JP2006299291A - Roughening treatment method and roughening treatment liquid for copper foil - Google Patents
Roughening treatment method and roughening treatment liquid for copper foil Download PDFInfo
- Publication number
- JP2006299291A JP2006299291A JP2005117990A JP2005117990A JP2006299291A JP 2006299291 A JP2006299291 A JP 2006299291A JP 2005117990 A JP2005117990 A JP 2005117990A JP 2005117990 A JP2005117990 A JP 2005117990A JP 2006299291 A JP2006299291 A JP 2006299291A
- Authority
- JP
- Japan
- Prior art keywords
- roughening
- copper foil
- treatment
- copper
- roughening treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Laminated Bodies (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
本発明は銅箔の表面処理方法に関するものであり、更に詳しくは、低粗度でありながら、樹脂等との接着性を改善し、また、厚さの薄い銅箔に対し、効率よく生産するための粗面化処理方法に関するものである。又、本発明は、このような粗面化処理方法にて使用される粗面化処理液に関するものでもある。 The present invention relates to a surface treatment method for copper foil, and more specifically, it improves adhesion to a resin or the like while having low roughness, and efficiently produces thin copper foil. The present invention relates to a roughening treatment method. The present invention also relates to a roughening solution used in such a roughening method.
銅箔は、プリント配線板用途や二次電池の集電材料として大量に使用され、製法によって、圧延銅箔と電解銅箔に大別される。
圧延銅箔は、銅インゴットから圧延機で目的の厚みまで圧延し、巻き取って製造されている。
一方、電解銅箔は、銅電解液から電着装置で目的の厚みの銅を電解析出させ、析出物を剥離し、巻き取って製造される。その際、銅電解液に適当な添加剤を加えることにより、用途に合った機械特性および表面形状を作り出すことが行われている。電解銅箔の場合、両面の表面特性が異なる場合が多く、電着ドラム側をS(Shiny)面、平滑面又は光沢面、反対側をM(Matte)面又は粗面と呼ぶ。
銅箔は、銅の単一組成からなる場合と、機械特性や電気特性を改善するために、微量の添加成分を制御し、合金箔としても供される。
これら銅箔、銅合金箔は当業者間において「未処理銅箔」と呼ばれており、通常はこの未処理銅箔のままで使用されることはなく、プリント配線板用銅箔を得る場合には、絶縁樹脂との接着性を向上させることを目的とした「粗面化処理」や化学的接着力、耐熱、耐薬品性及び防錆性を付与することを目的とした各種表面処理が施され、二次電池集電体用銅箔を得る場合には、活物質との密着力及び防錆性を付与することを目的とした各種表面処理が施される。
これら表面処理は、巻き取った未処理銅箔を複数の工程を持つ処理機内に通箔させ、連続的に特性付与が行われる。この際、各工程は数秒から数十秒以内で通過し、短時間ほど処理工程が短く、ロールパス数も少なくなり、くぼみ、押し傷やシワ等の発生要因が押さえられ、薄箔に対しては特に有効に寄与する。
Copper foil is used in large quantities as a current collector material for printed wiring boards and secondary batteries, and is roughly classified into rolled copper foil and electrolytic copper foil depending on the production method.
The rolled copper foil is manufactured by rolling from a copper ingot to a target thickness with a rolling mill and winding it.
On the other hand, the electrolytic copper foil is produced by electrolytically depositing copper having a target thickness from a copper electrolyte solution by an electrodeposition apparatus, peeling the precipitate, and winding it. At that time, by adding an appropriate additive to the copper electrolyte, mechanical properties and a surface shape suitable for the application are created. In the case of electrolytic copper foil, the surface characteristics of both surfaces are often different, and the electrodeposition drum side is called the S (Shiny) surface, smooth surface or glossy surface, and the opposite side is called the M (Matte) surface or rough surface.
The copper foil is also used as an alloy foil by controlling a small amount of additive components in order to improve the mechanical characteristics and electrical characteristics when the copper foil has a single composition.
These copper foils and copper alloy foils are called “untreated copper foils” by those skilled in the art. Usually, these untreated copper foils are not used as they are, and when obtaining copper foils for printed wiring boards There are various surface treatments for the purpose of providing "roughening treatment" for the purpose of improving the adhesion to the insulating resin and chemical adhesion, heat resistance, chemical resistance and rust prevention. In order to obtain a copper foil for a secondary battery current collector, various surface treatments are applied for the purpose of imparting adhesion to the active material and rust prevention.
In these surface treatments, the wound untreated copper foil is passed through a processing machine having a plurality of steps, and characteristics are imparted continuously. At this time, each process passes within several seconds to several tens of seconds, the processing process is shorter and the number of roll passes is shorter as the time is shorter, and the generation factors such as dents, scratches and wrinkles are suppressed, and for thin foils It contributes particularly effectively.
プリント配線板用銅箔の一般的な粗面化処理は次の形態で形成されている。
まず、硫酸酸性銅浴中で銅箔を陰極とし、処理面に対し不溶性陽極を対向させて配し、限界電流密度以上の電流で銅の樹枝状突起物を形成させる。この1段処理は「ヤケメッキ」とも呼ばれ、樹枝状であるが故に非常に粉落ちしやすく、このままでは、絶縁樹脂との接着力が乏しく、くぼみや押し傷の原因ともなっている。したがって、さらに硫酸酸性銅浴中で、限界電流密度以下でメッキし、樹枝状粉を安定化させることが行われる。この2段目の処理は「被覆メッキ」とも呼ばれる。
ヤケメッキと被覆メッキは、同じ硫酸酸性銅浴を使用するが、限界電流密度を電流のみで制御しているわけではなく、銅濃度も適した条件に調整し、また、ヤケメッキ浴に対しては、樹枝状粉の析出形態をコントロールするための添加剤を使用する場合がある。つまり、2段の処理に対し、2種類の溶液を使用している。
ヤケメッキは固着性に乏しいため、2段目の被覆メッキが十分にかかるまでは粉落ちに対する厳重な管理が必要とされ、通常は片面ずつの処理に制約される。
A general roughening treatment of a copper foil for printed wiring boards is formed in the following form.
First, a copper foil is used as a cathode in a sulfuric acid copper bath, and an insoluble anode is arranged opposite to the treated surface, and a copper dendrite is formed at a current equal to or higher than the limit current density. This one-step treatment is also called “bake plating”, and it is dendritic, so it is very easy to fall off powder. If it remains as it is, the adhesive strength with the insulating resin is poor, which causes dents and scratches. Therefore, the dendritic powder is stabilized by further plating in a sulfuric acid copper bath at a limit current density or less. This second-stage process is also called “coating plating”.
