JP2006202529A - Nonaqueous electrolyte secondary battery and its charging method - Google Patents
Nonaqueous electrolyte secondary battery and its charging method Download PDFInfo
- Publication number
- JP2006202529A JP2006202529A JP2005010417A JP2005010417A JP2006202529A JP 2006202529 A JP2006202529 A JP 2006202529A JP 2005010417 A JP2005010417 A JP 2005010417A JP 2005010417 A JP2005010417 A JP 2005010417A JP 2006202529 A JP2006202529 A JP 2006202529A
- Authority
- JP
- Japan
- Prior art keywords
- active material
- positive electrode
- negative electrode
- electrode active
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウム基準で4.4V〜4.6Vの電極電位を有する正極活物質を用いた高電圧で充電する非水電解質二次電池及びその充電方法に関し、特に正極活物質として少なくともジルコニウムとマグネシウムの両方が添加されたリチウムコバルト複合酸化物と、層状構造を有する少なくともマンガンとニッケルの両方を含有するリチウムマンガンニッケル複合酸化物との混合物からなり、電位がリチウム基準で4.4V〜4.6Vの正極活物質を用いた正極と、負極活物質として黒鉛等の炭素材料を用いた負極とを組み合わせて、4.3V〜4.5Vの高電圧で充電するサイクル特性に優れた非水電解質二次電池及びその充電方法に関する。 The present invention relates to a non-aqueous electrolyte secondary battery that is charged at a high voltage using a positive electrode active material having an electrode potential of 4.4 V to 4.6 V on a lithium basis, and particularly to a method for charging the same, and at least zirconium as the positive electrode active material. It consists of a mixture of a lithium cobalt composite oxide to which both of magnesium is added and a lithium manganese nickel composite oxide containing at least both manganese and nickel having a layered structure, and the potential is 4.4 V to 4.4 on the basis of lithium. A non-aqueous electrolyte excellent in cycle characteristics in which a positive electrode using a 6 V positive electrode active material and a negative electrode using a carbon material such as graphite as a negative electrode active material are charged at a high voltage of 4.3 V to 4.5 V The present invention relates to a secondary battery and a charging method thereof.
携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水電解質二次電池が注目され、このリチウム非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。 With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small and thin, high capacity, excellent cycle characteristics, and stable performance are required. Yes. In the field of secondary batteries, lithium non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention, and the proportion of lithium non-aqueous electrolyte secondary batteries shows a significant increase in the secondary battery market. ing.
ところで、この種の非水電解質二次電池が使用される機器においては、電池を収容するスペースが角形(扁平な箱形)であることが多いことから、発電要素を角形外装缶に収容して形成した角形の非水電解質二次電池が使用されることが多い。このような角形の非水電解質二次電池は以下のようにして作製されるのが一般的である。 By the way, in a device in which this type of non-aqueous electrolyte secondary battery is used, the space for accommodating the battery is often a square (flat box shape), so the power generation element is accommodated in a rectangular outer can. The formed rectangular non-aqueous electrolyte secondary battery is often used. Such a rectangular nonaqueous electrolyte secondary battery is generally manufactured as follows.
すなわち、細長いシート状の銅箔等からなる負極芯体(集電体)の両面に負極活物質を含有する負極合剤を塗布した負極板と、細長いシート状のアルミニウム箔等からなる正極芯体の両面に正極活物質を含有する正極合剤を塗布した正極板との間に、微多孔性ポリエチレンフィルム等からなるセパレータを配置し、負極板及び正極板をセパレータにより互いに絶縁した状態で円柱状の巻き芯に渦巻状に巻回して、円筒形の渦巻状電極体を作製する。この円筒状電極体をプレス機で押し潰し、角形の電池外装缶に挿入できるような形に成型した後、これを角形外装缶に収容し、電解液を注液して角形の非水電解質二次電池としている。 That is, a negative electrode plate in which a negative electrode mixture containing a negative electrode active material is applied on both sides of a negative electrode core (current collector) made of a long sheet-like copper foil, and a positive electrode core made of a long, thin sheet-like aluminum foil A separator made of a microporous polyethylene film or the like is disposed between a positive electrode plate coated with a positive electrode mixture containing a positive electrode active material on both sides, and a cylindrical shape with the negative electrode plate and the positive electrode plate insulated from each other by the separator. A cylindrical spiral electrode body is manufactured by winding it in a spiral shape. The cylindrical electrode body is crushed with a press machine and formed into a shape that can be inserted into a rectangular battery outer can. Then, the cylindrical electrode body is accommodated in the rectangular outer can, and an electrolyte is injected to inject the rectangular nonaqueous electrolyte. Next battery.
このような従来の角形の非水電解質二次電池の構成を図面を用いて説明する。図1は下記特許文献1に開示されている角形の非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極板11と負極板12とがセパレータ13を介して巻回された扁平状の渦巻状電極体14を、角形の電池外装缶15の内部に収容し、封口板16によって電池外装缶15を密閉したものである。
The configuration of such a conventional rectangular nonaqueous electrolyte secondary battery will be described with reference to the drawings. FIG. 1 is a perspective view showing a rectangular nonaqueous electrolyte secondary battery disclosed in Patent Document 1 below, cut in the vertical direction. This nonaqueous electrolyte
渦巻状電極体14は、正極板11が最外周に位置して露出するように巻回されており、露出した最外周の正極板11は、正極端子を兼ねる電池外装缶15の内面に直接接触し、電気的に接続されている。また、負極板12は、封口板16の中央に形成され、負極端子を兼ねる絶縁体17を介して取り付けられた負極端子18に対して、集電体19を介して電気的に接続されている。
The
そして、電池外装缶15は、正極板11と電気的に接続されているので、負極板12と電池外装缶15との短絡を防止するために、渦巻状電極体14の上端と封口板16との間に絶縁スペーサ20を挿入することにより、負極板12と電池外装缶15とを電気的に絶縁状態にしている。
Since the battery outer can 15 is electrically connected to the
この角形の非水電解質二次電池は、渦巻状電極体14を電池外装缶15内に挿入した後、封口板16を電池外装缶15の開口部にレーザ溶接し、その後電解液注液孔21から非水電解液を注液して、この電解液注液孔21を密閉することにより作製される。このような角形の非水電解質二次電池は、使用時のスペースの無駄が少なく、しかも電池性能や電池の信頼性が高いという優れた効果を奏するものである。
In this rectangular nonaqueous electrolyte secondary battery, after the
このような非水電解質二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素質材料がリチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有していることから広く用いられている。 As a negative electrode active material used in such non-aqueous electrolyte secondary batteries, dendrites grow while carbonaceous materials such as graphite and amorphous carbon have discharge potentials comparable to lithium metals and lithium alloys. Therefore, it is widely used because it has excellent properties such as high safety, excellent initial efficiency, good potential flatness, and high density.
一方、正極活物質としては、LiCoO2、LiNiO2、LiMn2O4、LiFeO2等のリチウム複合酸化物が炭素材料からなる負極と組み合わせることにより高エネルギー密度の4V級の非水電解質二次電池が得られることが知られている。このうち、特に各種電池特性が他のものに対して優れていることから、LiCoO2が多く使用されているが、コバルトは高価であると共に資源としての存在量が少ないため、このLiCoO2を非水電解質二次電池の正極材料として使用し続けるには非水電解質二次電池のさらなる高性能化及び高寿命化が望まれており、また、コバルトに換えて他の遷移元素を使用することでコバルトを使用した場合と同等ないしはそれ以上の各種電池特性を達成すべく現在に至るまで多くの開発がなされている。 On the other hand, as a positive electrode active material, a high energy density 4V class non-aqueous electrolyte secondary battery is obtained by combining a lithium composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and LiFeO 2 with a negative electrode made of a carbon material. Is known to be obtained. Among them, LiCoO 2 is often used because various battery characteristics are superior to others. However, since cobalt is expensive and abundant as a resource, this LiCoO 2 is not used. In order to continue to be used as a positive electrode material for water electrolyte secondary batteries, further improvement in performance and life of non-aqueous electrolyte secondary batteries is desired, and by using other transition elements instead of cobalt. Many developments have been made so far to achieve various battery characteristics equivalent to or better than those obtained when cobalt is used.
たとえば、下記特許文献2及び3に開示されているように、LiCoO2を正極活物質として用いた非水電解質二次電池の特性向上方法として、LiCoO2へZr、Mg等の異種元素を添加する方法が知られている。下記特許文献2には、正極活物質であるLiCoO2にジルコニウムを添加することで、高電圧を発生し、かつ優れた充放電特性と保存特性を示す非水電解質二次電池が開示されている。このジルコニウムを添加したLiCoO2を用いた非水電解質二次電池の効果は、LiCoO2粒子の表面が酸化ジルコニウムZrO2若しくはリチウムとジルコニウムとの複合酸化物Li2ZrO3により覆われることによって安定化され、その結果、高い電位においても電解液の分解反応や結晶破壊を起こすことなく、優れたサイクル特性、保存特性を示す正極活物質が得られることによるものであって、この効果は、単に焼成後のLiCoO2にジルコニウム若しくはジルコニウムの化合物を混合するだけでは得られず、リチウム塩とコバルト化合物とを混合したものにジルコニウムを添加して焼成することにより得られるものである。 For example, as disclosed in Patent Documents 2 and 3 below, as a method for improving the characteristics of a non-aqueous electrolyte secondary battery using LiCoO 2 as a positive electrode active material, different elements such as Zr and Mg are added to LiCoO 2 . The method is known. The following Patent Document 2, the addition of zirconium to LiCoO 2 as a cathode active material, and generates a high voltage, and the non-aqueous electrolyte secondary battery exhibiting excellent charge and discharge characteristics and storage characteristics are disclosed . The effect of the nonaqueous electrolyte secondary battery using LiCoO 2 to which zirconium is added is stabilized by covering the surface of LiCoO 2 particles with zirconium oxide ZrO 2 or a composite oxide Li 2 ZrO 3 of lithium and zirconium. As a result, a positive electrode active material having excellent cycle characteristics and storage characteristics can be obtained without causing a decomposition reaction or crystal destruction of the electrolyte even at a high potential. It cannot be obtained simply by mixing zirconium or a zirconium compound with LiCoO 2 later, but can be obtained by adding zirconium to a mixture of a lithium salt and a cobalt compound and baking.
また、下記特許文献3には、正極活物質であるLiCoO2に添加する異種元素として、ジルコニウム(Zr)のみでなく、チタン(Ti)及び弗素(F)をも含めた中から少なくとも1種を添加することにより、リチウム非水電解質二次電池の負荷特性及びサイクル特性を向上させることができることが示されている。 In Patent Document 3 below, at least one element selected from not only zirconium (Zr) but also titanium (Ti) and fluorine (F) is added as a heterogeneous element to be added to the positive electrode active material LiCoO 2. It has been shown that the load characteristics and cycle characteristics of the lithium non-aqueous electrolyte secondary battery can be improved by the addition.
さらに、下記特許文献4には、NiとMnの組成比が実質的に等しい層構造を有するLi遷移金属複合酸化物が、LiCoO2と同等の4V近傍の電圧を有し、かつ高い容量で優れた充放電効率を示すことが開示されており、また、下記特許文献5には、遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物に弗素をさらに含有している正極活物質を使用すると、負極活物質として炭素材料を含む負極と組み合わせることにより4.4V以上の充電電圧で充電することができるとともに熱的安定性に優れた非水電解質二次電池が得られること、さらには、下記非特許文献1には、Ni、Co、及びMnを含むリチウム遷移金属複合酸化物の中でも、MnとNiの組成比が等しい化学式LiMnxNixCo(1−2x)O2で表される材料が、充電状態(高い酸化状態)でも特異的に高い熱的安定性を示すことが示されている。 Furthermore, in Patent Document 4 below, a Li transition metal composite oxide having a layer structure in which the composition ratio of Ni and Mn is substantially equal has a voltage in the vicinity of 4 V equivalent to LiCoO 2 and is excellent in high capacity. Further, it is disclosed that the following Patent Document 5 contains at least Ni and Mn as transition metals and further contains fluorine in a lithium transition metal composite oxide having a layered structure. When a positive electrode active material is used, a non-aqueous electrolyte secondary battery that can be charged at a charge voltage of 4.4 V or more and combined with a negative electrode containing a carbon material as a negative electrode active material and has excellent thermal stability In addition, the following non-patent document 1 discloses that, among lithium transition metal composite oxides containing Ni, Co, and Mn, the chemical formula LiMn has the same composition ratio of Mn and Ni. material expressed with x Ni x Co (1-2x) O 2 has been shown to exhibit specific high thermal stability even charged state (high oxidation state).
現在、例えばコバルト酸リチウムLiCoO2などのリチウム含有遷移金属酸化物を正極活物質として用い、炭素材料を負極活物質として用いた非水電解質二次電池においては、黒鉛等炭素材料の負極活物質と組み合わせたとき、一般に充電電圧は4.1〜4.2V(正極活物質の電位はリチウム基準で4.2〜4.3V)となっている。このような充電条件では、正極は理論容量に対して50〜60%しか利用されていないことになる。したがって、充電電圧をより高くすることができれば、正極の容量を理論容量に対して70%以上で利用することが可能となり、電池の高容量化及び高エネルギー密度化が可能となる。 At present, in a non-aqueous electrolyte secondary battery using a lithium-containing transition metal oxide such as lithium cobaltate LiCoO 2 as a positive electrode active material and a carbon material as a negative electrode active material, When combined, the charging voltage is generally 4.1 to 4.2 V (the potential of the positive electrode active material is 4.2 to 4.3 V based on lithium). Under such charging conditions, the positive electrode is used only 50 to 60% of the theoretical capacity. Therefore, if the charging voltage can be further increased, the capacity of the positive electrode can be utilized at 70% or more of the theoretical capacity, and the capacity and energy density of the battery can be increased.
本出願人は、上述のような非水電解質二次電池用の正極活物質の開発状況を踏まえて、さらに安定で高充電電圧を達成できる正極活物質を得るべく種々検討を重ねた結果、正極活物質として異種元素を添加したコバルト酸リチウムと層状マンガンニッケル酸リチウムを混合したものを使用した新規な非水電解質二次電池を開発し、既に特願2004−094475号及び特願2004−320394号(以下、まとめて「先願」という。)として特許出願している。 Based on the development status of the positive electrode active material for a non-aqueous electrolyte secondary battery as described above, the present applicant has conducted various studies to obtain a positive electrode active material that can achieve a more stable and high charge voltage. A novel non-aqueous electrolyte secondary battery using a mixture of lithium cobaltate to which different elements are added as active materials and layered lithium manganese nickelate has been developed. Japanese Patent Application Nos. 2004-094475 and 2004-320394 have already been developed. (Hereinafter collectively referred to as “prior application”).
この先願発明にかかる非水電解質二次電池の正極活物質は、コバルト酸リチウムに少なくともZr、Mgの異種元素を添加することで高電圧(〜4.5V)での構造安定性を向上させ、さらに高電圧で熱安定性の高い層状マンガンニッケル酸リチウムを混合することで安全性を確保するようになしたものである。この正極活物質を使用した正極と炭素材料からなる負極活物質を有する負極と組み合わせると、充電電圧が4.3V以上4.5V以下の高電圧で充電可能な非水電解質二次電池が得られる。 The positive electrode active material of the non-aqueous electrolyte secondary battery according to the invention of the prior application improves the structural stability at high voltage (up to 4.5V) by adding at least Zr and Mg different elements to lithium cobaltate, Furthermore, safety is ensured by mixing layered lithium manganese nickelate with high voltage and high thermal stability. When combined with a positive electrode using this positive electrode active material and a negative electrode having a negative electrode active material made of a carbon material, a non-aqueous electrolyte secondary battery that can be charged at a high voltage of 4.3 V to 4.5 V is obtained. .
なお、従来から広く使用されているポリ弗化ビニリデン等の弗素系樹脂をバインダーとして使用すると、この弗素系樹脂は成膜性が良好でないので、負極活物質である炭素材料の粒子と粒子との密着性及び炭素材料と金属箔集電体との密着性が良好でなく、さらには弗素系樹脂は高温下で分解するため、過充電時等の高温下では、分解により生じた弗素と脱離したリチウムとが激しく反応し、安全面においても問題が生じること(下記特許文献6参照)から、上述の先願発明の非水電解質二次電池の負極の製造に際してはバインダーとしてスチレン−ブタジエンゴム(SBR)ラテックスからなる結着剤とカルボキシメチルセルロース(CMC)からなる増粘剤とを組み合わせて使用されている。 If a fluorine-based resin such as polyvinylidene fluoride, which has been widely used, is used as a binder, the film-forming property of this fluorine-based resin is not good. Adhesion and adhesion between the carbon material and the metal foil current collector are not good, and furthermore, fluorine-based resin decomposes at high temperatures. Since the lithium reacts violently and causes a problem in terms of safety (see Patent Document 6 below), a styrene-butadiene rubber (as a binder) is used as a binder in the production of the negative electrode of the non-aqueous electrolyte secondary battery of the above-mentioned prior application. A binder made of SBR) latex and a thickener made of carboxymethyl cellulose (CMC) are used in combination.
しかしながら、上述のような先願発明に係る高充電電圧を達成し得る非水電解質二次電池は、高容量化及び高エネルギー密度化を達成することができるが、一方では従来の4.2V充電仕様の非水電解質二次電池に比べるとサイクル特性が不十分であるという問題点があった。 However, the nonaqueous electrolyte secondary battery that can achieve a high charging voltage according to the invention of the prior application as described above can achieve high capacity and high energy density, but on the other hand, the conventional 4.2V charging can be achieved. There was a problem that the cycle characteristics were insufficient as compared with the specification non-aqueous electrolyte secondary battery.
本願の発明者等は、この先願発明に係る非水電解質二次電池のサイクル特性劣化の原因を検討した結果、以下のことが原因となっているものと推定した。すなわち、先願発明に係る非水電解質二次電池は、充電終止電圧を上げたことにより正極容量が増えるが、それに対応する分の負極活物質の塗布量を多くする必要がある。しかし、その結果として、負極におけるリチウムの挿入・脱離に対する抵抗が増大し、負極の劣化が発生してしまったことがサイクル特性劣化の一因であると考えられた。 The inventors of the present application have examined the cause of deterioration of cycle characteristics of the nonaqueous electrolyte secondary battery according to the invention of the prior application, and as a result, estimated that the following is the cause. That is, the nonaqueous electrolyte secondary battery according to the invention of the prior application increases the capacity of the positive electrode by raising the end-of-charge voltage, but it is necessary to increase the coating amount of the negative electrode active material correspondingly. However, as a result, it was considered that the resistance to insertion / extraction of lithium in the negative electrode increased, and the deterioration of the negative electrode occurred, which contributed to the deterioration of cycle characteristics.
そこで、本願の発明者等は、上述のような負極の劣化を防止すべく種々実験を繰り返した結果、負極活物質と混合させるバインダーとして負極表面に多孔性を付与できるものを使用することにより、負極におけるリチウムの挿入・脱離に対する抵抗を低下させることができ、その結果として充放電サイクル時の負極の劣化を抑制することができることを見出し、加えてこの充放電サイクル時の負極の劣化は、負極活物質である黒鉛材料として所定の粒度特性を有するものを使用することにより、さらに抑制し得ることを見出し、本発明を完成するに至ったのである。 Therefore, the inventors of the present application, as a result of repeating various experiments to prevent the above-described deterioration of the negative electrode, by using a material that can impart porosity to the negative electrode surface as a binder to be mixed with the negative electrode active material, It has been found that the resistance to insertion / extraction of lithium in the negative electrode can be reduced, and as a result, the deterioration of the negative electrode during the charge / discharge cycle can be suppressed, and in addition, the deterioration of the negative electrode during this charge / discharge cycle is It has been found that the use of a graphite material that is a negative electrode active material having a predetermined particle size characteristic can further suppress the problem, and the present invention has been completed.
すなわち、本発明は、充放電サイクル特性に優れた、正極活物質として少なくともジルコニウムとマグネシウムの両方が添加されたリチウムコバルト複合酸化物と、層状構造を有する少なくともマンガンとニッケルの両方を含有するリチウムマンガンニッケル複合酸化物との混合物からなるものを使用し、前記正極活物質の電位がリチウム基準で4.4V〜4.6Vの非水電解質二次電池及びその充電方法を提供することを目的とする。 That is, the present invention is a lithium-cobalt composite oxide excellent in charge / discharge cycle characteristics, to which at least both zirconium and magnesium are added as a positive electrode active material, and lithium manganese containing at least both manganese and nickel having a layered structure. An object of the present invention is to provide a non-aqueous electrolyte secondary battery using a mixture of nickel composite oxide and having a positive electrode active material having a potential of 4.4 V to 4.6 V based on lithium, and a method for charging the same. .
本発明の上記目的は以下の構成により達成し得る。すなわち、請求項1に係る非水電解質二次電池の発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩を有する非水電解質とを備える非水電解質二次電池において、
前記正極活物質は、少なくともジルコニウムとマグネシウムの両方が添加されたリチウムコバルト複合酸化物と、層状構造を有する少なくともマンガンとニッケルの両方を含有するリチウムマンガンニッケル複合酸化物とを混合したものであり、
前記正極活物質の電位がリチウム基準で4.4V〜4.6Vであり、かつ、
前記負極中にバインダーとしてカルボキシメチルセルロース−アンモニウム(NH4−CMC)からアンモニアが脱離したH−CMCが含まれていることを特徴とする。
The above object of the present invention can be achieved by the following configurations. That is, the nonaqueous electrolyte secondary battery according to claim 1 is a nonaqueous electrolyte comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt. In secondary batteries,
The positive electrode active material is a mixture of a lithium cobalt composite oxide to which at least both zirconium and magnesium are added, and a lithium manganese nickel composite oxide containing at least manganese and nickel having a layered structure,
The potential of the positive electrode active material is 4.4V to 4.6V on the basis of lithium; and
The negative electrode contains H-CMC in which ammonia is eliminated from carboxymethylcellulose-ammonium (NH 4 -CMC) as a binder.
本発明においては、リチウムコバルト複合酸化物として、LiaCo(1−x−y−z)ZrxMgyMzO2(ただし、0≦a≦1.1、x>0、y>0、z≧0、0<x+y+z≦0.03、M=Al、Ti、Snである。)が好ましい。異種金属としてZr及びMgの添加は必須であり、Al、Ti、Snとも合わせてこれらの異種金属の添加量が少ないとサイクル特性の向上効果が小さく、逆に添加量が多すぎると、これらの異種金属は電極反応に直接関与しないため、初期容量の低下をまねく。また、層状リチウムマンガンニッケル複合酸化物としては、NiとMnがモル比で実質的に等しいLibMnsNitCouO2(ただし、0≦b≦1.2、0<s≦0.5、0<t≦0.5、u≧0、s+t+u=1、0.95≦s/t≦1.05である。)が好ましく、上記組成で熱安定性の高い活物質が得られる。 In the present invention, Li a Co (1-xyz) Zr x Mg y M z O 2 (where 0 ≦ a ≦ 1.1, x> 0, y> 0 ) is used as the lithium cobalt composite oxide. Z ≧ 0, 0 <x + y + z ≦ 0.03, M = Al, Ti, Sn.). Addition of Zr and Mg as dissimilar metals is essential. If the amount of addition of these dissimilar metals together with Al, Ti and Sn is small, the effect of improving the cycle characteristics is small. Since dissimilar metals are not directly involved in the electrode reaction, the initial capacity is reduced. As the layered lithium-manganese-nickel composite oxide, Ni and Mn are substantially equal in a molar ratio of Li b Mn s Ni t Co u O 2 ( however, 0 ≦ b ≦ 1.2,0 <s ≦ 0. 5, 0 <t ≦ 0.5, u ≧ 0, s + t + u = 1, 0.95 ≦ s / t ≦ 1.05), and an active material having high thermal stability can be obtained with the above composition.
また、上記少なくともジルコニウムとマグネシウムの両方が添加されたリチウムコバルト複合酸化物(活物質A)及び層状リチウムマンガンニッケル複合酸化物(活物質B)との混合比は、質量比で、活物質A:活物質B=51:49〜90:10の範囲が好ましく、より好ましくは、70:30〜80:20である。上記活物質Aが51%未満であると初期容量が小さくなり、サイクル特性及び保存特性が悪化する。また、活物質Bが10%未満であると安全性が低下する。 The mixing ratio of the lithium cobalt composite oxide (active material A) to which both at least zirconium and magnesium are added and the layered lithium manganese nickel composite oxide (active material B) is a mass ratio, and the active material A: The active material B is preferably in the range of 51:49 to 90:10, more preferably 70:30 to 80:20. When the active material A is less than 51%, the initial capacity becomes small, and the cycle characteristics and the storage characteristics deteriorate. Moreover, safety | security falls that the active material B is less than 10%.
また、本発明においては、非水溶媒系電解質を構成する非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、エステル類などを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。 In the present invention, carbonates, lactones, ethers, esters and the like can be used as the nonaqueous solvent (organic solvent) constituting the nonaqueous solvent electrolyte, and two or more of these solvents can be used. Can also be used in combination. Among these, carbonates, lactones, ethers, ketones, esters and the like are preferable, and carbonates are more preferably used.
具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3オキサゾリジン−2−オン、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、1,4−ジオキサンなどを挙げることができる。本発明では充放電効率を高める点からECを含む混合溶媒が好適に用いられるが、一般に環状カーボネートは高電位において酸化分解されやすいので、非水電解質中のEC含有量を5体積%以上25体積%以下とすることが好ましい。 Specific examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl. -1,3-oxazolidine-2-one, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, γ -Butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, 1,4-dio Xanthan can be mentioned. In the present invention, a mixed solvent containing EC is preferably used from the viewpoint of increasing the charge / discharge efficiency. However, since cyclic carbonate is generally easily oxidized and decomposed at a high potential, the EC content in the non-aqueous electrolyte is 5% by volume or more and 25% by volume. % Or less is preferable.
なお、本発明における非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(CF3SO2)(C4F9SO2)、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiAsF6、LiClO4、Li2B10Cl10、Li2B12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF6(ヘキサフルオロリン酸リチウム)が好ましく用いられる。高い充電電圧で充電する場合、正極の集電体であるアルミニウムが溶解しやすくなるが、LiPF6の存在下では、LiPF6が分解することにより、アルミニウム表面に被膜が形成され、この被膜によってアルミニウムの溶解を抑制することができる。従って、リチウム塩としては、LiPF6を用いることが好ましい。前記非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 In addition, as a solute of the nonaqueous electrolyte in the present invention, a lithium salt generally used as a solute in a nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. When charged with a high charging voltage, although aluminum is a current collector of the positive electrode is easily dissolved in the presence of LiPF 6, by LiPF 6 decomposes, coating is formed on the aluminum surface, the aluminum by the coating Can be dissolved. Therefore, it is preferable to use LiPF 6 as the lithium salt. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.
また、請求項2に係る発明は、請求項1に記載の非水電解質二次電池において、前記負極の負極活物質が体積分率10%時の粒径Dl0が5μm〜10μmの黒鉛材料であることを特徴とする。 The invention according to claim 2 is the nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material of the negative electrode is a graphite material having a particle diameter D10 of 5 μm to 10 μm when the volume fraction is 10%. It is characterized by that.
この体積分率10%時の粒径Dl0は、黒鉛材料を粒径が異なる順に並べたとき、小粒径側から10%目の粒径をD10として表したものである。したがって、請求項2に係る発明では、負極活物質である黒鉛材料は粒径が5μmないし10μmよりも大きいものが多く存在しており、この大きな黒鉛粒子間の隙間に黒鉛微粉粒子が入り込んだ構成を備えていることになる。 The particle size D10 when the volume fraction is 10% represents the particle size of 10% from the small particle size side as D10 when the graphite materials are arranged in the order of different particle sizes. Therefore, in the invention according to claim 2, the graphite material as the negative electrode active material has many particles having a particle size larger than 5 μm to 10 μm, and the graphite fine particles enter the gaps between the large graphite particles. It will be equipped with.
また、請求項3に係る発明は、請求項1又は2に記載の非水電解質二次電池において、前記非水電解質は、さらにビニレンカーボネートを0.5質量%〜5質量%含有することを特徴とする。 The invention according to claim 3 is the nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the nonaqueous electrolyte further contains 0.5% by mass to 5% by mass of vinylene carbonate. And
また、請求項4に係る発明は、請求項1又は2に記載の非水電解質二次電池において、前記正極活物質のリチウムマンガンニッケル複合酸化物は、さらにコバルトを含有することを特徴とする。 The invention according to claim 4 is the non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the lithium manganese nickel composite oxide of the positive electrode active material further contains cobalt.
また、請求項5に係る発明は、請求項1又は2に記載の非水電解質二次電池において、前記正極と負極の充電容量比が1.0〜1.2となるように前記正極活物質及び前記負極活物質が含まれていることを特徴とする。 The invention according to claim 5 is the non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the positive electrode active material has a charge capacity ratio between the positive electrode and the negative electrode of 1.0 to 1.2. And the said negative electrode active material is contained, It is characterized by the above-mentioned.
さらに、本発明の別の目的は以下の構成により達成し得る。すなわち、請求項6に係る非水電解質二次電池の充電方法の発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備え、
前記正極活物質が、少なくともジルコニウムとマグネシウムの両方が添加されたリチウムコバルト複合酸化物と、層状構造を有するリチウムマンガンニッケル複合酸化物との混合物、からなり、
かつ、前記負極中にバインダーとしてカルボキシメチルセルロース−アンモニウム(NH4−CMC)からアンモニアが脱離したH−CMCが含まれている非水電解質二次電池の充電方法において、
前記正極活物質の電位がリチウム基準で4.4V〜4.6Vで充電することを特徴とする。
Furthermore, another object of the present invention can be achieved by the following configuration. That is, the invention of the method for charging a nonaqueous electrolyte secondary battery according to claim 6 includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt, With
The positive electrode active material comprises a mixture of a lithium cobalt composite oxide to which at least both zirconium and magnesium are added, and a lithium manganese nickel composite oxide having a layered structure,
And in the method for charging a non-aqueous electrolyte secondary battery in which H-CMC in which ammonia is eliminated from carboxymethylcellulose-ammonium (NH 4 -CMC) as a binder is contained in the negative electrode,
The positive electrode active material is charged at a potential of 4.4 V to 4.6 V based on lithium.
本発明は上記の構成を備えることにより以下に述べるような優れた効果を奏する。すなわち、請求項1の発明によれば、負極は、周知の方法に従い、カルボキシメチルセルロース−アンモニウム(NH4−CMC)と負極活物質とのスラリーを負極集電体表面に塗布し、その後に溶剤(例えば水)を100℃以上で乾燥することにより製造することができるが、この乾燥の際にNH4−CMC中のアンモニア(NH3)が脱離してH−CMCが生成し、このNH3の脱離の過程で負極表面に細かい空隙が形成されるため、負極表面は多孔質状態となっている。したがって、このNH3の脱離の過程で部分的にH−CMCで覆われていない黒鉛表面が露出するために、黒鉛粒子同士の間の接触抵抗が低減するので、充放電サイクルを繰り返しても負極におけるリチウムの挿入・脱離に対する抵抗の増大が少なくなり、サイクル特性が改善された正極活物質の電位がリチウム基準で4.4V〜4.6Vと大きい非水電解質二次電池が得られる。 By providing the above configuration, the present invention has the following excellent effects. That is, according to the first aspect of the present invention, the negative electrode is coated with a slurry of carboxymethylcellulose-ammonium (NH 4 -CMC) and the negative electrode active material on the surface of the negative electrode current collector according to a known method, and then the solvent ( For example, water) can be produced by drying at 100 ° C. or higher, but during this drying, ammonia (NH 3 ) in NH 4 -CMC is desorbed to form H-CMC, and this NH 3 Since fine voids are formed on the negative electrode surface in the process of desorption, the negative electrode surface is in a porous state. Therefore, since the graphite surface that is not partially covered with H-CMC is exposed in the process of desorption of NH 3 , the contact resistance between the graphite particles is reduced. An increase in resistance to insertion / extraction of lithium in the negative electrode is reduced, and a non-aqueous electrolyte secondary battery in which the positive electrode active material having improved cycle characteristics is as large as 4.4 V to 4.6 V on the basis of lithium can be obtained.
また、請求項2の発明によれば、負極活物質として電位の低い黒鉛材料(リチウム基準で約0.1V)を用いているので、電池電圧が4.3V〜4.5Vと高く、正極活物質の利用率の高い電池が得られる。加えて、負極活物質としてDl0の粒径が5μm〜l0μmである黒鉛粒子を用いることにより、含まれている黒鉛微粉粒子が大きな黒鉛粒子間の隙間に入り込むため、黒鉛粒子同士の間の接触抵抗がより低減するから、負極におけるリチウムの挿入・脱離に対する抵抗がより低減され、サイクル特性が大幅に改善された非水電解質二次電池が得られる。この場合、D10が5μm未満であると、黒鉛微粉粒子が少なすぎるので負極の電気抵抗の低下が少なく、サイクル特性の向上効果が少なく、好ましくない。また、D10が10μmを越えると、却って黒鉛微粉粒子が多すぎて大きな黒鉛粒子同士の接触が減少するために電気抵抗が大きくなるので、この場合もサイクル特性の向上効果が少なくなるので、好ましくない。 According to the invention of claim 2, since the graphite material having a low potential (about 0.1 V on the basis of lithium) is used as the negative electrode active material, the battery voltage is as high as 4.3 V to 4.5 V, and the positive electrode active material is A battery with a high utilization rate of the substance can be obtained. In addition, the use of graphite particles having a particle size of D10 of 5 μm to 10 μm as the negative electrode active material allows the contained fine graphite particles to enter the gaps between the large graphite particles, so the contact resistance between the graphite particles Therefore, the resistance to insertion / extraction of lithium in the negative electrode is further reduced, and a nonaqueous electrolyte secondary battery with greatly improved cycle characteristics can be obtained. In this case, it is not preferable that D10 is less than 5 μm because the graphite fine powder particles are too small, so that the decrease in electric resistance of the negative electrode is small and the effect of improving the cycle characteristics is small. On the other hand, if D10 exceeds 10 μm, there are too many fine graphite particles and the contact between large graphite particles is reduced, so that the electrical resistance increases. In this case as well, the effect of improving the cycle characteristics is reduced, which is not preferable. .
また、請求項3の発明によれば、VCは、従来から有機溶媒の還元分解を抑制するための添加剤として慣用的に使用されているものであり、このVCの添加によって最初の充電による負極へのリチウムの挿入前に負極活物質層上に不動態化層とも称される負極表面被膜(SEI:Solid Electrolyte Interface)が形成し、このSEIがリチウムイオンの周囲の溶媒分子の挿入を阻止するバリアーとして機能するので、負極活物質が有機溶媒と直接反応しないようになるために、サイクル特性の向上効果が見られ、長寿命の非水電解質二次電池が得られる。VCの添加量は電解液全体に対して、0.5〜5質量%、好ましくは1〜3質量%である。VCの添加量が0.5質量%未満ではサイクル特性向上効果が少なく、また3質量%を越えると初期容量の低下と高温時に電池の膨れをまねくので好ましくない。 According to the invention of claim 3, VC is conventionally used conventionally as an additive for suppressing reductive decomposition of an organic solvent. By adding this VC, the negative electrode by the first charge is used. Before insertion of lithium into the negative electrode active material layer, a negative electrode surface coating (SEI: Solid Electrolyte Interface) is formed on the negative electrode active material layer, and this SEI prevents the insertion of solvent molecules around the lithium ions. Since it functions as a barrier, the negative electrode active material does not directly react with the organic solvent, so that an effect of improving cycle characteristics is seen and a long-life nonaqueous electrolyte secondary battery is obtained. The addition amount of VC is 0.5-5 mass% with respect to the whole electrolyte solution, Preferably it is 1-3 mass%. If the amount of VC added is less than 0.5% by mass, the effect of improving the cycle characteristics is small, and if it exceeds 3% by mass, the initial capacity decreases and the battery swells at high temperatures, which is not preferable.
また、請求項4の発明によれば、Ni、Co、及びMnを含むリチウム遷移金属複合酸化物、特にMnとNiの組成比が等しい化学式LiMnxNixCo(1−2x)O2で表される材料は充電状態(高い酸化状態)でも特異的に高い熱的安定性を示すから、高充電電圧で充電しても安全な非水電解質二次電池が得られる。 According to the invention of claim 4, a lithium transition metal composite oxide containing Ni, Co, and Mn, particularly represented by the chemical formula LiMn x Ni x Co (1-2x) O 2 in which the composition ratio of Mn and Ni is equal. Since the material to be used exhibits a specific high thermal stability even in a charged state (high oxidation state), a safe non-aqueous electrolyte secondary battery can be obtained even when charged at a high charging voltage.
また、請求項5の発明によれば、前記正極と負極の充電容量比が1.0〜1.2となるように前記正極活物質及び前記負極活物質が含まれているようにしたので、高充電電圧で充電しても安全で、しかも高容量な非水電解質二次電池が得られる。すなわち、前記正極と負極の充電容量比が1.0未満であると、負極容量より正極容量が多くなるため、負極中に吸蔵しきれないリチウムが負極上に析出して安全性が低下する。また前記正極と負極の充電容量比が1.2を越える場合、電池中に占める正極活物質の割合が少なくなるため容量的に不利となる。 According to the invention of claim 5, since the positive electrode active material and the negative electrode active material are included so that the charge capacity ratio of the positive electrode to the negative electrode is 1.0 to 1.2, A non-aqueous electrolyte secondary battery that is safe even when charged at a high charging voltage and has a high capacity can be obtained. That is, when the charge capacity ratio between the positive electrode and the negative electrode is less than 1.0, the positive electrode capacity is larger than the negative electrode capacity, so that lithium that cannot be occluded in the negative electrode is deposited on the negative electrode and the safety is lowered. On the other hand, when the charge capacity ratio between the positive electrode and the negative electrode exceeds 1.2, the proportion of the positive electrode active material in the battery decreases, which is disadvantageous in terms of capacity.
さらに、請求項6の発明によれば、充電電圧を従来のものよりも高い正極活物質の電位がリチウム基準で4.4〜4.6Vとすることができるため、高容量及び高エネルギー密度であり、かつ、サイクル特性に優れた非水電解質二次電池となる。 Furthermore, according to the invention of claim 6, since the potential of the positive electrode active material whose charging voltage is higher than that of the conventional one can be 4.4 to 4.6 V on the basis of lithium, high capacity and high energy density can be obtained. In addition, the non-aqueous electrolyte secondary battery is excellent in cycle characteristics.
以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池及びその充電方法の一例を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。 Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. However, the examples described below are merely examples of non-aqueous electrolyte secondary batteries and their charging methods for embodying the technical idea of the present invention, and the present invention is specified in this example. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.
<正極の作製>
異種元素添加コバルト酸リチウムは次のようにして作製した。出発原料としては、リチウム源には炭酸チウム(Li2CO3)を用い、コバルト源には炭酸コバルト合成時に異種元素としてジルコニウム(Zr)をコバルトに対して0.2mol%及びマグネシウム(Mg)を0.5mol%添加した水溶液から共沈させ、その後、熱分解反応によって得られたジルコニウム、マグネシウム添加四酸化三コバルト(Co3O4)を用いた。これらを所定量秤量して混合した後、空気雰囲気下において850℃で24時間焼成し、ジルコニウム、マグネシウム添加コバルト酸リチウムを得た。これを乳鉢で平均粒径14μmまで粉砕し、正極活物質Aとした。
<Preparation of positive electrode>
The heterogeneous element-added lithium cobalt oxide was produced as follows. As a starting material, lithium carbonate is used as lithium source (Li 2 CO 3 ), and cobalt source is zirconium (Zr) as a heterogeneous element at the time of cobalt carbonate synthesis, 0.2 mol% with respect to cobalt and magnesium (Mg). Coprecipitation was performed from an aqueous solution added with 0.5 mol%, and then zirconium and magnesium-added tricobalt tetroxide (Co 3 O 4 ) obtained by a thermal decomposition reaction were used. A predetermined amount of these were weighed and mixed, and then calcined at 850 ° C. for 24 hours in an air atmosphere to obtain zirconium and magnesium-added lithium cobalt oxide. This was pulverized with a mortar to an average particle size of 14 μm to obtain a positive electrode active material A.
層状マンガンニッケル酸リチウムは次のようにして作製した。出発原料としては、リチウム源には炭酸リチウム(Li2CO3)を、遷移金属源にはNi0.33Mn0.33Co0.34(OH)2で表される共沈水酸化物を用いた。これらを所定量秤量して混合した後、空気雰囲気下において1000℃で20時間焼成し、LiMn0.33Ni0.33Co0.34O2で表される層状マンガンニッケル酸リチウムを得た。これを乳鉢で平均粒径5μmまで粉砕し、正極活物質Bとした。 The layered lithium manganese nickelate was prepared as follows. As starting materials, lithium carbonate (Li 2 CO 3 ) is used for the lithium source, and co-precipitated hydroxide represented by Ni 0.33 Mn 0.33 Co 0.34 (OH) 2 is used for the transition metal source. It was. A predetermined amount of these were weighed and mixed, and then fired at 1000 ° C. for 20 hours in an air atmosphere to obtain a layered lithium manganese nickelate represented by LiMn 0.33 Ni 0.33 Co 0.34 O 2 . This was pulverized to an average particle size of 5 μm with a mortar to obtain a positive electrode active material B.
以上のようにして得られた正極活物質A及び正極活物質Bを質量比が7:3になるように混合し、次に、混合した正極活物質が94質量部、導電剤としての炭素粉末が3質量部、結着剤としてのポリ弗化ビニリデン粉末が3質量部となるよう混合し、これをN−メチルピロリドン(NMP)溶液と混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム製の集電体の両面にドクターブレード法により塗布、乾燥して、正極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、短辺の長さが36.5mmの正極を作製した。 The positive electrode active material A and the positive electrode active material B obtained as described above were mixed so that the mass ratio was 7: 3. Next, the mixed positive electrode active material was 94 parts by mass, and carbon powder as a conductive agent. Was mixed with 3 parts by mass of polyvinylidene fluoride powder as a binder, and this was mixed with an N-methylpyrrolidone (NMP) solution to prepare a slurry. This slurry was applied to both sides of an aluminum current collector having a thickness of 15 μm by a doctor blade method and dried to form active material layers on both sides of the positive electrode current collector. Then, it compressed using the compression roller and produced the positive electrode whose length of a short side is 36.5 mm.
<負極の作製>
体積分率10%時の粒径Dl0が5μmである天然黒鉛粉末が95質量部、増粘剤としてのカルボキシメチルセルロース−アンモニウム塩(NH4−CMC)が3質量部及び結着剤としてのSBRラテックス2質量部(固形分換算)からなるバインダーを水に分散させスラリーを調整した。このスラリーを厚さ8μmの銅製の集電体の両面にドクターブレード法により塗布後、100℃以上で乾燥して水分を気化させるとともにNH4−CMCからNH3を脱離させ、負極集電体の両面に活物質層を形成した。この後、圧縮ローラーを用いて圧縮し、短辺の長さが37.5mmの負極を作製した。なお、正極及び負極の塗布量は、設計基準となる充電電圧(4.4V)において、正極と負極の対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。なお、正極活物質の充電容量は充電電圧により変化するが、一例としてジルコニウム及びマグネシウム添加コバルト酸リチウム/層状マンガンニッケル酸リチウム(混合比7:3)の場合の充電正極電位と正極容量の関係を表1に示す。
<Production of negative electrode>
95 parts by mass of natural graphite powder having a particle size D10 of 5 μm at a volume fraction of 10%, 3 parts by mass of carboxymethylcellulose-ammonium salt (NH 4 -CMC) as a thickener, and SBR latex as a binder A binder consisting of 2 parts by mass (in terms of solid content) was dispersed in water to prepare a slurry. After applying this slurry on both sides of a copper current collector having a thickness of 8 μm by the doctor blade method, the slurry is dried at 100 ° C. or higher to evaporate water and to desorb NH 3 from NH 4 -CMC, thereby producing a negative electrode current collector. An active material layer was formed on both sides. Then, it compressed using the compression roller and produced the negative electrode whose length of a short side is 37.5 mm. As for the coating amount of the positive electrode and the negative electrode, the charging capacity ratio (negative electrode charging capacity / positive electrode charging capacity) at the portion where the positive electrode and the negative electrode face each other is 1.1 at the charging voltage (4.4 V) as a design standard. Adjusted as follows. The charge capacity of the positive electrode active material varies depending on the charge voltage. As an example, the relationship between the charge positive electrode potential and the positive electrode capacity in the case of zirconium and magnesium-added lithium cobaltate / layered lithium manganese nickelate (mixing ratio 7: 3) is shown. Table 1 shows.
<電解質の作製>
エチレンカーボネート20体積%、エチルメチルカーボネート50体積%、ジエチルカーボネート30体積%となるようにした混合溶媒を調整し、これにLiPF6を1mol/Lとなるように溶解して電解質とした。
<Production of electrolyte>
A mixed solvent in which 20% by volume of ethylene carbonate, 50% by volume of ethyl methyl carbonate, and 30% by volume of diethyl carbonate were prepared, and LiPF 6 was dissolved in 1 mol / L to obtain an electrolyte.
<電池の作製>
上記の正極、負極及び電解質を用いて、また、セパレータとしてポリエチレン製微多孔膜を用い、実施例1に係る角形の非水電解質二次電池(5mm×34mm×43mm)を作製した。
<Production of battery>
A square nonaqueous electrolyte secondary battery (5 mm × 34 mm × 43 mm) according to Example 1 was fabricated using the above positive electrode, negative electrode, and electrolyte, and using a polyethylene microporous membrane as a separator.
体積分率10%時の粒径Dl0が10μmである天然黒鉛粉末が95質量部、増粘剤としてのカルボキシメチルセルロース−アンモニウム塩(NH4−CMC)が3質量部及び結着剤としてのSBRラテックス2質量部(固形分換算)からなるバインダーを水に分散させスラリーを調整した。このスラリーを厚さ8μmの銅製の集電体の両面にドクターブレード法により塗布後、100℃以上で乾燥して水分を気化させるとともにNH4−CMCからNH3を脱離させ、負極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、短辺の長さが37.5mmの負極を作製した。なお、正極及び負極の塗布量は、設計基準となる充電電圧(4.4V)において、正極と負極の対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。次に上記の負極及び実施例1と同様の正極、電解質及びセパレータを用いて、実施例2に係る角形の非水電解質二次電池(5mm×34mm×43mm)を作製した。 95 parts by mass of natural graphite powder having a particle size D10 of 10 μm at a volume fraction of 10%, 3 parts by mass of carboxymethylcellulose-ammonium salt (NH 4 -CMC) as a thickener, and SBR latex as a binder A binder consisting of 2 parts by mass (in terms of solid content) was dispersed in water to prepare a slurry. After applying this slurry on both sides of a copper current collector having a thickness of 8 μm by the doctor blade method, the slurry is dried at 100 ° C. or higher to evaporate water and to desorb NH 3 from NH 4 -CMC, thereby producing a negative electrode current collector. An active material layer was formed on both sides. Then, it compressed using the compression roller and produced the negative electrode whose short side length is 37.5 mm. As for the coating amount of the positive electrode and the negative electrode, the charging capacity ratio (negative electrode charging capacity / positive electrode charging capacity) at the portion where the positive electrode and the negative electrode face each other is 1.1 at the charging voltage (4.4 V) as a design standard. Adjusted as follows. Next, a square nonaqueous electrolyte secondary battery (5 mm × 34 mm × 43 mm) according to Example 2 was fabricated using the above-described negative electrode and the same positive electrode, electrolyte, and separator as those of Example 1.
[比較例1]
体積分率10%時の粒径Dl0が5μmである天然黒鉛粉末95質量部と、増粘剤としてのカルボキシメチルセルロース−ナトリウム塩(Na−CMC)3質量部及び結着剤としてのSBRラテックス2質量部(固形分換算)からなるバインダーとを水に分散させスラリーを調整した。このスラリーを厚さ8μmの銅製の集電体の両面にドクターブレード法により塗布後、100℃以上で乾燥して水分を気化させ、負極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、短辺の長さが37.5mmの負極を作製した。なお、正極及び負極の塗布量は、設計基準となる充電電圧(4.4V)において、正極と負極の対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。次に上記の負極及び実施例1と同様の正極、電解質及びセパレータを用いて、比較例1に係る角形の非水電解質二次電池(5mm×34mm×43mm)を作製した。
[Comparative Example 1]
95 parts by mass of natural graphite powder having a particle size D10 of 5 μm at a volume fraction of 10%, 3 parts by mass of carboxymethylcellulose-sodium salt (Na-CMC) as a thickener, and 2 parts of SBR latex as a binder A slurry was prepared by dispersing the binder consisting of parts (in terms of solid content) in water. This slurry was applied to both sides of a copper current collector having a thickness of 8 μm by a doctor blade method, and then dried at 100 ° C. or more to evaporate water, thereby forming an active material layer on both sides of the negative electrode current collector. Then, it compressed using the compression roller and produced the negative electrode whose short side length is 37.5 mm. As for the coating amount of the positive electrode and the negative electrode, the charging capacity ratio (negative electrode charging capacity / positive electrode charging capacity) at the portion where the positive electrode and the negative electrode face each other is 1.1 at the charging voltage (4.4 V) as a design standard. Adjusted as follows. Next, a square nonaqueous electrolyte secondary battery (5 mm × 34 mm × 43 mm) according to Comparative Example 1 was prepared using the above negative electrode and the same positive electrode, electrolyte, and separator as in Example 1.
[比較例2]
体積分率10%時の粒径Dl0が10μmである天然黒鉛粉末95質量部と、増粘剤としてのカルボキシメチルセルロース−ナトリウム塩(Na−CMC)3質量部及び結着剤としてのSBRラテックス2質量部(固形分換算)からなるバインダーとを水に分散させスラリーを調整した。このスラリーを厚さ8μmの銅製の集電体の両面にドクターブレード法により塗布後、100℃以上で乾燥して水分を気化させ、負極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、短辺の長さが37.5mmの負極を作製した。なお、正極及び負極の塗布量は、設計基準となる充電電圧(4.4V)において、正極と負極の対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。次に上記の負極及び実施例1と同様の正極、電解質及びセパレータを用いて、比較例1に係る角形の非水電解質二次電池(5mm×34mm×43mm)を作製した。
[Comparative Example 2]
95 parts by mass of natural graphite powder having a particle size D10 of 10 μm at a volume fraction of 10%, 3 parts by mass of carboxymethylcellulose-sodium salt (Na-CMC) as a thickener and 2 parts of SBR latex as a binder A slurry was prepared by dispersing the binder consisting of parts (in terms of solid content) in water. This slurry was applied to both sides of a copper current collector having a thickness of 8 μm by a doctor blade method, and then dried at 100 ° C. or more to evaporate water, thereby forming an active material layer on both sides of the negative electrode current collector. Then, it compressed using the compression roller and produced the negative electrode whose short side length is 37.5 mm. As for the coating amount of the positive electrode and the negative electrode, the charging capacity ratio (negative electrode charging capacity / positive electrode charging capacity) at the portion where the positive electrode and the negative electrode face each other is 1.1 at the charging voltage (4.4 V) as a design standard. Adjusted as follows. Next, a square nonaqueous electrolyte secondary battery (5 mm × 34 mm × 43 mm) according to Comparative Example 1 was prepared using the above negative electrode and the same positive electrode, electrolyte, and separator as in Example 1.
[比較例3]
体積分率10%時の粒径Dl0が15μmである天然黒鉛粉末95質量部と、増粘剤としてのカルボキシメチルセルロース−アンモニウム塩(NH4−CMC)3質量部及び結着剤としてのSBRラテックス2質量部(固形分換算)からなるバインダーとを水に分散させスラリーを調整した。このスラリーを厚さ8μmの銅製の集電体の両面にドクターブレード法により塗布後、100℃以上で乾燥して水分を気化させるとともにNH4−CMCからNH3を脱離させ、負極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、短辺の長さが37.5mmの負極を作製した。なお、正極及び負極の塗布量は、設計基準となる充電電圧(4.4V)において、正極と負極の対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。次に上記の負極及び実施例1と同様の正極、電解質及びセパレータを用いて、比較例3に係る角形の非水電解質二次電池(5mm×34mm×43mm)を作製した。
[Comparative Example 3]
95 parts by mass of natural graphite powder having a particle size D10 of 15 μm at a volume fraction of 10%, 3 parts by mass of carboxymethylcellulose-ammonium salt (NH 4 -CMC) as a thickener, and SBR latex 2 as a binder The slurry which prepared the binder which consists of a mass part (solid content conversion) in water was prepared. After applying this slurry on both sides of a copper current collector having a thickness of 8 μm by the doctor blade method, the slurry is dried at 100 ° C. or higher to evaporate water and to desorb NH 3 from NH 4 -CMC, thereby producing a negative electrode current collector. An active material layer was formed on both sides. Then, it compressed using the compression roller and produced the negative electrode whose short side length is 37.5 mm. As for the coating amount of the positive electrode and the negative electrode, the charging capacity ratio (negative electrode charging capacity / positive electrode charging capacity) at the portion where the positive electrode and the negative electrode face each other is 1.1 at the charging voltage (4.4 V) as a design standard. Adjusted as follows. Next, a square nonaqueous electrolyte secondary battery (5 mm × 34 mm × 43 mm) according to Comparative Example 3 was fabricated using the above negative electrode and the same positive electrode, electrolyte, and separator as those of Example 1.
[比較例4]
体積分率10%時の粒径Dl0が3μmである天然黒鉛粉末95質量部と、増粘剤としてのカルボキシメチルセルロース−アンモニウム塩(NH4−CMC)3質量部及び結着剤としてのSBRラテックス2質量部(固形分換算)からなるバインダーとを水に分散させスラリーを調整した。このスラリーを厚さ8μmの銅製の集電体の両面にドクターブレード法により塗布後、100℃以上で乾燥して水分を気化させるとともにNH4−CMCからNH3を脱離させ、負極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、短辺の長さが37.5mmの負極を作製した。なお、正極及び負極の塗布量は、設計基準となる充電電圧(4.4V)において、正極と負極の対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。次に上記の負極及び実施例1と同様の正極、電解質及びセパレータを用いて、比較例4に係る角形の非水電解質二次電池(5mm×34mm×43mm)を作製した。
[Comparative Example 4]
95 parts by mass of natural graphite powder having a particle size D10 of 3 μm at a volume fraction of 10%, 3 parts by mass of carboxymethylcellulose-ammonium salt (NH 4 -CMC) as a thickener, and SBR latex 2 as a binder The slurry which prepared the binder which consists of a mass part (solid content conversion) in water was prepared. After applying this slurry to both sides of a copper current collector having a thickness of 8 μm by a doctor blade method, the slurry is dried at 100 ° C. or higher to evaporate water and to desorb NH 3 from NH 4 -CMC, thereby producing a negative electrode current collector. An active material layer was formed on both sides. Then, it compressed using the compression roller and produced the negative electrode whose short side length is 37.5 mm. As for the coating amount of the positive electrode and the negative electrode, the charging capacity ratio (negative electrode charging capacity / positive electrode charging capacity) at the portion where the positive electrode and the negative electrode face each other is 1.1 at the charging voltage (4.4 V) as a design standard. Adjusted as follows. Next, a square nonaqueous electrolyte secondary battery (5 mm × 34 mm × 43 mm) according to Comparative Example 4 was produced using the above negative electrode and the same positive electrode, electrolyte, and separator as in Example 1.
<サイクル特性の測定>
上述のようにして作製した実施例1、2及び比較例1〜4の各電池について、25℃において、1It(1C)の定電流で充電し、電池の電圧が4.4V(正極電位はリチウム基準で4.5Vに相当)になった後は4.4Vの定電圧で充電電流値が1/50It(1/50C)になるまで初期充電した。この初期充電した電池について、25℃において、1Itの定電流で電池電圧が3Vに達するまで放電を行い、この時の放電容量を初期放電容量として求めた。サイクル特性の測定は、初期放電容量を測定した各電池について、25℃において、1Itの定電流で電池電圧が4.4Vに達するまで充電した後に4.4Vの定電圧で電流値が1/50Itになるまで充電し、その後、1Itの定電流で電池電圧が3Vに達するまで放電することを1サイクルとし、500サイクルに達するまで繰返して500サイクル後の放電容量を求めた。そして、各電池について以下の計算式に基いて25℃における500サイクル後の容量維持率(%)を求めた。結果をまとめて表2に示した。
容量維持率(%)=(500サイクル後の放電容量/初期放電容量)×100
<Measurement of cycle characteristics>
The batteries of Examples 1 and 2 and Comparative Examples 1 to 4 manufactured as described above were charged at a constant current of 1 It (1 C) at 25 ° C., and the battery voltage was 4.4 V (the positive electrode potential was lithium). After that, the battery was initially charged at a constant voltage of 4.4 V until the charging current value became 1/50 It (1/50 C). The initially charged battery was discharged at 25 ° C. with a constant current of 1 It until the battery voltage reached 3 V, and the discharge capacity at this time was determined as the initial discharge capacity. The cycle characteristics were measured for each battery whose initial discharge capacity was measured at 25 ° C. until the battery voltage reached 4.4 V at a constant current of 1 It, and then the current value was 1/50 It at a constant voltage of 4.4 V. Then, discharging was performed at a constant current of 1 It until the battery voltage reached 3 V as one cycle, and the discharge capacity after 500 cycles was obtained repeatedly until reaching 500 cycles. And about each battery, the capacity | capacitance maintenance factor (%) after 500 cycles in 25 degreeC was calculated | required based on the following formulas. The results are summarized in Table 2.
Capacity retention rate (%) = (discharge capacity after 500 cycles / initial discharge capacity) × 100
表2に示した結果から以下のことが分かる。すなわち、実施例1及び2のように、負極バインダーにNH4−CMCを用い、負極活物質に体積分率10%時の粒径Dl0が5μm〜10μmの黒鉛を用いた場合には、500サイクル後の容量維持率が86%〜88%と良好なサイクル特性を示した。これに対し、比較例1及び2のように、負極バインダーにNa−CMCを用いた場合には、負極活物質に体積分率10%時の粒径Dl0が5μm〜10μmの黒鉛を用いても、500サイクル後の容量維持率は61%〜65%となっており、サイクル特性は低下している。 From the results shown in Table 2, the following can be understood. That is, as in Examples 1 and 2, when NH 4 -CMC was used as the negative electrode binder and graphite having a particle size D10 of 5 μm to 10 μm at a volume fraction of 10% was used as the negative electrode active material, 500 cycles The subsequent capacity retention ratio was 86% to 88%, indicating good cycle characteristics. On the other hand, when Na-CMC is used as the negative electrode binder as in Comparative Examples 1 and 2, graphite having a particle size D10 of 5 μm to 10 μm at a volume fraction of 10% may be used as the negative electrode active material. The capacity retention rate after 500 cycles is 61% to 65%, and the cycle characteristics are degraded.
また、比較例3及び4のように、負極バインダーにNH4−CMCを用いても、負極活物質の体積分率10%時の粒径Dl0がl0μmを越えている場合及び5μm未満の場合には、500サイクル後の容量維持率は72%〜75%となっており、サイクル特性の改善効果が不十分であることがわかる。 Further, as in Comparative Examples 3 and 4, even when NH 4 -CMC is used as the negative electrode binder, the particle size D10 when the volume fraction of the negative electrode active material is 10% exceeds 10 μm and is less than 5 μm. The capacity retention rate after 500 cycles is 72% to 75%, which indicates that the effect of improving the cycle characteristics is insufficient.
以上の結果より、LiCoO2に少なくともジルコニウムとマグネシウムの両方を添加したリチウムコバルト複合酸化物と、層状構造を有するマンガンニッケル酸リチウムの混合物を正極として用いて、電池電圧を4.3V〜4.5V(正極電位がリチウム基準で4.4V〜4.6V)の高電圧で充電する電池において、負極のバインダーとして用いられているCMCがアンモニウム塩であり、特に負極活物質として体積分率10%時の粒径Dl0が5〜10μmである黒鉛を使用した場合には、サイクル特性の大幅な改善が可能であることが判明した。 From the above results, a battery voltage of 4.3 V to 4.5 V was obtained by using, as a positive electrode, a mixture of lithium cobalt composite oxide obtained by adding at least both zirconium and magnesium to LiCoO 2 and lithium manganese nickelate having a layered structure. In a battery charged at a high voltage (positive electrode potential 4.4 V to 4.6 V based on lithium), CMC used as a negative electrode binder is an ammonium salt, and particularly when the volume fraction is 10% as a negative electrode active material. When graphite having a particle size D10 of 5 to 10 μm is used, it has been found that the cycle characteristics can be significantly improved.
なお、実施例1、2及び比較例1〜4では、電解質溶媒としてエチレンカーボネート(EC)、メチルエチルカーボネート(MEC)及びジエチルカーボネート(DEC)からなる混合溶媒を使用した例を示したが、従来から知られている各種の溶媒を使用し得ることは明らかであろう。ただし、環状カーボネートは、充放電効率を高める点からは添加されていた方がよいが、高電位において酸化分解されやすいので、特にECを用いる場合は非水電解質溶媒中の含有量を5体積%以上25体積%以下とすることが望ましい。 In Examples 1 and 2 and Comparative Examples 1 to 4, examples in which a mixed solvent composed of ethylene carbonate (EC), methyl ethyl carbonate (MEC) and diethyl carbonate (DEC) was used as the electrolyte solvent were shown. It will be apparent that various solvents known from US Pat. However, it is better to add the cyclic carbonate from the viewpoint of increasing the charge / discharge efficiency, but since it is easily oxidatively decomposed at a high potential, the content in the nonaqueous electrolyte solvent is 5% by volume particularly when EC is used. It is desirable to set it as 25 volume% or less.
また、電解質溶媒中には、必要に応じて有機溶媒の還元分解を抑制するための添加剤として慣用的に使用されているビニレンカーボネート(VC)を電解液全体に対して、0.5〜5質量%、好ましくは1〜3質量%添加することもできる。このVCの添加によって最初の充電による負極へのリチウムの挿入前に負極活物質層上に不動態化層とも称される負極表面被膜(SEI:Solid Electrolyte Interface)が形成し、このSEIがリチウムイオンの周囲の溶媒分子の挿入を阻止するバリアーとして機能するため、負極活物質が有機溶媒と直接反応しないようになるので、よりサイクル特性の向上効果が見られ、長寿命の非水電解質二次電池が得られる。VCの添加量が0.5質量%未満ではサイクル特性向上効果が少なく、また3質量%を越えると初期容量の低下と高温時に電池の膨れをまねくので好ましくない。 Further, in the electrolyte solvent, vinylene carbonate (VC), which is conventionally used as an additive for suppressing reductive decomposition of the organic solvent as necessary, is 0.5 to 5 with respect to the entire electrolyte solution. A mass%, preferably 1 to 3 mass% can also be added. This addition of VC forms a negative electrode surface film (SEI: Solid Electrolyte Interface), also called a passivation layer, on the negative electrode active material layer before lithium is inserted into the negative electrode by the first charge. Since the negative electrode active material does not react directly with the organic solvent because it functions as a barrier that prevents the insertion of solvent molecules around the battery, the cycle characteristics are further improved, and a long-life nonaqueous electrolyte secondary battery Is obtained. If the amount of VC added is less than 0.5% by mass, the effect of improving the cycle characteristics is small, and if it exceeds 3% by mass, the initial capacity decreases and the battery swells at high temperatures, which is not preferable.
また、実施例1、2及び比較例1〜4では、正極活物質Aとしてジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物を用いた例を示したが、正極活物質としては、ジルコニウム及びマグネシウム以外に他の元素M(M:Al、Ti、Sn)を含む以下の化学式(1)で表されるリチウム遷移金属複合酸化物も使用することができる。
LiaCo(1−x−y−z)ZrxMgyMzO2 (1)
(ただし、0≦a≦1.1、x>0、y>0、z≧0、0<x+y+z≦0.03である。)
この場合、Zr及びMgの添加は必須であり、Al、Ti、Snとも合わせてこれらの異種金属の添加量が少ないとサイクル特性の向上効果が小さく、逆に添加量が多すぎると、これらの異種金属は電極反応に直接関与しないため、初期容量の低下をまねく。好ましくは、x≧0.0001、y≧0.0001、0.0002≦x+y+z≦0.03である。
In Examples 1 and 2 and Comparative Examples 1 to 4, examples in which a lithium cobalt composite oxide to which zirconium and magnesium were added were used as the positive electrode active material A. A lithium transition metal composite oxide represented by the following chemical formula (1) containing another element M (M: Al, Ti, Sn) in addition to magnesium can also be used.
Li a Co (1-xyz) Zr x Mg y M z O 2 (1)
(However, 0 ≦ a ≦ 1.1, x> 0, y> 0, z ≧ 0, 0 <x + y + z ≦ 0.03.)
In this case, the addition of Zr and Mg is indispensable. If the addition amount of these dissimilar metals is small in combination with Al, Ti, and Sn, the effect of improving the cycle characteristics is small. Since dissimilar metals are not directly involved in the electrode reaction, the initial capacity is reduced. Preferably, x ≧ 0.0001, y ≧ 0.0001, and 0.0002 ≦ x + y + z ≦ 0.03.
さらに、実施例1、2及び比較例1〜4では、正極活物質Bとして層状構造を有するLiMn0.33Ni0.33Co0.34O2を用いた例を示したが、MnとNiの組成比が実質的に等しい下記化学式(2)で表されるリチウムマンガンニッケル複合酸化物も使用することができる。
LibMnsNitCouO2 (2)
(ただし、0≦b≦1.2、0<s≦0.5、0<t≦0.5、u≧0、s+t+u=1、0.95≦s/t≦1.05である。)
上記化学式(2)で表される層状構造を有するリチウムマンガンニッケル複合酸化物においては、MnとNiの存在は必須であり、かつMnとNiの組成比が実質的に等しければ熱安定性が高い活物質となる。好ましくは、0.1≦s≦0.5、0.1≦t≦0.5である。
Further, in Examples 1 and 2 and Comparative Examples 1 to 4, examples in which LiMn 0.33 Ni 0.33 Co 0.34 O 2 having a layered structure was used as the positive electrode active material B were shown. A lithium manganese nickel composite oxide represented by the following chemical formula (2) having substantially the same composition ratio can also be used.
Li b Mn s Ni t Co u O 2 (2)
(However, 0 ≦ b ≦ 1.2, 0 <s ≦ 0.5, 0 <t ≦ 0.5, u ≧ 0, s + t + u = 1, 0.95 ≦ s / t ≦ 1.05.)
In the lithium manganese nickel composite oxide having a layered structure represented by the chemical formula (2), the presence of Mn and Ni is essential, and the thermal stability is high if the composition ratio of Mn and Ni is substantially equal. Become active material. Preferably, 0.1 ≦ s ≦ 0.5 and 0.1 ≦ t ≦ 0.5.
この層状構造を有するリチウムマンガンニッケル複合酸化物においては、さらに微量のMg、Zr、Al、Ti、Snから選択される少なくとも1種の他の金属を含有している下記化学式(3)で表されるリチウムマンガンニッケル複合酸化物とすることもできる。
LibMnsNitCouM'vO2 (3)
(ただし、0≦b≦1.2、0.1≦s≦0.5、0.1≦t≦0.5、u≧0、0.0001≦v≦0.03、s+t+u+v=1、M'=Mg、Zr、Al、Ti、Sn、0.95≦s/t≦1.05である。)
The lithium manganese nickel composite oxide having this layered structure is represented by the following chemical formula (3) containing a trace amount of at least one other metal selected from Mg, Zr, Al, Ti, and Sn. Lithium manganese nickel composite oxide can also be used.
Li b Mn s Ni t Co u M 'v O 2 (3)
(However, 0 ≦ b ≦ 1.2, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, u ≧ 0, 0.0001 ≦ v ≦ 0.03, s + t + u + v = 1, M '= Mg, Zr, Al, Ti, Sn, 0.95 ≦ s / t ≦ 1.05.)
また、上記活物質A及び活物質Bとの混合比は、質量比で、活物質A:活物質B=51:49〜90:10の範囲で使用でき、好ましくは、70:30〜80:20である。上記活物質Aが51%未満であると初期容量が小さくなり、サイクル特性及び保存特性が悪化する。また、活物質Bが10%未満であると安全性が低下する。 The mixing ratio of the active material A and the active material B can be used in a mass ratio of active material A: active material B = 51: 49 to 90:10, preferably 70:30 to 80: 20. When the active material A is less than 51%, the initial capacity becomes small, and the cycle characteristics and the storage characteristics deteriorate. Moreover, safety | security falls that the active material B is less than 10%.
10 非水電解質二次電池
11 正極板
12 負極板
13 セパレータ
14 扁平状の渦巻状電極体
15 角型の電池外装缶
16 封口板
17 絶縁体
18 負極端子
19 集電体
20 絶縁スペーサ
21 電解液注液孔
DESCRIPTION OF
Claims (6)
前記正極活物質は、少なくともジルコニウムとマグネシウムの両方が添加されたリチウムコバルト複合酸化物と、層状構造を有する少なくともマンガンとニッケルの両方を含有するリチウムマンガンニッケル複合酸化物とを混合したものであり、
前記正極活物質の電位がリチウム基準で4.4V〜4.6Vであり、かつ、
前記負極中にバインダーとしてカルボキシメチルセルロース−アンモニウム(NH4−CMC)からアンモニアが脱離したH−CMCが含まれていることを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt,
The positive electrode active material is a mixture of a lithium cobalt composite oxide to which at least both zirconium and magnesium are added, and a lithium manganese nickel composite oxide containing at least manganese and nickel having a layered structure,
The potential of the positive electrode active material is 4.4V to 4.6V on the basis of lithium; and
The non-aqueous electrolyte secondary battery, wherein the negative electrode contains H-CMC in which ammonia is eliminated from carboxymethyl cellulose-ammonium (NH 4 -CMC) as a binder.
前記正極活物質が、少なくともジルコニウムとマグネシウムの両方が添加されたリチウムコバルト複合酸化物と、層状構造を有するリチウムマンガンニッケル複合酸化物との混合物からなり、
かつ、前記負極中にバインダーとしてカルボキシメチルセルロース−アンモニウム(NH4−CMC)からアンモニアが脱離したH−CMCが含まれている非水電解質二次電池の充電方法において、
前記正極活物質の電位がリチウム基準で4.4V〜4.6Vで充電することを特徴とする非水電解質二次電池の充電方法。
A positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt,
The positive electrode active material comprises a mixture of a lithium cobalt composite oxide to which at least both zirconium and magnesium are added, and a lithium manganese nickel composite oxide having a layered structure,
And in the method for charging a non-aqueous electrolyte secondary battery in which H-CMC in which ammonia is eliminated from carboxymethylcellulose-ammonium (NH 4 -CMC) as a binder is contained in the negative electrode,
A method for charging a non-aqueous electrolyte secondary battery, wherein the positive electrode active material is charged at a potential of 4.4 V to 4.6 V based on lithium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005010417A JP4794172B2 (en) | 2005-01-18 | 2005-01-18 | Non-aqueous electrolyte secondary battery and charging method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005010417A JP4794172B2 (en) | 2005-01-18 | 2005-01-18 | Non-aqueous electrolyte secondary battery and charging method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006202529A true JP2006202529A (en) | 2006-08-03 |
JP4794172B2 JP4794172B2 (en) | 2011-10-19 |
Family
ID=36960350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005010417A Active JP4794172B2 (en) | 2005-01-18 | 2005-01-18 | Non-aqueous electrolyte secondary battery and charging method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4794172B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202702A (en) * | 2005-01-24 | 2006-08-03 | Hitachi Maxell Ltd | Nonaqueous electrolyte secondary battery |
JP2008171661A (en) * | 2007-01-11 | 2008-07-24 | Nec Tokin Corp | Lithium-ion secondary battery |
JP2010262914A (en) * | 2009-04-29 | 2010-11-18 | Samsung Sdi Co Ltd | Lithium secondary battery |
WO2013080379A1 (en) * | 2011-12-02 | 2013-06-06 | トヨタ自動車株式会社 | Lithium secondary battery and method for manufacturing same |
JP2013239375A (en) * | 2012-05-16 | 2013-11-28 | Toyota Motor Corp | Lithium ion secondary battery and method for manufacturing the same |
JPWO2013080379A1 (en) * | 2011-12-02 | 2015-04-27 | トヨタ自動車株式会社 | Lithium secondary battery and manufacturing method thereof |
WO2015115053A1 (en) * | 2014-01-31 | 2015-08-06 | 三洋電機株式会社 | Nonaqueous-electrolyte secondary-battery negative electrode |
CN112204794A (en) * | 2018-05-31 | 2021-01-08 | 株式会社村田制作所 | Nonaqueous electrolyte secondary battery |
WO2021039281A1 (en) * | 2019-08-23 | 2021-03-04 | 日本製紙株式会社 | Electrode for non-aqueous electrolyte secondary battery, and method for producing same |
CN112713305A (en) * | 2019-10-25 | 2021-04-27 | 中国石油化工股份有限公司 | Electrolyte for lithium battery and preparation method and application thereof |
JP7091242B2 (en) | 2015-11-18 | 2022-06-27 | シェンチェン・インスティテューツ・オブ・アドバンスド・テクノロジー・チャイニーズ・アカデミー・オブ・サイエンシーズ | Secondary battery and its manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004030126A1 (en) * | 2002-09-25 | 2004-04-08 | Seimi Chemical Co., Ltd. | Positive electrode material for lithium secondary battery and process for producing the same |
JP2004134207A (en) * | 2002-10-10 | 2004-04-30 | Sony Corp | Positive electrode active material and non-aqueous electrolyte secondary battery |
JP2004207120A (en) * | 2002-12-26 | 2004-07-22 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
-
2005
- 2005-01-18 JP JP2005010417A patent/JP4794172B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004030126A1 (en) * | 2002-09-25 | 2004-04-08 | Seimi Chemical Co., Ltd. | Positive electrode material for lithium secondary battery and process for producing the same |
JP2004134207A (en) * | 2002-10-10 | 2004-04-30 | Sony Corp | Positive electrode active material and non-aqueous electrolyte secondary battery |
JP2004207120A (en) * | 2002-12-26 | 2004-07-22 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202702A (en) * | 2005-01-24 | 2006-08-03 | Hitachi Maxell Ltd | Nonaqueous electrolyte secondary battery |
JP2008171661A (en) * | 2007-01-11 | 2008-07-24 | Nec Tokin Corp | Lithium-ion secondary battery |
JP2010262914A (en) * | 2009-04-29 | 2010-11-18 | Samsung Sdi Co Ltd | Lithium secondary battery |
US8597833B2 (en) | 2009-04-29 | 2013-12-03 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
WO2013080379A1 (en) * | 2011-12-02 | 2013-06-06 | トヨタ自動車株式会社 | Lithium secondary battery and method for manufacturing same |
CN103959520A (en) * | 2011-12-02 | 2014-07-30 | 丰田自动车株式会社 | Lithium secondary battery and method for manufacturing same |
JPWO2013080379A1 (en) * | 2011-12-02 | 2015-04-27 | トヨタ自動車株式会社 | Lithium secondary battery and manufacturing method thereof |
JP2013239375A (en) * | 2012-05-16 | 2013-11-28 | Toyota Motor Corp | Lithium ion secondary battery and method for manufacturing the same |
WO2015115053A1 (en) * | 2014-01-31 | 2015-08-06 | 三洋電機株式会社 | Nonaqueous-electrolyte secondary-battery negative electrode |
JPWO2015115053A1 (en) * | 2014-01-31 | 2017-03-23 | 三洋電機株式会社 | Anode for non-aqueous electrolyte secondary battery |
JP7091242B2 (en) | 2015-11-18 | 2022-06-27 | シェンチェン・インスティテューツ・オブ・アドバンスド・テクノロジー・チャイニーズ・アカデミー・オブ・サイエンシーズ | Secondary battery and its manufacturing method |
CN112204794A (en) * | 2018-05-31 | 2021-01-08 | 株式会社村田制作所 | Nonaqueous electrolyte secondary battery |
CN112204794B (en) * | 2018-05-31 | 2024-03-19 | 株式会社村田制作所 | Nonaqueous electrolyte secondary battery |
WO2021039281A1 (en) * | 2019-08-23 | 2021-03-04 | 日本製紙株式会社 | Electrode for non-aqueous electrolyte secondary battery, and method for producing same |
CN112713305A (en) * | 2019-10-25 | 2021-04-27 | 中国石油化工股份有限公司 | Electrolyte for lithium battery and preparation method and application thereof |
CN112713305B (en) * | 2019-10-25 | 2022-11-04 | 中国石油化工股份有限公司 | Electrolyte for lithium battery and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4794172B2 (en) | 2011-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4794180B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4794172B2 (en) | Non-aqueous electrolyte secondary battery and charging method thereof | |
JP5318356B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5153156B2 (en) | Method for producing positive electrode for non-aqueous electrolyte secondary battery | |
JP3844733B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5247196B2 (en) | Nonaqueous electrolyte secondary battery | |
JP6138916B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5278994B2 (en) | Lithium secondary battery | |
JP5052161B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2007265668A (en) | Cathode for nonaqueous electrolyte secondary battery and its manufacturing method | |
JP2009129721A (en) | Non-aqueous secondary battery | |
JP2006344509A (en) | Lithium secondary battery | |
JP2009217981A (en) | Non-aqueous electrolyte secondary battery | |
JP2009110886A (en) | Method of manufacturing nonaqueous electrolyte secondary battery | |
JP5030559B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2006228651A (en) | Nonaqueous electrolyte secondary battery and its charging method | |
WO2023032799A1 (en) | Nonaqueous electrolyte battery and nonaqueous electrolyte used in same | |
JP2009105017A (en) | Nonaqueous electrolyte secondary battery | |
JP4794193B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5235307B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2010140737A (en) | Nonaqueous electrolyte secondary battery | |
JP2008218177A (en) | Manufacturing method of positive active material and nonaqueous electrolyte secondary battery using the positive active material | |
JPH10255762A (en) | Lithium battery | |
JP2006156234A (en) | Nonaqueous electrolyte secondary battery and its charging method | |
JP4963819B2 (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110628 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110726 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4794172 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140805 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |