JP2006265249A - New flavonoid compound and method for producing the same and antioxidant with the same as active ingredient - Google Patents
New flavonoid compound and method for producing the same and antioxidant with the same as active ingredient Download PDFInfo
- Publication number
- JP2006265249A JP2006265249A JP2006075573A JP2006075573A JP2006265249A JP 2006265249 A JP2006265249 A JP 2006265249A JP 2006075573 A JP2006075573 A JP 2006075573A JP 2006075573 A JP2006075573 A JP 2006075573A JP 2006265249 A JP2006265249 A JP 2006265249A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- luteolin
- arabinoside
- aqueous layer
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Plant Substances (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
本発明は、抗酸化活性を有する新規なフラボノイド化合物及びその製造方法、並びに、それを有効成分とする抗酸化剤に関するものである。さらに詳しくは、抗酸化活性を有する新規なフラボノイド化合物である特定のルテオリン配糖体、並びに、ササ及び/又はタケの葉を原料として該ルテオリン配糖体を低コストで製造する方法、そして、該ルテオリン配糖体を有効成分とする抗酸化剤に関するものである。 The present invention relates to a novel flavonoid compound having antioxidant activity, a method for producing the same, and an antioxidant containing the same as an active ingredient. More specifically, a specific luteolin glycoside, which is a novel flavonoid compound having antioxidant activity, and a method for producing the luteolin glycoside from Sasa and / or bamboo leaves at low cost, and The present invention relates to an antioxidant containing luteolin glycoside as an active ingredient.
ある種のフラボノイド化合物が抗酸化活性を有することはよく知られている。例えば、特開平6−65278号公報(特許文献1)、特開平6−100584号公報(特許文献2)等には、ユーカリ属の樹木から採取したある種のフラボノイド配糖体が開示され、これらはすぐれた抗酸化作用を有し、飲食品、化粧品及び医薬品として有用であると記載されている。また、特開平6−248267号公報(特許文献3)には、タマネギ等の成分であるケルセチン(Quercetin)及びケムフェロール(Kaempferol)、お茶等の成分であるカテチン(Catechin),タキシフォリン(Taxifolin)等が抗酸化性を有するフラボノイド類として報告されている。
しかしながら、これらのフラボノイド化合物は、原料の入手が難しかったり、製造が煩雑であるばかりでなく、溶媒への溶解性等と関連し抗酸化活性も十分とは言えない。
そこで、本発明の目的は、卓越した抗酸化活性を有する新規フラボノイド化合物及びそれを工業的に製造する方法、並び該新規フラボノイド化合物を有効成分とする抗酸化剤を提供することにある。However, these flavonoid compounds are not only difficult to obtain raw materials and complicated to manufacture, but also have poor antioxidant activity in relation to solubility in solvents and the like.
Therefore, an object of the present invention is to provide a novel flavonoid compound having excellent antioxidant activity, a method for industrially producing the compound, and an antioxidant containing the novel flavonoid compound as an active ingredient.
一般に植物にはフラボノイド類が含まれており、抗酸化能が期待される。本発明者らは、前記の植物としてタケ類及びササ類に注目した。タケ・ササの仲間は、マダケ属、ナリヒラダケ属、トウチク属、オカメザサ属、ササ属、アズマザサ属、ヤダケ属、メダケ属、カンチク属、ホウライチク属の10属から成っている。なかでもササ類は温帯や亜寒帯に広く分布する植物で、ササ属は日本を分布の中心とし、全国に種類、量ともに広く分布する。しかし、タケ・ササの仲間、特にササ属植物由来のフラボノイドに関する知見は少ない。本発明者らは、これらの葉に含まれているフラボノイド成分に着目し、抗酸化活性を有する新規な化合物を抽出精製することに成功し、本発明を完成したものである。 In general, plants contain flavonoids and are expected to have antioxidant capacity. The present inventors paid attention to bamboos and bamboo grasses as the aforementioned plants. The members of the bamboo sasa are made up of 10 genera of the genus Mushroom, Narihirada, Tochiku, Okamesa, Sasa, Azumaza, Yadatake, Medake, Kanchiku, and Houraichiku. Among them, Sasa is a plant widely distributed in the temperate and subarctic regions, and Sasa belongs to Japan as the center of distribution, and is widely distributed in all kinds and quantities throughout the country. However, little is known about the flavonoids derived from the Sasa genus, especially the Sasa family. The present inventors have focused on the flavonoid component contained in these leaves, succeeded in extracting and purifying a novel compound having antioxidant activity, and completed the present invention.
すなわち、本発明によれば、新規なフラボノイド化合物として、下記の化学式(1)で表されるルテオリン6−C−アラビノシドからなるルテオリン配糖体が提供される。
また、本発明によれば、ササ葉及び/又はタケ葉の低級脂肪族アルコール(メタノール、エタノール、プロパノール等の炭素数3以下のアルコールをいう、以下同じ)で抽出し、前記抽出液を濃縮し、水に置換又は加水して濾過することによりクロロフィルを濾去し、濾去後の水層にジエチルエーテルを添加し液・液分配を行い、得られる水層にさらに酢酸エチルを添加し液・液分配を行い、これらの操作を複数回繰り返し、水層及び酢酸エチル層からルテオリン6−C−アラビノシドを採取することを特徴とする新規フラボノイド化合物の製造方法が提供される。
また、本発明によれば、別の方法として、ササ葉及び/又はタケ葉を低級脂肪族アルコールで抽出し、前記抽出液を濃縮し、水に置換又は加水して濾過することによりクロロフィルを濾去し、濾去後の水層にジエチルエーテルを添加し液・液分配を行い、得られる水層からルテオリン6−C−アラビノシドを採取することを特徴とする新規フラボノイド化合物の製造方法が提供される。
この際、ササ葉又はタケの葉の抽出液又は抽出液分画後ピークの液を、さらに加水分解した後、精製することにより、該加水分解後液から高い収率でルテオリン6−C−アラビノシドを採取することができる。Further, according to the present invention, extraction is performed with a lower aliphatic alcohol of sasa leaves and / or bamboo leaves (referred to as alcohols having 3 or less carbon atoms such as methanol, ethanol, propanol, etc.), and the extract is concentrated. The chlorophyll is filtered off by substituting with water or adding water, and filtered, and diethyl ether is added to the aqueous layer after the filtration and liquid-liquid partition is performed. Further, ethyl acetate is further added to the resulting aqueous layer. There is provided a method for producing a novel flavonoid compound characterized by performing liquid partitioning and repeating these operations a plurality of times to collect luteolin 6-C-arabinoside from an aqueous layer and an ethyl acetate layer.
Further, according to the present invention, as another method, chlorophyll is filtered by extracting sasa leaves and / or bamboo leaves with a lower aliphatic alcohol, concentrating the extract, substituting with water or adding water, and filtering. And a method for producing a novel flavonoid compound characterized in that diethyl ether is added to the aqueous layer after filtration and liquid-liquid partition is performed, and luteolin 6-C-arabinoside is collected from the obtained aqueous layer. The
At this time, the extract of the Sasa leaf or bamboo leaf or the peak solution after fractionation of the extract is further hydrolyzed and purified to obtain luteolin 6-C-arabinoside in a high yield from the hydrolyzed solution. Can be collected.
さらに、本発明によれば、ササ葉及び/又はタケの葉由来の新規なフラボノイド化合物であるルテオリン6−C−アラビノシドを有効成分として含む抗酸化性剤が提供される。 Furthermore, according to this invention, the antioxidant which contains luteolin 6-C-arabinoside which is a novel flavonoid compound derived from a Sasa leaf and / or a bamboo leaf as an active ingredient is provided.
本発明の新規フラボノイド化合物(ルテオリン6−C−アラビノシド)は、下記の化学式(1)で表される構造を有するルテオリン配糖体であって、後述する実施例に示す測定データ等から明らかなごとく、良好なDPPHラジカル消去活性、SOD様活性を有するのに加えて、脂質過酸化物抑制活性に優れている。しかも、驚くべきことに、この新規化合物(ルテオリン6−C−アラビノシド)は、褐変酵素ポリフェノールオキシダーゼ(PPO)の阻害活性が非常に大きい。 The novel flavonoid compound (luteolin 6-C-arabinoside) of the present invention is a luteolin glycoside having a structure represented by the following chemical formula (1), and is apparent from measurement data and the like shown in Examples described later. In addition to having good DPPH radical scavenging activity and SOD-like activity, it is excellent in lipid peroxide inhibiting activity. Moreover, surprisingly, this novel compound (Luteolin 6-C-arabinoside) has a very large inhibitory activity on the browning enzyme polyphenol oxidase (PPO).
上記化合物の1H−NMRの値は、δ=3.60(dd,J=2.8,9.6Hz,1H,3’’−H),3.72(d,J=12.0Hz,1H,5’’−Heq),3.95(m,1H,4’’−H),3.99(dd,J=2.4,12.0Hz,1H,5’’−Hax),4.24(dd,J=9.6,9.6Hz,1H,2’’−H),4.79(d,J=9.6Hz,1H,1’’−H),6.50(s,1H,8−H),6.55(s,1H,3−H),6.89(d,J=8.4Hz,1H,5’−H),7.36(br,d,J=2.0Hz,1H,2’−H),7.37(dd,J=2.0,8.4Hz,1H,6’−H)である。The 1 H-NMR values of the above compounds are δ = 3.60 (dd, J = 2.8, 9.6 Hz, 1H, 3 ″ -H), 3.72 (d, J = 12.0 Hz, 1H, 5 ″ -Heq), 3.95 (m, 1H, 4 ″ -H), 3.99 (dd, J = 2.4, 12.0 Hz, 1H, 5 ″ -Hax), 4 .24 (dd, J = 9.6, 9.6 Hz, 1H, 2 ″ −H), 4.79 (d, J = 9.6 Hz, 1H, 1 ″ −H), 6.50 (s , 1H, 8-H), 6.55 (s, 1H, 3-H), 6.89 (d, J = 8.4 Hz, 1H, 5′-H), 7.36 (br, d, J = 2.0 Hz, 1H, 2'-H), 7.37 (dd, J = 2.0, 8.4Hz, 1H, 6'-H).
以下、本発明のルテオリン6−C−アラビノシドの製造方法及び単離精製方法、並びに、物質の同定方法に関し、順次詳述する。 Hereinafter, the method for producing and isolating and purifying luteolin 6-C-arabinoside of the present invention and the method for identifying a substance will be described in detail.
(原料)
原料となるササは、クマイザサ、チマキザサ、クマザサ、チシマザサ、ミヤコザサ、ヤクシマダケ、スズタケ等その種類は問わない。また、タケも、モウソウチク、インヨウチク、マダケ、オオバヤダケ、メダケ、ホウライチク等が使用可能である。これらのササあるいはタケの葉の部分を、水洗した後、必要に応じて適当な大きさに細断し乾燥(水分除去)して使用する。ササ又はタケの葉は、粉末にしてもよく、枯れさせてもよい。(material)
The kind of Sasa used as a raw material does not ask | require the kind, such as Kumizasa, Chimakazasa, Kumazasa, Chishimazasa, Miyakozasa, Yakushima mushroom, Suzutake. Also, bamboo can be used as Mosouchiku, Inyochiku, Madatake, Oobayake, Medake, Horaichiku and the like. These leaf portions of bamboo grass or bamboo are washed with water, then cut into an appropriate size and dried (moisture removed) as necessary. Sasa or bamboo leaves may be powdered or withered.
この原料を用いて、図1に例示するようなフローで抽出及び液・液分配を行う。
各工程の具体例は、以下のとおりである。Using this raw material, extraction and liquid / liquid distribution are performed in the flow illustrated in FIG.
Specific examples of each process are as follows.
(第1工程:アルコール抽出・蒸発乾固・粗抽出液の調製)
ササ葉1gに対して10倍容の低級脂肪族アルコールで抽出する。抽出は暗所で24時間放置し、24時間後濾過する。この操作を4回繰り返し、得られた濾液をあわせ、ロータリーエバポレーターで濃縮乾固し、試料重量の2倍容の純水に溶解する。このようにして得られた溶液を粗抽出液とする。(First step: alcohol extraction, evaporation to dryness, preparation of crude extract)
Extract with 10-fold lower aliphatic alcohol per 1 g of Sasa leaves. The extraction is left in the dark for 24 hours and filtered after 24 hours. This operation is repeated 4 times, and the obtained filtrates are combined, concentrated to dryness with a rotary evaporator, and dissolved in pure water having a volume twice the sample weight. The solution thus obtained is used as a crude extract.
(第2工程:石油エーテルによる液・液分配)
上記の粗抽出液に対して同量の石油エーテルを加え、分液ロートにて水・石油エーテル溶媒の液・液分配を行う。この操作を2〜3回繰り返し行い、石油エーテル層と水層とを得る。石油エーテル層にはクロロフィルが含まれるので廃棄する。(Second step: Liquid / liquid distribution with petroleum ether)
The same amount of petroleum ether is added to the above crude extract, and liquid / liquid partitioning of water / petroleum ether solvent is performed with a separatory funnel. This operation is repeated 2-3 times to obtain a petroleum ether layer and an aqueous layer. The petroleum ether layer contains chlorophyll and is discarded.
(第3工程:ジエチルエーテルによる液・液分配)
次に、得られた水層に該水層と同量のジエチルエーテルを添加し、分液ロートにて水・ジエチルエーテル溶媒の液・液分配を行う。この操作を2〜3回繰り返し行い、ジエチルエーテル層、水層を得た。ジエチルエーテル層をロータリーエバポレーターで乾固する。(3rd step: Liquid / liquid distribution with diethyl ether)
Next, the same amount of diethyl ether as that of the aqueous layer is added to the obtained aqueous layer, and liquid / liquid distribution of water / diethyl ether solvent is performed with a separatory funnel. This operation was repeated 2-3 times to obtain a diethyl ether layer and an aqueous layer. The diethyl ether layer is dried on a rotary evaporator.
(第4工程:酢酸エチルによる液・液分配)
第3工程で得られた水層に、該水層と同量の酢酸エチルを加え、分液ロートにて,水・酢酸エチル溶媒の液・液分配を行う。この操作を2〜3回繰り返し行い、酢酸エチル層、水層を得る。各層をロータリーエバポレーターで濃縮乾固し、メタノールに置換する。(4th step: Liquid / liquid distribution with ethyl acetate)
The same amount of ethyl acetate as that of the aqueous layer is added to the aqueous layer obtained in the third step, and liquid / liquid partitioning of water / ethyl acetate solvent is performed in a separatory funnel. This operation is repeated 2-3 times to obtain an ethyl acetate layer and an aqueous layer. Each layer is concentrated to dryness on a rotary evaporator and replaced with methanol.
(組成物に含まれる有効成分)
上述のようにして得たジエチルエーテル層には、主にトリシンが含まれ、酢酸エチル層には、ルテオリン6−C−アラビノシド、ルテオリン6−C−グルコシド及びトリシンが主に含まれる。一方、水層には、ルテオリン6−C−グルコシドが主に含まれる。従って、酢酸エチル層からルテオリン6−C−アラビノシドを得ることができる。(Active ingredient contained in the composition)
The diethyl ether layer obtained as described above mainly contains tricine, and the ethyl acetate layer mainly contains luteolin 6-C-arabinoside, luteolin 6-C-glucoside and tricine. On the other hand, the aqueous layer mainly contains luteolin 6-C-glucoside. Therefore, luteolin 6-C-arabinoside can be obtained from the ethyl acetate layer.
本発明者らの研究によれば、ササ葉及び/又はタケ葉を低級脂肪族アルコールで抽出し、前記抽出液を濃縮し、水に置換又は加水して濾過することによりクロロフィルを濾去し、濾去後の水層にジエチルエーテルを添加して液・液分配を行い、得られる水層からルテオリン6−C−アラビノシドを採取する方法でも、ササ葉等を原料として目的化合物を製造し得ることが判った。
また、後述の実施例2、3で詳述するように、ルテオリン6−C−アラビノシド収量を上げる方法として、(1)ササ又はタケの葉の抽出液をさらに加水分解する方法、及び、(2)抽出液分画後ピークの液を加水分解する方法、の2つがあることが見出された。これらの加水分解は、酸を用いるほか、アミラーゼ等の糖鎖切断酵素によっても可能である。According to the study of the present inventors, sasa leaves and / or bamboo leaves are extracted with a lower aliphatic alcohol, the extract is concentrated, and the chlorophyll is removed by filtration by substituting with water or adding water and filtering. The target compound can be produced using Sasa leaves as a raw material even by a method in which diethyl ether is added to the aqueous layer after filtration to perform liquid / liquid partitioning, and luteolin 6-C-arabinoside is collected from the obtained aqueous layer. I understood.
Further, as described in detail in Examples 2 and 3 below, as a method for increasing the yield of luteolin 6-C-arabinoside, (1) a method of further hydrolyzing the extract of Sasa or bamboo leaves, and (2 It has been found that there are two methods: hydrolyzing the peak solution after fractionation of the extract. Such hydrolysis can be performed by using an acid or a sugar chain cleaving enzyme such as amylase.
(新規化合物の単離・精製及び同定)
酢酸エチル層に抗酸化成分として含まれるルテオリン6−C−アラビノシドは、それ自体、従来未知の新規化合物である。以下、ルテオリン6−C−アラビノシドの単離・精製及び同定について詳細に説明する。(Isolation, purification and identification of new compounds)
Luteolin 6-C-arabinoside, which is contained in the ethyl acetate layer as an antioxidant component, is a novel compound that has not been known so far. Hereinafter, isolation / purification and identification of luteolin 6-C-arabinoside will be described in detail.
<ルテオリン6−C−アラビノシドの単離・精製>
メタノールに置換した上記の酢酸エチル層又は水層2mlを、セファデックス(Sephadex)LH−20をガラス管(内径2cm、高さ90cm)に充填したカラムクロマトグラフィーにアプライする。溶離液に60%メタノールを用い、フラクションコレクターで8mlずつ分画する。それぞれのフラクションについて波長350、330及び250nmにおける吸光度に従い分画し、ピークを得たら、該当ピークを濃縮しフォトダイオードアレイ検出器を用いたHPLCによる分取を行う。HPLCの条件は下記のとおりである。
カラム:TSKgel ODS−80Ts(21.5mmI.D.×300mm)
移動相:水/アセトニトリル/メタノール=7/2/1(v/v/v)
流速:6.0ml/min
オーブン温度:40℃<Isolation and purification of luteolin 6-C-arabinoside>
2 ml of the above ethyl acetate layer or aqueous layer substituted with methanol is applied to column chromatography in which a Sephadex LH-20 is packed in a glass tube (inner diameter 2 cm, height 90 cm). Using 60% methanol as the eluent, fractionate each 8 ml with a fraction collector. Each fraction is fractionated according to the absorbance at wavelengths of 350, 330 and 250 nm, and when a peak is obtained, the relevant peak is concentrated and fractionated by HPLC using a photodiode array detector. The conditions of HPLC are as follows.
Column: TSKgel ODS-80Ts (21.5 mm ID × 300 mm)
Mobile phase: water / acetonitrile / methanol = 7/2/1 (v / v / v)
Flow rate: 6.0 ml / min
Oven temperature: 40 ° C
<ルテオリン6−C−アラビノシド(Luteolin6−C−arabinoside)の同定>
本発明の新規化合物は、吸収スペクトル分析、質量分析及びNMR分析等により同定することが出来る。以下、本発明者らが実施した同定法について詳述する。
(a)吸収スペクトル法
精製物をメタノールに溶解し、450〜230nmにおけるUV・VIS吸収スペクトルを測定する。すなわち、試料のメタノール溶液を測定した後、ナトリウムメチラート(NaOMe)、塩化アルミニウム(AlCl3)、12%塩酸(12%HCl)、酢酸ナトリウム(NaOAc)、ホウ酸(H3BO3)の各種試薬を添加し吸収スペクトルを測定する。
その結果は、下記の表1に示すとおりである。なお、表1には、ルテオリン6−Cアラビノシド(Luteolin6−C−arabinoside)のほか、参照例として、ルテオリン6−C−グルコシド(Luteolin6−C−glucoside)及びトリシン(Tricin)のデータも併記している。<Identification of luteolin 6-C-arabinoside>
The novel compound of the present invention can be identified by absorption spectrum analysis, mass spectrometry, NMR analysis and the like. Hereinafter, the identification method implemented by the present inventors will be described in detail.
(A) Absorption spectrum method The purified product is dissolved in methanol, and a UV / VIS absorption spectrum at 450 to 230 nm is measured. That is, after measuring the methanol solution of the sample, sodium methylate (NaOMe), aluminum chloride (AlCl 3 ), 12% hydrochloric acid (12% HCl), sodium acetate (NaOAc), boric acid (H 3 BO 3 ) Add reagent and measure absorption spectrum.
The results are as shown in Table 1 below. In Table 1, in addition to luteolin 6-C arabinoside, as a reference example, data on luteolin 6-C-glucoside and tricine are also shown. Yes.
測定結果からのルテオリン6−C−アラビノシドの同定:
NaOMe添加によってBd.Iが45〜65nmの深色移動することから、3位の遊離水酸基の欠如又は酸素化(OR)が示唆される。また、Bd.Iの極大吸収が増大することより、4′位に遊離水酸基の存在することがわかる。
AlCl3添加によってBd.Iが深色移動することより、3位又は5位又はその両方に遊離水酸基ないしは隣接する遊離水酸基が存在する。AlCl3+HCl添加によってAlCl3のBd.Iより浅色移動するが元のBd.Iに戻りきらないことより、3位又は5位又はその両方に遊離水酸基が存在し、さらにB環中に隣接する遊離水酸基が存在する。そして、NaOAc添加によりBd.IIが5〜20nmの深色移動することから7位に遊離水酸基が存在する。NaOAc+H3BO3添加によりBd.Iから12〜36nmの深色移動することより、3′,4′位に遊離水酸基が存在することがわかる。
なお、Bd.Iとは、波長330〜420nm付近の極大吸収を示し、Bd.IIとは230〜290nm付近の極大吸収を示す。また、深色移動は長波長側、浅色移動は短波長側にシフトすることを示す。
以上の事実より、3′,4′,5,7位に遊離水酸基が存在するフラボン骨格のルテオリンであることが、また、Bd.IIに2つの極大が見られることから6位又は8位に結合糖が存在することがわかる。Identification of luteolin 6-C-arabinoside from the measurement results:
By adding NaOMe, Bd. The deep color shift of I from 45 to 65 nm suggests a lack of free hydroxyl group at
AlCl 3 Bd by the addition. Due to the deep migration of I, there is a free hydroxyl group or an adjacent free hydroxyl group at the 3-position or 5-position or both. Bd of AlCl 3 by AlCl 3 + HCl added. I move lighter than I, but the original Bd. Since it does not return to I, there is a free hydroxyl group at the 3-position or 5-position or both, and there is a free hydroxyl group adjacent to the B ring. And by addition of NaOAc, Bd. Since II moves deeply at 5 to 20 nm, a free hydroxyl group is present at the 7-position. By adding NaOAc + H 3 BO 3 , Bd. It can be seen that a free hydroxyl group exists at the 3 ′ and 4 ′ positions from the deep color shift of 12 to 36 nm from I.
Bd. I represents the maximum absorption in the vicinity of a wavelength of 330 to 420 nm, and Bd. II shows the maximum absorption around 230-290 nm. Further, the deep color shift is shifted to the long wavelength side, and the shallow color shift is shifted to the short wavelength side.
Based on the above facts, it is a flavone skeleton luteolin having free hydroxyl groups at the 3 ′, 4 ′, 5 and 7 positions. Since two maxima are seen in II, it can be seen that a linking sugar is present at the 6th or 8th position.
(b)質量分析
精製した試料について、パーセプティブ社製質量分析計Marinerを用い、分子量を正イオンモード(POS)で測定する。条件は下記の表2に示すとおりである。(なお、表2にも、参照のため、ルテオリン6−C−グルコシド及びトリシンのデータを併記している。)
[質量分析条件]
内部標準:4−acetamidophenol(m/z152.07),reserpine(m/z609.28)
インターフェイス:Electrospray ionization(ESI)
温度:室温(25℃)(B) Mass spectrometry The molecular weight of the purified sample is measured in a positive ion mode (POS) using a mass spectrometer Mariner manufactured by Perceptive. The conditions are as shown in Table 2 below. (Table 2 also shows data on luteolin 6-C-glucoside and tricine for reference.)
[Mass analysis conditions]
Internal standard: 4-acetamidophenol (m / z 152.07), reserpine (m / z 609.28)
Interface: Electrospray ionization (ESI)
Temperature: Room temperature (25 ° C)
吸収スペクトルで糖の結合が示唆されるが、ルテオリン骨格であることを考慮するとm/zから結合糖はペントース1つであることがわかる。また、イオン化の際に断片化を生じていないことから、糖との結合はC結合であることがわかる。 The absorption spectrum suggests the binding of sugar, but considering the luteolin skeleton, m / z shows that there is only one pentose. Further, since no fragmentation occurred during ionization, it can be understood that the bond with the sugar is a C bond.
(c)1H−NMR分析
それぞれ、十分に乾燥したサンプルを2〜10mg計量採取し、NMR測定管に移して重メタノールもしくは重ジメチルスルホキシド0.7mlに溶解し、1H−NMRをJeolJNM−A400(400MHz)にて測定する。(内部標準:CD3OD,3.30,DMSO−d6,2.49)(C) 1 H-NMR analysis Each of 2 to 10 mg of a fully dried sample was weighed, transferred to an NMR measuring tube and dissolved in 0.7 ml of deuterated methanol or deuterated dimethyl sulfoxide, and 1 H-NMR was analyzed by Jeol JNM-A400. Measure at (400 MHz). (Internal standard: CD3OD, 3.30, DMSO-d6, 2.49)
1H−NMR分析の詳細は、以下のとおりであり、1H−NMR分析によっても、この化合物がルテオリン6−C−アラビノシドであることが判る。
δ=3.60(dd,J=2.8,9.6Hz,1H,3’’−H),3.72(d,J=12.0Hz,1H,5’’−Heq),3.95(m,1H,4’’−H),3.99(dd,J=2.4,12.0Hz,1H,5’’−Hax),4.24(dd,J=9.6,9.6Hz,1H,2’’−H),4.79(d,J=9.6Hz,1H,1’’−H),6.50(s,1H,8−H),6.55(s,1H,3−H),6.89(d,J=8.4Hz,1H,5’−H),7.36(br.d,J=2.0Hz,1H,2’−H),7.37(dd,J=2.0,8.4Hz,1H,6’−H).The details of 1 H-NMR analysis are as follows, and 1 H-NMR analysis also shows that this compound is luteolin 6-C-arabinoside.
δ = 3.60 (dd, J = 2.8, 9.6 Hz, 1H, 3 ″ −H), 3.72 (d, J = 12.0 Hz, 1H, 5 ″ −Heq), 3. 95 (m, 1H, 4 ″ -H), 3.99 (dd, J = 2.4, 12.0 Hz, 1H, 5 ″ -Hax), 4.24 (dd, J = 9.6, 9.6 Hz, 1H, 2 ″ -H), 4.79 (d, J = 9.6 Hz, 1H, 1 ″ -H), 6.50 (s, 1H, 8-H), 6.55. (S, 1H, 3-H), 6.89 (d, J = 8.4 Hz, 1H, 5′-H), 7.36 (br.d, J = 2.0 Hz, 1H, 2′-H) ), 7.37 (dd, J = 2.0, 8.4 Hz, 1H, 6'-H).
1H−NMR分析では、測定溶媒として重メタノールを用いる。芳香族由来と思われるシグナルが5種類それぞれ観測されるが、そのうちδ=6.89(d,J=8.4Hz),7.36(br.d,J=2.0Hz),7.37(dd,J=2.0,8.4Hz)の3種のシグナルの結合定数から、3置換ベンゼンの存在が推定され、置換位置は、オルト及びパラであると考えられる。また、その他2種の芳香族プロトンδ=6.50(s),6.55(s)は一重線であるが、その化学シフトと前述の3種の化学シフトを既知化合物であるルテオリンと比較すると比較的よい一致を示すので、アグリコン部はルテオリンであると推定される。ただし、ルテオリンの6位に相当するシグナルは観測されないので、6位に何らかの置換基の存在が示唆され、上記吸収スペクトルの結果によく一致する。
次に、δ=3.60(dd,J=2.8,9.6Hz),3.72(d,J=12.0Hz),3.95(m),3.99(dd,J=2.4,12.0Hz),4.24(dd,J=9.6,9.6Hz),4.79(d,J=9.6Hz)のシグナルにより、糖の存在が示唆される。アノマー位(1’’位)のプロトン4.79(d,J=9.6Hz)の結合定数から、アノマー位の隣接プロトンとはアキシアル−アキシアルの関係にある。すなわち、糖部分はβ結合にてアグリコンに結合していると決定される。また、その化学シフトがO−グリコシドよりも高磁場シフトしていることから、糖部分はC−グリコシル化しているものと考えられ質量分析の結果に整合する。糖部分のシグナルの化学シフトと結合定数はアラビノースのものとよい対応を示すことから糖部分はアラビノースであると推定される。
以上、アグリコン部、糖部を総合し、先の吸収スペクトルと質量分析結果をあわせて考慮した結果、この化合物はルテオリン6−C−アラビノシドであると決定される。 In 1 H-NMR analysis, deuterated methanol is used as a measurement solvent. Five types of signals that are thought to be derived from aromatics are observed, of which δ = 6.89 (d, J = 8.4 Hz), 7.36 (br.d, J = 2.0 Hz), 7.37 From the binding constants of the three signals (dd, J = 2.0, 8.4 Hz), the presence of trisubstituted benzene is estimated, and the substitution positions are considered to be ortho and para. The other two aromatic protons δ = 6.50 (s) and 6.55 (s) are single lines, but their chemical shift and the above three chemical shifts are compared with the known compound luteolin. Since it shows a relatively good match, the aglycon part is presumed to be luteolin. However, since no signal corresponding to the 6-position of luteolin is observed, the presence of some substituent is suggested at the 6-position, which is in good agreement with the results of the above absorption spectrum.
Next, δ = 3.60 (dd, J = 2.8, 9.6 Hz), 3.72 (d, J = 12.0 Hz), 3.95 (m), 3.99 (dd, J = 2.4, 12.0 Hz), 4.24 (dd, J = 9.6, 9.6 Hz), 4.79 (d, J = 9.6 Hz) signals indicate the presence of sugar. From the coupling constant of the anomeric (1 ″) proton 4.79 (d, J = 9.6 Hz), the adjacent anomeric proton is in an axial-axial relationship. That is, the sugar moiety is determined to be bound to the aglycone by a β bond. In addition, since the chemical shift is higher than that of O-glycoside, the sugar moiety is considered to be C-glycosylated and is consistent with the results of mass spectrometry. Since the chemical shift of the signal of the sugar moiety and the binding constant show a good correspondence with that of arabinose, the sugar moiety is presumed to be arabinose.
As mentioned above, as a result of combining the aglycon part and the sugar part and considering the previous absorption spectrum and the result of mass spectrometry, this compound is determined to be luteolin 6-C-arabinoside.
本発明によるルテオリン6−C−アラビノシドは、抗酸化活性に優れた物質であり、従来のササエキス等に比べて、抗酸化活性に優れ、かつ耐熱性、耐光性も良好な組成物が得られる、という利点を有する。
さらに具体的に説明すると、ルテオリン6−C−アラビノシド又はそれを含む組成物は、DPPHラジカル消去活性、スーパーオキシドアニオンラジカル消去活性(SOD様活性)、脂質過酸化抑制効果等に優れており、しかも、褐変酵素ポリフェノールオキシダーゼ(PPO)の阻害効果が極めて大きいという利点を有する。
従って、本発明によるルテオリン6−C−アラビノシドを有効成分とする抗酸化性の組成物は、医薬品、化粧品、食品等の分野で有用である。
また、一般に、ルテオリン配糖体には、抗酸化の他に、抗炎症、ガン予防、抗不整脈作用等が報告されており、上記のルテオリン6−C−アラビノシドにも、本発明者らが確認した抗酸化活性のほかに、抗炎症、ガン予防、抗不整脈作用等を有することも期待される。The luteolin 6-C-arabinoside according to the present invention is a substance having excellent antioxidant activity, and a composition excellent in antioxidant activity, heat resistance, and light resistance can be obtained as compared with conventional Sasa extract and the like. Has the advantage.
More specifically, luteolin 6-C-arabinoside or a composition containing the same is excellent in DPPH radical scavenging activity, superoxide anion radical scavenging activity (SOD-like activity), lipid peroxidation inhibiting effect, and the like. It has the advantage that the inhibitory effect of the browning enzyme polyphenol oxidase (PPO) is extremely large.
Therefore, the antioxidant composition containing luteolin 6-C-arabinoside according to the present invention as an active ingredient is useful in the fields of pharmaceuticals, cosmetics, foods and the like.
In general, luteolin glycosides have been reported to have anti-inflammatory, cancer prevention, antiarrhythmic action, etc. in addition to antioxidants. The present inventors have also confirmed the above-mentioned luteolin 6-C-arabinoside. In addition to the antioxidant activity, it is also expected to have anti-inflammatory, cancer prevention, antiarrhythmic action and the like.
さらに、本発明の製造方法によれば、日本各地に生育するササ又はタケの葉を原料とするため、ルテオリン6−C−アラビノシドを低コストで製造することが可能である。 Furthermore, according to the production method of the present invention, luteolin 6-C-arabinoside can be produced at a low cost since the leaves of bamboo grass or bamboo growing in various parts of Japan are used as raw materials.
以下に、本発明方法の実施例及び比較例を詳述する。ただし、本発明はこれらの実施例によってその範囲が限定されるものではない。なお、例中の%は特に断らない限り重量%を意味する。なお、例中に示す抗酸化活性の測定は次のように実施した。 Below, the Example and comparative example of this invention method are explained in full detail. However, the scope of the present invention is not limited by these examples. In the examples, “%” means “% by weight” unless otherwise specified. The antioxidant activity shown in the examples was measured as follows.
1.DPPHラジカル消去活性
安定なラジカルであるDPPHラジカルに対するラジカル消去活性について検討した。0.5mMのDPPHラジカル・エタノール溶液100μl、試料100μlの順に小ワッセルマンに採取し混合した。すばやく攪拌し、偏平セルに吸い上げてキャビティに挿入し、一定時間後(45秒)にESR装置(JeolJES−FR30)に装填し測定を開始した。ブランクには超純水又はアセトニトリルを用いた。下記条件のESRに供した。
なお、ラジカルの消去率を(1−サンプル値/ブランク値)×100として求めた。
Field:335±5mT
Power:4mW
Modulation Width:40μT
Sweep Time:2min
Time const:0.1sec
Amp:2501. DPPH radical scavenging activity The radical scavenging activity for the stable radical DPPH radical was investigated. 100 μl of 0.5 mM DPPH radical / ethanol solution and 100 μl of sample were collected in a small Wasselman in this order and mixed. The mixture was quickly stirred, sucked up into a flat cell, inserted into the cavity, and after a certain period of time (45 seconds), loaded into an ESR device (Jeol JES-FR30) to start measurement. As the blank, ultrapure water or acetonitrile was used. It used for ESR of the following conditions.
The radical elimination rate was determined as (1−sample value / blank value) × 100.
Field: 335 ± 5mT
Power: 4mW
Modulation Width: 40μT
Sweep Time: 2min
Time const: 0.1 sec
Amp: 250
2.スーパーオキシドアニオンラジカル消去活性(SOD様活性)
ヒポキサンチンを基質とし、キサンチンオキシダーゼ(XOD)の反応よるスーパーオキシドアニオンラジカル発生系を用い、SOD様活性を測定した。
原液DMPO(ラボテックNH−687)15μl、5mMのHypoxanthine(SIGMA H−9377)50μl、5.5mMのDTPA(同仁化学347−01141)35μl、試料50μl、0.4U/mlのXOD(SIGMA X−4376)50μlの順に小ワッセルマンに採取し混合した。すばやく攪拌し、偏平セルに吸い上げてキャビティに挿入し、一定時間後(45秒)にESR装置(JeolJES−FR30)に装填し測定を開始した。ブランクには超純水又はアセトニトリルを用いた。下記条件のESRに供した。スーパーオキシドアニオンラジカルの消去率を(1−サンプル値/ブランク値)×100として求めた。
Field:335±5mT
Power:4mW
Modulation Width:0.079mT
Sweep Time:2min
Time const:0.1sec
Amp:2502. Superoxide anion radical scavenging activity (SOD-like activity)
SOD-like activity was measured using hypoxanthine as a substrate and a superoxide anion radical generating system based on the reaction of xanthine oxidase (XOD).
Stock solution DMPO (labtech NH-687) 15 μl, 5 mM Hypoxanthine (SIGMA H-9377) 50 μl, 5.5 mM DTPA (Dojindo 347-01141) 35 μl,
Field: 335 ± 5mT
Power: 4mW
Modulation Width: 0.079mT
Sweep Time: 2min
Time const: 0.1 sec
Amp: 250
3.脂質過酸化抑制効果
4%−リノール酸メチル・メタノール溶液10ml、0.1Mリン酸緩衝液(pH7.4)10mlを遠沈管に採取し、サンプル1ml加え、オーブンで55℃、48時間加熱処理し、過酸化脂質を生成させた。サンプルはササ葉1g/100mlの濃度になるように調製した。ブランクとしてメタノール、対象として20ppmトコフェロールをサンプルの代わりに加え、同様にオーブンで55℃、48時間加熱処理し、過酸化脂質を生成させた。生じた過酸化脂質の過酸化物価(POV)を常法に従って測定し、抗酸化剤が無い状態のコントロールのPOVを0%とし、試料の脂質過酸化抑制率を求めた。3. Lipid peroxidation-inhibiting effect 10 ml of 4% methyl linoleate / methanol solution and 10 ml of 0.1M phosphate buffer (pH 7.4) are collected in a centrifuge tube, added with 1 ml of sample, and heated in an oven at 55 ° C. for 48 hours. , Lipid peroxide was generated. Samples were prepared to a concentration of 1 g / 100 ml of Sasa leaves. Methanol as a blank and 20 ppm tocopherol as a target were added in place of the sample, and were similarly heat-treated in an oven at 55 ° C. for 48 hours to produce lipid peroxide. The peroxide value (POV) of the resulting lipid peroxide was measured according to a conventional method, and the control POV in the absence of antioxidant was taken as 0%, and the lipid peroxidation inhibition rate of the sample was determined.
(1)組成物の調製
原料のササ葉として、北海道に自生しているクマイザサ(Sasa senanensis)の葉(採取地:網走市)を用い、これを図1に示すような手順で、以下のように処理し、液状の組成物を得た。
まず、水洗・ササ葉1gに対して5倍容のメタノールを加え浸漬・抽出した。抽出は暗所で24時間放置した後、濾過した。次いで、濾液をロータリーエバポレーターで濃縮乾固し、ササ葉重量の2倍容の純水に溶解した。得られた水溶液を粗抽出液とした。
上記の粗抽出液に対して、等量の石油エーテルを加え、水・石油エーテル溶媒の液・液分配を行った。この操作を2〜3回繰り返し行い、石油エーテル層及び水層を得た。得られた水層を用い、水・ジエチルエーテル溶媒の液・液分配を行った。この操作を2〜3回繰り返し行い、ジエチルエーテル層と水層とを得た。得られた水層を採取してこれに酢酸エチルを加え、水・酢酸エチルの液・液分配を行った。この操作を2〜3回繰り返し行い、酢酸エチル層及び水層を得た。
得られた各層を採取し、ササ葉重量に対して等倍の液量になるようにロータリーエバポレーターで濃縮乾固し、これをメタノールに置換して抗酸化性組成物を得た。水層については、XADカラムにより遊離の糖を取り除いて抗酸化性組成物を得た。(1) Preparation of composition As the raw material Sasa leaves, the leaves of Sasa senenensis (collection site: Abashiri City) native to Hokkaido are used, and the procedure is as shown in FIG. To obtain a liquid composition.
First, 5-fold volume of methanol was added to 1 g of water-washed / sasa leaves and immersed and extracted. The extraction was allowed to stand in the dark for 24 hours and then filtered. Next, the filtrate was concentrated to dryness with a rotary evaporator and dissolved in pure water having a volume twice that of the Sasa leaves. The obtained aqueous solution was used as a crude extract.
An equal amount of petroleum ether was added to the above crude extract to perform water / petroleum ether solvent liquid / liquid partitioning. This operation was repeated 2-3 times to obtain a petroleum ether layer and an aqueous layer. Using the obtained aqueous layer, liquid / liquid partitioning of water / diethyl ether solvent was performed. This operation was repeated 2-3 times to obtain a diethyl ether layer and an aqueous layer. The obtained aqueous layer was collected, ethyl acetate was added thereto, and water / ethyl acetate liquid / liquid partition was performed. This operation was repeated 2-3 times to obtain an ethyl acetate layer and an aqueous layer.
Each layer obtained was collected and concentrated to dryness with a rotary evaporator so that the liquid volume was equal to the weight of the Sasa leaf, and this was replaced with methanol to obtain an antioxidant composition. For the aqueous layer, free sugar was removed using an XAD column to obtain an antioxidant composition.
(2)ルテオリン6−C−アラビノシドの単離・精製
メタノールに置換した酢酸エチル層2mlを、セファデックスLH−20をガラス管(内径2cm、高さ90cm)に充填したカラムクロマトグラフィーにアプライする。溶離液に60%メタノールを用い、フラクションコレクターで8mlずつ分画した。それぞれのフラクションについて波長350、330及び250nmにおける吸光度に従い分画し、ピークを得たら、該当ピークを濃縮しフォトダイオードアレイ検出器を用いたHPLCによる分取を行った。HPLCの条件は下記のとおりである。
カラム:TSKgel ODS−80Ts(21.5mmI.D.×300mm)
移動相:水/アセトニトリル/メタノール=7/2/1(v/v/v)
流速:6.0ml/min
オーブン温度:40℃(2) Isolation and purification of luteolin 6-C-arabinoside 2 ml of the ethyl acetate layer substituted with methanol is applied to column chromatography filled with Sephadex LH-20 in a glass tube (inner diameter 2 cm, height 90 cm). The eluent was 60% methanol, and fractionated by 8 ml with a fraction collector. Each fraction was fractionated according to absorbance at wavelengths of 350, 330 and 250 nm, and when a peak was obtained, the relevant peak was concentrated and fractionated by HPLC using a photodiode array detector. The conditions of HPLC are as follows.
Column: TSKgel ODS-80Ts (21.5 mm ID × 300 mm)
Mobile phase: water / acetonitrile / methanol = 7/2/1 (v / v / v)
Flow rate: 6.0 ml / min
Oven temperature: 40 ° C
(3)ルテオリン6−C−アラビノシドの特性
下記の表3に、ルテオリン6−C−アラビノシドの抗酸化活性を、他のルテオリン配糖体であるルテオリン6−C−グルコシド及びトリシンの酸化活性と対比して示す。この表から明らかなように、ルテオリン6−C−アラビノシドは、DPPH消去率及びSOD消去率において特にすぐれている。(3) Characteristics of luteolin 6-C-arabinoside In Table 3 below, the antioxidant activity of luteolin 6-C-arabinoside is compared with that of other luteolin glycosides, luteolin 6-C-glucoside and tricine. Show. As is apparent from this table, luteolin 6-C-arabinoside is particularly excellent in DPPH elimination rate and SOD elimination rate.
<油脂過酸化抑制率の測定>
(1)試料油脂の調整
4%リノール酸メチル・メタノール溶液10ml、0.1Mリン酸緩衝液(pH7.4)10mlを遠沈管に採取し、サンプル1ml加え、オーブンで55℃、48時間加熱処理し、過酸化脂質を生成させた。サンプルはササ葉1g/100mlの濃度になるように調製した。ブランクとしてメタノール、対象として20ppmトコフェロールをサンプルの代わりに加え、同様にオーブンで55℃、48時間加熱処理し、過酸化脂質を生成させた。
(2)POV検定
POV検定は、日本油脂学会による酸化油脂中の過酸化物価の測定法に従い、過酸化脂質(ヒドロペルオキシド)が酸性条件下で還元される反応に基づき、遊離されるヨウ素をチオ硫酸ナトリウムで滴定する方法で行った。
重クロム酸カリウムを純水に溶解し、0.01N重クロム酸カリウム溶液を調製し、このとき、重クロム酸カリウム溶液のファクター(f=採取量/理論値)を求めておいた。ヨウ化カリウム1gを純水5mlに溶解させ、そこに0.01N重クロム酸カリウム溶液20ml、塩酸5mlを加え、撹拌後栓をして5分間暗所に放置した。5分後、純水300mlを加え、遊離ヨウ素を0.01Nチオ硫酸ナトリウム溶液で滴定した。褐色が消えかかったら、1%澱粉指示薬を加え、青色が完全に消失するまで滴定した。滴定値がVmlのとき、0.01Nチオ硫酸ナトリウム溶液のファクターは、F=20×f/Vで求め、滴定を行った。
上述のように調製した試料油脂1gを採取し、クロロホルム氷酢酸混液(3:2)25ml、飽和ヨウ化カリウム溶液1ml加え、すぐに撹拌し、1分間暗所に放置した。反応を止めるために純水75mlを加えた。2層に分かれる上層の赤紫色の消失を終点とし、遊離ヨウ素を0.01Nチオ硫酸ナトリウム溶液で滴定した。空試験には純水1gを用いて行った。<Measurement of fat peroxidation inhibition rate>
(1) Preparation of sample oil and fat 10 ml of 4% methyl linoleate / methanol solution and 10 ml of 0.1M phosphate buffer (pH 7.4) are collected in a centrifuge tube, 1 ml of the sample is added, and heat-treated in an oven at 55 ° C. for 48 hours. Thus, lipid peroxide was generated. Samples were prepared to a concentration of 1 g / 100 ml of Sasa leaves. Methanol as a blank and 20 ppm tocopherol as a target were added in place of the sample, and were similarly heat-treated in an oven at 55 ° C. for 48 hours to produce lipid peroxide.
(2) POV test The POV test is based on a reaction in which lipid peroxide (hydroperoxide) is reduced under acidic conditions according to the method for measuring the peroxide value in oxidized oils and fats by the Japan Oil and Fat Society. This was carried out by titration with sodium sulfate.
Potassium dichromate was dissolved in pure water to prepare a 0.01N potassium dichromate solution. At this time, the factor (f = collected amount / theoretical value) of the potassium dichromate solution was determined. 1 g of potassium iodide was dissolved in 5 ml of pure water, and 20 ml of 0.01N potassium dichromate solution and 5 ml of hydrochloric acid were added thereto. After stirring, the solution was stoppered and left in a dark place for 5 minutes. After 5 minutes, 300 ml of pure water was added, and free iodine was titrated with a 0.01N sodium thiosulfate solution. When the brown color disappeared, 1% starch indicator was added and titrated until the blue color disappeared completely. When the titration value was Vml, the factor of 0.01N sodium thiosulfate solution was determined by F = 20 × f / V, and titration was performed.
1 g of the sample oil prepared as described above was collected, added with 25 ml of a mixture of chloroform glacial acetic acid (3: 2) and 1 ml of saturated potassium iodide solution, immediately stirred and left in the dark for 1 minute. To stop the reaction, 75 ml of pure water was added. Free iodine was titrated with a 0.01N sodium thiosulfate solution with the disappearance of the upper layer reddish purple divided into two layers as the end point. The blank test was performed using 1 g of pure water.
次に、ルテオリン6−C−アラビノシドについて、褐変酵素ポリフェノールオキシダーゼ(PPO)の阻害効果を調べるため、一般に知られているPPO活性阻害剤、他のフラボノイド類との比較測定を行った。その測定方法は以下のとおりであり、測定結果は下掲の表4に示すとおりである。 Next, in order to examine the inhibitory effect of browning enzyme polyphenol oxidase (PPO) on luteolin 6-C-arabinoside, a comparative measurement with a generally known PPO activity inhibitor and other flavonoids was performed. The measurement method is as follows, and the measurement results are as shown in Table 4 below.
<PPO(褐変酵素ポリフェノールオキシダーゼ)阻害活性の測定>
0.05Mクロロゲン酸を基質とし酵素液としてタマネギ鱗茎より抽出・部分精製を行った酵素液を用いた。すなわち、1.3mlの10mMリン酸緩衝液(pH7.0)に1mM濃度、2mM濃度、10mM濃度に調製した阻害剤を0.1ml、酵素液を0.1ml添加し混合、30℃に10分間予備加温後、0.05Mクロロゲン酸基質溶液を0.1ml加え混合し30℃、30分間加温後の波長420nmにおける褐変度を求めた。阻害剤添加の代わりに10mMリン酸緩衝液(pH7.0)を加えたものをコントロールとし、活性を100%として阻害効果を相対活性で示した。<Measurement of PPO (Browning Enzyme Polyphenol Oxidase) Inhibitory Activity>
An enzyme solution extracted and partially purified from an onion bulb using 0.05M chlorogenic acid as a substrate was used. That is, 0.1 ml of an inhibitor prepared at 1 mM concentration, 2 mM concentration, and 10 mM concentration and 0.1 ml of enzyme solution were added to 1.3 ml of 10 mM phosphate buffer (pH 7.0), mixed, and mixed at 30 ° C. for 10 minutes. After preliminary warming, 0.1 ml of 0.05 M chlorogenic acid substrate solution was added and mixed, and the degree of browning at a wavelength of 420 nm after heating at 30 ° C. for 30 minutes was determined. The inhibitory effect was shown as a relative activity, with the addition of 10 mM phosphate buffer (pH 7.0) instead of inhibitor addition as a control and the activity as 100%.
この結果、本発明に係るルテオリン6−C−アラビノシドは、一般のPPO活性阻害剤や他のフラボノイド類と比べて卓越したPPO阻害活性を有し、少量の使用でも褐変を防止できることがわかった。
従って、ルテオリン6−C−アラビノシドは、例えば、食品類の褐変防止剤としても有効に利用することができる。As a result, it was found that luteolin 6-C-arabinoside according to the present invention has an excellent PPO inhibitory activity as compared with general PPO activity inhibitors and other flavonoids, and can prevent browning even when used in a small amount.
Therefore, luteolin 6-C-arabinoside can be effectively used as a browning inhibitor for foods, for example.
本実施例では、クマイザサのササ葉抽出液を加水分解した場合について説明する。試料葉にはトリシンアグリコンを含まないもの(採取地:北海道津別町相生)を使用した。
すなわち、クマイザサ抽出液の酸加水分解とは、クマイザサ抽出液(メタノール溶液)に塩酸(最終濃度が0.2〜0.7N)を加えた(抽出液と塩酸の比率は1:1になるようにした)。混合後、100℃のウォーターバスで30分間加熱して加水分解を行わせ、30分後、氷中で冷却した。
各加水分解物(無処理を含む)はXADカラムに吸着させ、加水分解物から酸を洗い流し、メタノールに溶媒置換後,LH−20カラムに供し、精製後HPLCで定量分析した。In the present embodiment, a case where the leaf extract of Kumizasa is hydrolyzed will be described. The sample leaves used did not contain tricine aglycone (collection location: Aioi, Tsubetsu-cho, Hokkaido).
That is, acid hydrolysis of Kumizasa extract is a mixture of Kumizasa extract (methanol solution) with hydrochloric acid (final concentration 0.2-0.7N) (the ratio of extract to hydrochloric acid is 1: 1). ) After mixing, the mixture was heated in a water bath at 100 ° C. for 30 minutes for hydrolysis, and after 30 minutes, it was cooled in ice.
Each hydrolyzate (including untreated) was adsorbed on an XAD column, the acid was washed away from the hydrolyzate, the solvent was replaced with methanol, the product was applied to an LH-20 column, and quantitatively analyzed by HPLC after purification.
まず、図2にササ葉抽出液の非加水分解物のLH−20溶出パターンを示す。そして、ササ葉抽出液を0.2N塩酸中、100℃、30分間、加水分解した後のLH−20溶出パターンを図3に、0.7N塩酸中、100℃、30分間加水分解した後のLH−20溶出パターンを図4に示す。
図2のBIIはルテオリン6−Cグルコシド(Luteolin6−C−glucoside)の溶出ピーク、BIIIはルテオリン6−C−アラビノシド(Luteolin6−C−arabinoside)のピークであり、トリシンアグリコンは図2では見られない(図3の2HIIIのピークである)。それぞれの処理によって得られるルテオリン6−C−アラビノシドの結果を、それぞれ図5に示す。なお、HPLCやXADカラム、LH−20カラムの条件は既に述べた条件と同じである。First, FIG. 2 shows the LH-20 elution pattern of the non-hydrolyzed product of Sasa leaf extract. And the LH-20 elution pattern after hydrolyzing the Sasa leaf extract in 0.2N hydrochloric acid at 100 ° C. for 30 minutes is shown in FIG. The LH-20 elution pattern is shown in FIG.
BII in FIG. 2 is an elution peak of luteolin 6-C-glucoside, BIII is a peak of luteolin 6-C-arabinoside, and tricine aglycone is not seen in FIG. (It is the 2HIII peak in FIG. 3). The results of luteolin 6-C-arabinoside obtained by each treatment are shown in FIG. The conditions for HPLC, XAD column, and LH-20 column are the same as those already described.
図2、図3及び図4より、上記図2のBIピークが減少し、図3の2HIIIピーク及び図4の7HIIIピークが新たに検出されることが確認できる。図2におけるBIIIピーク、図3の2HIIピーク及び図4の7HIピークは溶出位置から同じ成分であることがわかる。これらのピークは、以前に同定したルテオリン6−C−アラビノシドである。 2, 3, and 4, it can be confirmed that the BI peak in FIG. 2 is decreased and the 2HIII peak in FIG. 3 and the 7HIII peak in FIG. 4 are newly detected. The BIII peak in FIG. 2, the 2HII peak in FIG. 3, and the 7HI peak in FIG. 4 are the same components from the elution position. These peaks are the previously identified luteolin 6-C-arabinoside.
また、図5より酸加水分解処理を行うことで、ルテオリン6−C−アラビノシドの含量が約3.3倍多くなったことがわかる。従って、最終濃度0.2〜0.7Nの塩酸で100℃、30分間加熱処理することでルテオリン6−C−アラビノシドの収量を大幅に上げることが出来る。 Moreover, it can be seen from FIG. 5 that the content of luteolin 6-C-arabinoside was increased by about 3.3 times by the acid hydrolysis treatment. Therefore, the yield of luteolin 6-C-arabinoside can be significantly increased by heat treatment with hydrochloric acid having a final concentration of 0.2 to 0.7 N at 100 ° C. for 30 minutes.
本実施例では、クマイザサのササ葉抽出液をカラムクロマトグラフィー(セファデックスLH−20カラム)で分画し、分画液を加水分解した場合について説明する。
クマイザサのササ葉のメタノール抽出液をLH−20カラムで分画し、配糖体を含むフラクションを加水分解し、各加水分解物(無処理を含む)はXADカラムに吸着させ加水分解物から酸を洗い流しメタノールに溶媒置換し、HPLC分析した。すなわち、クマイザサ抽出液のLH−20カラム分画液(メタノール溶液)に塩酸(最終濃度が0.2〜0.7N)を加えて(分画液と塩酸の比率は1:1になるようにする)、混合後、100℃のウォーターバスで30分間加熱して加水分解を行わせ、30分後、氷中で冷却した。In this example, a case will be described in which Sasa leaf extract of Kumizassa is fractionated by column chromatography (Sephadex LH-20 column) and the fraction is hydrolyzed.
Fractionation of the extract of Kumasazasa Sasa leaves with an LH-20 column hydrolyzes the fractions containing glycosides, and each hydrolyzate (including untreated) is adsorbed on the XAD column to make acid from the hydrolyzate. Was washed off, and the solvent was replaced with methanol, followed by HPLC analysis. That is, hydrochloric acid (final concentration: 0.2 to 0.7 N) was added to the LH-20 column fraction (methanol solution) of Kumizasa extract so that the ratio of fraction to hydrochloric acid was 1: 1. After mixing, the mixture was heated in a water bath at 100 ° C. for 30 minutes to cause hydrolysis, and after 30 minutes, it was cooled in ice.
図6には、上記図2の無処理ササ葉抽出液のLH−20カラム分画分で、配糖体が含まれていると考えられるフラクション(BI)を加水分解して得られるルテオリン6−C−アラビノシドの定量結果を示す。この図から明らかなように、クマイザサ抽出液を分画した後でも、酸加水分解処理を行うことにより、ルテオリン6−C−アラビノシドを高い収率で得られることが確認された。 FIG. 6 shows luteolin 6-6 obtained by hydrolyzing the fraction (BI) considered to contain glycosides in the LH-20 column fraction of the untreated Sasa leaf extract of FIG. The quantitative result of C-arabinoside is shown. As is clear from this figure, it was confirmed that luteolin 6-C-arabinoside can be obtained in a high yield by performing an acid hydrolysis treatment even after fractionating the Kumizasa extract.
以上より、ルテオリン6−C−アラビノシドの収量を上げる方法として、(1)クマイザサ抽出液の酸加水分解による方法、及び(2)分画後ピークの酸加水分解による方法、の2つの方法があることが確認された。 From the above, there are two methods for increasing the yield of luteolin 6-C-arabinoside: (1) a method by acid hydrolysis of Kumizasa extract and (2) a method by acid hydrolysis of the peak after fractionation. It was confirmed.
本実施例では、クマイザサの葉(採取地:北海道津別町相生)約200gを切り刻み、メタノールに一晩浸し、これを2回繰り返した後、粗抽出液をロータリーエバポレーターで濃縮し、水に置換した。これに等量の石油エーテルを加えて液・液分配し、残存するクロロフィルを石油エーテル層に移行させ除去した。残った水層に等量のジエチルエーテルを加え、液・液分配し、得られた水層をカラムクロマトグラフィー(セファデックスLH−20カラム)に供することにより、図7に示すルテオリン6−C−アラビノシドの画分を得た。この画分のルテオリン6−C−アラビノシドの純度は約90%を示し、不純物としてルテオリン7−O−グルコシドを含んでいた。この画分を先に述べた分取HPLCを1回実施することで、純度99%以上のルテオリン6−C−アラビノシドを得ることができた。 In this example, about 200 g of Kumizasa leaves (collected from: Atsuo, Tsubetsu, Hokkaido) was chopped and soaked in methanol overnight. This was repeated twice, and then the crude extract was concentrated with a rotary evaporator and replaced with water. . An equal amount of petroleum ether was added thereto, and the mixture was divided into liquid and liquid, and the remaining chlorophyll was transferred to the petroleum ether layer and removed. An equal amount of diethyl ether was added to the remaining aqueous layer, and the liquid and liquid were partitioned. The obtained aqueous layer was subjected to column chromatography (Sephadex LH-20 column), whereby luteolin 6-C— shown in FIG. A fraction of arabinoside was obtained. The purity of luteolin 6-C-arabinoside in this fraction was about 90% and contained luteolin 7-O-glucoside as an impurity. This fraction was subjected to the preparative HPLC described above once to obtain luteolin 6-C-arabinoside with a purity of 99% or more.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006075573A JP2006265249A (en) | 2005-02-22 | 2006-02-21 | New flavonoid compound and method for producing the same and antioxidant with the same as active ingredient |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005082597 | 2005-02-22 | ||
JP2006075573A JP2006265249A (en) | 2005-02-22 | 2006-02-21 | New flavonoid compound and method for producing the same and antioxidant with the same as active ingredient |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006265249A true JP2006265249A (en) | 2006-10-05 |
Family
ID=37201574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006075573A Pending JP2006265249A (en) | 2005-02-22 | 2006-02-21 | New flavonoid compound and method for producing the same and antioxidant with the same as active ingredient |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006265249A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008131119A2 (en) * | 2007-04-17 | 2008-10-30 | Acropolis Pharmaceuticals, Inc. | Composition and method for cancer treatment and prevention |
JP2017012168A (en) * | 2015-07-02 | 2017-01-19 | 学校法人 関西大学 | Browning inhibitor of food product |
CN107596157A (en) * | 2017-09-18 | 2018-01-19 | 广西科技师范学院 | A kind of extracting method of bamboo-leaves flavones |
CN113651687A (en) * | 2021-09-26 | 2021-11-16 | 右江民族医学院 | Method for extracting antioxidant active substance from tsaoko amomum fruit |
-
2006
- 2006-02-21 JP JP2006075573A patent/JP2006265249A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008131119A2 (en) * | 2007-04-17 | 2008-10-30 | Acropolis Pharmaceuticals, Inc. | Composition and method for cancer treatment and prevention |
WO2008131119A3 (en) * | 2007-04-17 | 2008-12-24 | Acropolis Pharmaceuticals Inc | Composition and method for cancer treatment and prevention |
JP2017012168A (en) * | 2015-07-02 | 2017-01-19 | 学校法人 関西大学 | Browning inhibitor of food product |
CN107596157A (en) * | 2017-09-18 | 2018-01-19 | 广西科技师范学院 | A kind of extracting method of bamboo-leaves flavones |
CN113651687A (en) * | 2021-09-26 | 2021-11-16 | 右江民族医学院 | Method for extracting antioxidant active substance from tsaoko amomum fruit |
CN113651687B (en) * | 2021-09-26 | 2023-11-17 | 右江民族医学院 | Method for extracting antioxidant active substances from fructus Tsaoko |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Juma et al. | Erythrinaline alkaloids from the flowers and pods of Erythrina lysistemon and their DPPH radical scavenging properties | |
Lalas et al. | Extraction and identification of natural antioxidant from the seeds of the Moringa oleifera tree variety of Malawi | |
Santos et al. | Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood | |
Bouaziz et al. | Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree | |
Hussein et al. | Polyoxygenated flavonoids from Eugenia edulis | |
Inui et al. | A new prenylflavonoid isolated from propolis collected in the Solomon Islands | |
Pérez-Bonilla et al. | Effect of extraction conditions on the antioxidant activity of olive wood extracts | |
JP2006265250A (en) | Method for producing luteolin 6-c-glucoside | |
González-Laredo et al. | Flavonoid and cyanogenic contents of chaya (spinach tree) | |
Sarria-Villa et al. | Isolation of catechin and gallic acid from Colombian bark of Pinus patula | |
Jallali et al. | Bio-guided fractionation and characterization of powerful antioxidant compounds from the halophyte Inula crithmoїdes | |
JP2006265249A (en) | New flavonoid compound and method for producing the same and antioxidant with the same as active ingredient | |
Pérez-Bonilla et al. | Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC–DAD–radical scavenging detection | |
Petrus et al. | Isolation and characterisation of the antioxidant phenolic metabolites of Boerhaavia erecta L. leaves | |
WO2009107959A2 (en) | Method for separating valuable flavonoid-containing fraction and novel flavonoid substance from above-ground part of the tree named sageretia theezans | |
JP5097983B2 (en) | Method for producing composition having antioxidant activity | |
Othman et al. | Phenolic content as antioxidant and antimicrobial activities of pistacia atlantica desf.(anacardiaceae) extract from libya | |
JP6108472B2 (en) | Grape rachis extract | |
Mun et al. | Characterization of low molecular weight polyphenols from pine (Pinus radiata) bark | |
Schmutzer et al. | Determination of phenolic compounds from wine samples by GC/MS system | |
Smara et al. | Flavonoïds from Euphorbia guyoniana Boissier & Reuter | |
Outtrup et al. | Isolation of dihydromyricetin and dihydroquercetin from bark of Pinus contorta | |
JP2006265248A (en) | Method for producing tricine | |
KR100363111B1 (en) | Novel Material Separated from Ecklonia cava, The Method for Extracting and Purifying the Same, And The Use Thereof for Antioxidants | |
CN107382938B (en) | Flavonoid compound capable of improving cigarette smoking throat comfort and preparation method and application thereof |