternary system with good crystallinity (AlGaN and InGaN) and GaN with the best crystallinity (x ′ = 0 in Al x ′ Ga 1-x ′ N and y ′ = in In y ′ Ga 1-y ′ N 0) can suppress the generation of misfit dislocations in the vicinity of the interface of the well layer and simultaneously suppress the generation of multiple levels in the well layer. Can be made.

請求項1乃至請求項6の発明は、井戸層の界面近傍におけるミスフィット転位の発生を抑制し、ミスフィット転位に起因する刃状転位の発生を防止し、結晶性を高めると同時に、更に素子特性(発光強度、出力強度や寿命)が向上した半導体素子。特に結晶性の良好な3元及び2元系の組成を用いることにより、その効果は顕著となる。 The inventions of claims 1 to 6 suppress the occurrence of misfit dislocations in the vicinity of the interface of the well layer, prevent the occurrence of edge dislocations due to misfit dislocations, increase the crystallinity, and at the same time A semiconductor device with improved characteristics (emission intensity, output intensity and life). In particular, by using ternary and binary compositions having good crystallinity, the effect becomes remarkable.

図2は、サファイア基板1上に形成された半導体層側から光を放射する型の3族窒化物半導体から成る発光素子10の模式的な断面構成図である。基板1の上にはAlNから成る膜厚約25nmのバッファ層2が設けられ、その上にはシリコン(Si)ドープのGaNから成る膜厚約4.0μmの高キャリア濃度層3が形成されている。そして、高キャリア濃度層3の上に膜厚約8nmのAl0.1Ga0.9Nから成るバリア層41と、このバリア層内であって、後述する井戸層に接する厚さ約1.5nmでAlの組成がGaNになり、さらにはInの組成が連続して変化している領域42、膜厚約3nmのIn0.1Ga0.9Nから成る井戸層43とが交互に積層された多重量子井戸層4が形成されている。バリア層41は4層、井戸層43は3層で構成されている。多重量子井戸層4の上にはp型Al0.4Ga0.6N から成る膜厚約20nmのクラッド層5が形成されている。さらに、クラッド層5の上にはp型GaN から成る膜厚約100nmのコンタクト層6が形成されている。なお、本実施例では領域42の膜厚を1.5nmとしたが、領域42の膜厚は、バリア層の膜厚の1/40〜3/8の範囲であることが望ましい。領域42の膜厚が厚すぎると、バリア層の材料組成に基づく複数の量子準位が井戸層内に形成され、特許文献2と同様な問題を発生する。また、領域42が薄すぎると、後述する温度の上下や組成の制御が難しくなるからである。
又、コンタクト層6の上には透光性の電極7が、高キャリア濃度層3上には電極8が形成されている。電極7の上には、更にボンディング用の電極9が形成されている。コンタクト層7に接合する透光性の電極7は膜厚約150nmのITOであり、電極8は膜厚約20nmのバナジウム(V) と膜厚約1.8μmのアルミニウム(Al)、ボンディング用の電極9は約2.0μmの金(Au)で構成されている。
次に、この発光素子10の製造方法について説明する。上記発光素子10は、有機金属気相成長法(以下「MOVPE」と略す)による気相成長により製造された。用いられたガスは、アンモニア(NH) 、キャリアガス(H、N) 、トリメチルガリウム(Ga(CH)(以下「TMG」と記す)、トリメチルアルミニウム(Al(CH)(以下「TMA」と記す)、トリメチルインジウム(In(CH)(以下「TMI」と記す)、シラン(SiH)とシクロペンタジエニルマグネシウム(Mg(C)(以下「CPMg」と記す)である。
(結晶成長)
まず、有機洗浄及び熱処理により洗浄したa面を主面とした単結晶のサファイア基板1をMOVPE装置の反応室に載置されたサセプタに装着する。次に、常圧でHを反応室に流しながら温度1100℃で基板1をベーキングした。次に、基板1の温度を400 ℃まで低下させて、H、NH、TMAを供給してAlNから成るバッファ層2を約25nmの膜厚に形成した。次に、基板1の温度を1150℃に保持し、H、NH、TMG、シランを供給し、膜厚約4.0μm、電子濃度2×1018/cmのGaNから成る高キャリア濃度層3を形成した。
上記の高キャリア濃度層3を形成した後、基板1の温度を900℃にしてN、NH、TMA、TMGを供給して、膜厚約5nmのAl0.1Ga0.9Nからなる層を形成し、次に、基板1の温度を低下させながらTMAの供給量を減少させ、TMAの供給量が0になった後、TMIの供給量を増加させ、膜厚約1.5nmの領域42を形成した。この温度低下では、基板1の温度が600℃になった時に井戸層In0.1Ga0.9Nを形成すべくTMIを供給するよう設定されている。本実施例においては、膜厚約5nmのAl0.1Ga0.9Nからなる層と膜厚約1.5nmの領域42を最初のバリア層41とする。次にN、NH、TMG、TMIを供給して膜厚約3nmのIn0.1Ga0.9N井戸層52を形成した。次に、基板の温度を上昇させながらN、NH、TMGの供給量は一定で、TMIの供給量を減少させ、TMIの供給量が0になった後、TMAの供給量を増加させ、膜厚約1.5nmの領域42を形成した。この温度上昇では、基板1の温度が900℃になった時に次のAl0.1Ga0.9Nを形成すべくTMAを供給するように設定されている。続いてN、NH、TMA、TMGを供給して、膜厚約5nmのAl0.1Ga0.9Nからなる層を形成し、次に、基板1の温度を低下させながらTMAの供給量を減少させ、TMAの供給量が0になった後、TMIの供給量を増加させ、膜厚約1.5nmの領域42を形成した。この温度低下では、基板1の温度が600℃になった時に井戸層In0.10.9Nを形成すべくTMIを供給するよう設定されている。従って、第2のバリア層においては、膜厚約5nmのAl0.1Ga0.9Nからなる層と2層の膜厚約1.5nmの領域42の計8nmがバリア層41となる。同様にバリア層と井戸層の形成を繰り返し、最終の井戸層を形成した後、基板の温度を上昇させながらN、NH、TMGの供給量は一定で、TMIの供給量を減少させ、TMIの供給量が0になった後、TMAの供給量を増加させ、膜厚約1.5nmの領域42を形成した。この温度上昇では、基板1の温度が900℃になった時に次のAl0.1Ga0.9Nを形成すべくTMAを供給するように設定されている。続いてN、NH、TMA、TMGを供給して、膜厚約5nmのAl0.1Ga0.9Nからなる層を形成した。従って、最後のバリア層においては膜厚約1.5nmの領域42と膜厚約5nmのAl0.1Ga0.9Nからなる層の計5.5nmバリア層41となる。(図3)
次に、基板1の温度を1000℃に保持し、H、N、NH、TMA、TMG、CPMgを供給して、5×1019/cmのマグネシウム(Mg)をドープした膜厚約20nmの濃度p型Al0.4Ga0.6N から成るクラッド層5を形成した。次に、H、N、NH、TMG、CPMgを供給して、5×1019/cmのマグネシウム(Mg)をドープした膜厚約100nmの濃度p型GaN から成るコンタクト層6を形成した。
(電極の形成)
次に、コンタクト層6の上にエッチングマスクを形成し、所定領域のエッチングマスクを除去して、エッチングマスクで覆われていない部分のコンタクト層6、クラッド層5、多重量子井戸層4及び高キャリア濃度層3の一部を塩素を含むガスによる反応性イオンエッチングによりエッチングし、高キャリア濃度層3の表面を露出させた。次に、エッチングマスクを残した状態で、全面にフォトレジストを塗布し、フォトリソグラフィにより高キャリア濃度層3の露出面上の所定領域に窓を形成し、膜厚約20nmのバナジウム(V)と膜厚約1.8μmのAlの電極8を成膜する。
(透光性電極の形成)
次に、表面上にフォトレジストを塗布し、フォトリソグラフによりコンタクト層6上の電極形成部分のフィトレジストを除去して窓を形成し、コンタクト層6を露出させる。露出させたコンタクト層6の上に、膜厚約150nmのITOを成膜する。次に、試料を装置から取り出し、リフトオフ法によりフォトレジスト上に堆積したITOを除去し、コンタクト層6に対する透光性の電極7を形成する。
(ボンディング用電極の形成)
次に、表面上にフォトレジストを塗布し、フォトリソグラフにより透光性の電極7上の電極形成部分のフィトレジストを除去して窓を形成し、透光性の電極8を露出させる。露出させた透光性の電極8の上に、膜厚約2.0μmのAuを成膜する。次に、試料を装置から取り出し、リフトオフ法によりフォトレジスト上に堆積したAuを除去し、ボンディング用の電極9を形成する。
この後、試料雰囲気を真空ポンプで排気し、Oガスを供給して圧力3Paとし、その状態で雰囲気温度を約500 ℃にして、3分程度、加熱し、コンタクト層6、クラッド層5をp型低抵抗化すると共にコンタクト層6と電極7との合金化処理、高キャリア濃度層3と電極8との合金化処理を行った。
(実施の形態2)
最良の形態においては、領域42の組成を、井戸層を形成する前として、AlGaN→GaN→InGaNの順で変化させたが、AlGaN→GaNとする場合も効果がある。この場合には、以下の手順となる。即ち、高キャリア濃度層3を形成した後、基板1の温度を900℃にしてN、NH、TMA、TMGを供給して、膜厚約5nmのAl0.1Ga0.9Nからなる層を形成し、次に、基板1の温度を低下させながらTMAの供給量を減少させ、膜厚約1.5nmの領域42を形成した。この温度低下では、基板1の温度が600℃になった時にTMAの供給量が0(ゼロ)となるようにTMAの供給量が設定されている。本実施例においては、膜厚約5nmのAl0.1Ga0.9Nからなる層と膜厚約1.5nmの領域42を最初のバリア層41とする。次にN、NH、TMG、TMIを供給して膜厚約3nmのIn0.1Ga0.9N井戸層52を形成した。次に、基板の温度を上昇させながらN、NH、TMGの供給量は一定で、TMAの供給量を増加させ、膜厚約1.5nmの領域42を形成した。この温度上昇では、基板1の温度が900℃になった時に次のAl0.1Ga0.9Nを形成すべくTMAを供給するように設定されている。続いてN、NH、TMA、TMGを供給して、膜厚約5nmのAl0.1Ga0.9Nからなる層を形成し、次に、基板1の温度を低下させながらTMAの供給量を減少させ、膜厚約1.5nmの領域42を形成した。この温度低下では、基板1の温度が600℃になった時にTMAの供給量が0(ゼロ)となるようにTMAの供給量が設定されている。従って、第2のバリア層においては、膜厚約5nmのAl0.1Ga0.9Nからなる層と2層の膜厚約1.5nmの領域42の計8nmがバリア層41となる。同様にバリア層と井戸層の形成を繰り返し、最終の井戸層を形成した後、基板の温度を上昇させながらN、NH、TMGの供給量は一定で、TMAの供給量を増加させ、膜厚約1.5nmの領域42を形成した。この温度上昇では、基板1の温度が900℃になった時に次のAl0.1Ga0.9Nを形成すべくTMAを供給するように設定されている。続いてN、NH、TMA、TMGを供給して、膜厚約5nmのAl0.1Ga0.9Nからなる層を形成した。従って、最後のバリア層においては膜厚約1.5nmの領域42と膜厚約5nmのAl0.1Ga0.9Nからなる層の計5.5nmバリア層41となる。
FIG. 2 is a schematic cross-sectional configuration diagram of a light-emitting element 10 made of a group III nitride semiconductor of a type that emits light from the semiconductor layer side formed on the sapphire substrate 1. A buffer layer 2 made of AlN and having a thickness of about 25 nm is provided on the substrate 1, and a high carrier concentration layer 3 made of silicon (Si) -doped GaN and having a thickness of about 4.0 μm is formed thereon. Yes. Then, a barrier layer 41 made of Al 0.1 Ga 0.9 N having a thickness of about 8 nm on the high carrier concentration layer 3 and a thickness of about 1. nm within the barrier layer and in contact with a well layer described later. At 5 nm, the Al composition becomes GaN, and the regions 42 in which the In composition continuously changes and the well layers 43 made of In 0.1 Ga 0.9 N having a thickness of about 3 nm are alternately stacked. The multiple quantum well layer 4 thus formed is formed. The barrier layer 41 is composed of four layers, and the well layer 43 is composed of three layers. On the multiple quantum well layer 4, a clad layer 5 made of p-type Al 0.4 Ga 0.6 N and having a thickness of about 20 nm is formed. Further, a contact layer 6 made of p-type GaN and having a thickness of about 100 nm is formed on the cladding layer 5. In this embodiment, the film thickness of the region 42 is 1.5 nm, but the film thickness of the region 42 is preferably in the range of 1/40 to 3/8 of the film thickness of the barrier layer. If the thickness of the region 42 is too thick, a plurality of quantum levels based on the material composition of the barrier layer are formed in the well layer, and the same problem as in Patent Document 2 occurs. In addition, if the region 42 is too thin, it becomes difficult to control the temperature up and down and composition described later.
A translucent electrode 7 is formed on the contact layer 6, and an electrode 8 is formed on the high carrier concentration layer 3. On the electrode 7, an electrode 9 for bonding is further formed. The translucent electrode 7 bonded to the contact layer 7 is ITO having a film thickness of about 150 nm. The electrode 8 is made of vanadium (V) having a film thickness of about 20 nm and aluminum (Al) having a film thickness of about 1.8 μm. The electrode 9 is made of about 2.0 μm of gold (Au).
Next, a method for manufacturing the light emitting element 10 will be described. The light emitting device 10 was manufactured by vapor phase growth by metal organic chemical vapor deposition (hereinafter abbreviated as “MOVPE”). The gases used were ammonia (NH 3 ), carrier gas (H 2 , N 2 ), trimethyl gallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”), trimethyl aluminum (Al (CH 3 ) 3 (Hereinafter referred to as “TMA”), trimethylindium (In (CH 3 ) 3 ) (hereinafter referred to as “TMI”), silane (SiH 4 ) and cyclopentadienyl magnesium (Mg (C 2 H 5 ) 2 ) (Hereinafter referred to as “CP 2 Mg”).
(Crystal growth)
First, a single-crystal sapphire substrate 1 having an a-plane cleaned by organic cleaning and heat treatment as a main surface is mounted on a susceptor mounted in a reaction chamber of a MOVPE apparatus. Next, the substrate 1 was baked at a temperature of 1100 ° C. while flowing H 2 into the reaction chamber at normal pressure. Next, the temperature of the substrate 1 was lowered to 400 ° C., and H 2 , NH 3 , and TMA were supplied to form the buffer layer 2 made of AlN with a film thickness of about 25 nm. Next, the temperature of the substrate 1 is maintained at 1150 ° C., H 2 , NH 3 , TMG, and silane are supplied, and a high carrier concentration of GaN having a film thickness of about 4.0 μm and an electron concentration of 2 × 10 18 / cm 3. Layer 3 was formed.
After the high carrier concentration layer 3 is formed, N 2 , NH 3 , TMA, and TMG are supplied by setting the temperature of the substrate 1 to 900 ° C., and from Al 0.1 Ga 0.9 N having a film thickness of about 5 nm. Next, the supply amount of TMA is decreased while the temperature of the substrate 1 is lowered, and after the supply amount of TMA becomes 0, the supply amount of TMI is increased and the film thickness is about 1.5 nm. Region 42 was formed. This temperature drop is set so that TMI is supplied to form the well layer In 0.1 Ga 0.9 N when the temperature of the substrate 1 reaches 600 ° C. In the present embodiment, a layer made of Al 0.1 Ga 0.9 N having a thickness of about 5 nm and a region 42 having a thickness of about 1.5 nm are used as the first barrier layer 41. Next, N 2 , NH 3 , TMG, and TMI were supplied to form an In 0.1 Ga 0.9 N well layer 52 having a thickness of about 3 nm. Next, while the substrate temperature is raised, the supply amounts of N 2 , NH 3 , and TMG are constant, the supply amount of TMI is decreased, and after the supply amount of TMI reaches zero, the supply amount of TMA is increased. A region 42 having a thickness of about 1.5 nm was formed. This temperature rise is set so that TMA is supplied to form the next Al 0.1 Ga 0.9 N when the temperature of the substrate 1 reaches 900 ° C. Subsequently, N 2 , NH 3 , TMA, and TMG are supplied to form a layer made of Al 0.1 Ga 0.9 N having a film thickness of about 5 nm. Next, the temperature of the substrate 1 is decreased while the temperature of the TMA is decreased. After the supply amount was decreased and the TMA supply amount became zero, the TMI supply amount was increased to form a region 42 having a film thickness of about 1.5 nm. This temperature drop is set so that TMI is supplied to form the well layers In 0.1 a 0.9 N when the temperature of the substrate 1 reaches 600 ° C. Therefore, in the second barrier layer, the barrier layer 41 is a total of 8 nm including a layer made of Al 0.1 Ga 0.9 N having a thickness of about 5 nm and a region 42 having a thickness of two layers of about 1.5 nm. Similarly, the formation of the barrier layer and the well layer is repeated, and after the final well layer is formed, the supply amount of N 2 , NH 3 , and TMG is constant while the substrate temperature is raised, and the supply amount of TMI is decreased, After the TMI supply amount became zero, the TMA supply amount was increased to form a region 42 having a film thickness of about 1.5 nm. This temperature rise is set so that TMA is supplied to form the next Al 0.1 Ga 0.9 N when the temperature of the substrate 1 reaches 900 ° C. Subsequently, N 2 , NH 3 , TMA, and TMG were supplied to form a layer made of Al 0.1 Ga 0.9 N having a thickness of about 5 nm. Therefore, in the last barrier layer, a total of 5.5 nm barrier layer 41 including a region 42 having a thickness of about 1.5 nm and a layer made of Al 0.1 Ga 0.9 N having a thickness of about 5 nm is obtained. (Figure 3)
Next, the temperature of the substrate 1 was maintained at 1000 ° C., and H 2 , N 2 , NH 3 , TMA, TMG, and CP 2 Mg were supplied to be doped with 5 × 10 19 / cm 3 magnesium (Mg). A clad layer 5 made of p-type Al 0.4 Ga 0.6 N having a thickness of about 20 nm was formed. Next, H 2 , N 2 , NH 3 , TMG, and CP 2 Mg are supplied, and a contact layer made of p-type GaN having a thickness of about 100 nm doped with 5 × 10 19 / cm 3 magnesium (Mg). 6 was formed.
(Formation of electrodes)
Next, an etching mask is formed on the contact layer 6, the etching mask in a predetermined region is removed, and the contact layer 6, the cladding layer 5, the multiple quantum well layer 4, and the high carriers that are not covered with the etching mask. A part of the concentration layer 3 was etched by reactive ion etching using a gas containing chlorine to expose the surface of the high carrier concentration layer 3. Next, with the etching mask left, a photoresist is applied to the entire surface, a window is formed in a predetermined region on the exposed surface of the high carrier concentration layer 3 by photolithography, and vanadium (V) having a film thickness of about 20 nm is formed. An Al electrode 8 having a thickness of about 1.8 μm is formed.
(Formation of translucent electrode)
Next, a photoresist is applied on the surface, and the photoresist is removed from the electrode forming portion on the contact layer 6 by photolithography to form a window to expose the contact layer 6. An ITO film having a thickness of about 150 nm is formed on the exposed contact layer 6. Next, a sample is taken out from the apparatus, ITO deposited on the photoresist is removed by a lift-off method, and a translucent electrode 7 for the contact layer 6 is formed.
(Formation of bonding electrodes)
Next, a photoresist is applied on the surface, and the photoresist is removed from the electrode forming portion on the translucent electrode 7 by photolithography to form a window, and the translucent electrode 8 is exposed. An Au film having a thickness of about 2.0 μm is formed on the exposed translucent electrode 8. Next, a sample is taken out from the apparatus, Au deposited on the photoresist is removed by a lift-off method, and an electrode 9 for bonding is formed.
Thereafter, the sample atmosphere is evacuated with a vacuum pump, O 2 gas is supplied to a pressure of 3 Pa, and in this state, the atmosphere temperature is set to about 500 ° C. and heated for about 3 minutes, whereby the contact layer 6 and the cladding layer 5 are formed. The p-type resistance was lowered, and the alloying process between the contact layer 6 and the electrode 7 and the alloying process between the high carrier concentration layer 3 and the electrode 8 were performed.
(Embodiment 2)
In the best mode, the composition of the region 42 is changed in the order of AlGaN.fwdarw.GaN.fwdarw.InGaN before the formation of the well layer. However, there is an effect in the case of AlGaN.fwdarw.GaN. In this case, the procedure is as follows. That is, after the high carrier concentration layer 3 is formed, the temperature of the substrate 1 is set to 900 ° C., and N 2 , NH 3 , TMA, and TMG are supplied, and Al 0.1 Ga 0.9 N having a thickness of about 5 nm is supplied. Next, the supply amount of TMA was reduced while lowering the temperature of the substrate 1 to form a region 42 having a film thickness of about 1.5 nm. In this temperature decrease, the supply amount of TMA is set so that the supply amount of TMA becomes 0 (zero) when the temperature of the substrate 1 reaches 600 ° C. In the present embodiment, a layer made of Al 0.1 Ga 0.9 N having a thickness of about 5 nm and a region 42 having a thickness of about 1.5 nm are used as the first barrier layer 41. Next, N 2 , NH 3 , TMG, and TMI were supplied to form an In 0.1 Ga 0.9 N well layer 52 having a thickness of about 3 nm. Next, the supply amount of N 2 , NH 3 , and TMG was constant while the substrate temperature was raised, and the supply amount of TMA was increased to form a region 42 having a film thickness of about 1.5 nm. This temperature rise is set so that TMA is supplied to form the next Al 0.1 Ga 0.9 N when the temperature of the substrate 1 reaches 900 ° C. Subsequently, N 2 , NH 3 , TMA, and TMG are supplied to form a layer made of Al 0.1 Ga 0.9 N having a film thickness of about 5 nm. Next, the temperature of the substrate 1 is decreased while the temperature of the TMA is decreased. The supply amount was reduced to form a region 42 having a film thickness of about 1.5 nm. In this temperature decrease, the supply amount of TMA is set so that the supply amount of TMA becomes 0 (zero) when the temperature of the substrate 1 reaches 600 ° C. Therefore, in the second barrier layer, the barrier layer 41 is a total of 8 nm including a layer made of Al 0.1 Ga 0.9 N having a thickness of about 5 nm and a region 42 having a thickness of two layers of about 1.5 nm. Similarly, after the formation of the barrier layer and the well layer is repeated and the final well layer is formed, the supply amount of N 2 , NH 3 , and TMG is constant while the substrate temperature is raised, and the supply amount of TMA is increased, A region 42 having a thickness of about 1.5 nm was formed. This temperature rise is set so that TMA is supplied to form the next Al 0.1 Ga 0.9 N when the temperature of the substrate 1 reaches 900 ° C. Subsequently, N 2 , NH 3 , TMA, and TMG were supplied to form a layer made of Al 0.1 Ga 0.9 N having a thickness of about 5 nm. Therefore, in the last barrier layer, a total of 5.5 nm barrier layer 41 including a region 42 having a thickness of about 1.5 nm and a layer made of Al 0.1 Ga 0.9 N having a thickness of about 5 nm is obtained.

(結果)
上記の実施例の結果、領域42の組成を、AlGaN→GaN→InGaNの順で変化させた場合に、発光光度で15%程度、AlGaN→GaN順で変化させた場合に、発光光度で10%程度の向上が見られた。両例ともに領域42のない場合と発光スペクトルに変化はみられなかった。なお、上記実施例は、多重量子井戸構造に関するものであったが、単一量子井戸構造においても同様である。この場合、バリア層の代わりにクラッド層内若しくはクラッド層とは別に井戸層との接合部近傍に該井戸層の上下に形成される層の格子定数が該井戸層の格子定数に近づくように変化して形成されている領域を設けても良い。また、この井戸層との接合部近傍に該井戸層の上下に形成される層の格子定数が該井戸層の格子定数に近づくように変化して形成されている領域はバリア層とは別に設けても同様な効果を奏するのは明らかである。さらには、上記実施例は、井戸層の上下にバリア層を有する場合であるが、井戸層から始まるMQW構造や、片側のみにバリア層が存在するMQW構造(井戸層/バリア層/・・・/井戸層/バリア層/クラッド層など)の場合にも同様な効果を奏する。
(result)
As a result of the above-described embodiment, when the composition of the region 42 is changed in the order of AlGaN → GaN → InGaN, the luminous intensity is about 15%, and when the composition is changed in the order of AlGaN → GaN, the luminous intensity is 10%. The degree of improvement was seen. In both cases, there was no change in the emission spectrum compared to the case without the region 42. In addition, although the said Example was related with the multiple quantum well structure, it is the same also in a single quantum well structure. In this case, instead of the barrier layer, the lattice constant of the layers formed above and below the well layer is changed in the cladding layer or in the vicinity of the junction with the well layer separately from the cladding layer so as to approach the lattice constant of the well layer. A region formed as described above may be provided. Also, a region formed near the junction with the well layer so that the lattice constant of the layers formed above and below the well layer changes so as to approach the lattice constant of the well layer is provided separately from the barrier layer. However, it is clear that the same effect can be achieved. Furthermore, although the said Example is a case where it has a barrier layer on the upper and lower sides of a well layer, MQW structure which starts from a well layer, or MQW structure where a barrier layer exists only on one side (well layer / barrier layer /... / Well layer / barrier layer / cladding layer, etc.) have the same effect.

3族窒化物系化合物半導体における材料組成と格子定数との関係を示した図である。It is the figure which showed the relationship between the material composition and lattice constant in a group III nitride compound semiconductor. 発明を実施するための最良の形態における3族窒化物系化合物半導体発光素子の構成を示した模式図である。It is the schematic diagram which showed the structure of the group 3 nitride type compound semiconductor light-emitting device in the best form for implementing invention. 発明を実施するための最良の形態におけるバリア層41(領域42を含む)と井戸層43を構成する材料組成と格子定数との関係を示した図である。It is the figure which showed the relationship between the material which comprises the barrier layer 41 (including area | region 42) and the well layer 43, and a lattice constant in the best form for implementing invention.

符号の説明Explanation of symbols

1 サファイア基板
2 AlNバッファ層
3 高キャリア濃度層
5 クラッド層
6 コンタクト層
7 透光性電極
8 n電極
9 ボンディング電極
10 発光素子
41 バリア層
42 格子定数が該井戸層の格子定数に近づくように変化して形成されている領域
43 井戸層
DESCRIPTION OF SYMBOLS 1 Sapphire substrate 2 AlN buffer layer 3 High carrier concentration layer 5 Cladding layer 6 Contact layer 7 Translucent electrode 8 n electrode 9 Bonding electrode 10 Light emitting element 41 Barrier layer 42 The lattice constant changes so as to approach the lattice constant of the well layer Region 43 formed as a well layer

Claims (6)

量子井戸構造を有する3族窒化物系化合物半導体発光素子であって、井戸層の上下に形成される層と井戸層との接合部近傍に該井戸層の上下に形成される層の格子定数が該井戸層の格子定数に近づくように変化して形成されている領域を有することを特徴とする3族窒化物系化合物半導体発光素子。 A group III nitride compound semiconductor light emitting device having a quantum well structure, wherein a lattice constant of a layer formed above and below the well layer is in the vicinity of a junction between the layer formed above and below the well layer and the well layer. A group III nitride compound semiconductor light emitting device comprising a region formed so as to be changed so as to approach the lattice constant of the well layer. 前記領域は前記井戸層の上下に形成される層内に形成されていることを特徴とする請求項1に記載の3族窒化物系化合物半導体発光素子。 2. The group III nitride compound semiconductor light-emitting element according to claim 1, wherein the region is formed in layers formed above and below the well layer. 前記井戸層の上下に形成される層はクラッド層であることを特徴とする請求項1及び請求項2に記載の3族窒化物系化合物半導体発光素子。 3. The group III nitride compound semiconductor light-emitting element according to claim 1, wherein the layers formed above and below the well layer are clad layers. 4. 前記井戸層の上下に形成される層はバリア層(障壁層)であることを特徴とする請求項1及び請求項2に記載の3族窒化物系化合物半導体発光素子。 3. The group III nitride compound semiconductor light emitting device according to claim 1, wherein the layers formed above and below the well layer are barrier layers (barrier layers). 4. 前記井戸層の上下に形成される層はAlGa1−xN(0<x<1)で、前記井戸層はInGa1−yN(0≦y<1)で、前記領域はAlx’Ga1−x ’N(0≦x’<1)であり、前記領域におけるx’がx’=xからx’=0の方向に変化して形成されていることを特徴とする請求項1乃至請求項4に記載の3族窒化物系化合物半導体発光素子。 The layers formed above and below the well layer are Al x Ga 1-x N (0 <x <1), the well layer is In y Ga 1-y N (0 ≦ y <1), and the region is Al x ′ Ga 1-x ′ N (0 ≦ x ′ <1), wherein x ′ in the region is formed to change from x ′ = x to x ′ = 0. The group III nitride compound semiconductor light-emitting device according to claim 1. 前記井戸層の上下に形成される層はAlGa1−xN(0<x<1)で、前記井戸層はInGa1−yN(0<y<1)であり、前記領域は前記井戸層側からIny’Ga1−y’N(0≦y’<1)とAlx’Ga1−x ’N(0≦x’<1)で形成され、更にy’とx’は前記井戸層側から、yからy’=x’=0を経由してxにいたるように変化して形成されていることを特徴とする請求項1乃至請求項4に記載の3族窒化物系化合物半導体発光素子。
The layers formed above and below the well layer are Al x Ga 1-x N (0 <x <1), the well layer is In y Ga 1-y N (0 <y <1), and the region Is formed of In y ′ Ga 1-y ′ N (0 ≦ y ′ <1) and Al x ′ Ga 1-x ′ N (0 ≦ x ′ <1) from the well layer side, and further y ′ and x 5. The third group according to claim 1, wherein 'is formed so as to change from y to y through y' = x '= 0 from the well layer side. Nitride compound semiconductor light emitting device.
JP2005021445A 2005-01-28 2005-01-28 Group iii nitride compound semiconductor light emitting device Withdrawn JP2006210692A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005021445A JP2006210692A (en) 2005-01-28 2005-01-28 Group iii nitride compound semiconductor light emitting device
KR1020050126528A KR100752007B1 (en) 2005-01-28 2005-12-21 Group ? nitride compound semiconductor light-emitting diode and method for manufacturing thereof
TW094146488A TWI284994B (en) 2005-01-28 2005-12-26 Group III nitride-based compound semiconductor light-emitting device and method for producing the same
CNB2006100027584A CN100403566C (en) 2005-01-28 2006-01-25 Group III nitride-based compound semiconductor light-emitting device and method for producing the same
US11/340,746 US7629619B2 (en) 2005-01-28 2006-01-27 Group III nitride-based compound semiconductor light-emitting device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021445A JP2006210692A (en) 2005-01-28 2005-01-28 Group iii nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2006210692A true JP2006210692A (en) 2006-08-10
JP2006210692A5 JP2006210692A5 (en) 2007-09-27

Family

ID=36919092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021445A Withdrawn JP2006210692A (en) 2005-01-28 2005-01-28 Group iii nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2006210692A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021290A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Method for manufacturing quantum well structure
JP2011151422A (en) * 2009-12-10 2011-08-04 Dowa Electronics Materials Co Ltd P-TYPE AlGaN LAYER, AND GROUP-III NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT
US8247842B2 (en) 2009-03-26 2012-08-21 Sanken Electric Co., Ltd. Nitride semiconductor device having graded aluminum content
JP2013502058A (en) * 2009-08-13 2013-01-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrically pumped optoelectronic semiconductor chip
JP2019526938A (en) * 2016-09-02 2019-09-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic element
JP2021057528A (en) * 2019-10-01 2021-04-08 旭化成株式会社 Ultraviolet light-emitting element
US11955581B2 (en) 2020-07-09 2024-04-09 Toyoda Gosei Co., Ltd. Group III nitride semiconductor device and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084132A (en) * 1996-09-08 1998-03-31 Toyoda Gosei Co Ltd Semiconductor light emitting element
JPH1126812A (en) * 1997-07-01 1999-01-29 Toyoda Gosei Co Ltd Iii element nitride semiconductor element and its manufacture
JPH1174564A (en) * 1997-07-10 1999-03-16 Sharp Corp Iii group nitride photoelectric semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084132A (en) * 1996-09-08 1998-03-31 Toyoda Gosei Co Ltd Semiconductor light emitting element
JPH1126812A (en) * 1997-07-01 1999-01-29 Toyoda Gosei Co Ltd Iii element nitride semiconductor element and its manufacture
JPH1174564A (en) * 1997-07-10 1999-03-16 Sharp Corp Iii group nitride photoelectric semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021290A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Method for manufacturing quantum well structure
US7955881B2 (en) 2008-07-09 2011-06-07 Sumitomo Electric Industries, Ltd. Method of fabricating quantum well structure
US8247842B2 (en) 2009-03-26 2012-08-21 Sanken Electric Co., Ltd. Nitride semiconductor device having graded aluminum content
JP2013502058A (en) * 2009-08-13 2013-01-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrically pumped optoelectronic semiconductor chip
JP2011151422A (en) * 2009-12-10 2011-08-04 Dowa Electronics Materials Co Ltd P-TYPE AlGaN LAYER, AND GROUP-III NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT
JP2019526938A (en) * 2016-09-02 2019-09-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic element
US11114584B2 (en) 2016-09-02 2021-09-07 Osram Oled Gmbh Optoelectronic component
JP6991199B2 (en) 2016-09-02 2022-01-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic element
JP2021057528A (en) * 2019-10-01 2021-04-08 旭化成株式会社 Ultraviolet light-emitting element
JP7405554B2 (en) 2019-10-01 2023-12-26 旭化成株式会社 UV light emitting element
US11955581B2 (en) 2020-07-09 2024-04-09 Toyoda Gosei Co., Ltd. Group III nitride semiconductor device and production method therefor

Similar Documents

Publication Publication Date Title
US10283671B2 (en) Method of producing III nitride semiconductor light-emitting device
KR100752007B1 (en) Group ? nitride compound semiconductor light-emitting diode and method for manufacturing thereof
TWI447953B (en) Semiconductor light emitting device and method of manufacturing the same
JP5549338B2 (en) Nitrogen compound semiconductor LED for ultraviolet light radiation and method for producing the same
US20100133506A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
TW201724560A (en) Nitride semiconductor light emitting element
WO2014178248A1 (en) Nitride semiconductor light-emitting element
JP2010080955A (en) Semiconductor device
JP2002231997A (en) Nitride semiconductor light-emitting device
JP2009049395A (en) Group iii nitride-based compound semiconductor light emitting element
TWI416760B (en) Group iii nitride-based compound semiconductor light-emitting device and production method therefor
JP3612985B2 (en) Gallium nitride compound semiconductor device and manufacturing method thereof
JP2001203385A (en) Nitride semiconductor light emitting diode
JP6840352B2 (en) Semiconductor multilayer mirror, vertical resonator type light emitting element using this, and manufacturing method thereof
JP2006210692A (en) Group iii nitride compound semiconductor light emitting device
US8633469B2 (en) Group III nitride semiconductor light-emitting device
JP2006339427A (en) Method for producing epitaxial wafer for nitride semiconductor light-emitting diode, epitaxial wafer for the nitride semiconductor light-emitting diode, and the nitride semiconductor light-emitting diode
JP2014187159A (en) Semiconductor light-emitting element
JP2005085932A (en) Light-emitting diode and its manufacturing method
JP5423026B2 (en) Group III nitride semiconductor light emitting device and method of manufacturing the same
JP2004140008A (en) Group iii nitride semiconductor light emitting element and its manufacturing method
JPH11191635A (en) Gallium nitride compound semiconductor light-emitting element
JPH10303458A (en) Gallium nitride compound semiconductor element
JP6738455B2 (en) Electronic parts
JP2009026865A (en) Manufacturing method of group iii nitride-based compound semiconductor light emitting element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100609