Nothing Special   »   [go: up one dir, main page]

JP2006283151A - Semiconductor manufacturing method, and semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing method, and semiconductor manufacturing equipment Download PDF

Info

Publication number
JP2006283151A
JP2006283151A JP2005106266A JP2005106266A JP2006283151A JP 2006283151 A JP2006283151 A JP 2006283151A JP 2005106266 A JP2005106266 A JP 2005106266A JP 2005106266 A JP2005106266 A JP 2005106266A JP 2006283151 A JP2006283151 A JP 2006283151A
Authority
JP
Japan
Prior art keywords
plating
electric field
semiconductor manufacturing
semiconductor substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005106266A
Other languages
Japanese (ja)
Inventor
Yoshitaka Matsui
嘉孝 松井
Naoto Miyashita
直人 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005106266A priority Critical patent/JP2006283151A/en
Publication of JP2006283151A publication Critical patent/JP2006283151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing method and semiconductor manufacturing equipment capable of obtaining satisfactory plating filling properties at the inside of a groove formed in a semiconductor substrate. <P>SOLUTION: The method includes: a process where a semiconductor substrate provided with a groove pattern and an insulating film in which an electrode layer to be a first electrode is formed at least on the inside of the groove pattern is introduced into a plating liquid in which a second electrode is installed; and a process where an a.c. electric field with the frequency of ≥100 Hz is superimposed on a d.c. electric field, and the same is applied between the first and second electrodes so as to form a metallic film on the metal layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば半導体装置におけるCu配線形成工程に用いられるメッキ技術に関する。   The present invention relates to a plating technique used in, for example, a Cu wiring forming process in a semiconductor device.

近年、半導体装置において用いられるCu配線の形成技術として、電解メッキプロセスが用いられている(例えば特許文献1参照)。図11に示すように、配線の形成される溝と電極となるCu層が形成された被処理半導体基板103を、メッキ液が供給されたメッキ槽101中に導入し、アノード(Cu材102)−カソード(被処理半導体基板103中のCu層)間に電源104により直流電界を印加することにより、半導体基板表面及び溝内部にCuメッキ膜を形成することができる。   In recent years, an electrolytic plating process has been used as a technique for forming a Cu wiring used in a semiconductor device (see, for example, Patent Document 1). As shown in FIG. 11, a semiconductor substrate 103 to be processed on which a wiring layer and a Cu layer serving as an electrode are formed is introduced into a plating tank 101 supplied with a plating solution, and an anode (Cu material 102). -A Cu plating film can be formed on the surface of the semiconductor substrate and in the groove by applying a DC electric field by the power source 104 between the cathodes (Cu layer in the semiconductor substrate 103 to be processed).

このとき、メッキ液にアクセルルータやサプレッサ、レベラーなどの添加剤を含有させることで、溝内部に選択的にメッキ膜を埋め込む(Gap fill)手法が用いられる。   At this time, an additive such as an accelerator router, a suppressor, or a leveler is added to the plating solution to selectively embed a plating film inside the groove (Gap fill).

しかしながら、半導体素子の微細化に伴い、埋め込み性の確保が困難となる、という問題があった。   However, with the miniaturization of semiconductor elements, there is a problem that it is difficult to ensure embeddability.

このようなプロセス管理のためのモニタリング手段として、メッキ中の電流−電圧の測定が行われている。しかしながら、半導体基板の大口径化による被処理面積の増大に伴い、メッキ液界面抵抗が低下し、これに対する接触抵抗やメッキ液フィルターの電気抵抗等、メッキ膜形成に寄与しない抵抗成分が大きくなるため、良好なモニタ感度を得ることが困難である、という問題があった。
特開2000−173949号公報
As a monitoring means for such process management, current-voltage measurement during plating is performed. However, as the area to be processed increases due to the increase in the diameter of the semiconductor substrate, the plating solution interface resistance decreases, and resistance components that do not contribute to the formation of the plating film, such as contact resistance and the electrical resistance of the plating solution filter, increase. There is a problem that it is difficult to obtain good monitor sensitivity.
JP 2000-173949 A

本発明は、半導体基板に形成された溝内部の良好なメッキ埋め込み性を得ることが可能な半導体製造方法及び半導体製造装置を提供することを目的とするものである。   An object of this invention is to provide the semiconductor manufacturing method and semiconductor manufacturing apparatus which can obtain the favorable plating embedding property inside the groove | channel formed in the semiconductor substrate.

本発明の一態様によれば、溝パターンと、少なくとも前記溝パターン内部に金属層が形成された絶縁膜を備えた第1の電極となる半導体基板を、第2の電極が設置されたメッキ液中に導入する工程と、前記第1、第2の電極間に、直流電界に周波数100Hz以上の交流電界を重畳して印加し、前記金属層上に金属膜を形成する工程を備えることを特徴とする半導体製造方法が提供される。   According to one aspect of the present invention, a plating solution in which a second electrode is disposed on a semiconductor substrate serving as a first electrode that includes a groove pattern and an insulating film in which a metal layer is formed at least inside the groove pattern. And a step of forming a metal film on the metal layer by applying an AC electric field with a frequency of 100 Hz or more superimposed on a DC electric field between the first and second electrodes. A semiconductor manufacturing method is provided.

また、本発明の一態様によれば、メッキ液及び添加剤が供給されるメッキ槽と、溝パターンと、少なくとも前記溝パターン内部に金属層が形成された絶縁膜を備えた第1の電極となる半導体基板を、前記メッキ槽内に導入する手段と、メッキ槽内に設置される第2の電極と、前記第1、第2の電極間に、直流電界に周波数100Hz以上の交流電界を重畳して印加する手段を備えることを特徴とする半導体製造装置が提供される。     According to another aspect of the present invention, a plating tank to which a plating solution and an additive are supplied, a groove pattern, and a first electrode including an insulating film having a metal layer formed at least inside the groove pattern; An AC electric field having a frequency of 100 Hz or more is superimposed on a DC electric field between the means for introducing the semiconductor substrate into the plating tank, the second electrode installed in the plating tank, and the first and second electrodes. Thus, a semiconductor manufacturing apparatus is provided.

本発明の一実施態様によれば、半導体基板に形成された溝内部の良好なメッキ埋め込み性を得ることが可能となる。   According to one embodiment of the present invention, it is possible to obtain a good plating embedding property inside a groove formed in a semiconductor substrate.

以下本発明の実施形態について、図を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施形態1)
図1に本実施形態の半導体製造装置の概念図を示す。図に示すように、メッキ液及び添加剤が供給されるメッキ槽1、その底部にアノード電極(Cu材)2、アノード電極と対向してカソード電極が形成される被処理半導体基板3、アノード−カソード間に直流電界を重畳した交流電界、或いは交流電界を重畳した直流電界を印加する電源4が設置される構造となっている。さらに、メッキ槽上方より被処理半導体基板を導入する基板導入手段5が設置されている。
(Embodiment 1)
FIG. 1 is a conceptual diagram of a semiconductor manufacturing apparatus according to this embodiment. As shown in the figure, a plating tank 1 to which a plating solution and an additive are supplied, an anode electrode (Cu material) 2 at the bottom, a semiconductor substrate 3 to be processed on which a cathode electrode is formed facing the anode electrode, an anode An AC electric field in which a DC electric field is superimposed between the cathodes or a power supply 4 for applying a DC electric field in which the AC electric field is superimposed is installed. Further, substrate introduction means 5 for introducing a semiconductor substrate to be processed from above the plating tank is installed.

このような半導体製造装置を用いて、被処理半導体基板3をCuメッキ処理する。被処理半導体基板3には、予め、図2に示すように、図示しない基板上に絶縁膜3aが形成されており、絶縁膜3aには、RIE(Reactive Ion Etching)により溝パターン3bが形成され、溝内部を含む表面に、夫々スパッタ法によりTa膜3cが10nm、カソード電極となるCu層3dが60nm順次形成されている。   Using such a semiconductor manufacturing apparatus, the semiconductor substrate 3 to be processed is subjected to Cu plating. As shown in FIG. 2, an insulating film 3a is previously formed on the substrate to be processed 3 as shown in FIG. 2, and a groove pattern 3b is formed on the insulating film 3a by RIE (Reactive Ion Etching). On the surface including the inside of the trench, a Ta film 3c and a Cu layer 3d serving as a cathode electrode are sequentially formed by a sputtering method to a thickness of 10 nm and 60 nm, respectively.

先ず、アノード−カソード間に、電源4により3Aの直流電流を重畳した0.3Aの交流電流を印加する。そして、電流の印加された状態で、基板導入手段5を用いて、被処理半導体基板3を、メッキ液が供給されたメッキ槽1中にメッキ液面に対して例えば45°の角度で導入した後、メッキ液中で水平として、Cuメッキ処理を行う。尚、アクセルルータ、サプレッサ、レベラー等の添加剤は適宜添加される。このとき、表1に示すように、周波数を変えてCuメッキ膜を形成する。尚、比較例として、従来と同様に、3Aの直流電流のみによりCuメッキ膜を形成する。
First, an alternating current of 0.3 A, in which a direct current of 3 A is superimposed, is applied between the anode and the cathode by the power source 4. And in the state to which the electric current was applied, using the board | substrate introduction means 5, the to-be-processed semiconductor substrate 3 was introduce | transduced into the plating tank 1 to which the plating liquid was supplied with the angle of 45 degrees with respect to the plating liquid surface, for example. Thereafter, the Cu plating process is performed horizontally in the plating solution. Additives such as accelerator routers, suppressors, and levelers are added as appropriate. At this time, as shown in Table 1, the Cu plating film is formed by changing the frequency. As a comparative example, a Cu plating film is formed only by a direct current of 3 A as in the conventional case.

これら試料1〜3の断面をSEM(Scanning Electron Microscope)観察し、試料1の結果を図3に、試料2の結果を図4に、試料3の結果を図5に夫々示す。図5に示す直流電界のみの試料3においては、絶縁膜3aの溝内部に形成されたCuメッキ膜3e中にボイド6が形成されているのに対し、図3、4に示す交流電界を重畳した試料1、2においては、埋め込み性良く、良好なCuメッキ膜3eが形成されていることがわかる。これはメッキ膜形成メカニズムの周波数依存性に起因すると考えられる。すなわち、従来のような直流電界だけでなく、メッキ膜形成が界面律速となる100Hz以上の交流電界を重畳して印加することにより、良好なCuメッキ膜を形成することが可能となる。   The cross sections of these samples 1 to 3 are observed by SEM (Scanning Electron Microscope), the result of sample 1 is shown in FIG. 3, the result of sample 2 is shown in FIG. 4, and the result of sample 3 is shown in FIG. In the sample 3 having only a DC electric field shown in FIG. 5, the void 6 is formed in the Cu plating film 3e formed in the groove of the insulating film 3a, whereas the AC electric field shown in FIGS. In Samples 1 and 2, it can be seen that a good Cu plating film 3e is formed with good embedding. This is considered due to the frequency dependence of the plating film formation mechanism. That is, it is possible to form a good Cu plating film by applying not only a conventional DC electric field but also an AC electric field of 100 Hz or higher, which is the rate limiting of the plating film formation.

(実施形態2)
本実施形態においては、実施形態1と同様に、図1に示す半導体製造装置を用いて、実施形態1と同様に、RIEにより溝パターンが形成され、溝内部を含む表面に、スパッタ法によりTa膜が10nm、Cu膜が60nm形成された被処理半導体基板に、Cuメッキ処理を行う。このとき、表2に示すように、アノード電極に対しカソード電極を、45°とし、電解条件を変えて、Cuメッキ膜を形成する。
(Embodiment 2)
In the present embodiment, as in the first embodiment, using the semiconductor manufacturing apparatus shown in FIG. 1, as in the first embodiment, a groove pattern is formed by RIE. A Cu plating process is performed on the semiconductor substrate to be processed on which the film is 10 nm and the Cu film is 60 nm. At this time, as shown in Table 2, the cathode electrode is 45 ° with respect to the anode electrode, and the electrolysis conditions are changed to form a Cu plating film.

これら試料4〜6の断面をSEM観察し、試料4の結果を図5に、試料5の結果を図6に、試料6の結果を図7に夫々示す。図6、7に示すように、低周波(125Hz)の交流電界を重畳した試料5、直流電界のみの試料6においては、絶縁膜3aの溝内部に形成されたCuメッキ膜3e中にボイド6が形成されているのに対し、図5に示す高周波(10kHz)の交流電界を重畳した試料4においては、アノード−カソード角が45°と、基板に対する電場の垂直成分が小さくなったにもかかわらず、埋め込み性良く、良好なCuメッキ膜3eが形成されていることがわかる。   The cross sections of these samples 4 to 6 are observed by SEM, the result of sample 4 is shown in FIG. 5, the result of sample 5 is shown in FIG. 6, and the result of sample 6 is shown in FIG. As shown in FIGS. 6 and 7, in the sample 5 on which the low frequency (125 Hz) AC electric field is superimposed and the sample 6 only with the DC electric field, the void 6 is formed in the Cu plating film 3e formed in the groove of the insulating film 3a. In contrast, in the sample 4 on which the high frequency (10 kHz) AC electric field shown in FIG. 5 is superimposed, the anode-cathode angle is 45 °, although the vertical component of the electric field with respect to the substrate is small. It can be seen that a good Cu plating film 3e is formed with good embedding.

メッキ膜形成における電場の方向性の支配は、高周波側で抑制される傾向となり、10kHz程度以上の高周波の交流電界を直流電界に重畳することにより、アノード−カソード角が変動しても、良好なCuメッキ膜を形成することが可能となる。従って、被処理半導体基板をメッキ液中に導入する際などに、アノード−カソード角が変動していても、高周波の交流電界を直流電界に重畳することにより、良好なCuメッキ膜を形成することが可能となる。   Dominance of the directionality of the electric field in plating film formation tends to be suppressed on the high frequency side, and even if the anode-cathode angle fluctuates by superimposing a high frequency AC electric field of about 10 kHz or more on the DC electric field, it is good. A Cu plating film can be formed. Accordingly, even when the anode-cathode angle fluctuates when introducing the semiconductor substrate to be processed into the plating solution, a good Cu plating film is formed by superimposing a high-frequency AC electric field on the DC electric field. Is possible.

これら実施形態において、3Aの直流電流を重畳した0.3Aの交流電流を印加しているが、電流(電圧)は被処理半導体基板の面積などにより適宜設定することができる。また、より良好な埋め込み制御性を得るためには、交流電流(電圧)は、重畳される直流電流(電圧)の2〜20%程度とすることが好ましい。また、周波数は必ずしも固定されている必要はなく、変動させても良い。   In these embodiments, an alternating current of 0.3 A on which a direct current of 3 A is superimposed is applied, but the current (voltage) can be appropriately set depending on the area of the semiconductor substrate to be processed. In order to obtain better embedding controllability, the alternating current (voltage) is preferably about 2 to 20% of the superimposed direct current (voltage). Further, the frequency does not necessarily have to be fixed, and may be varied.

(実施形態3)
図9に本実施形態の半導体製造装置の概念図を示す。図1に示す半導体製造装置とほぼ同様の構成であるが、電流−電圧の位相差を測定する位相差測定手段17を備えている点で異なっている。すなわち、メッキ液及び添加剤が供給されるメッキ槽11、その底部にアノード電極(Cu材)12、アノード電極12と対向してカソード電極となる被処理半導体基板13、アノード−カソード間に直流電界を重畳した交流電界、或いは交流電界を重畳した直流電界を印加する電源14、メッキ槽上方より被処理半導体基板を導入する基板導入手段15、電流−電圧の位相差を測定する位相差測定手段17が設置される構造となっている。
(Embodiment 3)
FIG. 9 shows a conceptual diagram of the semiconductor manufacturing apparatus of the present embodiment. The configuration is almost the same as that of the semiconductor manufacturing apparatus shown in FIG. 1, except that a phase difference measuring means 17 for measuring a current-voltage phase difference is provided. That is, a plating tank 11 to which a plating solution and an additive are supplied, an anode electrode (Cu material) 12 at the bottom, a semiconductor substrate 13 to be treated as a cathode electrode facing the anode electrode 12, and a DC electric field between the anode and the cathode A power source 14 for applying an AC electric field superimposed with a DC electric field or a DC electric field superimposed with an AC electric field, a substrate introducing unit 15 for introducing a semiconductor substrate to be processed from above the plating tank, and a phase difference measuring unit 17 for measuring a current-voltage phase difference. It becomes the structure where is installed.

このような半導体製造装置を用いて、実施形態1と同様に、被処理半導体基板をCuメッキ処理する。被処理半導体基板13には、実施形態1と同様に、予め、半導体基板上に形成された絶縁膜に、RIEにより溝パターンが形成され、溝内部を含む表面に、スパッタ法によりTa膜が10nm、Cu膜が60nm形成されている。   Using such a semiconductor manufacturing apparatus, the semiconductor substrate to be processed is subjected to Cu plating as in the first embodiment. As in the first embodiment, a groove pattern is formed in advance on the semiconductor film 13 to be processed by RIE on an insulating film formed on the semiconductor substrate, and a Ta film is formed on the surface including the inside of the groove by a sputtering method to a thickness of 10 nm. Cu film is formed to 60 nm.

先ず、アノード−カソード間に、電源14により3Aの直流電流を重畳した0.3Aの交流電流を印加するとともに、位相差測定手段17により電流−電圧の位相差を測定する。そして、実施形態1と同様に、電流の印加された状態で、基板導入手段15を用いて、被処理半導体基板13を、メッキ液が供給されたメッキ槽11中にメッキ液面に対して例えば45°の角度で導入した後、メッキ液中で水平として、Cuメッキ処理を行う。このとき、電解条件(メッキ液、周波数)を変えて、電流−電圧の位相差を測定した結果を表3及び図10に示す。
First, a 0.3 A alternating current obtained by superimposing a 3 A direct current is applied between the anode and the cathode by the power source 14, and the phase difference measuring means 17 measures the current-voltage phase difference. Then, similarly to the first embodiment, the substrate introduction means 15 is used to apply the current to the semiconductor substrate 13 to be processed with respect to the plating liquid surface in the plating tank 11 supplied with the plating liquid. After introducing at an angle of 45 °, Cu plating is performed horizontally in the plating solution. Table 3 and FIG. 10 show the results of measuring the current-voltage phase difference while changing the electrolysis conditions (plating solution, frequency).

表3及び図10より、試料8、9のように添加剤を含有するメッキ液を用いたときは、溝内部に優先的にCuメッキ膜が形成されるため、被処理表面積が急峻に変化する。従って、メッキ液との界面の電気二重層の容量が大きく変化し、メッキ初期の位相差の急峻な変化として検出される。一方、試料7のように添加剤を含有しない場合は、表面積変化が小さいため、位相差は徐々に増大し、メッキ初期の急峻な変化は認められない。   From Table 3 and FIG. 10, when a plating solution containing an additive is used as in Samples 8 and 9, since the Cu plating film is preferentially formed inside the groove, the surface area to be treated changes sharply. . Therefore, the capacity of the electric double layer at the interface with the plating solution changes greatly, and this is detected as a steep change in the phase difference at the initial stage of plating. On the other hand, when no additive is contained as in Sample 7, the surface area change is small, so the phase difference gradually increases and no steep change at the initial stage of plating is observed.

従って、メッキ初期の位相差を測定することにより、メッキ膜の形成状況(溝の埋め込み状況)をモニタすることが可能であるとともに、これを支配する添加剤の含有状態(含有の有無)についての知見を得ることができる。また、これらの知見に基づいて、添加剤、電界条件などのメッキ条件を制御することにより、より良好なCuメッキ膜の形成が可能となる。   Therefore, it is possible to monitor the formation state of the plating film (groove filling state) by measuring the phase difference at the initial stage of plating, and the content of the additive (the presence or absence of inclusion) that governs this. Knowledge can be obtained. Further, by controlling plating conditions such as additives and electric field conditions based on these findings, it is possible to form a better Cu plating film.

尚、本発明は、上述した実施形態に限定されるものではない。その他要旨を逸脱しない範囲で種々変形して実施することができる。   In addition, this invention is not limited to embodiment mentioned above. Various other modifications can be made without departing from the scope of the invention.

本発明の一態様における半導体製造装置の概念図。1 is a conceptual diagram of a semiconductor manufacturing apparatus in one embodiment of the present invention. 本発明の一態様における半導体基板の断面を示す図。4A and 4B are cross-sectional views of a semiconductor substrate in one embodiment of the present invention. 本発明の一態様において形成された試料の断面を示す図。FIG. 6 illustrates a cross section of a sample formed in one embodiment of the present invention. 本発明の一態様において形成された試料の断面を示す図。FIG. 6 illustrates a cross section of a sample formed in one embodiment of the present invention. 本発明の一態様において形成された試料の断面を示す図。FIG. 6 illustrates a cross section of a sample formed in one embodiment of the present invention. 本発明の一態様において形成された試料の断面を示す図。FIG. 6 illustrates a cross section of a sample formed in one embodiment of the present invention. 本発明の一態様において形成された試料の断面を示す図。FIG. 6 illustrates a cross section of a sample formed in one embodiment of the present invention. 本発明の一態様において形成された試料の断面を示す図。FIG. 6 illustrates a cross section of a sample formed in one embodiment of the present invention. 本発明の一態様における半導体製造装置の概念図。1 is a conceptual diagram of a semiconductor manufacturing apparatus in one embodiment of the present invention. 本発明の一態様における電圧−電流位相差を示す図。FIG. 6 shows voltage-current phase differences in one embodiment of the present invention. 従来の半導体製造装置の概念図。The conceptual diagram of the conventional semiconductor manufacturing apparatus.

符号の説明Explanation of symbols

1、11,101 メッキ槽
2、12、102 Cu材
3、13、103 被処理半導体基板
4、14、104 電源
5、15 基板導入手段
6 ボイド
17 位相差測定手段
DESCRIPTION OF SYMBOLS 1, 11, 101 Plating tank 2, 12, 102 Cu material 3, 13, 103 Processed semiconductor substrate 4, 14, 104 Power supply 5, 15 Substrate introduction means 6 Void 17 Phase difference measurement means

Claims (5)

溝パターンと、少なくとも前記溝パターン内部に金属層が形成された絶縁膜を備えた第1の電極となる半導体基板を、第2の電極が設置されたメッキ液中に導入する工程と、
前記第1、第2の電極間に、直流電界に周波数100Hz以上の交流電界を重畳して印加し、前記金属層上に金属膜を形成する工程を備えることを特徴とする半導体製造方法。
Introducing a semiconductor substrate to be a first electrode having a groove pattern and an insulating film having at least a metal layer formed in the groove pattern into a plating solution in which a second electrode is installed;
A method of manufacturing a semiconductor, comprising: applying a DC electric field superimposed on a DC electric field between the first and second electrodes to form a metal film on the metal layer.
前記第1、第2の電極間の、電圧−電流位相差をモニタする工程を備えることを特徴とする請求項1に記載の半導体製造方法。   The semiconductor manufacturing method according to claim 1, further comprising a step of monitoring a voltage-current phase difference between the first and second electrodes. 前記メッキ液中に添加剤が供給されることを特徴とする請求項1又は2に記載の半導体製造方法。   The semiconductor manufacturing method according to claim 1, wherein an additive is supplied into the plating solution. メッキ液及び添加剤が供給されるメッキ槽と、
溝パターンと、少なくとも前記溝パターン内部に金属層が形成された絶縁膜を備えた第1の電極となる半導体基板を、前記メッキ槽内に導入する手段と、
メッキ槽内に設置される第2の電極と、
前記第1、第2の電極間に、直流電界に周波数100Hz以上の交流電界を重畳して印加する手段を備えることを特徴とする半導体製造装置。
A plating tank to which a plating solution and additives are supplied;
Means for introducing a semiconductor substrate to be a first electrode provided with a groove pattern and an insulating film having at least a metal layer formed inside the groove pattern into the plating tank;
A second electrode installed in the plating tank;
A semiconductor manufacturing apparatus comprising means for applying an AC electric field having a frequency of 100 Hz or more superimposed on a DC electric field between the first and second electrodes.
前記第1、第2の電極間の、電圧−電流位相差をモニタする手段を備えることを特徴とする請求項4に記載の半導体製造装置。   5. The semiconductor manufacturing apparatus according to claim 4, further comprising means for monitoring a voltage-current phase difference between the first and second electrodes.
JP2005106266A 2005-04-01 2005-04-01 Semiconductor manufacturing method, and semiconductor manufacturing equipment Pending JP2006283151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106266A JP2006283151A (en) 2005-04-01 2005-04-01 Semiconductor manufacturing method, and semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106266A JP2006283151A (en) 2005-04-01 2005-04-01 Semiconductor manufacturing method, and semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JP2006283151A true JP2006283151A (en) 2006-10-19

Family

ID=37405357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106266A Pending JP2006283151A (en) 2005-04-01 2005-04-01 Semiconductor manufacturing method, and semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2006283151A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242861A (en) * 2008-03-31 2009-10-22 Nec Electronics Corp Plating method, method of manufacturing semiconductor device, and plating process system
WO2014188897A1 (en) * 2013-05-20 2014-11-27 東京エレクトロン株式会社 Substrate processing method and template
KR20150004278A (en) * 2013-07-02 2015-01-12 안코시스 게엠베하 In-Situ Fingerprinting for Electrochemical Deposition and/or electrochemical etching
US10480094B2 (en) 2016-07-13 2019-11-19 Iontra LLC Electrochemical methods, devices and compositions
CN116536745A (en) * 2022-05-20 2023-08-04 武汉铢寸科技有限公司 Method and device for fabricating nanopores in membrane and device for generating superimposed electric field

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242861A (en) * 2008-03-31 2009-10-22 Nec Electronics Corp Plating method, method of manufacturing semiconductor device, and plating process system
WO2014188897A1 (en) * 2013-05-20 2014-11-27 東京エレクトロン株式会社 Substrate processing method and template
KR20150004278A (en) * 2013-07-02 2015-01-12 안코시스 게엠베하 In-Situ Fingerprinting for Electrochemical Deposition and/or electrochemical etching
JP2015011026A (en) * 2013-07-02 2015-01-19 アンコーシーズ・ゲーエムベーハー Electrochemical analysis method for in-situ fingerprinting for electrochemical deposition and/or electrochemical etching
TWI639734B (en) * 2013-07-02 2018-11-01 安寇西斯公司 In-situ fingerprinting for electrochemical deposition and/or electrochemical etching
KR102194144B1 (en) 2013-07-02 2020-12-23 안코시스 게엠베하 In-Situ Fingerprinting for Electrochemical Deposition and/or electrochemical etching
US10876219B2 (en) 2013-07-02 2020-12-29 Ancosys Gmbh In-situ fingerprinting for electrochemical deposition and/or electrochemical etching
US11692282B2 (en) 2013-07-02 2023-07-04 Ancosys Gmbh In-situ fingerprinting for electrochemical deposition and/or electrochemical etching
US10480094B2 (en) 2016-07-13 2019-11-19 Iontra LLC Electrochemical methods, devices and compositions
US10697083B2 (en) 2016-07-13 2020-06-30 Ionta LLC Electrochemical methods, devices and compositions
CN116536745A (en) * 2022-05-20 2023-08-04 武汉铢寸科技有限公司 Method and device for fabricating nanopores in membrane and device for generating superimposed electric field

Similar Documents

Publication Publication Date Title
JP4791593B2 (en) Method for forming a copper layer on a semiconductor wafer
KR20150056655A (en) Electrolyte and process for electroplating copper onto a barrier layer
EP3050081A1 (en) Interconnect wires including relatively low resistivity cores
US20140262794A1 (en) Electrochemical deposition processes for semiconductor wafers
JP2008088498A (en) Electroplating method
JP4989541B2 (en) Plating method, semiconductor device manufacturing method, and plating processing system
JP2013077619A (en) Manufacturing method of semiconductor device
US9803286B2 (en) Method for etching copper layer
JP2006283151A (en) Semiconductor manufacturing method, and semiconductor manufacturing equipment
TWI804593B (en) Process for electrodeposition of cobalt
US8268721B2 (en) Semiconductor device and semiconductor device manufacturing method
KR102562157B1 (en) Cobalt electrodeposition process
JP5484691B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2004363422A (en) Plating method
US6848975B2 (en) Electrochemical planarization of metal feature surfaces
KR101521470B1 (en) Method for substantially uniform copper deposition onto semiconductor wafer
JP2004269953A (en) Plating method, method for manufacturing semiconductor device, and plating apparatus
TWI425122B (en) Method for uniformly depositing a copper film on a semiconductor wafer
KR100731082B1 (en) Semiconductor device manufacturing method
JP2021169659A (en) Electrolytic treatment method and electrolytic treatment equipment
JP5508475B2 (en) Manufacturing method of semiconductor device
JP2020043168A (en) Resin substrate processing method and plasma processing apparatus
JP2007305640A (en) Method of manufacturing semiconductor device
KR20200080122A (en) Fabricating method of Semiconductor device
JP2009191295A (en) Method for manufacturing semiconductor device, and plating apparatus