Burn plating and coating plating use the same sulfuric acid copper bath, but the limiting current density is not controlled only by current, the copper concentration is adjusted to suitable conditions, and for the burn plating bath, An additive for controlling the precipitation form of the dendritic powder may be used. That is, two types of solutions are used for the two-stage process.
Since burnt plating is poor in adhesion, strict management against powder falling is required until the second-stage coating is sufficiently applied, and processing is usually restricted to one side at a time.
また、一連の処理の陽極としては、通常不溶性陽極が使用される。可溶性陽極では、処理全面への均一な粗化粒子形成が期待できないことや、アノードスラッジの銅箔への影響が懸念され、さらには処理槽内で原料の出し入れを頻繁に行う必要が生じ、作業性が悪い上に、電極位置精度等も安定しないためである。
一方、二次電池集電体用銅箔としては、厚さ10マイクロメートル以下といった薄箔化の要求とともに、その表面に対しても、単位面積あたりの活物質保持量を向上させる要求などが高まってきている。
以上のように、銅箔の片面もしくは両面において種々の要望に答えるべく複雑な粗面化処理が開発されてきている。これまでの粗面化処理に関する技術として、以下の提案がなされている。
Moreover, an insoluble anode is usually used as an anode for a series of treatments. With soluble anodes, the formation of uniform rough particles on the entire processing surface cannot be expected and the influence of anode sludge on the copper foil is a concern. In addition, it is necessary to frequently take in and out raw materials in the processing tank. This is because the electrode position accuracy and the like are not stable.
On the other hand, as a copper foil for a secondary battery current collector, there is a demand for a thin foil having a thickness of 10 micrometers or less, and a demand for improving the amount of active material retained per unit area on the surface also increases. It is coming.
As described above, complicated roughening treatments have been developed to meet various demands on one side or both sides of a copper foil. The following proposals have been made as techniques related to the roughening treatment so far.
例えば下記の特許文献1には、酸性銅電解液中で、銅箔表面に限界電流密度以上の電流密度で陰極処理を施し樹枝状粉末を析出させることによる粗面化処理方法が報告されている。
その後、樹脂状粉単一の処理(ヤケメッキ)では、固着性が乏しく容易に脱落することから、このような欠点を改良する方法として、銅箔表面に形成した樹枝状粉末の上に、さらに被覆メッキ(カプセルメッキ)を施し樹枝状粉末を安定的に固着させる2段粗面化処理方法が、例えば以下の特許文献2及び3に報告されている。
しかし、硫酸銅単純浴からの粗化粒子は、不均一で粗度が高く、エッチング後の基板への残留銅を生じやすい欠点があった。
After that, the single treatment of resinous powder (discoloration plating) is easy to fall off due to poor adhesiveness. Therefore, as a method of improving such a defect, it is further coated on the dendritic powder formed on the copper foil surface. For example, Patent Documents 2 and 3 below report a two-step roughening treatment method in which plating (capsule plating) is performed and the dendritic powder is stably fixed.
However, the roughened particles from the copper sulfate simple bath have the disadvantage that they are non-uniform and high in roughness, and tend to cause residual copper on the substrate after etching.
そこで、これらの方法の欠点を補う技術として、ヒ素、ビスマス、アンチモンを含む酸性銅電解浴から粗面を形成する方法(例えば下記の特許文献4)や、セレン、テルル、ヒ素、アンチモン、ビスマスを含む酸性銅電解浴中で限界電流密度前後で電解する方法(例えば下記の特許文献5)が報告されているが、ヒ素、セレン、テルルのような人体に有害な物質を使用することは環境問題上使用が制限されてきており、再利用あるいは産業廃棄物の観点でも銅箔に含まれる有害成分の蓄積が懸念される。
また、限界電流密度以上であっても固着性を有する粉末形成粗面化処理方法としては、モリブデン、タングステン、ヒ素、ならびに塩素イオン、硝酸イオンを含む、硫酸銅電解浴から粗面を形成する方法(例えば下記の特許文献6)が報告されているが、硝酸含有浴は、そのミスト等により処理装置を著しく腐食し、ランニングコストを損なうという欠点を有している。
更に、上記欠点を補う技術として、モリブデンを含む酸性銅電解浴から粗面を形成する方法(例えば下記の特許文献7)や、クロム、タングステンを含む突起状銅電着物からなる粗面形成方法(例えば下記の特許文献8)が報告されているが、下記の特許文献7〜8に記載されるいずれの粗面化処理も、ヤケメッキの均一性は幾分向上するものの、単一の処理(1段処理)では、固着性が満足出来ないばかりか、粉落ちが発生しやすく、被覆メッキを施し樹枝状粉末を安定的に固着させる2段目の処理が必要であった。
その他の粗面化手段としては、鉱酸の単浴を用いて、圧延銅箔の表面を直流又は交流によって電気化学的にエッチングし、粗面化処理する方法(例えば下記の特許文献9)や、ヤケメッキをパルス電解で行い、粗面化処理する方法(例えば下記の特許文献10)も報告されているが、これら鉱酸の単浴のエッチングや交流電解では、単に銅箔の表面が荒らされるだけであり、近年の高密度プリント配線板用の銅箔として、十分な接着力が得られなかった。また、パルス電解は、特殊な電源が必要であるとともに、被覆メッキを施し樹枝状粉末を安定的に固着させる2段目の処理が必要であった。
更に、下記の特許文献11には、レーザー光による金属箔の粗面化方法が報告されているが、レーザー処理による粗面化処理は処理時間が長く、また、飛沫物が後の積層工程に影響することが懸念され、工業的ではない。
又、下記の特許文献12には、高分子凝集剤を含む酸性銅電解浴から粗面を形成する方法が報告されているが、単一の処理(1段処理)では、固着性が満足出来ないばかりか、粉落ちが発生しやすく、被覆メッキを施し樹枝状粉末を安定的に固着させる2段目の処理が必要であった。
更に、下記の特許文献13には、スルホベンズイミドナトリウム、ベンゾキノリン類、メラミン類、アミノ安息香酸類を含む硫酸酸性銅電解浴から粗面を形成する方法が報告されているが、このうち、ベンゾキノリン類を除く添加剤では、単一の処理(1段処理)では、固着性が満足出来ないばかりか、粉落ちが発生しやすく、被覆メッキを施し樹枝状粉末を安定的に固着させる2段目の処理が必要であった。
ベンゾキノリン類に関しては、その他の公知文献を以下に挙げると、例えば下記の特許文献14には、両面のRzが1〜3μmの銅箔の両面に、長さ0.6〜1.0μmで最大径0.2μm〜0.8μmの逆涙滴状の微細なこぶが設けられているプリント配線板用銅箔が開示され、この粗面化粒子を形成するために、硫酸酸性浴中にα-ナフトキノリンを50mg/l添加し、10A/dm2で10秒間の電解処理が実施例として報告されている。しかし、この特許文献17記載の処理においては被覆メッキが施されており、この条件では粉落ちの危険性を有していることが読みとれる。
Regarding benzoquinolines, other known documents are listed below. For example, in Patent Document 14 below, the length of 0.6 to 1.0 μm and the maximum diameter of 0.2 μm are provided on both sides of a copper foil having Rz of 1 to 3 μm on both sides. Disclosed is a copper foil for printed wiring boards provided with fine droplets having a reverse teardrop-like shape of ~ 0.8 μm. In order to form the roughened particles, α-naphthoquinoline is added in a sulfuric acid acidic bath to 50 mg / l. An electrolysis treatment at 10 A / dm2 for 10 seconds was reported as an example. However, in the process described in Patent Document 17, coating plating is applied, and it can be read that there is a risk of powder falling under these conditions.
又、下記の特許文献15には、電解銅箔の光沢面側(S面側)にコブ付け処理(粗面化処理)がなされ、粗面側(M面側)は針状またはコブ状の微小電着突起物を形成して微細で均一なコブ付け処理がなされた高密度多層プリント回路内層用銅箔が開示され、このM面側の処理として硫酸酸性浴中にα-ナフトキノリンを50mg/l添加し、10A/dm2で10秒間の電解処理が実施例として報告されている。この条件では、被覆メッキが無い状態での評価がなされており、ベンゾキノリン類については、比較例を交え詳細に検討を行った。
更に、下記の特許文献16には、チオン酸、チオ硫酸塩、チオン酸塩を含む硫酸酸性銅電解浴から粗面を形成する方法が報告されているが、硫黄含有光沢メッキ剤やチオ無機化合物に対して不溶性陽極を適応すると、陽極からの酸素発泡により、添加物の消耗速度が非常に速く、浴が安定せず、さらに分解生成物を連続的に除去する必要もあった。
その他、弱酸性銅浴からの粗面化処も数多く提案されているが、可溶性陽極が必要である場合が多く、また、限界電流付近の電流をかけた場合、液の組成安定性に欠け、長尺箔を処理する場合、前後で特性がばらつき、安定させるための特別な機構が必要であるとの欠点があった。
Furthermore, in Patent Document 16 below, a method for forming a rough surface from a sulfuric acid copper electrolytic bath containing thionic acid, thiosulfate, and thionate is reported. When the insoluble anode was applied to the anode, the consumption rate of the additive was very fast due to oxygen foaming from the anode, the bath was not stable, and the decomposition products had to be continuously removed.
In addition, many roughening treatments from weakly acidic copper baths have been proposed, but a soluble anode is often necessary, and when a current near the limit current is applied, the composition stability of the liquid is lacking. When a long foil is processed, there is a drawback in that a special mechanism is required to stabilize the characteristics before and after the dispersion.
この他、下記の特許文献17に代表される酸化銅の針状粒子を形成する処理(黒化処理)は、プリント配線板用途であっても、その後の化学的接着力、耐熱、耐薬品性及び防錆性を付与することを目的とした多くの電解表面処理が適応できない。
プリント配線板の基板材料において、ハロゲン元素やアンチモンを使用しない、環境性を重視した基板材料や、鉛フリーはんだ対応の高耐熱基板材料が着目されるようになったが、これら樹脂に対する、銅箔の密着力は十分でなかった。また、モバイル電子機器の高機能化に伴い、高周波特性や配線の高密度化を満足させるため、銅箔の厚さを薄く、銅箔表面を低粗度で均一に粗面化することが求められているが、従来の粗面化処理工程では、処理時間が長く、複数段必要であったため、薄箔に対する通箔性が悪く、また、粗化粒子が不均一なため粗度が高く、さらに工程途中で粗化粒子脱落の危険性もあり、粗面特性に加え、生産性及び歩留まりの改善が求められていた。
また、二次電池集電体用銅箔としては、厚さ10マイクロメートル以下といった薄箔化の要求とともに、その表面に対しても、単位面積あたりの活物質保持量を向上させる要求などが高まってきている。
In PCB materials for printed wiring boards, environmentally-friendly substrate materials that do not use halogen elements or antimony, and high heat-resistant substrate materials that are compatible with lead-free solder, have attracted attention. The adhesion of was not enough. In addition, as mobile electronic devices become more functional, in order to satisfy high-frequency characteristics and higher wiring density, it is necessary to reduce the thickness of the copper foil and uniformly roughen the copper foil surface with low roughness. However, in the conventional roughening treatment process, because the treatment time is long and a plurality of stages are required, the foil permeability to the thin foil is poor, and the roughness is high because the roughened particles are uneven, In addition, there is a risk of roughening particles falling off during the process, and in addition to rough surface characteristics, improvement in productivity and yield has been demanded.
As for copper foils for secondary battery current collectors, there is a demand for reducing the thickness of 10 micrometers or less, as well as for increasing the active material retention per unit area on the surface. It is coming.
そこで、本発明は、短時間で、粗化粒子の脱落危険性のない、均一な粗化粒子が得られ、低粗度で、高い密着力を有し、薄箔に対する通箔性を向上させた銅箔を製造するのに適した表面処理方法(粗面化処理方法)を提供することを目的とする。又、本発明の目的は、このような粗面化処理を実施するのに適した粗面化処理液を提供することでもある。 Therefore, the present invention can obtain uniform roughened particles in a short period of time without risk of falling off of the roughened particles, has low roughness, high adhesion, and improves foilability for thin foils. An object of the present invention is to provide a surface treatment method (roughening treatment method) suitable for producing copper foil. Another object of the present invention is to provide a roughening solution suitable for carrying out such a roughening treatment.
銅箔の表面を粗面化処理するための本発明の粗面化処理方法は、
工程A:粗面化処理のための処理液として、分子中に下記の化学構造:
The roughening treatment method of the present invention for roughening the surface of the copper foil,
Step A: As a treatment liquid for roughening treatment, the following chemical structure in the molecule:
を含み、かつ2つ以上の環式構造を有する複素環式化合物である粗面化添加物質の少なくとも1種を含有した硫酸酸性溶液を調製する工程、及び
工程B:前記硫酸酸性溶液を用いて銅箔の片面もしくは両面を限界電流密度以上で陰極処理し、前記銅箔表面に銅の突起状電着物を形成させる工程
を含むことを特徴とする。
And a step of preparing a sulfuric acid acidic solution containing at least one roughening additive substance which is a heterocyclic compound having two or more cyclic structures, and Step B: using the sulfuric acid acidic solution It includes a step of cathodic treatment on one or both sides of the copper foil at a limit current density or more to form a copper protruding electrodeposit on the surface of the copper foil.
又、本発明は、上記の粗面化処理方法において、前記粗面化添加物質が、水溶液中で1価の銅イオンと錯形成し、かつ14以上の全安定度定数βを有する物質であることを特徴とするものでもある。
更に、本発明の粗面化処理方法は、使用される前記粗面化添加物質が、フェナントロリン、ピリジル、又はこれらの誘導体であることを特徴とするものでもあり、前記粗面化添加物質が、1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4,7-ジヒドロキシ-1,10-フェナントロリン、2,2'-ビピリジル及びテルピリジンから成るグループより選ばれたものであることを特徴とするものでもある。これら化合物の化学構造は、下記に示すとおりである。
Further, the present invention is the above-mentioned roughening treatment method, wherein the roughening additive substance is complexed with monovalent copper ions in an aqueous solution and has a total stability constant β of 14 or more. It is also a feature.
Furthermore, the roughening treatment method of the present invention is characterized in that the roughening additive used is phenanthroline, pyridyl, or a derivative thereof, and the roughening additive is 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 4, It is also characterized in that it is selected from the group consisting of 7-dihydroxy-1,10-phenanthroline, 2,2′-bipyridyl and terpyridine. The chemical structures of these compounds are as shown below.
又、銅箔の表面を粗面化処理する際に使用される本発明の粗面化処理液は、分子中に下記の化学構造: In addition, the roughening solution of the present invention used when roughening the surface of the copper foil has the following chemical structure in the molecule:
を含み、かつ2つ以上の環式構造を有する複素環式化合物である粗面化添加物質の少なくとも1種を含有した硫酸酸性溶液であることを特徴とする。
更に、本発明は、上記の粗面化処理液中に含有される粗面化添加物質が、水溶液中で1価の銅イオンと錯形成し、かつ14以上の全安定度定数βを有する物質であることを特徴とするものでもある。
And a sulfuric acid acidic solution containing at least one roughening additive substance which is a heterocyclic compound having two or more cyclic structures.
Furthermore, the present invention provides a material in which the surface roughening additive contained in the surface roughening treatment liquid is complexed with monovalent copper ions in an aqueous solution and has a total stability constant β of 14 or more. It is also characterized by being.
本発明では、銅箔の粗面化処理に関し、水溶液中で1価の銅イオンと錯形成し、その全安定度定数βが14以上である物質を少なくとも1種以上含む硫酸酸性溶液を用い、限界電流密度以上で陰極処理することにより、短時間で、粗化粒子の脱落危険性のない、密着力の高い、低粗度で均一な粗化粒子が得られ、薄箔に対する生産性を向上させることが可能となる。
又、本発明の粗面化処理方法の場合、カバーメッキの必要がないために、カバーメッキ工程を含む従来の方法に比べて工程が減り、粗面化粒子形成の総工程時間を短縮化することが可能である。更に、本発明の方法では、くぼみや押し傷の原因となる粉落ちに対する厳重な管理の必要がなく、銅箔の両面を同時に粗面化することも可能である。
In the present invention, regarding the roughening treatment of the copper foil, a sulfuric acid acidic solution containing at least one substance complexed with monovalent copper ions in an aqueous solution and having a total stability constant β of 14 or more is used. Cathodic treatment at or above the limiting current density provides high-adhesion, low-roughness, uniform roughened particles with a high adhesion and no risk of roughened particles falling off, improving productivity for thin foils. It becomes possible to make it.
Further, in the case of the roughening treatment method of the present invention, since cover plating is not necessary, the number of processes is reduced compared to the conventional method including the cover plating process, and the total process time for roughening particle formation is shortened. It is possible. Furthermore, in the method of the present invention, there is no need for strict management against powder falling that causes dents and dents, and both surfaces of the copper foil can be roughened simultaneously.
本発明の粗面化処理方法を具体的に記すと、未処理銅箔に対して、圧延銅箔である場合は脱脂処理し、酸洗浄し、硫酸酸性電解浴中にて、限界電流密度以上で陰極電解し、表面に固着性の高い突起状電着物を形成する。この後、NiやCo、Zn、単体/合金などの無機被膜形成処理、クロメート処理、アゾール類等の有機皮膜形成処理及びシランカップリング剤による処理の内少なくとも1つの防錆処理・密着性向上処理・耐熱・耐薬品処理が施される。
前記硫酸酸性電解浴中に含まれる錯形成添加物、すなわち、水溶液中で1価の銅イオンと錯形成し、その全安定度定数βが14以上である物質は、「化学便覧(基礎編)日本化学会」や、「L.G.Sillen, A.E.Martell, "Stability Constants of Metal Ion Complexes" 1964,The Chem.Soc.」、「Stability constants of metal-ion complexes, Erik Hogfeldt, Oxford; NewYork: Pergamon Press」等で、錯体の安定度定数(生成定数)の項目で知ることが出来る。
Specifically describing the roughening treatment method of the present invention, untreated copper foil, if it is a rolled copper foil, degreased, acid washed, in a sulfuric acid acidic electrolytic bath, more than the limit current density Cathodic electrolysis is performed to form a highly electrodeposited electrodeposit on the surface. After this, at least one of rust prevention treatment and adhesion improvement treatment among inorganic film formation treatment such as Ni, Co, Zn, simple substance / alloy, chromate treatment, organic film formation treatment such as azoles, and treatment with silane coupling agent. -Heat and chemical resistant treatment is applied.
The complexing additive contained in the sulfuric acid acidic electrolytic bath, that is, a substance that forms a complex with monovalent copper ions in an aqueous solution and has a total stability constant β of 14 or more is described in “Chemical Handbook (Basic)” The Chemical Society of Japan, LGSillen, AEMartell, "Stability Constants of Metal Ion Complexes" 1964, The Chem. Soc., "Stability constants of metal-ion complexes, Erik Hogfeldt, Oxford; NewYork: Pergamon Press" It can be found in the item of the stability constant (generation constant) of the complex.
本発明の粗面化処理方法において使用される硫酸酸性溶液(粗面化処理液)中に含有される粗面化添加物質は、分子中に前記〔化1〕の化学構造を含み、かつ2つ以上の環式構造を有する複素環式化合物であるが、さらには、水溶液中で1価の銅イオンと錯形成し、その全安定度定数βが14以上である物質で、この物質は有機配位子であり、さらには、窒素塩基配位子であって、フェナントロリン、ピリジル、又はこれらの誘導体から選ばれることが好ましい。
本発明の粗面化処理液中に含有される具体的な粗面化添加物質としては、1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン(バソフェナントロリン)、2,9-ジメチル-1,10-フェナントロリン(ネオクプロイン)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(バソクプロイン)、4,7-ジヒドロキシ-1,10-フェナントロリン、2,2'-ビピリジル、テルピリジンが挙げられる。
下記の実施例および比較例の一部に用いた物質の全安定度定数βの値を以下に示す。
1,10-フェナントロリン β=15.82
2,2'-ビピリジル β=14.35
ヒスチジン β=6.20
この他、これまでに良く知られているCu(I)錯体の有機配位子としては、1,2-フェニレンジアミン、ジメチルグリオキシム等が挙げられるが、全安定度定数βが14未満である化合物を用いても本発明の効果は得られない。
The roughening additive contained in the sulfuric acid acidic solution (roughening solution) used in the roughening treatment method of the present invention contains the chemical structure of [Chemical Formula 1] in the molecule, and 2 It is a heterocyclic compound having one or more cyclic structures, but it is also a substance that forms a complex with monovalent copper ions in an aqueous solution and has a total stability constant β of 14 or more. It is a ligand, more preferably a nitrogen base ligand, preferably selected from phenanthroline, pyridyl, or derivatives thereof.
Specific examples of the surface roughening additive contained in the surface roughening treatment liquid of the present invention include 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline (vasophenanthroline), 2,9- Dimethyl-1,10-phenanthroline (neocuproin), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (basocuproin), 4,7-dihydroxy-1,10-phenanthroline, 2,2'-bipyridyl And terpyridine.
The values of the total stability constant β of the substances used in the following examples and comparative examples are shown below.
1,10-phenanthroline β = 15.82
2,2'-bipyridyl β = 14.35
Histidine β = 6.20
Other well-known organic ligands for Cu (I) complexes include 1,2-phenylenediamine, dimethylglyoxime, etc., but the total stability constant β is less than 14. Even if a compound is used, the effect of the present invention cannot be obtained.
尚、本発明の粗面化処理方法における工程Bの陰極電解条件は、電解浴濃度、時間、温度、必要粗面化処理量によって変化するため、特に限定されないが、処理時間1〜10秒、浴温度15〜50℃、電流密度10〜100A/dm2で、電気量としては20〜500coul./dm2が適当である。
また、粗面化処理液中の粗面化添加物質の濃度は、その種類によって最適範囲が異なるが、1,10-フェナントロリン1水和物を例に取れば、10mg/lから溶解限界の3g/lが好ましい。粗化粒子の形状は球形に近く、その粒子径は、添加濃度によって変化し、添加濃度が低い側では、粒子径は約1μmであるのに対し、濃度が高い領域では、さらに粒子径は小さくなる。また、粒子径は素地の粗度にも影響され、平滑性の高い素地に対しては、粒子径が小さくなる傾向がある。
つまり、本発明の粗面化添加物質(錯形成添加物)は、その濃度によって、形成できる粗化粒子の径を変化させることが可能で、低濃度側(例えば10mg/l)の場合は、プリント配線板用では、ハロゲンフリー基板材料や高耐熱基板材料などの従来ピールの出にくい基板材料に対して有効で、二次電池用電極用としても有用である。逆に、高濃度側(例えば3g/l)の場合は、プリント配線板用では銅箔表面の平滑性が追求される高周波基板材料に特に有効であり、既に粗面化処理された表面にさらに表面積を大きくする処理としても有効である。
Incidentally, the cathode electrolysis conditions of step B in the surface roughening treatment method of the present invention are not particularly limited because they vary depending on the electrolytic bath concentration, time, temperature, and required surface roughening treatment amount, but the treatment time is 1 to 10 seconds, A bath temperature of 15 to 50 ° C., a current density of 10 to 100 A / dm 2, and an electric quantity of 20 to 500 coul./dm 2 are appropriate.
In addition, the concentration range of the surface roughening additive in the surface roughening solution varies depending on the type, but taking 1,10-phenanthroline monohydrate as an example, the concentration limit is 10 mg / l to 3 g, the solubility limit. / l is preferred. The shape of the roughened particles is almost spherical, and the particle size varies depending on the addition concentration. The particle size is about 1 μm on the side where the addition concentration is low, whereas the particle size is smaller in the region where the concentration is high. Become. The particle size is also affected by the roughness of the substrate, and the particle size tends to be small for a substrate with high smoothness.
That is, the surface roughening additive (complexing additive) of the present invention can change the diameter of the roughened particles that can be formed depending on its concentration. In the case of the low concentration side (for example, 10 mg / l), For printed wiring boards, it is effective for conventional substrate materials that do not easily peel, such as halogen-free substrate materials and high heat-resistant substrate materials, and is also useful for electrodes for secondary batteries. On the other hand, in the case of the high concentration side (for example, 3 g / l), it is particularly effective for high-frequency board materials for which the smoothness of the copper foil surface is sought for printed wiring boards. It is also effective as a process for increasing the surface area.
また、前記粗面化添加物質に併用して、遷移金属元素を少なくとも1種以上添加することによって、粒径0.5μm程度かそれ以下のさらに微細な粗面化粒子が得られる。
遷移金属元素として、好適にはタングステン、モリブデン、チタンが挙げられる。
以下、本発明の好ましい実施形態について実施例および比較例に基づいて説明する。
Further, by using at least one transition metal element in combination with the roughening additive material, finer roughening particles having a particle size of about 0.5 μm or less can be obtained.
Preferred examples of the transition metal element include tungsten, molybdenum, and titanium.
Hereinafter, preferred embodiments of the present invention will be described based on examples and comparative examples.
以下の実施例および比較例で行った表面処理工程は、表1に示す未処理銅箔を、表2に示す(A)から(D)までの各工程に水洗浄を挟みながら行った。また、最後に温風による乾燥を行った。
表3には、実施例および比較例で用いた未処理銅箔種類、および本発明に関わる粗面化処理の詳細な条件を示す。
The surface treatment process performed in the following examples and comparative examples was performed using the untreated copper foil shown in Table 1 with water washing interposed between the processes (A) to (D) shown in Table 2. Finally, drying with warm air was performed.
Table 3 shows the untreated copper foil types used in the examples and comparative examples, and the detailed conditions of the roughening treatment according to the present invention.
実施例1〜8は、分子中に前記〔化1〕の化学構造を含み、かつ2つ以上の環式構造を有する複素環式化合物であって、水溶液中で1価の銅イオンと錯形成し、その全安定度定数βが14以上である物質を用いた場合を示し、これに対して、比較例1および2は、添加剤を全く加えない場合、比較例3〜7は、ベンゾキノリン類を添加した場合、比較例8は、1価の銅イオンと錯形成し、その全安定度定数βが14未満である物質を添加した場合を示す。尚、表3に示す添加剤はいずれも、東京化成工業製の試薬を用いた。
以下の表4に、表面特性を比較した結果を示す。
Examples 1 to 8 are heterocyclic compounds containing the chemical structure of [Chemical Formula 1] in the molecule and having two or more cyclic structures, and complexed with monovalent copper ions in an aqueous solution. In the case where a substance having a total stability constant β of 14 or more is used, in contrast, Comparative Examples 1 and 2 have no additives, and Comparative Examples 3 to 7 have benzoquinolines. Comparative Example 8 shows the case where a substance which is complexed with monovalent copper ions and whose total stability constant β is less than 14 is added. In addition, as for the additive shown in Table 3, all the reagents made from Tokyo Chemical Industry were used.
Table 4 below shows the results of comparing the surface characteristics.
上記表4において、粉落ち性の評価は、JIS H8504規格15.1テープ試験方法を参考にした。試験用テープは15.1.2に記載のテープを使用し、固定された試料の粗面化処理面に対し、15.1.4の(1)〜(3)に記載の方法によった。判定は、引き剥がしたテープの粘着面に粗化粒子の付着が著しい場合を「×」、軽微な場合を「△」、無ければ「○」とした。
粉落ち性が「×」以外の場合の表面粗度を粗度Rzとして併記した。粗度Rzは、JIS B0601規格に準拠し、小坂研究所製サーフコーダーSE1700αを用いて測定した。
代表的な粗化処理粒子の形状を図1において写真で示す。尚、粗化処理粒子の形状はいずれも、電子顕微鏡によって斜め40度の方向から撮影した。
図1の実施例1の写真では、本発明における粗面化添加物質の効果によって球状粒子が形成されているが、無添加の比較例1の場合には、樹枝状粉末の析出が認められた。また、図1の実施例8では、球状の微細粒子が均一に形成されている様子が観察された一方、ベンゾキノリン類を添加した場合(比較例4)には、粉落ちしやすい、高さ方向へ伸びた樹枝状の針状に近い成長が観察され、不均一な粗化粒子も観察された。更に、全安定度定数βが14未満であるヒスチジンを添加した場合には、幾分成長を抑えられた感もあるが樹枝状の不均一形状であった。
In Table 4 above, the evaluation of powder fall-off was based on the JIS H8504 standard 15.1 tape test method. As the test tape, the tape described in 15.1.2 was used, and the method described in (1) to (3) of 15.1.4 was applied to the roughened surface of the fixed sample. The judgment was “X” when the roughened particles were markedly attached to the adhesive surface of the peeled tape, “△” when it was slight, and “◯” when it was not.
The surface roughness when the powdering property is other than “x” is also shown as roughness Rz. Roughness Rz was measured using a surf coder SE1700α manufactured by Kosaka Laboratory in accordance with JIS B0601 standard.
The shape of typical roughened particles is shown by a photograph in FIG. In addition, all the shape of the roughening process particle | grains was image | photographed from the direction of 40 degrees diagonally with the electron microscope.
In the photograph of Example 1 in FIG. 1, spherical particles are formed by the effect of the roughening additive material in the present invention, but in the case of Comparative Example 1 without addition, precipitation of dendritic powder was observed. . Further, in Example 8 of FIG. 1, it was observed that spherical fine particles were uniformly formed. On the other hand, when benzoquinolines were added (Comparative Example 4), the height was easy to fall off. Growth similar to dendritic needles extending in the direction was observed, and uneven coarse particles were also observed. Furthermore, when histidine having a total stability constant β of less than 14 was added, the growth was somewhat suppressed, but the dendritic shape was uneven.
さらに、基材との密着性を、従来の2段処理を例にとり、比較例1で得られた銅箔と比較した。
表2の(B)粗面化処理工程を、以下の条件で行ったこと以外、実施例1と同様の未処理銅箔および工程とした。得られた粗面Rzは、10.2μmであった。
・従来例の粗面化処理工程
(1段目)ヤケメッキ
銅濃度13g/L、酸濃度100g/L、塩素濃度10ppm、温度30℃、電流密度50ASD、時間3秒
(2段目)カバーメッキ
銅濃度65g/L、酸濃度100g/L、塩素濃度40ppm、温度30℃、電流密度10ASD、時間27秒
密着強度の評価は、高耐熱多層用基板材料に積層し、IPC-TM-650規格2.4.8.5に準拠し、引き剥がし密着強度を測定した。
その結果、従来例では引き剥がし密着強度が0.97kN/mであったが、実施例1の銅箔の場合には1.25kN/mであった。
Furthermore, the adhesiveness with the base material was compared with the copper foil obtained in Comparative Example 1 by taking the conventional two-stage treatment as an example.
(B) The roughening process of Table 2 was made into the untreated copper foil and process similar to Example 1 except having performed on the following conditions. The obtained rough surface Rz was 10.2 μm.
・ Roughening treatment process of the conventional example (first stage) burnt copper concentration 13g / L, acid concentration 100g / L, chlorine concentration 10ppm, temperature 30 ℃, current density 50ASD, time 3 seconds (second stage) cover plated copper Concentration 65g / L, Acid concentration 100g / L, Chlorine concentration 40ppm, Temperature 30 ° C, Current density 10ASD, Time 27 seconds Adhesion strength was evaluated by stacking on high heat resistant multilayer board material, IPC-TM-650 standard 2.4. In accordance with 8.5, the peel adhesion strength was measured.
As a result, in the conventional example, the peel adhesion strength was 0.97 kN / m, but in the case of the copper foil of Example 1, it was 1.25 kN / m.
以上の結果より、ベンゾキノリン類を用いた場合、電気量が小さい(粗化粒子の形成量が少ない)場合、1段処理であっても確かに固着性は無添加状態よりは改善されていたが、粉落ちは認められ、さらに接着強度も低く、近年のプリント配線板用途としては満足できるレベルではなかった。電気量を上げ(粗化粒子の形成量を上げ)、接着強度の向上を図った場合は、粉落ちが激しくなり、到底1段処理で使用できるレベルではなかった。
又、水溶液中で1価の銅イオンと錯形成し、その全安定度定数βが14未満である物質を添加した場合は、効果が浅く、全安定度定数βが14以上必要であることが示された。
このようにして、分子中に前記〔化1〕の化学構造を含み、かつ2つ以上の環式構造を有する複素環式化合物であって、水溶液中で1価の銅イオンと錯形成し、その全安定度定数βが14以上である物質を少なくとも1種以上含む硫酸酸性溶液を用い、銅箔の片面もしくは両面を限界電流密度以上で陰極処理し、銅の突起状電着物を形成することによって、プリント配線板用途や二次電池電極用途として、非常に有用な銅箔を提供することができる。
From the above results, when benzoquinolines are used, if the amount of electricity is small (the amount of roughened particles is small), the sticking property is certainly improved from the additive-free state even in one-stage treatment. However, powder fall was recognized and the adhesive strength was also low, and it was not a satisfactory level for recent printed wiring board applications. When the amount of electricity was increased (the amount of roughened particles formed was increased) and the adhesive strength was improved, powder falling became severe, and it was not at a level that could be used in one-step processing.
In addition, when a substance that forms a complex with monovalent copper ions in an aqueous solution and has a total stability constant β of less than 14 is added, the effect is shallow, and the total stability constant β must be 14 or more. Indicated.
Thus, a heterocyclic compound containing the chemical structure of [Chemical Formula 1] in the molecule and having two or more cyclic structures, which is complexed with a monovalent copper ion in an aqueous solution, Using a sulfuric acid acidic solution containing at least one substance having a total stability constant β of 14 or more, one side or both sides of the copper foil is cathodized at a limit current density or more to form a copper protruding electrodeposition Therefore, it is possible to provide a very useful copper foil as a printed wiring board application or a secondary battery electrode application.
本発明の粗面化処理方法及び粗面化処理液を用いることにより、短時間で、粗化粒子の脱落危険性のない、密着力の高い、低粗度で均一な粗化粒子が得られ、薄箔に対する生産性を向上させることが可能である。 By using the roughening treatment method and the roughening treatment liquid of the present invention, uniform roughened particles with high adhesion, low roughness and no risk of falling off of the roughened particles can be obtained in a short time. It is possible to improve the productivity for thin foils.
Claims (6)
工程A:粗面化処理のための処理液として、分子中に下記の化学構造:
を含み、かつ2つ以上の環式構造を有する複素環式化合物である粗面化添加物質の少なくとも1種を含有した硫酸酸性溶液を調製する工程、及び
工程B:前記硫酸酸性溶液を用いて銅箔の片面もしくは両面を限界電流密度以上で陰極処理し、前記銅箔表面に銅の突起状電着物を形成させる工程
を含むことを特徴とする銅箔の粗面化処理方法。 A method for roughening the surface of a copper foil, the method comprising:
Step A: As a treatment liquid for roughening treatment, the following chemical structure in the molecule:
And a step of preparing a sulfuric acid acidic solution containing at least one roughening additive substance which is a heterocyclic compound having two or more cyclic structures, and Step B: using the sulfuric acid acidic solution A method for roughening a copper foil, comprising a step of cathodic treatment of one or both sides of the copper foil at a limit current density or more to form a copper protrusion electrodeposit on the surface of the copper foil.
を含み、かつ2つ以上の環式構造を有する複素環式化合物である粗面化添加物質の少なくとも1種を含有した硫酸酸性溶液であることを特徴とする銅箔の粗面化処理液。 A roughening treatment liquid used for roughening the surface of a copper foil, wherein the roughening treatment liquid has the following chemical structure in the molecule:
A copper foil roughening treatment solution comprising a sulfuric acid acidic solution containing at least one kind of a roughening additive substance, which is a heterocyclic compound having two or more cyclic structures.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005117990A JP4709575B2 (en) | 2005-04-15 | 2005-04-15 | Copper foil roughening treatment method and roughening treatment liquid |
CNB2005100785671A CN100572608C (en) | 2005-04-15 | 2005-06-17 | The asperities treatment process of Copper Foil and asperities treatment solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005117990A JP4709575B2 (en) | 2005-04-15 | 2005-04-15 | Copper foil roughening treatment method and roughening treatment liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006299291A true JP2006299291A (en) | 2006-11-02 |
JP4709575B2 JP4709575B2 (en) | 2011-06-22 |
Family
ID=35821606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005117990A Active JP4709575B2 (en) | 2005-04-15 | 2005-04-15 | Copper foil roughening treatment method and roughening treatment liquid |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4709575B2 (en) |
CN (1) | CN100572608C (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009145207A1 (en) * | 2008-05-28 | 2009-12-03 | 三井金属鉱業株式会社 | Copper-foil roughening treatment and copper foil for printed circuit boards obtained using said treatment |
CN102212853A (en) * | 2011-04-30 | 2011-10-12 | 山东金宝电子股份有限公司 | Surface treatment coarsening process for improving peel strength of copper foil |
JP2013053336A (en) * | 2011-09-02 | 2013-03-21 | Ishihara Chem Co Ltd | Electrolytic copper plating bath and electronic part having electrodeposited film formed by the bath |
WO2013047272A1 (en) * | 2011-09-30 | 2013-04-04 | Jx日鉱日石金属株式会社 | Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil |
WO2014045798A1 (en) * | 2012-09-18 | 2014-03-27 | 住友電気工業株式会社 | Method for producing aluminum film |
JPWO2013084929A1 (en) * | 2011-12-07 | 2015-04-27 | 株式会社シンク・ラボラトリー | Processing unit with condenser and fully automatic gravure plate making system using the same |
JP2016188431A (en) * | 2016-06-06 | 2016-11-04 | Jx金属株式会社 | Copper foil for printed circuit |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101505623B1 (en) * | 2007-09-19 | 2015-03-24 | 우에무라 고교 가부시키가이샤 | Manufacture method of buildup circuit board |
JP5033979B1 (en) * | 2011-09-29 | 2012-09-26 | ユケン工業株式会社 | Acidic aqueous composition for plating comprising tin |
US9955583B2 (en) * | 2013-07-23 | 2018-04-24 | Jx Nippon Mining & Metals Corporation | Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board |
CN111074317B (en) * | 2019-12-30 | 2022-02-18 | 禹象铜箔(浙江)有限公司 | Surface treatment method of copper foil and copper foil material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10330983A (en) * | 1997-05-30 | 1998-12-15 | Fukuda Metal Foil & Powder Co Ltd | Electrolytic copper foil and its production |
JP2000273684A (en) * | 1999-03-26 | 2000-10-03 | Ishihara Chem Co Ltd | Electrolytic copper plating bath and semiconductor device forming copper wiring by the plating bath |
JP2001152387A (en) * | 1999-09-16 | 2001-06-05 | Ishihara Chem Co Ltd | Void-free copper plating method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08222857A (en) * | 1995-02-16 | 1996-08-30 | Mitsui Mining & Smelting Co Ltd | Copper foil and high-density multilayered printed circuit board using the foil for its internal-layer circuit |
JP2002069691A (en) * | 2000-08-31 | 2002-03-08 | Nippon Denkai Kk | Method for manufacturing copper foil for printed circuit board |
-
2005
- 2005-04-15 JP JP2005117990A patent/JP4709575B2/en active Active
- 2005-06-17 CN CNB2005100785671A patent/CN100572608C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10330983A (en) * | 1997-05-30 | 1998-12-15 | Fukuda Metal Foil & Powder Co Ltd | Electrolytic copper foil and its production |
JP2000273684A (en) * | 1999-03-26 | 2000-10-03 | Ishihara Chem Co Ltd | Electrolytic copper plating bath and semiconductor device forming copper wiring by the plating bath |
JP2001152387A (en) * | 1999-09-16 | 2001-06-05 | Ishihara Chem Co Ltd | Void-free copper plating method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009145207A1 (en) * | 2008-05-28 | 2009-12-03 | 三井金属鉱業株式会社 | Copper-foil roughening treatment and copper foil for printed circuit boards obtained using said treatment |
JP5524833B2 (en) * | 2008-05-28 | 2014-06-18 | 三井金属鉱業株式会社 | Copper foil roughening treatment method and copper foil for printed wiring board obtained by the roughening treatment method |
CN102212853A (en) * | 2011-04-30 | 2011-10-12 | 山东金宝电子股份有限公司 | Surface treatment coarsening process for improving peel strength of copper foil |
JP2013053336A (en) * | 2011-09-02 | 2013-03-21 | Ishihara Chem Co Ltd | Electrolytic copper plating bath and electronic part having electrodeposited film formed by the bath |
WO2013047272A1 (en) * | 2011-09-30 | 2013-04-04 | Jx日鉱日石金属株式会社 | Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil |
JPWO2013047272A1 (en) * | 2011-09-30 | 2015-03-26 | Jx日鉱日石金属株式会社 | Copper foil excellent in adhesiveness with resin, method for producing the same, and printed wiring board or battery negative electrode material using the electrolytic copper foil |
JPWO2013084929A1 (en) * | 2011-12-07 | 2015-04-27 | 株式会社シンク・ラボラトリー | Processing unit with condenser and fully automatic gravure plate making system using the same |
WO2014045798A1 (en) * | 2012-09-18 | 2014-03-27 | 住友電気工業株式会社 | Method for producing aluminum film |
JP2014058715A (en) * | 2012-09-18 | 2014-04-03 | Sumitomo Electric Ind Ltd | Method for producing aluminum film |
JP2016188431A (en) * | 2016-06-06 | 2016-11-04 | Jx金属株式会社 | Copper foil for printed circuit |
Also Published As
Publication number | Publication date |
---|---|
CN1715457A (en) | 2006-01-04 |
CN100572608C (en) | 2009-12-23 |
JP4709575B2 (en) | 2011-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI285686B (en) | Electrolytic copper foil and process for producing electrolytic copper foil, surface treated electrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic | |
KR101154203B1 (en) | Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil | |
KR100389061B1 (en) | Electrolytic copper foil and process producing the same | |
JP3370624B2 (en) | Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil | |
EP2796019B1 (en) | Method for combined through-hole plating and via filling | |
JP3910623B1 (en) | Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board | |
JP3739929B2 (en) | Copper foil for printed wiring board and method for producing the same | |
JP6529684B2 (en) | Surface-treated copper foil and copper-clad laminate using the same | |
JP4709575B2 (en) | Copper foil roughening treatment method and roughening treatment liquid | |
JP3250994B2 (en) | Electrolytic copper foil | |
KR100743512B1 (en) | Method for preparing surface treated copper foil | |
JP3949871B2 (en) | Roughening copper foil and method for producing the same | |
WO2001034880A1 (en) | Electrolytic copper foil with carrier foil and method for manufacturing the same | |
JP2006028635A (en) | Method for manufacturing surface treated copper foil for microfabrication circuit substrate | |
JP3361914B2 (en) | Manufacturing method of copper foil for printed circuit | |
CN102548202B (en) | Roughly-processed copper foil and manufacture method thereof | |
EP2590487A1 (en) | Process to manufacture fine grain surface copper foil with high peeling strength and environmental protection for printed circuit boards | |
CN113795615A (en) | Surface-treated copper foil, copper-clad laminate, and printed wiring board | |
JP2020183565A (en) | Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board | |
US9115441B2 (en) | Process to manufacture surface fine grain copper foil with high peeling strength and environmental protection for printed circuit boards | |
JP3342479B2 (en) | Copper foil surface treatment method | |
JP3046301B1 (en) | Method for producing electrolytic copper foil, electrolytic copper foil, copper-clad laminate and printed wiring board | |
JP2005353919A (en) | Surface-roughening treatment method of copper foil for printed-wiring board | |
JP2005340635A (en) | Rolled copper foil for printed wiring board, and its production process | |
JP2927968B2 (en) | Copper foil for high-density multilayer printed circuit inner layer and high-density multilayer printed circuit board using said copper foil for inner layer circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080201 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080201 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110302 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4709575 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |