Nothing Special   »   [go: up one dir, main page]

JP2006281328A - Method for manufacturing workpiece - Google Patents

Method for manufacturing workpiece Download PDF

Info

Publication number
JP2006281328A
JP2006281328A JP2005100947A JP2005100947A JP2006281328A JP 2006281328 A JP2006281328 A JP 2006281328A JP 2005100947 A JP2005100947 A JP 2005100947A JP 2005100947 A JP2005100947 A JP 2005100947A JP 2006281328 A JP2006281328 A JP 2006281328A
Authority
JP
Japan
Prior art keywords
transparent substrate
substrate
main surface
thickness
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100947A
Other languages
Japanese (ja)
Other versions
JP4532324B2 (en
Inventor
Akira Ito
章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2005100947A priority Critical patent/JP4532324B2/en
Publication of JP2006281328A publication Critical patent/JP2006281328A/en
Application granted granted Critical
Publication of JP4532324B2 publication Critical patent/JP4532324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To polish a transparent substrate with highly accurate planar parallelism by eliminating an adhesive for joining between plural sheets of the transparent substrates to be machined or between the transparent substrate and a dummy substrate. <P>SOLUTION: The method for manufacturing a workpiece composed of laminated substrates includes a step for forming a plurality of recessed parts 12 on one main face of a first transparent substrate 11, a step for joining the first transparent substrate 11 with a second transparent substrate 13 by a direct joining method, a step for polishing each transparent substrate while measuring the thickness by emitting a laser to each recessed part 12 from the outside of each transparent substrate, a step for directly joining a third transparent substrate 14, to which the recessed part 12 is formed, to the first transparent substrate 11 and for polishing the third transparent substrate 13 while measuring the thickness by emitting a laser to the recessed part 12, and a step for manufacturing the workpiece by cutting the laminated substrate 16 manufactured by repeating the above steps. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、水晶などの透明な被加工基板、又は被加工基板を積層した積層基体から所望の外形形状及び厚みの被加工物を製造する方法に関し、特に厚みが著しく薄い被加工物を製造する方法に関する。   The present invention relates to a method of manufacturing a workpiece having a desired outer shape and thickness from a transparent workpiece substrate such as quartz, or a laminated substrate on which workpiece substrates are laminated, and particularly, a workpiece having a remarkably thin thickness. Regarding the method.

近年、多種多様な電子機器にはタイミングデバイスとして水晶振動子や、光学撮像機器には水晶やニオブ酸リチウム等の薄板を積層した光学ローパスフィルタ等が用いられてい
おり、電子機器等の小型化が進むにつれ、そこに搭載される水晶振動子や光学ローパスフィルタ等の電子部品も小型化薄型化が望まれている。
In recent years, a variety of electronic devices have used quartz resonators as timing devices, and optical imaging devices have used optical low-pass filters with laminated thin plates such as quartz and lithium niobate. As the process proceeds, electronic components such as crystal resonators and optical low-pass filters mounted thereon are desired to be reduced in size and thickness.

これら上記のような電子部品には、上述したように水晶やニオブ酸リチウム等の透明な基板が使用されている。これらの基板は、例えば水晶振動子に用いられる水晶素板の場合、水熱合成法により育成した一塊の人工水晶体を、人工水晶体の結晶軸方向に対し所望の振動モードを得る角度でカットし、外形加工及び研磨加工を施すことで円形状又は矩形状の平板水晶素板を形成する。   As described above, transparent substrates such as quartz and lithium niobate are used for these electronic components. These substrates, for example, in the case of a quartz base plate used for a quartz resonator, cut a lump of artificial crystalline lens grown by a hydrothermal synthesis method at an angle to obtain a desired vibration mode with respect to the crystal axis direction of the artificial crystalline lens, A circular or rectangular flat crystal element plate is formed by performing an outer shape process and a polishing process.

特に所望する振動モードが厚みすべり振動モードの場合は、水晶素板の厚みにより、その水晶素板の共振周波数が決定するために、所望の周波数で励振するように厚み研磨加工を行う。例えば水晶振動子の振動モードとして最も多用されている厚みすべり振動モードでは、厚みd(μm)と基本波共振周波数f(MHz)との関係は、f≒1670/dで表すことが出来るので、本式に従って水晶振動子等で使用する水晶素板は、その素板の主面を研磨加工して厚みを減じ、所望の周波数となるように厚み加工をしている。   In particular, when the desired vibration mode is the thickness shear vibration mode, the thickness polishing process is performed so as to excite at a desired frequency in order to determine the resonance frequency of the crystal base plate depending on the thickness of the crystal base plate. For example, in the thickness-shear vibration mode that is most frequently used as the vibration mode of a crystal resonator, the relationship between the thickness d (μm) and the fundamental resonance frequency f (MHz) can be expressed by f≈1670 / d. In accordance with this formula, a crystal element plate used in a crystal resonator or the like is processed to have a desired frequency by polishing the main surface of the element plate to reduce the thickness.

また、光学ローパスフィルタは、一般的に、まず所望の外形及び厚さまで研磨加工等を施された複屈折板同士、或いは複屈折板と位相板等の基板を複数枚用意し、その基板を接着剤で各々張り合わせることにより形成されている。この基板の材質としては水晶やニオブ酸リチウムなどが用いられている。又、光学ローパスフィルタによる高周波信号の減衰特性は、複屈折による光線の分離幅、及び光線の分離パターンで決まり、この分離幅は基板の板厚に比例する。   An optical low-pass filter is generally prepared by first preparing a plurality of birefringent plates that have been polished to a desired outer shape and thickness, or a plurality of substrates such as a birefringent plate and a phase plate, and bonding the substrates together. It is formed by pasting each with an agent. Quartz or lithium niobate is used as the material of the substrate. The attenuation characteristic of the high-frequency signal by the optical low-pass filter is determined by the light beam separation width and the light beam separation pattern due to birefringence, and this separation width is proportional to the thickness of the substrate.

このように、上記のような電子部品を構成する水晶素板や複屈折板等の素子の製造にとって、素子の厚み研磨加工は、電子部品としての性能を左右する重要な要素の一つである。前記のような水晶素板や光学ローパスフィルタの基板等の被加工物の製造方法については、以下のような文献が開示されている。   Thus, for the manufacture of elements such as the quartz base plate and the birefringent plate constituting the electronic component as described above, the thickness polishing of the element is one of the important factors that influence the performance as an electronic component. . The following documents are disclosed about the manufacturing methods of workpieces, such as the above-mentioned quartz base plate and the substrate of an optical low pass filter.

特開2004−90098号公報JP 2004-90098 A 特開平7−50438号公報Japanese Patent Laid-Open No. 7-50438

尚、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を本件出願時までに発見するに至らなかった。   In addition, the applicant has not found any prior art documents related to the present invention by the time of filing of the present application other than the prior art documents specified by the prior art document information described above.

前記特許文献1に開示のような両面研磨装置を用いた厚み研磨加工の際に、被加工基板毎の厚みを測定する手段としては、マグネスケール等を研磨加工装置に取り付け、被加工基板の厚み寸法を高精度に測定制御する手段が用いられている。しかしこのような両面研磨装置を用いた厚み研磨加工では、一枚当たり数十μmまでの厚みの加工が限界である。更に薄く加工する場合には、被加工基板にこの被加工基板よりも厚みがあるダミー基板等を貼り付け研磨加工する方法も用いられているが、この方法では一般的に被加工基板とダミー基板との貼り付けに接着剤が用いられているため、被加工基板の厚みが薄くなるにつれ、接着剤の弾性や塗布分布ムラ等の影響により、貼り合わせた被加工基板の平面平行度に悪影響を及ぼす恐れがある。   In the thickness polishing process using the double-side polishing apparatus as disclosed in Patent Document 1, as a means for measuring the thickness of each substrate to be processed, a magnescale or the like is attached to the polishing apparatus, and the thickness of the substrate to be processed Means for measuring and controlling the dimensions with high accuracy are used. However, the thickness polishing process using such a double-side polishing apparatus has a limit of processing up to several tens of μm per sheet. When processing further thinly, a method is also used in which a dummy substrate having a thickness larger than that of the substrate to be processed is attached to the substrate to be processed and polished. In this method, generally, the substrate to be processed and the dummy substrate are used. Adhesives are used to attach to the substrate, and as the substrate to be processed becomes thinner, the planar parallelism of the bonded substrates to be processed is adversely affected by the elasticity of the adhesive and uneven distribution of the coating. There is a risk.

本発明は、前記従来技術の課題を鑑みて成されたものであり、複数個の被加工物を、マトリックス状に一体配列して取得するウエハ状の透明基板を複数枚積層した積層基体から形成する被加工物の製造方法において、
表面を平面平行加工した第1の透明基板の一方の主面上のうち、被加工物が形成される領域外に、任意の深さの凹部を複数個形成する工程と、
この凹部が形成された第1の透明基板の一方の主面と、第2の透明基板の一方の主面とを直接接合法により接合する工程と、
凹部の上の第2の透明基板にレーザを照射し、第2の透明基板の厚みを測定しつつ、第2の透明基板を、第2の透明基板の他方の主面側から所望の厚みまで研磨加工する工程と、
第1の透明基板の他方の主面側から凹部にレーザを照射し、第1の透明基板の厚みを測定しつつ、第1の透明基板を第1の透明基板の他方の主面側から所望の厚みまで研磨加工する工程と、
第1の透明基板又は第2の透明基板の他方の主面上に、凹部が形成された該第1の透明基板と同形態の第3の透明基板を配置し、第1の透明基板又は第2の透明基板の他方の主面と凹部が形成されている第3の透明基板の一方の主面とを直接接合する工程と
第3の透明基板に形成されている凹部に、第3の透明基板の接合主面とは反対側の主面よりレーザを照射し、第3の透明基板の厚みを測定しつつ、第3の透明基板を第1の透明基板の他方の主面側から所望の厚みまで研磨加工する工程と、
前記第3の透明基板の形成工程と同様な工程を繰り返して、所望の積層数の透明基板による積層基体を形成する工程と、
この積層基体を所望の被加工物外形形状に切断し、個々の被加工物を得る工程とを具備することを特徴とする被加工物の製造方法である。
The present invention has been made in view of the above-described problems of the prior art, and is formed from a laminated substrate obtained by laminating a plurality of wafer-like transparent substrates obtained by integrally arranging a plurality of workpieces in a matrix shape. In the manufacturing method of the workpiece to be performed,
A step of forming a plurality of recesses of arbitrary depth outside the region where the workpiece is formed on one main surface of the first transparent substrate whose surface is processed in parallel with the plane;
Bonding one main surface of the first transparent substrate in which the concave portion is formed and one main surface of the second transparent substrate by a direct bonding method;
While irradiating the second transparent substrate above the recess with laser and measuring the thickness of the second transparent substrate, the second transparent substrate is moved from the other main surface side of the second transparent substrate to a desired thickness. Polishing process;
The first transparent substrate is desired from the other main surface side of the first transparent substrate while the concave portion is irradiated with laser from the other main surface side of the first transparent substrate and the thickness of the first transparent substrate is measured. Polishing to a thickness of
On the other main surface of the first transparent substrate or the second transparent substrate, a third transparent substrate having the same form as the first transparent substrate in which the concave portion is formed is disposed, and the first transparent substrate or the first transparent substrate A step of directly joining the other main surface of the second transparent substrate and one main surface of the third transparent substrate on which the concave portion is formed; and a third transparent substrate on the concave portion formed on the third transparent substrate. Laser irradiation is performed from the main surface opposite to the bonding main surface of the substrate, and the third transparent substrate is measured from the other main surface side of the first transparent substrate while measuring the thickness of the third transparent substrate. Polishing to thickness,
Repeating a step similar to the step of forming the third transparent substrate to form a laminated substrate with a desired number of laminated transparent substrates;
And cutting the laminated substrate into a desired workpiece outer shape to obtain individual workpieces.

又、複数個の被加工物をマトリックス状に一体配列して取得するウエハ状の透明基板から形成する被加工物の製造方法において、
表面を平面平行加工したガラス基板の一方の主面上のうち、後述する工程で透明基板が接触接合する領域内に、所定の深さの凹部を複数個形成する工程と、
この凹部が形成されたガラス基板の一方の主面と、透明基板の一方の主面とを直接接合法により接合する工程と、
この凹部の上の透明基板にレーザを照射し、この透明基板の厚みを測定しつつ、透明基板の他方の主面側から所望の厚みまで透明基板を研磨加工する工程と、
研磨加工を施され所望の厚みに加工された透明基板を所望の被加工物の外形形状に切断加工する工程と、
個片化された透明基板とガラス基板とを分離し、所望の外形形状且つ厚みの被加工物を取得する工程とを具備することを特徴とする被加工物の製造方法である。
Further, in a manufacturing method of a workpiece formed from a wafer-like transparent substrate obtained by integrally arranging a plurality of workpieces in a matrix shape,
A step of forming a plurality of recesses of a predetermined depth in a region where the transparent substrate is contact-bonded in a step described later, on one main surface of the glass substrate whose surface is processed in parallel with the plane;
A step of directly bonding one main surface of the glass substrate on which the concave portion is formed and one main surface of the transparent substrate by a direct bonding method;
A process of polishing the transparent substrate from the other main surface side of the transparent substrate to a desired thickness while irradiating a laser on the transparent substrate above the recess and measuring the thickness of the transparent substrate;
A step of cutting a transparent substrate that has been subjected to polishing and processed to a desired thickness into an outer shape of a desired workpiece;
A method of manufacturing a workpiece, comprising: separating a separated transparent substrate and a glass substrate and obtaining a workpiece having a desired outer shape and thickness.

このような被加工物の製造方法を用いることにより、被加工基板である複数枚の透明基板間、又は透明基板とダミー基板(本発明ではガラス基板に該当)との接合に接着剤を用いることがなくなるので、従来の方法よりも更に平面平行度の精度が高い透明基板の研磨加工を行うことができる。又、本発明により、複数枚の透明基板間、又は透明基板とダミー基板との接合に直接接合法用いた場合でも、各透明基板のレーザ光による精密厚さ測定が可能となる。更に、ダミー基板にガラス基板を用いているので、比較的厚いダミー基板を作成でき、研磨加工の際に反りなどが発生しにくく、且つシリコン等を使用したダミー基板に比べ安価である。   By using such a method for manufacturing a workpiece, an adhesive is used for bonding between a plurality of transparent substrates, which are substrates to be processed, or between a transparent substrate and a dummy substrate (corresponding to a glass substrate in the present invention). Therefore, it is possible to polish the transparent substrate with higher accuracy of plane parallelism than the conventional method. In addition, according to the present invention, even when a direct bonding method is used for bonding between a plurality of transparent substrates or between a transparent substrate and a dummy substrate, it is possible to measure the thickness of each transparent substrate with laser light. Further, since a glass substrate is used as the dummy substrate, a relatively thick dummy substrate can be formed, warping is less likely to occur during polishing, and it is less expensive than a dummy substrate using silicon or the like.

因って、本発明に係わる加工方法を用いることにより、安価で生産性が良く、且つ平面平行度等の外形形状精度が高い被加工物を提供できる効果を奏する。   Therefore, by using the processing method according to the present invention, it is possible to provide a workpiece that is inexpensive, has high productivity, and has high external shape accuracy such as plane parallelism.

以下に、この発明の実施形態について図面に基づいて説明する。
図1は本発明における被加工物の一製造方法の概略を、光学フィルタ素子の製造工程を例示して表した部分工程図である。図2は本発明における被加工物の他の製造方法の概略を、水晶素板の製造工程を例示して表した部分工程図である。図3は、図2に開示の工程(c)における透明基板及びガラス基板の一形態を示した斜視図である。
尚、図1及び図2において、説明を明りょうにするため構造体の一部を図示せず、また寸法も一部誇張して図示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a partial process diagram illustrating an outline of a method for manufacturing a workpiece according to the present invention by illustrating a manufacturing process of an optical filter element. FIG. 2 is a partial process diagram illustrating an outline of another manufacturing method of the workpiece according to the present invention by exemplifying the manufacturing process of the quartz base plate. FIG. 3 is a perspective view showing one embodiment of the transparent substrate and the glass substrate in the step (c) disclosed in FIG.
In FIGS. 1 and 2, a part of the structure is not shown for clarity of explanation, and some dimensions are exaggerated.

即ち、本発明による光学フィルタ素子の製造工程として、まず図1(a)において、被加工基板として、表面を平面平行加工した複屈折板としての機能を有する水晶を材質とする第1の透明基板11を準備し、第1の透明基板11の一方の主面上のうち、後述する工程で第2の透明基板13が接触接合する領域内で且つ光学フィルタ素子が形成される領域外に、任意の深さの凹部12を複数個形成する。本工程時の第1の透明基板11の厚さは最終加工終了形態時の厚さと比べ十分に厚く形成されている。尚、第2の透明基板13が接触接合する領域内であれば凹部12の形成箇所を限定するものではないが、出来るだけ第1の透明基板11内の光学フィルタ素子形成領域外にあたる領域に形成することが望ましい。尚、凹部12の開口面形状は矩形状でも円形状でも良い。   That is, as a manufacturing process of the optical filter element according to the present invention, first, in FIG. 1A, as a substrate to be processed, a first transparent substrate made of quartz having a function as a birefringent plate whose surface is processed in parallel plane. 11 on one main surface of the first transparent substrate 11, and within the region where the second transparent substrate 13 contacts and joins in a step described later and outside the region where the optical filter element is formed. A plurality of recesses 12 having a depth of 5 are formed. The thickness of the first transparent substrate 11 at the time of this step is formed sufficiently thicker than the thickness at the final processing end form. In addition, as long as it is in the area | region where the 2nd transparent substrate 13 contacts and joins, the formation location of the recessed part 12 will not be limited, but it forms in the area | region which corresponds to the optical filter element formation area in the 1st transparent substrate 11 as much as possible. It is desirable to do. Note that the shape of the opening surface of the recess 12 may be rectangular or circular.

次に図1(b)において、被加工基板として、表面を平面平行加工した複屈折板としての機能を有する水晶を材質であり且つ第1の透明基板と同外形形状の第2の透明基板13を用意し、凹部12が形成された第1の透明基板11の一方の主面と、この第2の透明基板13の一方の主面とを直接接合法により接合する。直接接合の手法としては外形加工を施した第1の透明基板11及び第2の透明基板13の接合側主面を光学研磨し、更に接合する主面にプラズマ処理を施して親水化することにより、第1の透明基板11及び第2の透明基板13の一方の主面同士を容易に常温で仮接合し、その後加熱処理を施して本接合する。   Next, in FIG. 1B, a second transparent substrate 13 made of quartz having a function as a birefringent plate whose surface is processed in parallel with the surface and having the same outer shape as the first transparent substrate is used. Are prepared, and one main surface of the first transparent substrate 11 in which the recess 12 is formed and one main surface of the second transparent substrate 13 are bonded by a direct bonding method. As a method of direct bonding, by optically polishing the bonding-side main surfaces of the first transparent substrate 11 and the second transparent substrate 13 subjected to the outer shape processing, and further plasma-treating the bonding main surfaces to make them hydrophilic. The main surfaces of one of the first transparent substrate 11 and the second transparent substrate 13 are easily temporarily joined at room temperature, and then subjected to heat treatment for main joining.

次に図1(c)において、凹部12の開口面上の第2の透明基板13部分にレーザ光を照射し、この第2透明基板13の厚みを測定しつつ、第2の透明基板13の他方の主面側から所望の厚みまで第2透明基板13を研磨加工する。又、第1の透明基板11の他方の主面側から凹部12にレーザを照射し、第1の透明基板11の厚みを測定しつつ、第1の透明基板11を第1の透明基板11の他方の主面側から所望の厚みまで研磨加工する。透明体の場合、その透明体にレーザ光を照射することで、一方の表面からの反射光と他方の表面からの反射光との差異によりレーザ光が照射された部分の厚みを測定できるが、第1の透明基板11と第2の透明基板13とが直接接合で接合している場合、その接合界面が原子レベルで接合されているためにレーザ光が接合界面で反射せず、レーザ光による厚み測定が不可能であった。しかし、第1の透明基板11の接合側主面に凹部12を形成することにより、第1の透明基板11と第2の透明基板13との間にエアギャップが形成されるので、照射されたレーザ光が凹部12の開口面にあたる第2の透明基板13の接合側表面や凹部12の内壁面で反射することができ、因って第1の透明基板11及び同様にした第2の透明基板13の厚み寸法を精密に測定することができる。   Next, in FIG. 1C, the second transparent substrate 13 on the opening surface of the recess 12 is irradiated with laser light, and the thickness of the second transparent substrate 13 is measured. The second transparent substrate 13 is polished from the other main surface side to a desired thickness. Further, the concave portion 12 is irradiated with laser from the other main surface side of the first transparent substrate 11 to measure the thickness of the first transparent substrate 11, and the first transparent substrate 11 is attached to the first transparent substrate 11. Polishing is performed from the other main surface side to a desired thickness. In the case of a transparent body, by irradiating the transparent body with laser light, the thickness of the portion irradiated with the laser light can be measured due to the difference between the reflected light from one surface and the reflected light from the other surface, When the first transparent substrate 11 and the second transparent substrate 13 are joined by direct joining, the joining interface is joined at the atomic level, so that the laser beam is not reflected by the joining interface, and the laser beam is used. Thickness measurement was impossible. However, since the air gap is formed between the first transparent substrate 11 and the second transparent substrate 13 by forming the recess 12 in the main surface of the first transparent substrate 11 on the joining side, the irradiation is performed. The laser beam can be reflected on the bonding-side surface of the second transparent substrate 13 corresponding to the opening surface of the recess 12 and the inner wall surface of the recess 12, and therefore the first transparent substrate 11 and the second transparent substrate similar to the first transparent substrate 11. The thickness dimension of 13 can be accurately measured.

更に、第1の透明基板の接合主面に凹部12を複数個形成しているので、各々の凹部12の形成位置における厚み寸法データを取得し、各データに差異がある場合は透明基板全体として研磨ムラがある状態であることを示しているので、厚みを補正する研磨加工を施し、透明基板全体の厚みを均一にすることができる。   Furthermore, since a plurality of recesses 12 are formed on the bonding main surface of the first transparent substrate, thickness dimension data at the position where each recess 12 is formed is acquired. Since this shows that there is uneven polishing, it is possible to make the thickness of the entire transparent substrate uniform by performing polishing to correct the thickness.

次に図1(d)において、第1の透明基板11の他方の主面上に、被加工基板として、表面を平面平行加工した複屈折板としての機能を有する水晶を材質し且つ凹部12が形成された第1の透明基板11と同形態の第3の透明基板14を配置し、第1の透明基板11の他方の主面と、第3の透明基板の凹部15が形成されている一方の主面とを直接接合する。直接接合する手法としては、上述した第1の透明基板11と第2の透明基板13との直接接合に用いた手法と同様とする。   Next, in FIG. 1 (d), on the other main surface of the first transparent substrate 11, a crystal having a function as a birefringent plate having a surface parallel processed as a substrate to be processed and a recess 12 is formed. A third transparent substrate 14 having the same form as the formed first transparent substrate 11 is disposed, and the other main surface of the first transparent substrate 11 and a recess 15 of the third transparent substrate are formed. The main surface is directly joined. The direct bonding method is the same as the method used for the direct bonding between the first transparent substrate 11 and the second transparent substrate 13 described above.

次に図1(e)において、上記図1(d)の図示した工程で新たに接合した第3の透明基板14を、第3の透明基板14の他方の主面側から凹部15にレーザを照射し、第3の透明基板14の厚みを測定しつつ、第1の透明基板11との直接接合面とは反対側の主面側から所望する厚さまで厚み研磨加工をする。   Next, in FIG. 1E, the third transparent substrate 14 newly joined in the step shown in FIG. 1D is sent to the recess 15 from the other main surface side of the third transparent substrate 14. Irradiating and measuring the thickness of the third transparent substrate 14, and polishing the thickness from the main surface side opposite to the direct bonding surface with the first transparent substrate 11 to a desired thickness.

次に、図1の(d)及び(e)で表した各工程を繰り返し行うことにより、図1(f)のように所望の層数の複屈折板を積層し直接接合した積層基体16を形成する。尚、所望の積層数が2層の場合は上記工程C,D及びEは行わない。   Next, by repeating the steps shown in FIGS. 1D and 1E, a laminated substrate 16 in which birefringent plates having a desired number of layers are laminated and directly joined as shown in FIG. 1F is obtained. Form. When the desired number of layers is two, the above steps C, D and E are not performed.

次に、図1(g)において、この積層基体16の最外主面上に反射防止膜を形成し、図記載の切断線により積層基体を光学フィルタ素子形成領域とそれ以外の領域とに切断分離して、図1(h)のような個々の光学ローパスフィルタ17を形成する。   Next, in FIG. 1 (g), an antireflection film is formed on the outermost main surface of the laminated substrate 16, and the laminated substrate is cut into an optical filter element forming region and other regions by the cutting line shown in the figure. Separately, individual optical low-pass filters 17 as shown in FIG.

尚、上記実施例1では、第1の透明基板11の他方の主面側に、第3の透明基板14を含む透明基板の凹部15を形成した一方の主面を直接接合法により積層接合する形態を開示したが、本発明はこれに限定するものではなく、例えば、第2の透明基板13の他方の主面側に、第3の透明基板14を含む透明基板の凹部15を形成した一方の主面を直接接合法により積層接合する形態を用いても構わない。   In the first embodiment, one main surface in which the concave portion 15 of the transparent substrate including the third transparent substrate 14 is formed on the other main surface side of the first transparent substrate 11 is laminated and bonded by a direct bonding method. Although the embodiment has been disclosed, the present invention is not limited to this. For example, one of the main surfaces of the second transparent substrate 13 on which the concave portion 15 of the transparent substrate including the third transparent substrate 14 is formed. Alternatively, the main surface may be laminated and bonded by a direct bonding method.

又、上記実施例1では、積層基体16を構成する透明基板を水晶で構成したものを開示したが、全ての透明基板を水晶で形成する必要はなく、所望する光学フィルタの機能に合わせてニオブ酸リチウム等の他の光学結晶体で形成された複屈折板を使用しても良い。   In the first embodiment, the transparent substrate constituting the laminated base 16 is made of quartz. However, it is not necessary to form all the transparent substrates with quartz, and niobium is used in accordance with the function of the desired optical filter. A birefringent plate formed of another optical crystal such as lithium acid may be used.

上記実施例1とは別の形態の実施例を開示する。
本発明における水晶素板の製造工程として、図2(a)において、表面を平面平行加工したガラス基板21をダミー基板として準備する。ガラス基板21は後述する透明基板23と比較して十分に厚く形成されている。尚、本実施例ではガラス基板の外形形状を円板形状としているが、本発明はその形状に限定するものではなく、矩形状等の多角形形状でも構わない。又、シリコン基板等をダミー基板として用いる場合に比べ、厚みを厚く形成でき且つ安価である。
An embodiment of a form different from the first embodiment will be disclosed.
As a manufacturing process of the quartz base plate in the present invention, in FIG. 2A, a glass substrate 21 whose surface is plane-parallel processed is prepared as a dummy substrate. The glass substrate 21 is formed sufficiently thick as compared with a transparent substrate 23 described later. In this embodiment, the outer shape of the glass substrate is a disk shape, but the present invention is not limited to this shape, and may be a polygonal shape such as a rectangular shape. Further, compared to the case where a silicon substrate or the like is used as a dummy substrate, the thickness can be increased and the cost is low.

次に、図2(b)の工程において、前工程で準備したガラス基板21の一方の主面上のうち、後述する工程で透明基板23が接触接合する領域内に、所定の深さの凹部22を複数個形成する。透明基板23が接触接合する領域内であれば凹部22の形成箇所を限定するものではないが、出来るだけ透明基板23内の被加工物形成領域外にあたる領域に形成することが望ましい。尚、凹部22の開口面形状は矩形状でも円形状でも良い。   Next, in the step of FIG. 2B, a concave portion having a predetermined depth is formed in a region where the transparent substrate 23 is contact-bonded in a later-described step on one main surface of the glass substrate 21 prepared in the previous step. A plurality of 22 are formed. The position where the concave portion 22 is formed is not limited as long as it is within the region where the transparent substrate 23 is contact-bonded. However, it is desirable to form the concave portion 22 in the region outside the workpiece forming region as much as possible. The shape of the opening surface of the recess 22 may be rectangular or circular.

次に、図2(c)の工程において、被加工基板としてガラス基板21と同外形形状且つ同等の表面積の透明基板23を用意し、凹部22が形成されたガラス基板21の一方の主面と、この透明基板23の一方の主面とを直接接合法により接合する。直接接合の手法としては、外形加工を施したガラス基板21及び透明基板23の接合主面を精密研磨し、更に接合主面にプラズマ処理を施して親水化することにより、ガラス基板21及び透明基板23の一方の主面同士を容易に仮接合し、その後加熱処理を施して本接合(主面間の原子レベル接合)する。尚、接合主面がある程度の面積以上であれば加熱処理をして本接合することなく、仮接合のみでも十分な接合強度が得られる。尚、透明基板23の材質としては水晶が用いられる。   Next, in the step of FIG. 2C, a transparent substrate 23 having the same outer shape and the same surface area as the glass substrate 21 is prepared as a substrate to be processed, and one main surface of the glass substrate 21 on which the concave portion 22 is formed. The one main surface of the transparent substrate 23 is bonded by a direct bonding method. As a technique of direct bonding, the glass substrate 21 and the transparent substrate are formed by precisely polishing the bonding main surfaces of the glass substrate 21 and the transparent substrate 23 subjected to the outer shape processing, and further hydrophilizing the bonding main surfaces by performing plasma treatment. One main surfaces of 23 are easily temporarily bonded to each other, and then heat-treated to perform main bonding (atomic level bonding between main surfaces). If the bonding main surface is larger than a certain area, sufficient bonding strength can be obtained only by temporary bonding without performing heat treatment and main bonding. Note that quartz is used as the material of the transparent substrate 23.

次に、図2(d)の工程において、凹部22の開口面上の透明基板23部分にレーザ光を照射し、この透明基板23の厚みを測定しつつ、透明基板23の他方の主面側から所望の厚みまで透明基板23を研磨加工する。透明体の場合、その透明体にレーザ光を照射することで、一方の表面からの反射光と他方の表面からの反射光との差異によりレーザ光が照射された部分の厚みを測定できるが、透明基板23とガラス基板21とが直接接合で接合している場合、その接合界面が原子レベルで接合されているためにレーザ光が接合界面で反射せず、レーザ光による厚み測定が不可能であった。しかし、ガラス基板21の接合主面に凹部22を形成することにより、透明基板23とガラス基板21との間にエアギャップが形成されるので、照射されたレーザ光が凹部22の開口面にあたる透明基板23の接合側表面で反射することができ、因って透明基板23の厚み寸法を精密に測定することができる。このレーザ光による厚み測定によって得られたデータに合わせて透明基板23を、ガラス基板21との接合主面とは反対側の主面側より研磨加工して、透明基板23を所望の厚みにまで加工する。   Next, in the step of FIG. 2D, the transparent substrate 23 portion on the opening surface of the recess 22 is irradiated with laser light, and the thickness of the transparent substrate 23 is measured, while the other main surface side of the transparent substrate 23 is measured. The transparent substrate 23 is polished to a desired thickness. In the case of a transparent body, by irradiating the transparent body with laser light, the thickness of the portion irradiated with the laser light can be measured due to the difference between the reflected light from one surface and the reflected light from the other surface, When the transparent substrate 23 and the glass substrate 21 are bonded by direct bonding, since the bonding interface is bonded at the atomic level, the laser beam is not reflected at the bonding interface, and the thickness measurement using the laser beam is impossible. there were. However, since the air gap is formed between the transparent substrate 23 and the glass substrate 21 by forming the concave portion 22 on the bonding main surface of the glass substrate 21, the irradiated laser light is transparent on the opening surface of the concave portion 22. It can reflect on the bonding side surface of the board | substrate 23, Therefore The thickness dimension of the transparent substrate 23 can be measured accurately. The transparent substrate 23 is polished from the main surface side opposite to the main surface to be bonded to the glass substrate 21 in accordance with the data obtained by the thickness measurement by the laser beam, so that the transparent substrate 23 has a desired thickness. Process.

次に、図2(e)の工程において、研磨加工を施され所望の厚みに加工された透明基板23を、所望の水晶素板の外形形状(図2(e)では切断線A。図3においては、透明基板23に点線で図示している。)に切断加工する。切断する手段としてはダイシング等を用いて、ガラス基板21の厚み方向の一部又は全部を含めて切断している。   Next, in the step of FIG. 2 (e), the transparent substrate 23 that has been polished and processed to a desired thickness is cut into a desired external shape of the crystal base plate (cut line A in FIG. 2 (e)). In FIG. 3, the transparent substrate 23 is cut by a dotted line. As means for cutting, dicing or the like is used to cut all or part of the glass substrate 21 in the thickness direction.

次に、図2(f)の工程において、個片化された透明基板23とガラス基板21とを分離し、所望の外形形状且つ厚みの水晶素板24を複数同時に取得する。透明基板23とガラス基板21との分離は、前工程での切断工程において、接合部分に応力が加わることより接合強度が低下し分離が可能となる。又は、透明基板23の熱膨張率とガラス基板21の熱膨張率との間に差異がある場合、切断工程の後に粘着テープなどで透明基板23を固定後加熱することにより、熱膨張率差により接合部分に応力が加わり容易に分離する方法が用いられる。   Next, in the process of FIG. 2F, the transparent substrate 23 and the glass substrate 21 that have been separated into pieces are separated, and a plurality of quartz base plates 24 having a desired outer shape and thickness are obtained simultaneously. Separation of the transparent substrate 23 and the glass substrate 21 can be performed by reducing the bonding strength because stress is applied to the bonded portion in the cutting process in the previous process. Or, when there is a difference between the thermal expansion coefficient of the transparent substrate 23 and the thermal expansion coefficient of the glass substrate 21, by fixing the transparent substrate 23 with an adhesive tape or the like after the cutting step and heating it, A method is used in which stress is applied to the joint portion and separation is easily performed.

尚、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。例えば実施例2では、水晶素板の製造方法を開示したが、本発明は透明基板の材質として水晶に限定するものではなく、他にニオブ酸リチウム等の透明な圧電材でも構わない。   In addition, this invention is not limited to the above-mentioned embodiment, A various change, improvement, etc. are possible in the range which does not deviate from the summary of this invention. For example, in Example 2, a method for manufacturing a quartz base plate has been disclosed, but the present invention is not limited to quartz as the material of the transparent substrate, and other transparent piezoelectric materials such as lithium niobate may be used.

図1は、本発明における被加工物の一製造方法の概略を示した部分工程図である。FIG. 1 is a partial process diagram showing an outline of a method for manufacturing a workpiece in the present invention. 図2は、本発明における被加工物の他の製造方法の概略を示した部分工程図である。FIG. 2 is a partial process diagram showing an outline of another method of manufacturing a workpiece in the present invention. 図3は、図2の工程(c)における透明基板及びダミー基板の一形態を示した斜視図である。FIG. 3 is a perspective view showing one embodiment of the transparent substrate and the dummy substrate in step (c) of FIG.

符号の説明Explanation of symbols

11・・・第1の透明基板
12・・・凹部
13・・・第2の透明基板
14・・・第3の透明基板
15・・・凹部
16・・・積層基体
17・・・被加工物(光学フィルタ素子)
21・・・ガラス基板
22・・・凹部
23・・・透明基板
24・・・被加工物(水晶素板)
DESCRIPTION OF SYMBOLS 11 ... 1st transparent substrate 12 ... Recessed part 13 ... 2nd transparent substrate 14 ... 3rd transparent substrate 15 ... Recessed part 16 ... Laminated substrate 17 ... Workpiece (Optical filter element)
21 ... Glass substrate 22 ... Recess 23 ... Transparent substrate 24 ... Workpiece (crystal base plate)

Claims (4)

複数個の被加工物をマトリックス状に一体配列して取得するウエハ状の透明基板を複数枚積層した積層基体から形成する被加工物の製造方法において、
表面を平面平行加工した第1の透明基板の一方の主面上のうち、該被加工物が形成される領域外に、任意の深さの凹部を複数個形成する工程と、
該凹部が形成された第1の透明基板の一方の主面と、第2の透明基板の一方の主面とを直接接合法により接合する工程と、
該凹部の上の該第2の透明基板にレーザを照射し、該第2の透明基板の厚みを測定しつつ、該第2の透明基板を、該第2の透明基板の他方の主面側から所望の厚みまで研磨加工する工程と、
該第1の透明基板の他方の主面側から該凹部にレーザを照射し、該第1の透明基板の厚みを測定しつつ、該第1の透明基板を該第1の透明基板の他方の主面側から所望の厚みまで研磨加工する工程と、
該第1の透明基板又は該第2の透明基板の他方の主面上に、該凹部が形成された該第1の透明基板と同形態の第3の透明基板を配置し、該第1の透明基板又は該第2の透明基板の他方の主面と、凹部が形成されている該第3の透明基板の一方の主面とを直接接合する工程と
第3の透明基板に形成された凹部に、該第3の透明基板の接合主面とは反対側の主面よりレーザを照射し、該第3の透明基板の厚みを測定しつつ、該第3の透明基板を該第1の透明基板の他方の主面側から所望の厚みまで研磨加工する工程と、
前記該第3の透明基板の形成工程と同様な工程を繰り返して、所望の積層数の透明基板による積層基体を形成する工程と、
該積層基体を所望の被加工物外形形状に切断する工程と、
を具備することを特徴とする被加工物の製造方法。
In a manufacturing method of a workpiece formed from a laminated substrate obtained by laminating a plurality of wafer-like transparent substrates obtained by integrally arranging a plurality of workpieces in a matrix shape,
A step of forming a plurality of recesses of arbitrary depth outside the region where the workpiece is formed on one main surface of the first transparent substrate whose surface is processed in parallel with the plane;
Bonding one main surface of the first transparent substrate in which the concave portion is formed and one main surface of the second transparent substrate by a direct bonding method;
While irradiating the second transparent substrate on the concave portion with a laser and measuring the thickness of the second transparent substrate, the second transparent substrate is placed on the other main surface side of the second transparent substrate. Polishing to a desired thickness from,
The concave portion is irradiated with laser from the other main surface side of the first transparent substrate, and the thickness of the first transparent substrate is measured, and the first transparent substrate is moved to the other side of the first transparent substrate. Polishing to the desired thickness from the main surface side;
On the other main surface of the first transparent substrate or the second transparent substrate, a third transparent substrate having the same shape as the first transparent substrate in which the recess is formed is disposed, and the first transparent substrate A step of directly joining the other main surface of the transparent substrate or the second transparent substrate and one main surface of the third transparent substrate in which the recess is formed; and a recess formed in the third transparent substrate. Further, the third transparent substrate is irradiated with a laser from a main surface opposite to the bonding main surface of the third transparent substrate, and the thickness of the third transparent substrate is measured, and the third transparent substrate is moved to the first transparent substrate. Polishing to the desired thickness from the other main surface side of the substrate;
Repeating a step similar to the step of forming the third transparent substrate to form a laminated substrate with a desired number of laminated transparent substrates;
Cutting the laminated substrate into a desired workpiece outer shape;
A method of manufacturing a workpiece, comprising:
複数個の被加工物をマトリックス状に一体配列して取得するウエハ状の透明基板から形成する被加工物の製造方法において、
表面を平面平行加工したガラス基板の一方の主面上のうち、次工程で該透明基板が接触接合する領域内に、所定の深さの凹部を複数個形成する工程と、
該凹部が形成されたガラス基板の一方の主面と、該透明基板の一方の主面とを直接接合法により接合する工程と、
該凹部の上の該透明基板にレーザを照射し、該透明基板の厚みを測定しつつ該透明基板の他方の主面側から所望の厚みまで研磨加工する工程と、
研磨加工を施され所望の厚みに加工された該透明基板を所望の被加工物外形形状に切断する工程と、
個片化された該透明基板と該ガラス基板とを分離する工程と
を具備することを特徴とする被加工物の製造方法。
In a manufacturing method of a workpiece formed from a wafer-like transparent substrate obtained by integrally arranging a plurality of workpieces in a matrix,
A step of forming a plurality of recesses of a predetermined depth in a region where the transparent substrate is contact-bonded in the next step, on one main surface of the glass substrate whose surface is processed in parallel with the plane;
Bonding one main surface of the glass substrate on which the concave portion is formed and one main surface of the transparent substrate by a direct bonding method;
Irradiating the transparent substrate on the concave portion with a laser, and measuring the thickness of the transparent substrate while polishing from the other main surface side of the transparent substrate to a desired thickness; and
Cutting the transparent substrate that has been polished and processed to a desired thickness into a desired workpiece outer shape; and
A process for separating the separated transparent substrate and the glass substrate.
各該透明基板のうち少なくとも一つの材質が水晶であること特徴とする請求項1記載の被加工物の製造方法。   2. The method of manufacturing a workpiece according to claim 1, wherein at least one of the transparent substrates is made of quartz. 該透明基板の材質が水晶であることを特徴とする請求項2記載の被加工物の製造方法。   The method of manufacturing a workpiece according to claim 2, wherein the material of the transparent substrate is quartz.
JP2005100947A 2005-03-31 2005-03-31 Workpiece manufacturing method Expired - Fee Related JP4532324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100947A JP4532324B2 (en) 2005-03-31 2005-03-31 Workpiece manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100947A JP4532324B2 (en) 2005-03-31 2005-03-31 Workpiece manufacturing method

Publications (2)

Publication Number Publication Date
JP2006281328A true JP2006281328A (en) 2006-10-19
JP4532324B2 JP4532324B2 (en) 2010-08-25

Family

ID=37403762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100947A Expired - Fee Related JP4532324B2 (en) 2005-03-31 2005-03-31 Workpiece manufacturing method

Country Status (1)

Country Link
JP (1) JP4532324B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037018A (en) * 2009-08-06 2011-02-24 Seiko Instruments Inc Manufacturing method for thermal head
JP2011037017A (en) * 2009-08-06 2011-02-24 Seiko Instruments Inc Thermal head and manufacturing method for the same
JP2011125933A (en) * 2009-12-15 2011-06-30 Konica Minolta Opto Inc Polishing method
JP2012166409A (en) * 2011-02-14 2012-09-06 Seiko Instruments Inc Method for manufacturing thermal head

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104960A (en) * 1997-10-03 1999-04-20 Nikon Corp Film thickness inspecting method and polishing device with film thickness inspecting function
JPH11163668A (en) * 1997-11-28 1999-06-18 Matsushita Electric Ind Co Ltd Laminated piezo-electric single crystal substrate and piezo-electric device using it
JP2000097642A (en) * 1998-09-22 2000-04-07 Sharp Corp Film thickness monitor
WO2001057471A1 (en) * 2000-01-31 2001-08-09 Omron Corporation Visual displacement sensor
JP2001274128A (en) * 2000-01-21 2001-10-05 Seiko Epson Corp Method of polishing and processing thin sheet, and method of manufacturing piezoelectric vibrating piece
JP2003094318A (en) * 2001-09-21 2003-04-03 Matsushita Electric Ind Co Ltd Thinning method for crystal composite plate
JP2003346826A (en) * 2002-05-27 2003-12-05 Nissan Motor Co Ltd Solid electrolyte fuel cell
JP2004069446A (en) * 2002-08-06 2004-03-04 Nippon Sheet Glass Co Ltd Thickness and gap measuring instrument
JP2004264082A (en) * 2003-02-28 2004-09-24 Sunx Ltd Thickness measuring instrument

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104960A (en) * 1997-10-03 1999-04-20 Nikon Corp Film thickness inspecting method and polishing device with film thickness inspecting function
JPH11163668A (en) * 1997-11-28 1999-06-18 Matsushita Electric Ind Co Ltd Laminated piezo-electric single crystal substrate and piezo-electric device using it
JP2000097642A (en) * 1998-09-22 2000-04-07 Sharp Corp Film thickness monitor
JP2001274128A (en) * 2000-01-21 2001-10-05 Seiko Epson Corp Method of polishing and processing thin sheet, and method of manufacturing piezoelectric vibrating piece
WO2001057471A1 (en) * 2000-01-31 2001-08-09 Omron Corporation Visual displacement sensor
JP2003094318A (en) * 2001-09-21 2003-04-03 Matsushita Electric Ind Co Ltd Thinning method for crystal composite plate
JP2003346826A (en) * 2002-05-27 2003-12-05 Nissan Motor Co Ltd Solid electrolyte fuel cell
JP2004069446A (en) * 2002-08-06 2004-03-04 Nippon Sheet Glass Co Ltd Thickness and gap measuring instrument
JP2004264082A (en) * 2003-02-28 2004-09-24 Sunx Ltd Thickness measuring instrument

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037018A (en) * 2009-08-06 2011-02-24 Seiko Instruments Inc Manufacturing method for thermal head
JP2011037017A (en) * 2009-08-06 2011-02-24 Seiko Instruments Inc Thermal head and manufacturing method for the same
CN101992606A (en) * 2009-08-06 2011-03-30 精工电子有限公司 Manufacturing method for thermal head
CN101992605A (en) * 2009-08-06 2011-03-30 精工电子有限公司 Thermal head and manufacturing method for the thermal head
CN101992606B (en) * 2009-08-06 2015-05-20 精工电子有限公司 Manufacturing method for thermal head
JP2011125933A (en) * 2009-12-15 2011-06-30 Konica Minolta Opto Inc Polishing method
JP2012166409A (en) * 2011-02-14 2012-09-06 Seiko Instruments Inc Method for manufacturing thermal head

Also Published As

Publication number Publication date
JP4532324B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US8156621B2 (en) Methods of producing piezoelectric vibrating devices
KR102133336B1 (en) Composite substrate, method for fabricating same, and elastic wave device
US20030095245A1 (en) Structure for attaching a pellicle to a photo-mask
CN104365019A (en) Composite substrate
TWI304137B (en)
JP4532324B2 (en) Workpiece manufacturing method
JP2006276313A (en) Manufacturing method of optical filter
JP2010259011A (en) Substrate for surface acoustic wave element and method of manufacturing the surface acoustic wave element
JPH11163668A (en) Laminated piezo-electric single crystal substrate and piezo-electric device using it
JP5267247B2 (en) Optical element for small laser
KR100539844B1 (en) Method of producing member with periodical structure finer than wavelength and optical element formed of the member
JP4485760B2 (en) Manufacturing method of quartz base plate
JP2007500478A (en) Multilayer resonator and time base incorporating the resonator
JPH11163654A (en) Manufacture of reinforced piezo-electric substrate
JP2003186180A (en) Method for producing pellicle frame, and pellicle
JP2000228547A (en) Manufacture of piezoelectric board
JP2009267665A (en) Acoustic wave element, and method of manufacturing the same
JP7501889B2 (en) Method for manufacturing bonded wafer and method for manufacturing acoustic wave device
WO2024214367A1 (en) Piezoelectric vibrator
JP2000081512A (en) Etalon filter and its production
JPH0566303A (en) Manufacture of polarized light separating prism
JP2005217766A (en) Method of manufacturing crystal blank
JP2010010955A (en) Method for manufacturing piezoelectric vibrator, and piezoelectric vibrator
JP3096364B2 (en) Method for producing Johansson type X-ray spectroscopic crystal
JP2007249130A (en) Flat-plate-like optical member, manufacturing method of optical device, and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees