JP2006256937A - Method for manufacturing silicon carbide - Google Patents
Method for manufacturing silicon carbide Download PDFInfo
- Publication number
- JP2006256937A JP2006256937A JP2005079841A JP2005079841A JP2006256937A JP 2006256937 A JP2006256937 A JP 2006256937A JP 2005079841 A JP2005079841 A JP 2005079841A JP 2005079841 A JP2005079841 A JP 2005079841A JP 2006256937 A JP2006256937 A JP 2006256937A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- carbon
- precursor
- liquid
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、炭化ケイ素、または、炭化ケイ素と炭素が均質に混合分散された混合物を、
簡便に製造する方法のための前駆体物質の製造方法および該前駆体物質を用いる高純度炭
化ケイ素の製造方法に関する。
The present invention relates to silicon carbide or a mixture in which silicon carbide and carbon are homogeneously mixed and dispersed.
The present invention relates to a method for producing a precursor material for a method for simple production, and a method for producing high-purity silicon carbide using the precursor material.
炭化ケイ素セラミックスは常温及び高温で化学的に安定で、高温における機械的強度に
も優れているため、高温構造材料として利用されている。最近では、半導体製造分野にお
いて、耐熱性、耐クリープ性に優れた高純度の炭化ケイ素セラミックス焼結体が、ウエハ
ーを熱処理したり、微量元素を熱拡散したりする工程でのボートやプロセスチューブなど
に利用されるようになっている。ここで、用いられる炭化ケイ素材料に不純物元素が含ま
れていると、ウエハーの加熱中にこの不純物元素が侵入して汚染されるという問題が生じ
るため、これらの用途に用いられる炭化ケイ素材料は、できるだけ高純度であることが好
ましい。
Silicon carbide ceramics are chemically stable at room temperature and high temperature, and are excellent in mechanical strength at high temperature, and thus are used as high-temperature structural materials. Recently, in the semiconductor manufacturing field, high-purity silicon carbide ceramics sintered bodies with excellent heat resistance and creep resistance have been used in boats, process tubes, etc. in the process of heat-treating wafers and thermally diffusing trace elements. To be used. Here, if the silicon carbide material used contains an impurity element, there is a problem that the impurity element enters and is contaminated during the heating of the wafer. Therefore, the silicon carbide material used for these applications is It is preferable that the purity is as high as possible.
一方、炭化ケイ素半導体は、絶縁破壊電界が大きいなどの特性を有し、パワーデバイス
への応用が期待されている。炭化ケイ素半導体の単結晶は、一般に、炭化ケイ素粉末を2
000℃以上の高温で昇華し、炭化ケイ素の種結晶上に再結晶させる手法で製造されてい
るが、その原料となる炭化ケイ素粉末は、できるだけ高純度であることが望ましい。
On the other hand, silicon carbide semiconductors have characteristics such as a large dielectric breakdown electric field, and are expected to be applied to power devices. In general, a silicon carbide semiconductor single crystal is composed of two silicon carbide powders.
Although it is manufactured by a technique in which it is sublimated at a high temperature of 000 ° C. or higher and recrystallized on a silicon carbide seed crystal, it is desirable that the silicon carbide powder as the raw material has as high purity as possible.
炭化ケイ素粉末の製造方法として、アチソン法、シリカ還元法や気相法が知られている
。アチソン法で製造された炭化ケイ素には低純度の問題があり、シリカ還元法ではシリカ
粉末と炭素粉末の混合に基因する均一性の問題がある。気相法は高純度品が得られるもの
の、生産性が低いという問題がある。これに対し、高純度の炭化ケイ素を生産性良く製造
する方法として、シリカ粉末と炭素粉末に替えて原料に液状有機物質を用いて、重合反応
により前駆体を合成し、熱分解を経て炭化ケイ素粉末を作る方法が発明された(特許文献
1)。
As methods for producing silicon carbide powder, the Atchison method, the silica reduction method and the gas phase method are known. Silicon carbide produced by the Atchison method has a problem of low purity, and the silica reduction method has a problem of uniformity due to mixing of silica powder and carbon powder. Although the high-purity product can be obtained by the gas phase method, there is a problem that the productivity is low. On the other hand, as a method of producing high-purity silicon carbide with high productivity, a liquid organic substance is used as a raw material instead of silica powder and carbon powder, a precursor is synthesized by a polymerization reaction, and silicon carbide is subjected to thermal decomposition. A method of making a powder was invented (Patent Document 1).
この方法では、エチルシリケートなど液状有機シリカ原料と、フェノール樹脂など液状
有機炭素原料を用いる。これらの原料とともに酸、アルカリなどの触媒水溶液を均一に混
合してゾル溶液前駆体とし、加水分解や重合・架橋反応の進行により固化する。得られた
固体前駆体を熱分解によってシリカと炭素の混合物質に変換し、さらにシリカの還元反応
を経て炭化ケイ素を合成する。
In this method, a liquid organic silica raw material such as ethyl silicate and a liquid organic carbon raw material such as a phenol resin are used. An aqueous catalyst solution such as acid or alkali is mixed uniformly with these raw materials to form a sol solution precursor, which is solidified by the progress of hydrolysis and polymerization / crosslinking reaction. The obtained solid precursor is converted into a mixed material of silica and carbon by pyrolysis, and silicon carbide is synthesized through a reduction reaction of silica.
さらには、この発明を基にした改良技術である、反応焼結用β型炭化ケイ素−炭素混合
粉末(特許文献2)、β型炭化ケイ素焼結体の製造方法(特許文献3)、高純度化のため
にフッ酸を添加することを特徴とする高純度β型炭化ケイ素粉末の製造方法(特許文献4
)や、炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法(特許文献5)が、開示
されている。最近では、きわめて高純度の液状有機物質も量産されるようになったため、
そのような原料を用いることにより、純度の高い炭化ケイ素粉末が合成できる(例えば、
特許文献6〜9)。これらの特許文献に記載された実施例において、液状のケイ素化合物
を原料とした場合には、いずれも、その加水分解反応のためにトルエンスルホン酸や塩酸
などの酸触媒を添加している。
Furthermore, β-type silicon carbide-carbon mixed powder for reaction sintering (Patent Document 2), a method for producing a β-type silicon carbide sintered body (Patent Document 3), high purity, which are improved technologies based on the present invention For producing high-purity β-type silicon carbide powder characterized by adding hydrofluoric acid for the purpose of preparation (Patent Document 4)
) And a method for producing high-purity silicon carbide powder for producing a silicon carbide single crystal (Patent Document 5). Recently, liquid organic substances with extremely high purity have been mass-produced.
By using such raw materials, high-purity silicon carbide powder can be synthesized (for example,
Patent Documents 6 to 9). In the examples described in these patent documents, when a liquid silicon compound is used as a raw material, an acid catalyst such as toluenesulfonic acid or hydrochloric acid is added for the hydrolysis reaction.
液状有機シリカ原料と液状有機炭素原料を用いた炭化ケイ素の合成において、トルエン
スルホン酸や塩酸などの酸触媒を添加した場合には、作製条件によっては、この酸触媒に
起因する硫黄や塩素などの元素が製造された炭化ケイ素中に不純物として含有される可能
性がある。また、熱分解の過程でこれらの元素が気体化合物に変化して排出され、装置メ
ンテナンス上の問題や環境上の問題となる可能性がある。
In the synthesis of silicon carbide using a liquid organic silica raw material and a liquid organic carbon raw material, when an acid catalyst such as toluenesulfonic acid or hydrochloric acid is added, depending on the production conditions, sulfur, chlorine, etc. Elements may be contained as impurities in the manufactured silicon carbide. In addition, these elements are converted into gaseous compounds and discharged during the thermal decomposition process, which may cause problems in apparatus maintenance and environmental problems.
液状有機シリカ原料と液状有機炭素原料を用いた炭化ケイ素の合成において、酸触媒を
添加しないで原料混合物を固化させる技術として、原料混合物に超音波を照射する技術(
特許文献10)が開示されている。しかし、この技術では、超音波照射装置が新たに必要
となる。
In the synthesis of silicon carbide using a liquid organic silica raw material and a liquid organic carbon raw material, as a technique for solidifying the raw material mixture without adding an acid catalyst, a technique for irradiating the raw material mixture with ultrasonic waves (
Patent Document 10) is disclosed. However, this technique requires a new ultrasonic irradiation device.
本発明は上記の問題点を解決し、触媒や超音波照射を用いることなく、炭化ケイ素粉末
、および、炭化ケイ素と炭素が均質に混合分散された混合粉末を、簡便に製造する方法を
提供することを目的とする。
The present invention solves the above problems and provides a method for easily producing silicon carbide powder and mixed powder in which silicon carbide and carbon are homogeneously mixed and dispersed without using a catalyst or ultrasonic irradiation. For the purpose.
本発明者は、液状のケイ素化合物、および、熱硬化性樹脂から炭化ケイ素粉末を作製す
る手法を詳細に検討した結果、原料の液状のケイ素化合物として有機ケイ素化合物のオリ
ゴマーを用いることにより、酸触媒を用いなくても原料混合物にゲル化が生じてゲル状前
駆体物質を作製できることを見出した。すなわち、本発明による炭化ケイ素用前駆体の製
造方法は、原料として、有機ケイ素化合物のオリゴマー、炭素または炭素化合物、および
、水を用い、触媒を添加しないで、すなわち触媒非存在下で反応を行うことを特徴とする
ものである。
The present inventor has studied in detail a method for producing a silicon carbide powder from a liquid silicon compound and a thermosetting resin, and as a result, an acid catalyst was obtained by using an organosilicon compound oligomer as a raw liquid silicon compound. It has been found that gelation can occur in the raw material mixture without using a gel to produce a gel precursor material. That is, in the method for producing a precursor for silicon carbide according to the present invention, an oligomer of an organic silicon compound, carbon or a carbon compound, and water are used as raw materials, and the reaction is performed without adding a catalyst, that is, in the absence of the catalyst. It is characterized by this.
液状ケイ素化合物として有機ケイ素化合物のオリゴマーを用いることにより、トルエン
スルホン酸などの酸触媒を用いなくても混合したゾル溶液前駆体がゲル化する。ゲル化に
おいて、超音波照射は不要である。触媒非存在下で反応を行うことができるため、酸触媒
に関連した工程とコストを削減できる利点があることに加え、酸触媒に不可避の元素を含
まずに炭化ケイ素の前駆体物質を生成することができ、この前駆体物質を焼成することに
より、半導体製造装置部品や単結晶原料など、酸触媒に起因する不純物元素の含有が好ま
しくない用途にも利用できる高純度の炭化ケイ素を製造することができる。
By using an organosilicon compound oligomer as the liquid silicon compound, the mixed sol solution precursor is gelled without using an acid catalyst such as toluenesulfonic acid. In the gelation, ultrasonic irradiation is unnecessary. Since the reaction can be performed in the absence of a catalyst, there is an advantage that the process and cost associated with the acid catalyst can be reduced, and in addition, the precursor material of silicon carbide is generated without containing inevitable elements in the acid catalyst. By firing this precursor material, it is possible to produce high-purity silicon carbide that can be used for applications where the inclusion of impurity elements due to acid catalysts, such as semiconductor manufacturing equipment parts and single crystal raw materials, is not preferred Can do.
本発明では、有機ケイ素化合物のオリゴマー、炭素または炭素化合物、および、水を原
料として用いる。ここで、本発明に用いることができる有機ケイ素化合物の例として、メ
チルシリケート、エチルシリケート、ブチルシリケートなどが挙げられ、とくにエチルシ
リケートが化学的安定性や取り扱い性に優れていることから好適である。
In the present invention, an oligomer of an organosilicon compound, carbon or a carbon compound, and water are used as raw materials. Here, examples of the organosilicon compound that can be used in the present invention include methyl silicate, ethyl silicate, butyl silicate, and the like. Particularly, ethyl silicate is preferable because it is excellent in chemical stability and handleability. .
また、オリゴマーとは単量体の基本分子構造を単位とする重合度が2から20程度の低
分子量重合体をいい、本発明に用いることができる有機ケイ素化合物のオリゴマーとして
は、平均重合度が2から7のものが好ましい。平均重合度が2より小さいものでは触媒を
用いないでゲル化することが困難であり、平均重合度が7より大きいものでは有機ケイ素
化合物のオリゴマーが液体として不安定であり、炭素源との反応が不均一となりやすい。
The oligomer refers to a low molecular weight polymer having a degree of polymerization of about 2 to 20 based on the basic molecular structure of the monomer. The oligomer of the organosilicon compound that can be used in the present invention has an average degree of polymerization. Those from 2 to 7 are preferred. If the average degree of polymerization is less than 2, it is difficult to gel without using a catalyst. If the average degree of polymerization is greater than 7, the organosilicon compound oligomer is unstable as a liquid and reacts with the carbon source. Tends to be non-uniform.
また、同様の理由で有機ケイ素化合物のオリゴマー中における重合度の分布は小さいほ
うが好ましい。有機ケイ素化合物のオリゴマーを作製する段階では、何らかの触媒を用い
ても差し支えない。ただし、重合反応後に、中和法またはイオン交換樹脂層を通す方法な
どにより触媒成分を除去する必要がある。
For the same reason, it is preferable that the distribution of the degree of polymerization in the oligomer of the organosilicon compound is small. Any catalyst may be used in the step of preparing the organosilicon compound oligomer. However, after the polymerization reaction, it is necessary to remove the catalyst component by a neutralization method or a method of passing an ion exchange resin layer.
一方、炭素源としては、炭素または炭素化合物を用いることができる。その内、炭素と
しては、カーボンブラックなどの炭素粉末を用いることができる。後の熱分解工程におけ
る均一な反応を生じさせるためにできるだけ微細な粉末であることが好ましい。炭素化合
物としては、加熱により炭素を生成する化合物であれば種類を問わないが、均一な反応を
生じさせるために、液状であるか、使用する溶媒に可溶であるか、溶媒に均一に分散する
程度に微細な粉末である必要がある。たとえば、フェノール樹脂などの熱硬化性樹脂が好
適である。ただし、使用する炭素源の炭素または炭素化合物は、用途に応じた純度が必要
である。
On the other hand, carbon or a carbon compound can be used as the carbon source. Among them, as the carbon, carbon powder such as carbon black can be used. In order to cause a uniform reaction in the subsequent pyrolysis step, the powder is preferably as fine as possible. The carbon compound is not particularly limited as long as it is a compound that generates carbon by heating, but in order to cause a uniform reaction, it is liquid, soluble in the solvent used, or uniformly dispersed in the solvent. It is necessary to make the powder fine enough. For example, a thermosetting resin such as a phenol resin is suitable. However, the carbon or carbon compound of the carbon source to be used needs to have a purity according to the application.
また、より均一な反応を生じさせるために、これらを有機溶媒中で混合する方が望まし
い。ここで有機溶媒としては、有機ケイ素化合物のオリゴマー、および、炭素源と均一に
混合するものが好ましい。好適な例としては、メタノールやエタノールなどの低級アルコ
ールが挙げられる。
Moreover, in order to produce a more uniform reaction, it is desirable to mix these in an organic solvent. Here, the organic solvent is preferably an organic silicon compound oligomer and a solvent that is uniformly mixed with a carbon source. Preferable examples include lower alcohols such as methanol and ethanol.
有機ケイ素化合物のオリゴマー、および、炭素源を混合したもの、あるいは、有機溶媒
に溶化して作製した液状前駆体物質に水を添加することにより、有機ケイ素化合物の加水
反応および縮合反応に基因するゲル化が生じる。したがって、触媒非存在下で反応を行う
ことができる。ここで、有機ケイ素化合物のオリゴマーと炭素源との混合割合は、使用す
る炭素源に依存して、あるいは、製造しようとする炭化ケイ素と炭素の混合物の用途に応
じた好適混合割合に依存して変化するので、本発明では規定しない。また、水の添加割合
は、有機ケイ素化合物のオリゴマーの種類に依存するが、有機ケイ素化合物のオリゴマー
中に含有されるケイ素に対しモル比で1倍から10倍の量が好ましい。1倍より少ないと
十分な加水反応が得られない可能性があり、10倍より多いとゲル化までの時間が長時間
となり生産上好ましくない。使用する水については、精製方法は規定しないが、用途に応
じた純度が必要である。添加後も、液体全体に均一な反応を進行させるために、撹拌を続
けることが望ましい。
Gel based on the hydrolysis and condensation reactions of organosilicon compounds by adding water to liquid precursor materials prepared by mixing organosilicon compound oligomers and carbon sources or dissolved in organic solvents Will occur. Therefore, the reaction can be performed in the absence of a catalyst. Here, the mixing ratio of the organosilicon compound oligomer and the carbon source depends on the carbon source used, or on the suitable mixing ratio depending on the application of the silicon carbide and carbon mixture to be produced. Since it changes, it is not specified in the present invention. Moreover, although the addition ratio of water depends on the kind of oligomer of the organosilicon compound, the amount is preferably 1 to 10 times in terms of molar ratio with respect to silicon contained in the organosilicon compound oligomer. If it is less than 1 time, sufficient hydrolysis reaction may not be obtained, and if it is more than 10 times, it takes a long time to gelation, which is not preferable for production. For the water to be used, the purification method is not specified, but the purity according to the application is required. Even after the addition, it is desirable to continue stirring in order to promote a uniform reaction throughout the liquid.
これらの反応は常温でも生じるが、加熱することにより、反応を促進し、ゲル化までの
時間を短縮することができる。ここで、有効に加熱できる方法であれば、加熱方法は問わ
ない。ただし、溶媒の沸点を超える温度で加熱した場合には、反応が不均一となる可能性
があるので好ましくない。ゲル化した前駆体物質を1000℃以上2400℃以下の温度
で熱分解することにより、原料の混合割合に依存するC/Si比にしたがって、炭化ケイ
素、または、任意の混合割合の炭化ケイ素と炭素の混合物を得ることができる。ここで、
熱分解の温度が1000℃未満であれば十分な反応が得られない。また、2400℃を超
えると生成した炭化ケイ素が昇華するため好ましくない。
Although these reactions occur even at room temperature, the reaction can be accelerated and the time until gelation can be shortened by heating. Here, the heating method is not limited as long as it can be effectively heated. However, heating at a temperature exceeding the boiling point of the solvent is not preferable because the reaction may become non-uniform. By thermally decomposing the gelled precursor material at a temperature of 1000 ° C. or higher and 2400 ° C. or lower, silicon carbide, or silicon carbide and carbon having an arbitrary mixing ratio according to the C / Si ratio depending on the mixing ratio of the raw materials. Can be obtained. here,
If the temperature of thermal decomposition is less than 1000 ° C., sufficient reaction cannot be obtained. Moreover, since it will sublime when the produced | generated silicon carbide exceeds 2400 degreeC, it is not preferable.
エチルシリケートの重合体(SinOn-1(OC2H5)2n+2、平均分子量:745g/mol、平均
重合度:5)50g、液状フェノール樹脂(樹脂成分が60wt%+メチルアルコール溶
媒:1000℃での炭素変換率が37%)21g、エタノール40g、および、精製水9
gを室温で撹拌混合したところ、褐色透明なゾル溶液となり、このゾル溶液の撹拌をさら
に続けたところ、9時間経過後にゲル化した。このゲル状物質を大気中100℃で乾燥し
たところ、白褐色の固体となった。
Ethylsilicate polymer (Si n O n-1 (OC 2 H 5 ) 2n + 2 , average molecular weight: 745 g / mol, average polymerization degree: 5) 50 g, liquid phenolic resin (resin component is 60 wt% + methyl alcohol solvent) : Carbon conversion at 1000 ° C. is 37%) 21 g, ethanol 40 g, and purified water 9
When g was stirred and mixed at room temperature, a brown transparent sol solution was obtained. When the sol solution was further stirred, gelation occurred after 9 hours. When this gel-like substance was dried at 100 ° C. in the atmosphere, it became a white brown solid.
この固体を粉砕し、1000℃で30分間アルゴン雰囲気中で加熱し、炭化処理した。
炭化処理後のC/Si比は2.0に相当する。さらにアルゴン雰囲気中で1800℃まで
加熱したところ、炭化ケイ素粉末が得られた。
This solid was pulverized, heated at 1000 ° C. for 30 minutes in an argon atmosphere, and carbonized.
The C / Si ratio after carbonization corresponds to 2.0. Furthermore, when it heated to 1800 degreeC in argon atmosphere, the silicon carbide powder was obtained.
実施例1と同様に作製したゾル溶液を40℃に加熱しながら撹拌を続けたところ、5時
間経過後にゲル化した。また、50℃に加熱しながら撹拌を続けた場合には、3時間経過
後にゲル化した。このゲル状物質を用いて実施例1と同様な方法により炭化ケイ素粉末が
得られた。
When the sol solution produced in the same manner as in Example 1 was stirred while being heated to 40 ° C., it gelled after 5 hours. In addition, when stirring was continued while heating to 50 ° C., gelation occurred after 3 hours. A silicon carbide powder was obtained by the same method as in Example 1 using this gel substance.
実施例1と同じエチルシリケートの重合体50gと液状フェノール樹脂32g、および
、エタノール40g、および、精製水9gを室温で撹拌混合したところ、褐色透明なゾル
溶液となり、このゾル溶液の撹拌をさらに続けたところ、9時間経過後にゲル化した。こ
のゲル状物質を大気中100℃で乾燥したところ、白褐色の固体となった。この固体を粉
砕し、1000℃で30分間アルゴン雰囲気中で加熱し、炭化処理した。炭化処理後のC
/Si比は3.0に相当する。さらにアルゴン雰囲気中で1800℃まで加熱したところ、炭化ケイ素と炭素の混合粉末が得られた。混合粉末中における炭素の含有量は、11.8wt%であった。
(比較例1)
When 50 g of the same ethyl silicate polymer as in Example 1, 32 g of liquid phenol resin, 40 g of ethanol, and 9 g of purified water were stirred and mixed at room temperature, a brown transparent sol solution was obtained, and stirring of this sol solution was further continued. As a result, gelation occurred after 9 hours. When this gel-like substance was dried at 100 ° C. in the atmosphere, it became a white brown solid. This solid was pulverized, heated at 1000 ° C. for 30 minutes in an argon atmosphere, and carbonized. C after carbonization
The / Si ratio corresponds to 3.0. Furthermore, when heated to 1800 ° C. in an argon atmosphere, a mixed powder of silicon carbide and carbon was obtained. The carbon content in the mixed powder was 11.8 wt%.
(Comparative Example 1)
エチルシリケートの単量体(Si(OC2H5)4)50g、実施例1と同じフェノール樹脂32
g、および、エタノール40g、および、精製水9gを室温で撹拌混合したところ、褐色
透明なゾル溶液となった。このゾル溶液を続けて撹拌したが、72時間経過後もゲル化し
なかった。
50 g of ethyl silicate monomer (Si (OC 2 H 5 ) 4 ), the same phenol resin 32 as in Example 1
When g, 40 g of ethanol, and 9 g of purified water were mixed with stirring at room temperature, a brown transparent sol solution was obtained. The sol solution was continuously stirred, but did not gel after 72 hours.
これらの結果は、液状ケイ素化合物としてエチルシリケートの単量体を用いた場合には
ゾル溶液がゲル化しないが、エチルシリケートのオリゴマーを用いることにより、トルエ
ンスルホン酸などの酸触媒を用いなくてもゾル溶液がゲル化することを示している。また
、ゾル溶液を室温で撹拌するより、加熱しながら撹拌した方がゲル化までの時間を短縮す
ることができることを示している。
These results show that when an ethyl silicate monomer is used as the liquid silicon compound, the sol solution does not gel, but by using an ethyl silicate oligomer, an acid catalyst such as toluene sulfonic acid can be used. It shows that the sol solution gels. Further, it is shown that the time until gelation can be shortened by stirring while heating the sol solution at room temperature.
本発明によって、均一に混合した、ケイ素および炭素を含む液状前駆体を作製すること
ができる。この液状前駆体は、触媒を必要とせずに自らゲル化することから、この液状前
駆体からゲル化および乾燥して得られた固体を熱分解するプロセスの他に、この前駆体溶
液を直接噴霧乾燥して固体粉末とし、さらに熱分解して炭化ケイ素粉末を作製することが
できる。あるいは、この液状前駆体をそのまま、噴霧熱分解法の原料として用いることに
より、直接炭化ケイ素の粉末あるいは薄膜体を作製することも可能である。したがって、
本発明の製造方法により、炭化ケイ素、または、炭化ケイ素と炭素が均質に混合分散
された混合物を、簡便に製造することができる。
According to the present invention, a uniformly mixed liquid precursor containing silicon and carbon can be produced. Since this liquid precursor gels itself without the need for a catalyst, in addition to the process of thermally decomposing the solid obtained by gelling and drying from this liquid precursor, the precursor solution is directly sprayed. It can be dried to form a solid powder and further pyrolyzed to produce a silicon carbide powder. Alternatively, by directly using this liquid precursor as a raw material for the spray pyrolysis method, it is also possible to directly produce a silicon carbide powder or a thin film body. Therefore,
By the production method of the present invention, silicon carbide or a mixture in which silicon carbide and carbon are homogeneously mixed and dispersed can be easily produced.
Claims (4)
、炭素または炭素化合物、および、水を混合し、かつ、触媒を添加しないことを特徴とす
る液状前駆体物質の製造方法。 Production of a liquid precursor material characterized by mixing an organosilicon compound oligomer, carbon or a carbon compound, and water without adding a catalyst as a method for producing a precursor to produce silicon carbide by heating Method.
、炭素または炭素化合物、および、水を有機溶媒中で混合し、かつ、触媒を添加しないこ
とを特徴とする液状前駆体物質の製造方法。 A liquid precursor characterized by mixing an organosilicon compound oligomer, carbon or a carbon compound, and water in an organic solvent and adding no catalyst as a method for producing a precursor that produces silicon carbide by heating. A method for producing body material.
の製造方法で製造した液状前駆体物質を加熱することを特徴とする、ゲル状前駆体物質の
製造方法。 A method for producing a precursor for producing silicon carbide by heating, wherein the liquid precursor material produced by the production method according to claim 1 or 2 is heated. Method.
体物質を1000℃以上の温度で熱分解することによる、炭化ケイ素、または、炭化ケイ
素と炭素の混合物の製造方法。 Silicon carbide or a mixture of silicon carbide and carbon obtained by thermally decomposing a liquid or gel precursor material produced by the production method according to any one of claims 1 to 3 at a temperature of 1000 ° C or higher. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005079841A JP4788873B2 (en) | 2005-03-18 | 2005-03-18 | Precursor for silicon carbide production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005079841A JP4788873B2 (en) | 2005-03-18 | 2005-03-18 | Precursor for silicon carbide production |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006256937A true JP2006256937A (en) | 2006-09-28 |
JP2006256937A5 JP2006256937A5 (en) | 2008-06-05 |
JP4788873B2 JP4788873B2 (en) | 2011-10-05 |
Family
ID=37096584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005079841A Expired - Fee Related JP4788873B2 (en) | 2005-03-18 | 2005-03-18 | Precursor for silicon carbide production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4788873B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2075232A2 (en) | 2007-12-27 | 2009-07-01 | National Institute for Materials Science | Method of producing silicon carbide |
JP2013232602A (en) * | 2012-05-01 | 2013-11-14 | Ibiden Co Ltd | Method of producing electrode material for power storage device, electrode for power storage device, and power storage device |
US9487405B2 (en) | 2012-03-14 | 2016-11-08 | Korea Institute Of Science And Technology | Method for manufacturing SiC powders with high purity |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297204A (en) * | 1986-06-18 | 1987-12-24 | Mitsubishi Gas Chem Co Inc | Production of silicon carbide or silicon nitride powder or composite material powder of both silicon compounds |
JPH0948605A (en) * | 1995-05-31 | 1997-02-18 | Bridgestone Corp | Production of extremely pure powdery silicon carbide for producing silicon carbide single crystal and single crystal |
-
2005
- 2005-03-18 JP JP2005079841A patent/JP4788873B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297204A (en) * | 1986-06-18 | 1987-12-24 | Mitsubishi Gas Chem Co Inc | Production of silicon carbide or silicon nitride powder or composite material powder of both silicon compounds |
JPH0948605A (en) * | 1995-05-31 | 1997-02-18 | Bridgestone Corp | Production of extremely pure powdery silicon carbide for producing silicon carbide single crystal and single crystal |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2075232A2 (en) | 2007-12-27 | 2009-07-01 | National Institute for Materials Science | Method of producing silicon carbide |
JP2009155185A (en) * | 2007-12-27 | 2009-07-16 | National Institute For Materials Science | Method of producing silicon carbide |
EP2444372A1 (en) | 2007-12-27 | 2012-04-25 | National Institute for Materials Science | Method of producing silicon carbide |
US8617505B2 (en) | 2007-12-27 | 2013-12-31 | National Institute For Materials Science | Method of producing silicon carbide |
US9011811B2 (en) | 2007-12-27 | 2015-04-21 | National Institute For Materials Science | Method of producing silicon carbide |
US9487405B2 (en) | 2012-03-14 | 2016-11-08 | Korea Institute Of Science And Technology | Method for manufacturing SiC powders with high purity |
JP2013232602A (en) * | 2012-05-01 | 2013-11-14 | Ibiden Co Ltd | Method of producing electrode material for power storage device, electrode for power storage device, and power storage device |
Also Published As
Publication number | Publication date |
---|---|
JP4788873B2 (en) | 2011-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101678622B1 (en) | - - A porous composite of silicon dioxide-carbon and a method for preparing granules of -phase silicon carbide powder with a high purity by using it | |
KR101678624B1 (en) | A method for preparing silicon carbide powder of ultra-high purity | |
JP2019531247A (en) | Method for producing spherical aluminum nitride powder | |
US20150197871A1 (en) | Silicon carbide powder and method of preparing the same | |
JPH066484B2 (en) | Method for producing titanium carbide powder | |
JP4788873B2 (en) | Precursor for silicon carbide production | |
KR102149834B1 (en) | A method for manufacturing of a porous silicon carbide sintered body by carbothermal reduction process | |
JPH07157307A (en) | Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal | |
KR102293576B1 (en) | fabrication Method of high purity large size α-phase silicon carbide powder | |
JP3174622B2 (en) | Method for producing high-purity β-type silicon carbide sintered body | |
JP3442803B2 (en) | Method for producing high-purity β-type silicon carbide powder | |
JP6395153B2 (en) | COATING FILM, ITS MANUFACTURING METHOD, AND COATING FILM FORMING METHOD | |
CN1330796C (en) | Method of synthetizing two kinds of different shaped silicon carbid nano wire | |
Manocha et al. | Formation of silicon carbide whiskers from organic precursors via sol-gel method | |
KR101448241B1 (en) | Composition for producing the high-purity silicon carbide powder and method for producing the high-purity silicon carbide powder used it | |
JPS61132509A (en) | Production of silicon carbide | |
JP2564804B2 (en) | Method for manufacturing aluminum nitride | |
JPS61168514A (en) | Production of easily sinterable silicon carbide | |
JPS61183108A (en) | Preparation of fine powder of aluminium nitride | |
KR101326917B1 (en) | Method of fabricating silicon carbide | |
JP4714830B2 (en) | Method for synthesizing silicon carbide or fine powder in which silicon carbide and carbon are mixed | |
KR102684210B1 (en) | Method of Preparing the Spherical Shape Aluminum Nitride Powder | |
JPS58104006A (en) | Preparation of silicon nitride powder | |
JP2006256937A5 (en) | Precursor for silicon carbide production | |
JP2009256115A (en) | Method for producing silicon carbide sintered compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110705 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |