Nothing Special   »   [go: up one dir, main page]

JP2006266542A - Expansion valve integrated with solenoid valve - Google Patents

Expansion valve integrated with solenoid valve Download PDF

Info

Publication number
JP2006266542A
JP2006266542A JP2005082632A JP2005082632A JP2006266542A JP 2006266542 A JP2006266542 A JP 2006266542A JP 2005082632 A JP2005082632 A JP 2005082632A JP 2005082632 A JP2005082632 A JP 2005082632A JP 2006266542 A JP2006266542 A JP 2006266542A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
micro
passage
insertion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005082632A
Other languages
Japanese (ja)
Other versions
JP4503472B2 (en
Inventor
Hiroshi Hayashi
宏 林
Eiji Fukuda
栄二 福田
Shigeki Ito
繁樹 伊藤
Shin Honda
伸 本田
Hirotsugu Takeuchi
裕嗣 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Denso Corp
Original Assignee
Fujikoki Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp, Denso Corp filed Critical Fujikoki Corp
Priority to JP2005082632A priority Critical patent/JP4503472B2/en
Publication of JP2006266542A publication Critical patent/JP2006266542A/en
Application granted granted Critical
Publication of JP4503472B2 publication Critical patent/JP4503472B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a structure of a bypass in an expansion valve integrated with a solenoid valve. <P>SOLUTION: This expansion valve 1 integrated with the solenoid valve has a valve chest 12 on a valve main body 10, and a valve element 30 opening and closing a throttle passage 14 communicated with a refrigerant outlet passage is operated by a power element 50 through a valve spindle 80. The bypass passage formed in parallel with the throttle flow channel 14, is opened and closed by the solenoid valve 100. A cylindrical rubber insertion member 200 is inserted into a minute communication passage 22 communicated with the valve chest 12, and radially compressed when a refrigerant pressure at a bypass 21 side becomes excessively high, thus the minute orifice is opened and the refrigerant is allowed to pass therethrough. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電磁弁一体型膨張弁に関し、例えば車室内のフロント側とリア側に冷凍サイクルを設けた車両用空調装置に用いるのに好適なものである。   The present invention relates to an electromagnetic valve-integrated expansion valve, and is suitable for use in, for example, a vehicle air conditioner in which refrigeration cycles are provided on a front side and a rear side in a vehicle interior.

従来、この種電磁弁一体型膨張弁として、例えば下記特許文献1に記載されているものが知られている。この電磁弁一体型膨張弁は、高圧側冷媒を減圧膨張させる絞り流路と、この絞り流路の開度調整をする弁体と、この弁体を変位させる弁体作動機構(パワーエレメント)と、絞り流路にて減圧膨張した冷媒を蒸発器に供給する出口冷媒流路とを備え、電磁弁の弁体により出口冷媒流路を開閉するようにするとともに、電磁弁の弁体の閉弁時には、電磁弁の弁体と絞り流路との間の冷媒圧力に基づいて弁体を作動させるダイアフラム作動機構により、絞り流路の弁体を閉弁させるようにしている。
特開平11−182983号公報
Conventionally, as this kind of solenoid valve-integrated expansion valve, for example, the one described in Patent Document 1 below is known. This expansion valve integrated with a solenoid valve includes a throttle channel that decompresses and expands the high-pressure side refrigerant, a valve body that adjusts the opening of the throttle channel, and a valve body operating mechanism (power element) that displaces the valve body. An outlet refrigerant flow path for supplying the refrigerant decompressed and expanded in the throttle flow path to the evaporator, the outlet refrigerant flow path is opened and closed by the valve body of the electromagnetic valve, and the valve body of the electromagnetic valve is closed In some cases, the valve body of the throttle channel is closed by a diaphragm operating mechanism that operates the valve body based on the refrigerant pressure between the valve body of the electromagnetic valve and the throttle channel.
JP-A-11-182983

上記の特許文献に記載されたものは、電磁弁の閉弁時に、電磁弁の弁体と膨張弁の絞り通路の弁体との間が密閉空間となり、この密閉空間が液冷媒で満たされた場合には、雰囲気の温度上昇とともにこの密閉空間が異常に高圧になってしまうおそれがあり、これを回避するため電磁弁の上流側と膨張弁の上流側とを連通する微小連通路を設けたものである。しかし、この微小連通路は冷媒を微小量だけ逃がすためのものであるが故に極小径であることが要求され、その加工は困難を極めることとなる。
そこで本発明の目的は、微小連通路を加工の容易な径としたままで、要求される微量の冷媒逃がしを可能とする電磁弁一体型膨張弁を提供するものである。
In the above-mentioned patent document, when the solenoid valve is closed, the space between the valve body of the solenoid valve and the valve body of the throttle passage of the expansion valve becomes a sealed space, and this sealed space is filled with the liquid refrigerant. In this case, there is a possibility that this sealed space may become abnormally high pressure as the temperature of the atmosphere rises, and in order to avoid this, a minute communication path that connects the upstream side of the solenoid valve and the upstream side of the expansion valve is provided. Is. However, since this minute communication path is for escaping a small amount of refrigerant, it is required to have a very small diameter, and its processing becomes extremely difficult.
Accordingly, an object of the present invention is to provide an electromagnetic valve-integrated expansion valve that allows a required small amount of refrigerant to escape while maintaining a minute communication path having a diameter that can be easily processed.

本発明の電磁弁一体型膨張弁は、基本的な手段として、高圧側冷媒が導入される弁室と該弁室と冷媒の出口流路との間に設けられる絞り流路を有する弁本体と、前記弁室内の弁体を作動させるパワーエレメントと、前記弁室と前記出口流路との間に設けられている冷媒のバイパス通路と、該バイパス通路を開閉する電磁弁とを含み、前記弁室と前記電磁弁とを連通するように設けられる微小オリフィスを有する微小連通路に挿入される挿入部材を備える。該挿入部材はその外側面で前記微小オリフィスを開閉する柱状のゴムでつくられる。   The expansion valve integrated with a solenoid valve according to the present invention includes, as basic means, a valve chamber having a valve chamber into which a high-pressure refrigerant is introduced and a throttle channel provided between the valve chamber and the outlet channel of the refrigerant. And a power element that operates the valve body in the valve chamber, a bypass passage of refrigerant provided between the valve chamber and the outlet passage, and an electromagnetic valve that opens and closes the bypass passage, And an insertion member inserted into a micro communication path having a micro orifice provided to communicate the chamber and the electromagnetic valve. The insertion member is made of a columnar rubber that opens and closes the micro-orifice on its outer surface.

また、前記柱状のゴムでつくられる挿入部材の外周面は微小オリフィスを塞ぐ外径寸法を有する。
そして、前記微小オリフィスは、前記微小連通路の径方向に延びて連通しており、前記挿入部材は、その外側面が前記微小オリフィスの開口部を塞ぐ位置まで前記微小連通路に挿入されており、前記挿入部材は、径方向に変形可能であって、径方向内側へ変形することで前記微小オリフィスの開口部を開くものである。
さらに、前記挿入部材は円筒形状であることができる。
In addition, the outer peripheral surface of the insertion member made of the columnar rubber has an outer diameter that closes the micro orifice.
The micro-orifice extends in the radial direction of the micro-communication path and communicates, and the insertion member is inserted into the micro-communication path until the outer surface closes the opening of the micro-orifice. The insertion member is deformable in the radial direction, and opens the opening of the micro orifice by being deformed inward in the radial direction.
Furthermore, the insertion member may be cylindrical.

本発明によれば、電磁弁が閉じたときに、冷媒を弁室から電磁弁側へ微小量だけ逃がすための微小連通路を適当な小径としたままで冷媒の微小量逃がしを適切に達成できる。そのため加工が容易となり、また冷媒流動音の発生を効果的に抑制することも可能となる。   According to the present invention, when the solenoid valve is closed, it is possible to appropriately achieve the escape of the minute amount of the refrigerant while keeping the minute communication path for allowing the refrigerant to escape from the valve chamber to the solenoid valve side by an appropriate small diameter. . Therefore, processing becomes easy, and generation of refrigerant flow noise can be effectively suppressed.

図1は本発明に係る電磁弁一体型膨張弁の一実施の形態を示す断面図、図2は要部の拡大図である。図において、ハッチングを施した部分は破断して示す部分である。
全体を符号1で示す電磁弁一体型膨張弁は、ほぼ角柱形状の弁本体10を有する。弁本体10の下部の内部には、冷凍サイクルの圧縮機側からの高圧冷媒が供給される図示しない入口冷媒通路を有し、入口冷媒通路は弁本体10内部に形成された弁室12に連通される。弁室12内にはボール状の弁体30が、支持部材32を介してスプリング34で支えられる。
FIG. 1 is a sectional view showing an embodiment of an expansion valve integrated with a solenoid valve according to the present invention, and FIG. 2 is an enlarged view of a main part. In the figure, the hatched portion is a broken portion.
An expansion valve integrated with an electromagnetic valve denoted as a whole by reference numeral 1 has a substantially prismatic valve body 10. The lower part of the valve body 10 has an inlet refrigerant passage (not shown) to which high-pressure refrigerant from the compressor side of the refrigeration cycle is supplied, and the inlet refrigerant passage communicates with a valve chamber 12 formed inside the valve body 10. Is done. A ball-shaped valve element 30 is supported in the valve chamber 12 by a spring 34 via a support member 32.

弁室12の開口部にはナット部材40が螺合されて、封止される。ナット部材40をねじ込むことで、スプリング34は予圧され、所定のスプリング力で支持部材32を介して弁体30を支持する。ナット部材40にシール部材を取り付けて弁室12のシールを図る。
弁室12の冷媒は、弁体30と弁座の間の絞り流路14を通って減圧膨張され、出口冷媒流路に流出する。出口冷媒流路からの冷媒は、図示しない蒸発器へ送り出される。
A nut member 40 is screwed into the opening of the valve chamber 12 and sealed. By screwing the nut member 40, the spring 34 is preloaded and the valve body 30 is supported via the support member 32 with a predetermined spring force. A seal member is attached to the nut member 40 to seal the valve chamber 12.
The refrigerant in the valve chamber 12 is decompressed and expanded through the throttle passage 14 between the valve body 30 and the valve seat, and flows out to the outlet refrigerant passage. The refrigerant from the outlet refrigerant channel is sent to an evaporator (not shown).

蒸発器から戻される冷媒は、弁本体10の上部内に設けらた通路18を通り、図示しない圧縮機へ還流される。通路18内の冷媒温度は、感温棒70を介して弁本体10の上部に取り付けられる弁体を駆動させる弁体作動機構となるダイアフラム作動機構であるパワーエレメント50に伝達される。
パワーエレメント50は、弁本体10に対してねじ部54で取り付けられるハウジング52を有する。さらに、ハウジング52に挟み込まれて溶接されているダイアフラム60を有し、ダイアフラム60により上部室62aと下部室62bが区画される。上部室62aには作動流体が封入され、栓体64が封止される。
The refrigerant returned from the evaporator passes through a passage 18 provided in the upper part of the valve body 10 and is returned to a compressor (not shown). The refrigerant temperature in the passage 18 is transmitted via a temperature sensing rod 70 to a power element 50 that is a diaphragm operating mechanism that serves as a valve operating mechanism that drives a valve attached to the upper portion of the valve body 10.
The power element 50 has a housing 52 that is attached to the valve body 10 with a screw portion 54. Furthermore, it has the diaphragm 60 inserted | pinched and welded by the housing 52, and the upper chamber 62a and the lower chamber 62b are divided by the diaphragm 60. FIG. A working fluid is sealed in the upper chamber 62a, and the plug body 64 is sealed.

ダイアフラム60は感温棒70で支持される。感温棒70は中心に冷媒が導入される通路72を有する。
感温棒70の変位は、弁棒80を介して弁体30に伝達される。
The diaphragm 60 is supported by a temperature sensitive rod 70. The temperature sensing rod 70 has a passage 72 through which refrigerant is introduced at the center.
The displacement of the temperature sensing rod 70 is transmitted to the valve body 30 via the valve rod 80.

この膨張弁1は以上のように構成してあるので、蒸発器から流出されて、通路18を通る冷媒の圧力と温度に応じて設定されるダイアフラム60の作動位置により、感温棒70が駆動され、弁体30と弁座の間の絞り流路14の間隙が調整される。   Since the expansion valve 1 is configured as described above, the temperature sensing rod 70 is driven by the operating position of the diaphragm 60 set according to the pressure and temperature of the refrigerant that flows out of the evaporator and passes through the passage 18. Thus, the gap of the throttle channel 14 between the valve body 30 and the valve seat is adjusted.

そこで、蒸発器の熱負荷が大きいときには、弁体30と弁座の間の間隙は大きくなり、大量の冷媒が蒸発器に供給され、反対に熱負荷が小さいときには、冷媒の流量は少なくなる。   Therefore, when the heat load of the evaporator is large, the gap between the valve body 30 and the valve seat is large, a large amount of refrigerant is supplied to the evaporator, and conversely, when the heat load is small, the flow rate of the refrigerant is small.

弁本体10の側面部には電磁弁100が取り付けられる。
電磁弁100は、ケーシング110と、ケーシング110に連結される取付部材160を有し、取付部材160は、ねじ部を介して弁本体10に形成した有底の開口部に取り付けられる。
A solenoid valve 100 is attached to the side surface of the valve body 10.
The electromagnetic valve 100 includes a casing 110 and an attachment member 160 connected to the casing 110, and the attachment member 160 is attached to a bottomed opening formed in the valve body 10 via a screw portion.

電磁弁100は、ケーシング110内にコイル120を有し、コード122を介して給電される。ケーシング110の中心部には、シリンダ124が配設され、プランジャ140が摺動自在に挿入される。シリンダ124の外側には、吸引子130がビス132で固定される。吸引子130とプランジャ140の間に設けられるスプリング142はプランジャ140を吸引子130から離れる方向に付勢する。
プランジャ140の先端には、パイロット弁体150が摺動自在に配設される。このパイロット弁体150は中心部に弁穴152を有する。
The solenoid valve 100 has a coil 120 in a casing 110 and is supplied with power via a cord 122. A cylinder 124 is disposed at the center of the casing 110, and the plunger 140 is slidably inserted therein. A suction element 130 is fixed to the outside of the cylinder 124 with screws 132. A spring 142 provided between the suction element 130 and the plunger 140 urges the plunger 140 in a direction away from the suction element 130.
A pilot valve body 150 is slidably disposed at the tip of the plunger 140. The pilot valve body 150 has a valve hole 152 at the center.

かくの如く構成された電磁弁100においては、電磁弁100のコイル120に通電されると、コイル120の磁力により、プランジャ140が吸引子130側に引き戻される。プランジャ140の先端部144がパイロット弁体150の弁穴152から離れると、弁穴152が開口し、背圧室20aの冷媒が弁穴152を通過して導管24の通路25に導入され、圧力差が減じられる。これによりパイロット弁体150は、導管24の先端から離れ、電磁弁100は開弁時となり、背圧室20a内の冷媒は、出口冷媒流路側へ流れる。   In the solenoid valve 100 configured as described above, when the coil 120 of the solenoid valve 100 is energized, the plunger 140 is pulled back to the attractor 130 side by the magnetic force of the coil 120. When the distal end portion 144 of the plunger 140 is separated from the valve hole 152 of the pilot valve body 150, the valve hole 152 is opened, and the refrigerant in the back pressure chamber 20a passes through the valve hole 152 and is introduced into the passage 25 of the conduit 24. The difference is reduced. Thereby, the pilot valve body 150 is separated from the tip of the conduit 24, the electromagnetic valve 100 is opened, and the refrigerant in the back pressure chamber 20a flows to the outlet refrigerant flow path side.

弁室12の冷媒は、弁体30と弁座の間の絞り流路14を通りバイパス通路21を介して電磁弁100が取付けられる有底穴20の背圧室20aに充填される。   The refrigerant in the valve chamber 12 is charged into the back pressure chamber 20a of the bottomed hole 20 to which the electromagnetic valve 100 is attached through the throttle passage 14 between the valve body 30 and the valve seat and through the bypass passage 21.

逆に、コイル120への通電を遮断し、スプリング142のバネ力によりプランジャ140の先端部144が弁体150の弁穴152に着座して、この弁穴152を閉じる。すると、弁体30と弁座の間の絞り流路14を通り、バイパス通路21を介して背圧室20aに冷媒が導入される。そのため、プランジャ140の先端部144が弁穴152に着座して弁穴152を閉じるとともに、パイロット弁体150が導管24の端面に着座し、通路25を閉じる。これにより、電磁弁100が閉弁状態に復帰する。   On the contrary, the power supply to the coil 120 is cut off, and the distal end portion 144 of the plunger 140 is seated in the valve hole 152 of the valve body 150 by the spring force of the spring 142 and the valve hole 152 is closed. Then, the refrigerant is introduced into the back pressure chamber 20a through the bypass passage 21 through the throttle channel 14 between the valve body 30 and the valve seat. Therefore, the distal end portion 144 of the plunger 140 is seated on the valve hole 152 to close the valve hole 152, and the pilot valve body 150 is seated on the end surface of the conduit 24 to close the passage 25. Thereby, the solenoid valve 100 returns to the closed state.

図2,図3は、挿入部材200の取付構造を示す説明図である。
挿入部材200は、例えば円筒形状のゴムでつくられる。そして、この挿入部材200を円筒穴状の微小連通路22内に挿入し、カシメ部Kにより固定する。微小連通路22の弁室12側の開口部は段付穴22aが形成されており、カシメ部Kの加工代が用意される。
2 and 3 are explanatory views showing a mounting structure of the insertion member 200. FIG.
The insertion member 200 is made of, for example, a cylindrical rubber. Then, insert this insert member 200 in a cylindrical bore shape of micro communication passage 22, it is fixed by the caulking portion K 1. Opening of the valve chamber 12 side of the micro communication passage 22 is stepped hole 22a is formed, a machining margin of the caulking portion K 1 is prepared.

ゴム製の円筒形状の挿入部材200は、中空部202を有し、径方向に伸縮することができる。
そこで、図3に示すように、弁室12側からの冷媒の圧力Fがかかっているときには、外周面が微小オリフィス23を塞ぎ、冷媒は電磁弁に通ずるバイパス通路22側へは流れない。
The rubber-shaped cylindrical insertion member 200 has a hollow portion 202 and can expand and contract in the radial direction.
Therefore, as shown in FIG. 3, when the pressure F of the refrigerant from the valve chamber 12 side is applied, the outer peripheral surface closes the micro orifice 23, and the refrigerant does not flow to the bypass passage 22 side leading to the electromagnetic valve.

図4に示すように、電磁弁側の冷媒の圧力Fが過大となると、微小オリフィス23に対向する挿入部材の外周面が押されて変形し、間隙Gが形成される。
電磁弁側の冷媒は、この間隙Gを通過して弁室12側へ逃げ、不具合を防止する。
As shown in FIG. 4, when the pressure F 1 of the refrigerant of the solenoid valve side is excessive, deformed outer peripheral surface pushed by the insert member facing the small orifice 23, the gap G 1 is formed.
Refrigerant solenoid valve side, escape into the valve chamber 12 side through the gap G 1, to prevent the problem.

挿入部材は、微小連通路22の径方向に延び連通する流路を圧力に応じて開閉するために、径方向に関して所定の弾力性を提供できる材質と形状とを有する。また、挿入部材にその外側面で微小連通路22の内壁面に密着して流路を閉じるために滑らかな外側面を有する。
挿入部材は、微小連通路22の形状にあわせて円筒状、円柱状、多角筒状などの形状とすることができる。
The insertion member has a material and a shape that can provide predetermined elasticity in the radial direction in order to open and close the flow path extending in the radial direction of the micro communication path 22 according to pressure. Further, the insertion member has a smooth outer surface in order to close the flow path in close contact with the inner wall surface of the micro communication path 22 on its outer surface.
The insertion member can have a cylindrical shape, a columnar shape, a polygonal cylindrical shape, or the like according to the shape of the minute communication path 22.

本発明の電磁弁付膨張弁の一実施の形態を示す断面図。Sectional drawing which shows one Embodiment of the expansion valve with a solenoid valve of this invention. 要部の断面図。Sectional drawing of the principal part. 本発明の挿入部材の取付構造の説明図。Explanatory drawing of the attachment structure of the insertion member of this invention. 本発明の作用を示す説明図。Explanatory drawing which shows the effect | action of this invention.

符号の説明Explanation of symbols

1 膨張弁
10 弁本体
12 弁室
14 絞り流路
16 出口冷媒流路
20 有底穴
20a 背圧室
21 バイパス通路
22 微小連通路
23 微小オリフィス
24 導管
30 弁体
50 パワーエレメント
60 ダイアフラム
70 感温棒
80 弁棒
100 電磁弁
120 コイル
130 吸引子
140 プランジャ
150 パイロット弁体
200 挿入部材
DESCRIPTION OF SYMBOLS 1 Expansion valve 10 Valve body 12 Valve chamber 14 Throttle flow path 16 Outlet refrigerant flow path 20 Bottomed hole 20a Back pressure chamber 21 Bypass path 22 Micro communication path 23 Micro orifice 24 Conduit 30 Valve body 50 Power element 60 Diaphragm 70 Temperature sensing rod 80 Valve Rod 100 Solenoid Valve 120 Coil 130 Suction Element 140 Plunger 150 Pilot Valve Element 200 Insertion Member

Claims (4)

高圧側冷媒が導入される弁室と該弁室と冷媒の出口流路の間に設けられる絞り流路を有する弁本体と、前記弁室内に配置される弁体を作動させるパワーエレメントと、前記弁室と前記出口流路の間に設けられる冷媒のバイパス通路と、該バイパス通路を開閉する電磁弁とを含み、
前記弁室と前記電磁弁とを連通するように設けられる微小オリフィスを有する微小連通路に挿入される挿入部材を備え、該挿入部材はその外側面で前記微小オリフィスを開閉する柱状のゴムでつくられる電磁弁一体型膨張弁。
A valve body having a valve chamber into which the high-pressure side refrigerant is introduced, a throttle passage provided between the valve chamber and the outlet passage of the refrigerant, a power element for operating the valve body disposed in the valve chamber, A bypass passage for refrigerant provided between a valve chamber and the outlet passage, and an electromagnetic valve for opening and closing the bypass passage,
An insertion member inserted into a microcommunication passage having a micro-orifice provided so as to communicate the valve chamber and the electromagnetic valve, and the insertion member is made of a columnar rubber that opens and closes the micro-orifice on an outer surface thereof; An expansion valve integrated with a solenoid valve.
前記柱状のゴムでつくられる挿入部材の外周面は微小オリフィスを塞ぐ外径寸法を有する請求項1記載の電磁弁一体型膨張弁。   2. An expansion valve integrated with a solenoid valve according to claim 1, wherein an outer peripheral surface of the insertion member made of the columnar rubber has an outer diameter that closes the minute orifice. 前記微小オリフィスは、前記微小連通路の径方向に延びて連通しており、前記挿入部材は、その外側面が前記微小オリフィスの開口部を塞ぐ位置まで前記微小連通路に挿入されており、前記挿入部材は、径方向に変形可能であって、径方向内側へ変形することで前記微小オリフィスの開口部を開くことを特徴とする請求項1記載の電磁弁一体型膨張弁。   The micro orifice extends and communicates in the radial direction of the micro communication path, and the insertion member is inserted into the micro communication path until the outer surface closes the opening of the micro orifice, 2. The solenoid valve-integrated expansion valve according to claim 1, wherein the insertion member is deformable in a radial direction and opens the opening of the micro-orifice by being deformed inward in the radial direction. 前記挿入部材は円筒形状であることを特徴とする請求項1〜3の何れかに記載の電磁弁一体型膨張弁。   The solenoid valve-integrated expansion valve according to any one of claims 1 to 3, wherein the insertion member has a cylindrical shape.
JP2005082632A 2005-03-22 2005-03-22 Expansion valve with integrated solenoid valve Expired - Fee Related JP4503472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082632A JP4503472B2 (en) 2005-03-22 2005-03-22 Expansion valve with integrated solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082632A JP4503472B2 (en) 2005-03-22 2005-03-22 Expansion valve with integrated solenoid valve

Publications (2)

Publication Number Publication Date
JP2006266542A true JP2006266542A (en) 2006-10-05
JP4503472B2 JP4503472B2 (en) 2010-07-14

Family

ID=37202723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082632A Expired - Fee Related JP4503472B2 (en) 2005-03-22 2005-03-22 Expansion valve with integrated solenoid valve

Country Status (1)

Country Link
JP (1) JP4503472B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323182Y2 (en) * 1987-07-08 1991-05-21
JPH06137445A (en) * 1992-10-30 1994-05-17 Toyota Motor Corp Check valve
JP2004340560A (en) * 2003-04-24 2004-12-02 Fuji Koki Corp Composite valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323182Y2 (en) * 1987-07-08 1991-05-21
JPH06137445A (en) * 1992-10-30 1994-05-17 Toyota Motor Corp Check valve
JP2004340560A (en) * 2003-04-24 2004-12-02 Fuji Koki Corp Composite valve

Also Published As

Publication number Publication date
JP4503472B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4153133B2 (en) Expansion valve
JP6182363B2 (en) Expansion valve
JP4588656B2 (en) Expansion valve with integrated solenoid valve
KR20160039538A (en) Control valve
JP4848548B2 (en) Expansion valve with solenoid valve
JP2005140381A (en) Expansion valve having electromagnetic relief valve
JP2011043102A (en) Control valve for variable displacement compressor
KR101020808B1 (en) Expansion valve integrated with solenoid valve
JP2008138812A (en) Differential pressure valve
JP4566150B2 (en) Expansion valve with integrated solenoid valve
JP2004270975A (en) Flow rate control valve
JP2003121030A (en) Expansion valve
JP2971745B2 (en) solenoid valve
JP5619526B2 (en) Expansion valve with integrated solenoid valve
JP4503471B2 (en) Expansion valve with integrated solenoid valve
JP4503472B2 (en) Expansion valve with integrated solenoid valve
JP2005090762A (en) Differential pressure regulating valve
JP4576076B2 (en) Expansion valve with integrated solenoid valve
JP3882573B2 (en) Expansion valve with integrated solenoid valve
JP2005249300A (en) Expansion valve
JP2006266543A (en) Expansion valve integrated with solenoid valve
EP3023715A1 (en) Expansion apparatus and refrigerant cycle of vehicle air conditioner using the same
JPH11304298A (en) Expansion valve with solenoid valve
JP2005331166A (en) Expansion valve
JP2002349432A (en) Control valve for variable displacement compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Ref document number: 4503472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees