Nothing Special   »   [go: up one dir, main page]

JP2006244954A - Wiring connection structure of dye-sensitized solar battery cell and dye-sensitized solar cell module - Google Patents

Wiring connection structure of dye-sensitized solar battery cell and dye-sensitized solar cell module Download PDF

Info

Publication number
JP2006244954A
JP2006244954A JP2005062231A JP2005062231A JP2006244954A JP 2006244954 A JP2006244954 A JP 2006244954A JP 2005062231 A JP2005062231 A JP 2005062231A JP 2005062231 A JP2005062231 A JP 2005062231A JP 2006244954 A JP2006244954 A JP 2006244954A
Authority
JP
Japan
Prior art keywords
cell
dye
sensitized solar
solar cell
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005062231A
Other languages
Japanese (ja)
Other versions
JP4854971B2 (en
Inventor
Tomoshi Nagatsuka
知志 長塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Kogyo Co Ltd
Original Assignee
Fujimori Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co Ltd filed Critical Fujimori Kogyo Co Ltd
Priority to JP2005062231A priority Critical patent/JP4854971B2/en
Publication of JP2006244954A publication Critical patent/JP2006244954A/en
Application granted granted Critical
Publication of JP4854971B2 publication Critical patent/JP4854971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring connection structure of a dye-sensitized solar battery cell which is manufactured at low cost by simplifying the wiring connection structure between the cells, and also to provide a dye-sensitized solar cell module. <P>SOLUTION: This is a wiring connection structure 11 of a dye-sensitized solar battery cell in which one adjoining cell 1 and the other cell 1 are electrically connected in series through a cell boundary region 15 on a substrate, and the upper electrode 2 of the one cell 1 and the lower electrode 3 of the other cell 1 are electrically connected at the outside of the cell boundary region 15. The wiring structure 11 of the cells has a current collector 6 consisting of a metallic wiring layer at the upper electrode 2 and the lower electrode 3, and it is preferable that this current collector 6 has terminal parts 12, 13 extended to the outside 16 of the cell collection region 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の色素増感型太陽電池セルを電気的に直列接続してなるセルの配線接続構造およびこれを利用した色素増感型太陽電池モジュールに関し、特に、内部構造を簡単にして安価に製造できるようにしたものである。   The present invention relates to a cell wiring connection structure in which a plurality of dye-sensitized solar cells are electrically connected in series and a dye-sensitized solar cell module using the same, and in particular, the internal structure is simplified and inexpensive. Can be manufactured.

従来型の太陽電池と異なり、色素増感型太陽電池はシリコン(Si)などの高価な半導体を用いておらず、比較的安価に製造することができることから、将来の利用が拡大するものと有望視されている。
色素増感型太陽電池の基本構成は、透明基材に設けた透明導電電極(上部電極)と、電解質層と、発色剤層(分光増感色素)と、金属酸化物半導体層と、基材に設けた対電極(下部電極)とからなる(例えば特許文献1参照)。
Unlike conventional solar cells, dye-sensitized solar cells do not use expensive semiconductors such as silicon (Si) and can be manufactured at a relatively low cost. Is being viewed.
The basic structure of the dye-sensitized solar cell is composed of a transparent conductive electrode (upper electrode) provided on a transparent substrate, an electrolyte layer, a color former layer (spectral sensitizing dye), a metal oxide semiconductor layer, and a substrate. (Refer to Patent Document 1, for example).

従来型の太陽電池において、電流を効率よく取り出すため、透明導電膜からなる透明電極層に電気的に接続されたグリッド状の集電電極を受光面上に設けて電流を集電する技術が知られている。
透明導電膜は、透明基材の上に加熱蒸着やスパッタ法などにより金属酸化物半導体を薄く積層したものであり、金属等の良導体に比べて比抵抗が大きいことから、セルの面積が広い場合は、透明導電膜の表面抵抗率をなるべく低くすることが求められる。表面抵抗率を低くするには膜の厚みをなるべく厚くするのが望ましいが、金属酸化物半導体の膜厚みを厚くすると光透過率が低下するので、透明導電膜の厚みは、光透過率と表面抵抗率との兼ね合いにより制約される。従って、透明導電膜のみでは表面抵抗率を下げるのに限界があることから、透明導電膜上に金属(良導体)からなる集電電極を配設することにより、透明電極の表面抵抗率を下げている。
しかしながら集電電極は、表面抵抗率は透明導電膜より低いものの光透過率に劣る(不透明である)ので、集電電極の面積が大きいと、受光面の有効面積の損失につながる。このため、集電電極をインクジェット方式によって印刷することにより、細線化する技術が特許文献2に記載されている。
In conventional solar cells, a technique for collecting current by providing a grid-like current collecting electrode electrically connected to a transparent electrode layer made of a transparent conductive film on a light receiving surface in order to efficiently extract current is known. It has been.
A transparent conductive film is a thin layer of a metal oxide semiconductor laminated on a transparent substrate by heat evaporation or sputtering. Since the specific resistance is larger than a good conductor such as metal, the cell area is large. Is required to make the surface resistivity of the transparent conductive film as low as possible. In order to reduce the surface resistivity, it is desirable to increase the thickness of the film as much as possible. However, if the thickness of the metal oxide semiconductor is increased, the light transmittance decreases. Limited by balance with resistivity. Therefore, since there is a limit to lowering the surface resistivity with only the transparent conductive film, the surface resistivity of the transparent electrode is lowered by disposing a current collecting electrode made of metal (good conductor) on the transparent conductive film. Yes.
However, the collector electrode has a lower surface resistivity than the transparent conductive film but is inferior in light transmittance (is opaque). Therefore, if the collector electrode area is large, the effective area of the light receiving surface is lost. For this reason, Patent Document 2 describes a technique for thinning a current collecting electrode by printing by an ink jet method.

一方、単一の太陽電池セルで得られる起電力は限られていることから、実用的な電圧を取り出すには複数個のセルを直列に接続する必要がある。
従来型の太陽電池の場合には、発電層がシリコン等の固体半導体から構成されるのでセルの集積が容易であるが、色素増感型太陽電池の場合には、発電層に電解液を使用するので、電解質の漏洩を防止するため、セルの封止が必要となる。
特許文献3には、セルの外部にリード線やコネクタなどの外部配線(セル間接続)を設けて複数個のセルを直列に接続する方法が記載されている。
特許文献4には、平行に配置された2枚の基板の間に複数のセルを並べて配置し、一のセルの透明電極と隣り合うセルの裏面電極とを接続する電極接続部の両面に非導電性の隔壁を設けて各セルの間を仕切った構成が記載されている。
特許文献5には、平行に配置された2枚の基板の間に複数のセルを並べて配置し、一のセルの透明電極と隣り合うセルの裏面電極とを異方性導電材料によって接続し、異方性導電材料として、基板に垂直な方向には導電性を示すが、基板に沿う方向には電気的絶縁を保つものを用いることにより、セル間の接続と封止とを兼ねるようにした構成が記載されている。
特開平1−220380号公報 特開2003−297158号公報 特開2003−086822号公報 特開2002−093476号公報 特開2003−243052号公報
On the other hand, since the electromotive force obtained by a single solar cell is limited, it is necessary to connect a plurality of cells in series in order to extract a practical voltage.
In the case of a conventional solar cell, the power generation layer is made of a solid semiconductor such as silicon, so cell integration is easy, but in the case of a dye-sensitized solar cell, an electrolyte is used for the power generation layer. Therefore, cell sealing is necessary to prevent electrolyte leakage.
Patent Document 3 describes a method of connecting a plurality of cells in series by providing external wiring (inter-cell connection) such as a lead wire or a connector outside the cell.
In Patent Document 4, a plurality of cells are arranged side by side between two substrates arranged in parallel, and are not arranged on both surfaces of an electrode connection portion that connects a transparent electrode of one cell and a back electrode of an adjacent cell. A structure in which conductive cells are provided to partition each cell is described.
In Patent Document 5, a plurality of cells are arranged side by side between two substrates arranged in parallel, and a transparent electrode of one cell and a back electrode of an adjacent cell are connected by an anisotropic conductive material, An anisotropic conductive material that exhibits conductivity in the direction perpendicular to the substrate but maintains electrical insulation in the direction along the substrate is used to connect and seal between cells. The configuration is described.
Japanese Patent Laid-Open No. 1-220380 JP 2003-297158 A Japanese Patent Laid-Open No. 2003-086822 JP 2002-093476 A JP 2003-243052 A

しかしながら、特許文献3のように、個々に電解液を封止した複数個のセルを外部配線で接続した場合には、セルの間に外部配線を収める一定の間隔を設ける必要があることから、一定の設置面積における集光効率が低下するという問題がある。
また、特許文献4,5のように、2枚の基板の間に複数のセルを並べて配置し、セル間の接続を基板間に設けた内部配線で行う場合には、セル間の接続と封止とを、セル間の狭いスペースで行う必要があり、セル間の構造が複雑となることから、封止が不確実になって電解液が漏洩したり、製造コストを安価に抑えるのが困難であるという問題がある。
However, as in Patent Document 3, when a plurality of cells individually sealed with an electrolyte solution are connected by external wiring, it is necessary to provide a certain interval for storing the external wiring between the cells. There is a problem that the light collection efficiency in a fixed installation area is lowered.
Further, as in Patent Documents 4 and 5, when a plurality of cells are arranged side by side between two substrates and the connection between the cells is performed by internal wiring provided between the substrates, the connection and sealing between the cells are performed. Since the structure between the cells needs to be stopped in a narrow space between the cells, the sealing becomes uncertain and the electrolyte leaks and it is difficult to keep the manufacturing cost low. There is a problem that.

本発明は、上記事情に鑑みてなされたものであり、セル同士の配線接続構造を簡略化して安価に製造可能にした色素増感型太陽電池セルの配線接続構造および色素増感型太陽電池モジュールを提供することを課題とする。   The present invention has been made in view of the above circumstances, and a wiring connection structure of a dye-sensitized solar cell and a dye-sensitized solar battery module that can be manufactured at low cost by simplifying a wiring connection structure between cells. It is an issue to provide.

前記課題を解決するため、本発明は、一の基材上において、セル境界領域を介して隣接した一のセルと他のセルとを電気的に直列接続する配線接続構造であって、前記一のセルの上部電極と前記他のセルの下部電極とが、前記セル境界領域の外で電気的に接続されたことを特徴とする色素増感型太陽電池セルの配線接続構造を提供する。
本発明の色素増感型太陽電池セルの配線接続構造は、前記上部電極および/または前記下部電極が金属配線層からなる集電体を備え、前記集電体が前記セル境界領域の外に延出された端子部を有することが好ましい。
In order to solve the above problems, the present invention provides a wiring connection structure in which one cell adjacent to another cell via a cell boundary region is electrically connected in series on one substrate. A wiring connection structure for a dye-sensitized solar cell, wherein the upper electrode of the other cell and the lower electrode of the other cell are electrically connected outside the cell boundary region.
In the wiring connection structure of the dye-sensitized solar cell of the present invention, the upper electrode and / or the lower electrode includes a current collector made of a metal wiring layer, and the current collector extends outside the cell boundary region. It is preferable to have an extended terminal portion.

また、本発明は、上述の色素増感型太陽電池セルの配線接続構造を有することを特徴とする色素増感型太陽電池モジュールを提供する。
本発明の色素増感型太陽電池モジュールは、光で電気を発電する発電層がセルごとに封止されていることが好ましい。発電層をセルごとに封止する手段としては、例えば、電気絶縁性樹脂からなる封止材を用いることができる。
本発明の色素増感型太陽電池モジュールは、帯状のセルが多数、セルの短辺方向に連設されたセル集積体を少なくとも一つ有する構成を採用することも可能である。さらに、二つの前記セル集積体が互いを構成するセルの短辺側のセル境界領域を介して隣接した構成を採用することも可能である。
In addition, the present invention provides a dye-sensitized solar cell module having the above-described wiring connection structure for dye-sensitized solar cells.
In the dye-sensitized solar cell module of the present invention, it is preferable that a power generation layer for generating electricity with light is sealed for each cell. As a means for sealing the power generation layer for each cell, for example, a sealing material made of an electrically insulating resin can be used.
The dye-sensitized solar cell module of the present invention can also employ a configuration having at least one cell assembly in which a large number of band-shaped cells are connected in the short-side direction of the cells. Furthermore, it is also possible to adopt a configuration in which the two cell aggregates are adjacent to each other via a cell boundary region on the short side of the cells constituting each other.

本発明によれば、一の基材上において、セル境界領域を介して隣接したセル同士の配線接続を、前記セル境界領域の外で行うので、セル間の配線接続構造を両セルが配置された基材上に設け、かつ簡単に構成することができ、製造コストを低減することが可能である。また、セルの間隔を狭くして、セルを高密度に(より狭い面積に)集合させることが可能である。
セル境界領域は、もっぱら電解質の封止(例えば隔壁)に利用することができるため、電解質として流動性の高い電解液を用いたとしても、電解液の漏洩が起こりにくく、耐久性に優れた色素増感型太陽電池を提供することができる。
According to the present invention, since the wiring connection between the cells adjacent to each other via the cell boundary region is performed outside the cell boundary region on one base material, both the cells have the wiring connection structure between the cells. It can be provided on the substrate and can be easily configured, and the manufacturing cost can be reduced. In addition, it is possible to gather cells at high density (in a smaller area) by narrowing the cell interval.
Since the cell boundary region can be used exclusively for electrolyte sealing (for example, partition walls), even when an electrolyte with high fluidity is used as the electrolyte, the electrolyte does not leak easily and has excellent durability. A sensitized solar cell can be provided.

以下、最良の形態に基づき、図面を参照して本発明を説明する。
図1〜図6は、本発明の色素増感型太陽電池モジュールの第1形態例を示す図面であり、図1は色素増感型太陽電池モジュールの平面図、図2は図1のA−A線に沿う断面図、図3は図1のB−B線に沿う部分拡大断面図、図4は上部電極が設けられた上部基材を示す平面図、図5は剥離紙つきの封止材を示す平面図、図6は下部電極が設けられた下部基材を示す平面図である。
なお、図1は、上部基材22が透明性を有するものとして、発電層4および集電体6を実線で描いてある。また、図4では上部電極2が紙面の手前側となるよう、上部基材22の配置を図1とは左右逆にしている。図4および図6において二点鎖線は、発電層4と接する領域の境界線を示す。図5では、封止材24の形状を明確にするため、封止材24に斜線(ハッチング)を付した。
The present invention will be described below with reference to the drawings based on the best mode.
FIGS. 1-6 is drawing which shows the 1st example of a dye-sensitized solar cell module of this invention, FIG. 1 is a top view of a dye-sensitized solar cell module, FIG. 2 is A- of FIG. FIG. 3 is a partially enlarged sectional view taken along line BB in FIG. 1, FIG. 4 is a plan view showing an upper substrate provided with an upper electrode, and FIG. 5 is a sealing material with release paper. FIG. 6 is a plan view showing a lower substrate provided with a lower electrode.
In FIG. 1, the power generation layer 4 and the current collector 6 are drawn with solid lines on the assumption that the upper base material 22 has transparency. In FIG. 4, the arrangement of the upper base material 22 is reversed from that in FIG. 1 so that the upper electrode 2 is on the near side of the page. 4 and 6, the alternate long and two short dashes line indicates the boundary line of the region in contact with the power generation layer 4. In FIG. 5, in order to clarify the shape of the sealing material 24, the sealing material 24 is hatched.

図1,図2に示すように、この色素増感型太陽電池モジュール21は、複数のセル1,1,…を直列に接続してなる色素増感型太陽電池モジュールであり、透明性を有する上部基材22と、上部基材22の内面に設けられた上部電極2と、下部基材23と、下部基材23の内面に設けられた下部電極3と、上部基材22と下部基材23との間に設けられた発電層4とを具備する。
図2,図3に示すように、セル1(色素増感型太陽電池セル)は、上部電極2と発電層4と下部電極3とがこの順に積層された部分によって構成される。
As shown in FIGS. 1 and 2, the dye-sensitized solar cell module 21 is a dye-sensitized solar cell module formed by connecting a plurality of cells 1, 1,... In series and has transparency. Upper substrate 22, upper electrode 2 provided on the inner surface of upper substrate 22, lower substrate 23, lower electrode 3 provided on the inner surface of lower substrate 23, upper substrate 22 and lower substrate And the power generation layer 4 provided between the power generation layer 4 and the power generation layer 4.
As shown in FIGS. 2 and 3, the cell 1 (dye-sensitized solar cell) includes a portion in which an upper electrode 2, a power generation layer 4, and a lower electrode 3 are stacked in this order.

図1,図2に示すように、色素増感型太陽電池モジュール21は、複数のセル1,1,…が集合したセル集合領域14と、セル集合領域14の外である外部領域16とを有する。また、図3に示すように、セル集合領域14内において、各セル1,1,…は、セル境界領域15を介して離隔されている。
前記外部領域16は、各セル1,1,…が占有する領域ともセル境界領域15とも重なり合いを持たないが、前記基材22,23上の一部として設定される領域である。
本形態例において各セル1は図1の左右に長い帯状である。これらのセル1,1,…は、セル1の短辺方向(図1の上下方向)に連設され、1つのセル集積体18を構成している。基材上、セル集積体18は平面視で略正方形の領域を占有している。
As shown in FIGS. 1 and 2, the dye-sensitized solar cell module 21 includes a cell aggregate region 14 in which a plurality of cells 1, 1,... Are aggregated and an external region 16 that is outside the cell aggregate region 14. Have. 3, the cells 1, 1,... Are separated by a cell boundary region 15 in the cell collection region 14.
The external area 16 is an area set as a part on the base materials 22 and 23, although the area occupied by each cell 1, 1,... Does not overlap with the cell boundary area 15.
In this embodiment, each cell 1 has a long strip shape on the left and right in FIG. These cells 1, 1,... Are connected in the short side direction (vertical direction in FIG. 1) of the cell 1 to constitute one cell integrated body 18. On the substrate, the cell assembly 18 occupies a substantially square area in plan view.

上部基材22としては、可視領域で透明性を有し、一般に全光線透過率が90%以上のものが好ましい。中でも、フレキシブル性を有する樹脂フィルムは、色素増感型太陽電池モジュール21の取扱い性が優れている点で、好適に用いられる。
上部基材22に使用される透明樹脂フィルムの具体例としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリカーボネート樹脂、ジアセテート樹脂、トリアセテート樹脂、ポリアリレート樹脂、ポリ塩化ビニル、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、環状ポリオレフィン樹脂等からなる厚さ50〜300μmの単層フィルム又は前記透明樹脂からなる複数層の複合フィルムが挙げられる。
なお、必要に応じて、上部基材22の外面(図2,図3の上面)に、耐候性を付与するための樹脂をコートしてもよい。また、ソーダガラス、耐熱ガラス、石英ガラス等のガラスを上部基材22として用いてもよい。
The upper substrate 22 is preferably one having transparency in the visible region and generally having a total light transmittance of 90% or more. Especially, the resin film which has flexibility is used suitably at the point which the handleability of the dye-sensitized solar cell module 21 is excellent.
Specific examples of the transparent resin film used for the upper substrate 22 include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins, epoxy resins, fluororesins, silicone resins, polycarbonate resins, Single-layer film having a thickness of 50 to 300 μm made of acetate resin, triacetate resin, polyarylate resin, polyvinyl chloride, polysulfone resin, polyether sulfone resin, polyimide resin, polyamide resin, polyolefin resin, cyclic polyolefin resin, or the like A composite film having a plurality of layers made of a resin is exemplified.
In addition, you may coat the resin for providing weather resistance to the outer surface (upper surface of FIG. 2, FIG. 3) of the upper base material 22 as needed. Further, glass such as soda glass, heat-resistant glass, or quartz glass may be used as the upper substrate 22.

図3に示すように、上部電極2は、上部基材22の内面(図3の下側の面)に設けられている。上部電極2は、セル1ごとに区画された透明導電膜5と、各区画の透明導電膜5に接続された集電体6とから構成されている。
集電体6は、透明導電膜5から集電するものであって、発電層4の電解質8に接触しないように発電層4を覆わない位置に配設され、セル1を取り囲む封止材24と透明導電膜5との間に挟まれている。
As shown in FIG. 3, the upper electrode 2 is provided on the inner surface of the upper base material 22 (the lower surface in FIG. 3). The upper electrode 2 includes a transparent conductive film 5 partitioned for each cell 1 and a current collector 6 connected to the transparent conductive film 5 of each partition.
The current collector 6 collects current from the transparent conductive film 5, is disposed at a position not covering the power generation layer 4 so as not to contact the electrolyte 8 of the power generation layer 4, and encapsulates 24 surrounding the cell 1. And the transparent conductive film 5.

透明導電膜5は、セル1,1,…ごとに電気的に分離するため、隙間5aが設けられている。透明導電膜5としては、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化インジウム(In)、酸化スズ(SnO)、スズをドープした酸化インジウム(ITO)、亜鉛をドープした酸化インジウム(IZO)、アンチモンをドープした酸化スズ(ATO)、フッ素をドープした酸化スズ(FTO)、アルミニウムをドープした酸化亜鉛(AZO)等が好ましいが、膜の導電性、透明性、エッチングによるパターニングが容易なことからITOが特に好ましい。
透明導電膜5の形成は、加熱蒸着法、スパッタ法、CVD法、プラズマCVD法、イオンプレーティング法、ゾル−ゲル法、ウェットコーティング法等、公知の薄膜形成方法によって行うことができる。透明導電膜5の厚さは、200nm以下、好ましくは100nm以下である。
高い発電効率を得るためには、透明導電膜5の全光線透過率はなるべく高く、表面抵抗率はなるべく低いことが望ましい。全光線透過率は、好ましくは70%以上、より好ましくは80%以上である。表面抵抗率は、好ましくは100Ω/□以下、より好ましくは10Ω/□以下である。
The transparent conductive film 5 is provided with a gap 5a in order to electrically separate the cells 1, 1,. As the transparent conductive film 5, titanium oxide (TiO 2 ), zinc oxide (ZnO), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), tin-doped indium oxide (ITO), zinc doped Indium oxide (IZO), antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), etc. are preferred, but the film conductivity, transparency, and etching ITO is particularly preferable because of easy patterning.
The transparent conductive film 5 can be formed by a known thin film forming method such as a heat deposition method, a sputtering method, a CVD method, a plasma CVD method, an ion plating method, a sol-gel method, or a wet coating method. The thickness of the transparent conductive film 5 is 200 nm or less, preferably 100 nm or less.
In order to obtain high power generation efficiency, it is desirable that the total light transmittance of the transparent conductive film 5 is as high as possible and the surface resistivity is as low as possible. The total light transmittance is preferably 70% or more, more preferably 80% or more. The surface resistivity is preferably 100Ω / □ or less, more preferably 10Ω / □ or less.

集電体6は、透明導電膜5よりも導電性の良い材料から構成することが好ましく、具体例としては、金、銀、銅、白金、ニッケル、アルミニウム、鉄等の金属、前記金属を1種以上含む合金、カーボンなどが挙げられる。
集電体6は、加熱蒸着法、スパッタ法、CVD法、導電性ペーストを用いた印刷法等によって透明導電膜5上に設けられる。導電性ペーストとしては、金、銀、銅、白金、ニッケルなどの電気伝導度の高い金属微粉末を混入させたものが用いられる。
集電体6は、厚さが15μm以下、好ましくは7μm以下であって、線幅が60μm以下、好ましくは40μm以下、より好ましくは25μm以下である。集電体6の厚さが15μmを超えると、透明な上部基材22に対して斜めに入射する光が遮られるため好ましくない。また、集電体6の線幅が60μmを超えると、開口率が低くなったり、金属線が見えやすくなり好ましくない。
集電体6の線幅を細線化することで、光の回折、散乱等により、線幅が大きい場合に比して電極基板の全光線透過率が向上し、太陽電池の発電効率を向上させることができる。
The current collector 6 is preferably made of a material having better conductivity than that of the transparent conductive film 5. Specific examples thereof include gold, silver, copper, platinum, nickel, aluminum, iron and other metals, and the metal 1 Examples include alloys containing at least seeds and carbon.
The current collector 6 is provided on the transparent conductive film 5 by a heating vapor deposition method, a sputtering method, a CVD method, a printing method using a conductive paste, or the like. As the conductive paste, a paste in which metal fine powder having high electrical conductivity such as gold, silver, copper, platinum, nickel is mixed is used.
The current collector 6 has a thickness of 15 μm or less, preferably 7 μm or less, and a line width of 60 μm or less, preferably 40 μm or less, more preferably 25 μm or less. If the thickness of the current collector 6 exceeds 15 μm, light that is obliquely incident on the transparent upper base material 22 is blocked, which is not preferable. On the other hand, when the line width of the current collector 6 exceeds 60 μm, the aperture ratio becomes low and the metal wire is easily visible, which is not preferable.
By thinning the line width of the current collector 6, the total light transmittance of the electrode substrate is improved by light diffraction, scattering, etc., compared to when the line width is large, and the power generation efficiency of the solar cell is improved. be able to.

下部基材23は、下部電極3を支持する基材であり、材質には特に制限はないが、色素増感型太陽電池モジュール21の取扱い性の点では、フレキシブル性を有する樹脂フィルムが好適に用いられる。
下部基材23に使用される樹脂フィルムの具体例としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリカーボネート樹脂、ジアセテート樹脂、トリアセテート樹脂、ポリアリレート樹脂、ポリ塩化ビニル、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、環状ポリオレフィン樹脂等からなる厚さ50〜300μmの単層フィルム又は前記透明樹脂からなる複数層の複合フィルムが挙げられる。
The lower substrate 23 is a substrate that supports the lower electrode 3, and the material is not particularly limited. However, in terms of the handleability of the dye-sensitized solar cell module 21, a flexible resin film is preferable. Used.
Specific examples of the resin film used for the lower substrate 23 include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins, epoxy resins, fluororesins, silicone resins, polycarbonate resins, and diacetates. Single-layer film having a thickness of 50 to 300 μm made of resin, triacetate resin, polyarylate resin, polyvinyl chloride, polysulfone resin, polyether sulfone resin, polyimide resin, polyamide resin, polyolefin resin, cyclic polyolefin resin, or the transparent resin A multi-layer composite film consisting of

図3に示すように、下部電極3は、下部基材23の内面(図3の上側の面)に設けられている。下部電極3は、金属等の良導体、金属酸化物半導体等の半導体、カーボンなどから形成することができるが、電解質8中に含有されるヨウ素化合物に対する耐ヨウ素性の観点から、白金またはカーボンが好適に使用される。下部電極3をセル1,1,…ごとに分離するため、下部電極3には隙間3aが設けられている(図3、6参照)。
下部電極3の形成は、加熱蒸着法、スパッタ法、CVD法、導電性ペーストを用いた印刷法(例えばスクリーン印刷)等によって行う。導電性ペーストとしては、導電性粒子を配合したものが用いられる。
As shown in FIG. 3, the lower electrode 3 is provided on the inner surface of the lower substrate 23 (the upper surface in FIG. 3). The lower electrode 3 can be formed from a good conductor such as a metal, a semiconductor such as a metal oxide semiconductor, carbon, etc., but platinum or carbon is preferred from the viewpoint of iodine resistance to the iodine compound contained in the electrolyte 8. Used for. In order to separate the lower electrode 3 into cells 1, 1,..., A gap 3a is provided in the lower electrode 3 (see FIGS. 3 and 6).
The lower electrode 3 is formed by a heating vapor deposition method, a sputtering method, a CVD method, a printing method using a conductive paste (for example, screen printing), or the like. As the conductive paste, a paste containing conductive particles is used.

本形態例の色素増感型太陽電池モジュール21に用いられるセル間の配線接続構造11は、2枚の基材22,23間でセル境界領域15を介して隣接した2つのセル1,1において、図1,図2に示すように、一のセル1の上部電極2および他のセル1の下部電極3がセル境界領域15の外にある外部領域16に延出して端子部12,13を形成し、これら端子部12,13同士の接続によって、隣接セルの上部電極2と下部電極3との電気的接続がなされていることを特徴とする。これにより、セル同士の直列配線の接続構造を簡略化することができる。
図1に示す色素増感型太陽電池モジュール21は8個のセル1,1,…を備えており、隣接した2つのセル間の配線接続(7箇所)のすべてに、上述のセル間の配線接続構造11を採用している。複数のセル1,1,…を電気的に直列に接続したとき、両端のセル1の電極2,3の一方はセル間の配線接続構造11に利用されないが、この電極は、発電された電流を色素増感型太陽電池モジュール21の外部に取り出すための取り出し電極17として用いられる。本形態例の場合、2個の取り出し電極17,17のうち、一方(図1の左下隅にあるもの)は一端側のセル1の上部電極2から延出された端子部12、他方(図1の左上隅にあるもの)は他端側のセル1の下部電極3から延出された端子部13となっている。
The inter-cell wiring connection structure 11 used in the dye-sensitized solar cell module 21 according to the present embodiment includes two cells 1 and 1 that are adjacent to each other via a cell boundary region 15 between two base materials 22 and 23. 1 and 2, the upper electrode 2 of one cell 1 and the lower electrode 3 of the other cell 1 extend to the external region 16 outside the cell boundary region 15 to connect the terminal portions 12 and 13 to each other. The upper electrode 2 and the lower electrode 3 of the adjacent cell are electrically connected by connecting the terminal portions 12 and 13 to each other. Thereby, the connection structure of the serial wiring between cells can be simplified.
The dye-sensitized solar cell module 21 shown in FIG. 1 includes eight cells 1, 1,..., And all the wiring connections (seven locations) between two adjacent cells are connected to the above-described wiring between cells. The connection structure 11 is adopted. When a plurality of cells 1, 1,... Are electrically connected in series, one of the electrodes 2 and 3 of the cell 1 at both ends is not used for the wiring connection structure 11 between the cells. Is used as an extraction electrode 17 for extracting the dye to the outside of the dye-sensitized solar cell module 21. In the case of this embodiment, one of the two lead-out electrodes 17 and 17 (in the lower left corner of FIG. 1) is the terminal portion 12 extending from the upper electrode 2 of the cell 1 on one end side, and the other (see FIG. 1 at the upper left corner) is a terminal portion 13 extending from the lower electrode 3 of the cell 1 on the other end side.

2枚の基材22,23のうち少なくとも一方がフレキシブルである場合、当該基材22,23を曲げて重ね合わせることにより、上部電極2側の端子部12と下部電極3側の端子部13とを接触させ、導通をとることができる。図2に示す例では、上部基材22の一側縁部22aを下部基材23に向けて曲げてある。2枚の基材22,23がともにフレキシブルでない場合は、少なくとも一方の基材にリード線を設ける必要がある。
両端子部12,13の電気的接続を維持するためには、公知の技術を用いることが可能であり、例えば、導電性粒子を含有した導電性接着剤や半田などで接合したり、2枚の基材22,23の外側からクリップや可撓性のカバーフィルムなどで挟圧したり、2枚の基材22,23をホットメルト接着剤などで接着したりする方法を用いることができる。
さらに、上部電極2側の端子部12は、集電体6が外部領域16に延出したものである。これにより、上部電極2から集電体6を介して集電した電流を、隣接したセルの下部電極3に効率よく流すことができる。
When at least one of the two base materials 22 and 23 is flexible, the upper base electrode 2 side terminal portion 12 and the lower electrode 3 side terminal portion 13 are obtained by bending and overlapping the base materials 22 and 23. Can be brought into contact with each other for electrical conduction. In the example shown in FIG. 2, one side edge 22 a of the upper base material 22 is bent toward the lower base material 23. When the two base materials 22 and 23 are not flexible, it is necessary to provide a lead wire on at least one of the base materials.
In order to maintain the electrical connection between the terminal portions 12 and 13, a known technique can be used. For example, the two terminal portions 12 and 13 can be joined with a conductive adhesive containing conductive particles, solder, or the like. For example, a method in which a clip or a flexible cover film is pressed from the outside of the base materials 22 and 23, or two base materials 22 and 23 are bonded with a hot melt adhesive or the like can be used.
Further, the terminal portion 12 on the upper electrode 2 side is obtained by extending the current collector 6 to the external region 16. Thereby, the current collected from the upper electrode 2 via the current collector 6 can be efficiently passed to the lower electrode 3 of the adjacent cell.

図2,図3に示すように、発電層4は、分光増感色素が担持された金属酸化物半導体膜7と、電解質8(特に電解液)とからなる。金属酸化物半導体膜7は上部電極2の透明導電膜5上に膜状に形成されている。電解質8は、上部電極2と下部電極3との間に封入されており、金属酸化物半導体膜7と下部電極3との間の空隙を充填するのみならず、金属酸化物半導体膜7の内部にも浸透している。   As shown in FIGS. 2 and 3, the power generation layer 4 includes a metal oxide semiconductor film 7 on which a spectral sensitizing dye is supported, and an electrolyte 8 (particularly, an electrolytic solution). The metal oxide semiconductor film 7 is formed in a film shape on the transparent conductive film 5 of the upper electrode 2. The electrolyte 8 is sealed between the upper electrode 2 and the lower electrode 3, and not only fills the gap between the metal oxide semiconductor film 7 and the lower electrode 3 but also the inside of the metal oxide semiconductor film 7. It has also penetrated.

前記金属酸化物半導体膜7としては、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、スズをドープした酸化インジウム(ITO)、酸化ジルコニウム(ZrO)、酸化マグネシウム(MgO)等の公知の1種以上の金属酸化物半導体からなる多孔質の膜を用いることができる。金属酸化物半導体としては、安定性や安全性の点から、アナタース型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸等の各種の酸化チタン又は水酸化チタン、含水酸化チタンの微粒子からなるものが好ましい。
この金属酸化物半導体膜7の膜厚としては、一般的には10nm以上であり、100nm〜1μmが好ましい。
Examples of the metal oxide semiconductor film 7 include titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), tin-doped indium oxide (ITO), zirconium oxide (ZrO 2 ), magnesium oxide ( A porous film made of one or more known metal oxide semiconductors such as MgO) can be used. As a metal oxide semiconductor, various titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, hydrous oxide, etc. from the viewpoint of stability and safety. Those composed of fine particles of titanium are preferred.
The thickness of the metal oxide semiconductor film 7 is generally 10 nm or more, and preferably 100 nm to 1 μm.

前記分光増感色素は、金属酸化物半導体膜7を構成する金属酸化物半導体の表面に、単分子膜として吸着されるものである。この分光増感色素は、可視光領域及び/又は赤外光領域に吸収を持つものであり、種々の金属錯体や有機色素を1種以上用いることができる。例えば、分光増感色素の分子中にカルボキシル基、ヒドロキシアルキル基、ヒドロキシル基、スルホン基、カルボキシアルキル基の官能基を有するものが、金属酸化物半導体膜7への吸着が速いため、好ましい。また、分光増感の効果や耐久性に優れている観点から、金属錯体が好ましい。この金属錯体としては、銅フタロシアニン、チタニルフタロシアニン等の金属フタロシアニン、クロロフィル、ヘミンや、公知のルテニウム、オスミウム、鉄、亜鉛等の錯体を用いることができる。
また、有機色素としては、メタルフリーフタロシアニン、シアニン系色素、メロシアニン系色素、キサンテン系色素、トリフェニルメタン色素を用いることができる。
The spectral sensitizing dye is adsorbed as a monomolecular film on the surface of the metal oxide semiconductor constituting the metal oxide semiconductor film 7. This spectral sensitizing dye has absorption in the visible light region and / or the infrared light region, and one or more of various metal complexes and organic dyes can be used. For example, those having a functional group such as a carboxyl group, a hydroxyalkyl group, a hydroxyl group, a sulfone group, and a carboxyalkyl group in the molecule of the spectral sensitizing dye are preferable because the adsorption to the metal oxide semiconductor film 7 is fast. Moreover, a metal complex is preferable from the viewpoint of excellent spectral sensitization effect and durability. As this metal complex, metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll, hemin, and known complexes of ruthenium, osmium, iron, zinc and the like can be used.
Further, as the organic dye, metal free phthalocyanine, cyanine dye, merocyanine dye, xanthene dye, triphenylmethane dye can be used.

また、上部電極2と下部電極3との間に封入する電解質8としては、I/I 系や、Br/Br 系、キノン/ハイドロキノン系等のレドックス電解質を含む電解液が挙げられる。このような電解液は、エタノールやアセトニトリルなどの溶媒にヨウ化リチウムやヨウ素などを溶解させるなど、従来公知の方法によって得ることができる。また、電解質8は、液体電解質又はこれを高分子物質中に含有させた固体高分子電解質であってもよい。 Moreover, as the electrolyte 8 sealed between the upper electrode 2 and the lower electrode 3, an electrolytic solution containing a redox electrolyte such as an I / I 3 system, a Br / Br 3 system, or a quinone / hydroquinone system can be used. Can be mentioned. Such an electrolytic solution can be obtained by a conventionally known method such as dissolving lithium iodide or iodine in a solvent such as ethanol or acetonitrile. Further, the electrolyte 8 may be a liquid electrolyte or a solid polymer electrolyte containing the same in a polymer substance.

図5に示すように、封止材24は、電解質8が色素増感型太陽電池モジュール21の外部に漏洩しないように、2枚の基材22,23間を液密に封止する外枠部25と、外枠部25の内部をセル1,1,…ごとに隔離する隔壁部26とを有して格子状に形成されている。また、封止材24は、図3に示すように、集電体6が電解質8と接触しないように、集電体6(図3で、透明導電膜5の下側に配設される。)の表面を覆う役割も果たす。   As shown in FIG. 5, the sealing material 24 is an outer frame that liquid-tightly seals between the two substrates 22 and 23 so that the electrolyte 8 does not leak outside the dye-sensitized solar cell module 21. .. Are formed in a lattice shape having a partition portion 25 and a partition wall portion 26 that isolates the inside of the outer frame portion 25 for each cell 1, 1,. Further, as shown in FIG. 3, the sealing material 24 is disposed on the current collector 6 (under the transparent conductive film 5 in FIG. 3) so that the current collector 6 does not contact the electrolyte 8. ) Also covers the surface.

外枠部25および隔壁部26に四方を囲まれてなる空間27は、帯状(細長い長方形状)であり、それぞれの空間27には、各セル1の発電層4が収容される。前記空間27は、この空間27内に収容された発電層4が上部電極2および下部電極3と接触できるように、封止材24の両面に貫通した貫通穴となっている。
このように、帯状のセル1が多数、セル1の短辺方向(図1では上下方向)に連設されてセル集積体18を構成している場合、セル間の配線接続構造11が配置されるセルの外部領域16を基材22,23の側縁部(図1の左側)にまとめて設けることができ、色素増感型太陽電池モジュール21の面積を一層小さくすることができる。
A space 27 surrounded by the outer frame portion 25 and the partition wall portion 26 is in a strip shape (elongated rectangular shape), and the power generation layer 4 of each cell 1 is accommodated in each space 27. The space 27 is a through-hole penetrating both surfaces of the sealing material 24 so that the power generation layer 4 accommodated in the space 27 can come into contact with the upper electrode 2 and the lower electrode 3.
As described above, when the cell integrated body 18 is formed by connecting a large number of the band-like cells 1 in the short side direction (vertical direction in FIG. 1) of the cells 1, the wiring connection structure 11 between the cells is arranged. The cell outer region 16 can be collectively provided on the side edges (left side in FIG. 1) of the base materials 22 and 23, and the area of the dye-sensitized solar cell module 21 can be further reduced.

封止材24の材質としては、電解質8に含まれる成分に対する耐食性(特に耐ヨウ素性)を有するものであれば特に限定されないが、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化樹脂、電子線硬化樹脂、ゴム、金属などを利用することができる。特に、色素増感型太陽電池モジュール21の取扱い性の点では、フレキシブル性を有する材質が好ましい。
封止材24は、少なくとも表面が電気絶縁性を有する必要がある。このため、封止材24の材質が金属などの導電性材料から構成されている場合には、電気絶縁性を有する樹脂やゴムなどにより絶縁被覆する。
The material of the sealing material 24 is not particularly limited as long as it has corrosion resistance (particularly iodine resistance) with respect to the components contained in the electrolyte 8, but is not limited to thermoplastic resin, thermosetting resin, ultraviolet curable resin, electron beam curing. Resin, rubber, metal, etc. can be used. In particular, a material having flexibility is preferable in terms of handleability of the dye-sensitized solar cell module 21.
At least the surface of the sealing material 24 needs to have electrical insulation. For this reason, when the material of the sealing material 24 is comprised from electroconductive materials, such as a metal, it insulation-coats with resin, rubber | gum, etc. which have electrical insulation.

封止材24の形成は、例えば、成形、打ち抜き、切断等の加工方法によって行うことができる。封止材24と基材22,23とを接合する方法は特に限定されるものではないが、例えば、封止材24の両面(基材22,23に接する面)に接着剤(例えばアクリル系やウレタン系など)を塗布して基材22,23と接着する方法が挙げられる。この場合、接着剤の上から剥離紙28を積層したものを用意し、封止材24を上部基材22および下部基材23と積層する直前に剥離紙28を剥離して封止材24と基材22,基材23とを接着することが、前記接着剤層の保護の観点から好ましい。
なお、図5は、紙面手前側の剥離紙28を剥離して、封止材24の裏側に剥離紙28が接着された状態を示す。
また、封止材24を熱硬化性樹脂、紫外線硬化樹脂、電子線硬化樹脂等の硬化性樹脂から形成する場合には、上部基材22および下部基材23のうちの一方の基材の上に未硬化状態の樹脂を塗布し、他方の基材を重ね合わせてから硬化成形する方法により、上部基材22と封止材24と下部基材23とを接合することもできる。
The sealing material 24 can be formed by a processing method such as molding, punching, or cutting. The method for joining the sealing material 24 and the base materials 22 and 23 is not particularly limited. For example, an adhesive (for example, an acrylic type) is provided on both surfaces of the sealing material 24 (surfaces in contact with the base materials 22 and 23). And a method of bonding to the base materials 22 and 23. In this case, a laminate in which the release paper 28 is laminated on the adhesive is prepared, and the release paper 28 is peeled off immediately before the sealing material 24 is laminated with the upper base material 22 and the lower base material 23. Bonding the base material 22 and the base material 23 is preferable from the viewpoint of protecting the adhesive layer.
FIG. 5 shows a state in which the release paper 28 on the front side of the paper is peeled and the release paper 28 is adhered to the back side of the sealing material 24.
Further, when the sealing material 24 is formed from a curable resin such as a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, etc., one of the upper base material 22 and the lower base material 23 is The upper base material 22, the sealing material 24, and the lower base material 23 can be joined by a method in which an uncured resin is applied to the base material and the other base material is overlaid and then cured.

本形態例の色素増感型太陽電池モジュールを組み立てる手順は、特に限定されるものではないが、例えば、以下の手順によることができる。
まず、上部電極2を設けた上部基材22(図4参照)と、セル1に対応する空間(貫通穴)27を有する封止材24(図5参照)と、下部電極3を設けた下部基材23(図6参照)とを用意し、上部電極2の上には分光増感色素が担持された金属酸化物半導体膜7を形成する。
金属酸化物半導体膜7の形成には、気相成膜法(真空成膜法)、物理蒸着法、真空蒸着法、スパッタリング法、イオンプレーティング法、マグネトロンスパッタリング法、CVD法等の公知の薄膜形成法を用いることができる。また、分光増感色素の担持は、分光増感色素を適宜の有機溶媒に溶解した溶液中に、常温又は加熱下で金属酸化物半導体膜7および上部電極2を設けた上部基材22を浸漬させればよい。
The procedure for assembling the dye-sensitized solar cell module of the present embodiment is not particularly limited, and can be, for example, according to the following procedure.
First, an upper substrate 22 provided with the upper electrode 2 (see FIG. 4), a sealing material 24 (see FIG. 5) having a space (through hole) 27 corresponding to the cell 1, and a lower portion provided with the lower electrode 3 A base material 23 (see FIG. 6) is prepared, and a metal oxide semiconductor film 7 carrying a spectral sensitizing dye is formed on the upper electrode 2.
For the formation of the metal oxide semiconductor film 7, a known thin film such as a vapor deposition method (vacuum deposition method), a physical vapor deposition method, a vacuum deposition method, a sputtering method, an ion plating method, a magnetron sputtering method, or a CVD method is used. A forming method can be used. The spectral sensitizing dye is supported by immersing the upper substrate 22 provided with the metal oxide semiconductor film 7 and the upper electrode 2 at room temperature or under heating in a solution obtained by dissolving the spectral sensitizing dye in an appropriate organic solvent. You can do it.

さらに、図1に示すように、上部電極2の金属酸化物半導体膜7の位置と封止材24の空間27の位置とが重なるように、上部基材22、上部電極2、封止材24、下部電極3、下部基材23の順で積層するとともに、前記封止材24の空間27内に電解質8を封入することによって発電層4が形成される。
電解質8を封入する方法としては、例えば電解質8が流動性に富む電解液である場合には、上部基材22または下部基材23に注入穴(図示略)を設け、基材22,23と封止材24とを積層したときに該注入穴が前記空間27に連通するようにし、電解液の注入後に前記注入穴を塞ぐ方法を用いることができる。このほか電解質8の封入方法としては、電解質8の性状に応じて選択した公知の方法を採用することができる。
Further, as shown in FIG. 1, the upper base material 22, the upper electrode 2, and the sealing material 24 are arranged so that the position of the metal oxide semiconductor film 7 of the upper electrode 2 and the position of the space 27 of the sealing material 24 overlap. The power generation layer 4 is formed by laminating the lower electrode 3 and the lower base material 23 in this order and encapsulating the electrolyte 8 in the space 27 of the sealing material 24.
As a method for encapsulating the electrolyte 8, for example, when the electrolyte 8 is an electrolyte having high fluidity, an injection hole (not shown) is provided in the upper base material 22 or the lower base material 23, and the base materials 22, 23 and A method may be used in which the injection hole communicates with the space 27 when the sealing material 24 is laminated, and the injection hole is closed after the electrolyte is injected. In addition, as a method for encapsulating the electrolyte 8, a known method selected according to the properties of the electrolyte 8 can be employed.

本形態例の構成によれば、一の基材上において、セル境界領域を介して隣接したセル同士の配線接続をセル境界領域の外で行うので、セル同士の配線接続構造をこれらセルが配置された基材上に設けることができ、外部配線を利用する場合に比べて設置面積の小型化を実現できる上、セル同士の配線接続構造を簡単にすることができ、製造コストを低減することが可能である。また、セルの間隔を狭くして、セルを高密度に(より狭い面積に)集合させることが可能である。
セル境界領域は、もっぱら電解質の封止(例えば隔壁)に利用することができるため、電解質として流動性の高い電解液を用いた場合であっても、該電解液の漏洩が起こりにくく、耐久性に優れた色素増感型太陽電池を提供することができる。
According to the configuration of the present embodiment, since the wiring connection between the cells adjacent to each other via the cell boundary region is performed outside the cell boundary region on one base material, these cells arrange the wiring connection structure between the cells. It can be provided on the base material that has been used, and the installation area can be reduced compared to the case where external wiring is used, and the wiring connection structure between cells can be simplified, and the manufacturing cost can be reduced. Is possible. In addition, it is possible to gather cells at high density (in a smaller area) by narrowing the cell interval.
Since the cell boundary region can be used exclusively for electrolyte sealing (for example, partition walls), even when a highly fluid electrolyte is used as the electrolyte, the electrolyte does not easily leak and is durable. It is possible to provide a dye-sensitized solar cell excellent in.

以上、本発明を好適な実施の形態に基づいて説明してきたが、本発明は上述の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
例えば、上部電極2と下部電極3とを接続する端子部12,13の本数は、第1形態例のセル間の配線接続構造においては1本ずつであったが、特にこれに限定されるものではない。図7,図8に示す第2形態例の色素増感型太陽電池モジュール21Aでは、上部電極2側の集電体6および端子部12を帯状のセル1の短辺方向両側に1本ずつ、合計2本設けた例を示す。この例においても、集電体6は、発電層4を覆わない位置に配設され、封止材24と透明導電膜5との間に挟み込まれており、集電体6が電解質8と接触しないようになっている。
これ以外にも、下部電極3側の端子部13を複数本設けた構成を採用することも可能である。
As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned example, Various modifications are possible in the range which does not deviate from the summary of this invention.
For example, the number of the terminal portions 12 and 13 for connecting the upper electrode 2 and the lower electrode 3 is one by one in the inter-cell wiring connection structure of the first embodiment, but is particularly limited to this. is not. In the dye-sensitized solar cell module 21A of the second embodiment shown in FIGS. 7 and 8, one current collector 6 and one terminal portion 12 on the upper electrode 2 side are provided on both sides in the short side direction of the band-shaped cell 1, An example in which a total of two are provided is shown. Also in this example, the current collector 6 is disposed at a position not covering the power generation layer 4, and is sandwiched between the sealing material 24 and the transparent conductive film 5, so that the current collector 6 is in contact with the electrolyte 8. It is supposed not to.
In addition to this, it is possible to adopt a configuration in which a plurality of terminal portions 13 on the lower electrode 3 side are provided.

また、第1および第2形態例の色素増感型太陽電池モジュール21,21Aにおいては、複数個のセル1を1列に連設してなるセル集積体18をセル集合領域14に一つ設けたが、セル集積体18を複数設け、これらを順に直列接続することも可能である。
図9,図10に示す第3形態例の色素増感型太陽電池モジュール21Bでは、帯状のセル1,1,…がセル1の短辺方向に連設されたセル集積体18,18を左右に2つ具備しており、二つのセル集積体18,18が、互いを構成するセル1の短辺側のセル境界領域15(図9の中央で縦に延在するもの)を介して隣接した配置となっている。
図9中、左側のセル集積体18の各セル1,1,…を直列に接続するセル接続構造11,11,…は、基材22,23の左側の側縁部に設けられ、右側のセル集積体18の各セル1,1,…を直列に接続するセル接続構造11,11,…は、基材22,23の右側の側縁部に設けられ、左側のセル集積体18の上端のセル1と右側のセル集積体18の上端のセル1とを接続するセル接続構造11は、基材22,23の上端部に設けられている。また、左側のセル集積体18の下端のセル1の一方の端子部12が一方の取り出し電極17になっており、右側のセル集積体18の下端のセル1の他方の端子部13が他方の取り出し電極17になっている。
第3形態例の色素増感型太陽電池モジュール21Bの場合、複数のセル集積体18を設けることにより、直列に接続されるセル1,1,…の総数を増やして、より高い電圧を取り出すことができる。また、セル接続構造11,11,…を色素増感型太陽電池モジュール21Bの三方に設けることにより、基材22,23上のスペースを有効に利用することができる。
Further, in the dye-sensitized solar cell modules 21 and 21A of the first and second embodiments, one cell assembly 18 formed by connecting a plurality of cells 1 in a row is provided in the cell assembly region 14. However, it is also possible to provide a plurality of cell assemblies 18 and connect them in series.
In the dye-sensitized solar cell module 21B of the third embodiment shown in FIGS. 9 and 10, the cell assemblies 18, 18 in which the strip-shaped cells 1, 1,. Two cell aggregates 18 and 18 are adjacent to each other via a cell boundary region 15 (extending vertically in the center of FIG. 9) on the short side of the cell 1 constituting each other. It has been arranged.
9, cell connection structures 11, 11,... For connecting the cells 1, 1,... Of the left cell integrated body 18 in series are provided on the left side edge portions of the base materials 22, 23, and The cell connection structures 11, 11,... For connecting the cells 1, 1,... Of the cell assembly 18 in series are provided on the right side edge of the base materials 22, 23. The cell connection structure 11 that connects the cell 1 and the cell 1 at the upper end of the right cell integrated body 18 is provided at the upper ends of the base materials 22 and 23. Further, one terminal portion 12 of the cell 1 at the lower end of the left cell integrated body 18 serves as one take-out electrode 17, and the other terminal portion 13 of the cell 1 at the lower end of the right cell integrated body 18 is connected to the other. A take-out electrode 17 is formed.
In the case of the dye-sensitized solar cell module 21B of the third embodiment, by providing a plurality of cell integrated bodies 18, the total number of cells 1, 1,... Connected in series is increased and a higher voltage is taken out. Can do. Further, by providing the cell connection structures 11, 11,... On the three sides of the dye-sensitized solar cell module 21B, the space on the base materials 22, 23 can be used effectively.

本発明は、高い電圧を取り出すことができる上、経済性に優れた色素増感型太陽電池に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a dye-sensitized solar cell that can take out a high voltage and is excellent in economy.

本発明の色素増感型太陽電池モジュールの第1形態例を示す平面図である。It is a top view which shows the 1st form example of the dye-sensitized solar cell module of this invention. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 図1のB−B線に沿う部分拡大断面図である。It is a partial expanded sectional view which follows the BB line of FIG. 第1形態例における上部電極が設けられた上部基材を示す平面図である。It is a top view which shows the upper base material in which the upper electrode in the 1st form example was provided. 第1形態例における剥離紙つきの封止材を示す平面図である。It is a top view which shows the sealing material with a release paper in a 1st form example. 第1形態例における下部電極が設けられた下部基材を示す平面図である。It is a top view which shows the lower base material in which the lower electrode in the 1st form example was provided. 本発明の色素増感型太陽電池モジュールの第2形態例を示す平面図である。It is a top view which shows the 2nd example of a dye-sensitized solar cell module of this invention. 図7のC−C線に沿う部分拡大断面図である。It is a partial expanded sectional view which follows the CC line of FIG. 本発明の色素増感型太陽電池モジュールの第3形態例を示す平面図である。It is a top view which shows the 3rd example of a dye-sensitized solar cell module of this invention. 図9のD−D線に沿う部分拡大断面図である。FIG. 10 is a partial enlarged cross-sectional view taken along the line DD in FIG. 9.

符号の説明Explanation of symbols

1…セル、2…上部電極、3…下部電極、4…発電層、6…集電体、11…セル間の配線接続構造、12,13…端子部、14…セル集合領域、15…セル境界領域、16…外部領域、18…セル集積体、21,21A,21B…色素増感型太陽電池モジュール、22…上部基材、23…下部基材、24…封止材。 DESCRIPTION OF SYMBOLS 1 ... Cell, 2 ... Upper electrode, 3 ... Lower electrode, 4 ... Electric power generation layer, 6 ... Current collector, 11 ... Wiring connection structure between cells, 12, 13 ... Terminal part, 14 ... Cell assembly area | region, 15 ... Cell Boundary region, 16 ... external region, 18 ... cell assembly, 21, 21A, 21B ... dye-sensitized solar cell module, 22 ... upper base material, 23 ... lower base material, 24 ... sealing material.

Claims (7)

一の基材上において、セル境界領域を介して隣接した一のセルと他のセルとを電気的に直列接続する配線接続構造であって、
前記一のセルの上部電極と前記他のセルの下部電極とが、前記セル境界領域の外で電気的に接続されたことを特徴とする色素増感型太陽電池セルの配線接続構造。
A wiring connection structure for electrically connecting one cell and another cell adjacent to each other via a cell boundary region on one substrate,
The wiring connection structure of a dye-sensitized solar cell, wherein the upper electrode of the one cell and the lower electrode of the other cell are electrically connected outside the cell boundary region.
前記上部電極および/または前記下部電極が金属配線層からなる集電体を備え、前記集電体が前記セル境界領域の外に延出された端子部を有することを特徴とする請求項1に記載の色素増感型太陽電池セルの配線接続構造。   The said upper electrode and / or the said lower electrode are equipped with the electrical power collector which consists of metal wiring layers, The said electrical power collector has a terminal part extended out of the said cell boundary area | region, The said 1st aspect is characterized by the above-mentioned. Wiring connection structure of the dye-sensitized solar cell as described. 請求項1または2に記載の色素増感型太陽電池セルの配線接続構造を有することを特徴とする色素増感型太陽電池モジュール。   A dye-sensitized solar cell module comprising the wiring connection structure of the dye-sensitized solar cell according to claim 1. 光で電気を発電する発電層がセルごとに封止されていることを特徴とする請求項3に記載の色素増感型太陽電池モジュール。   The dye-sensitized solar cell module according to claim 3, wherein a power generation layer for generating electricity with light is sealed for each cell. 前記発電層をセルごとに封止する手段として、電気絶縁性樹脂からなる封止材が設けられていることを特徴とする請求項4に記載の色素増感型太陽電池モジュール。   The dye-sensitized solar cell module according to claim 4, wherein a sealing material made of an electrically insulating resin is provided as means for sealing the power generation layer for each cell. 帯状のセルが多数、セルの短辺方向に連設されたセル集積体を少なくとも一つ有することを特徴とする請求項3ないし5のいずれかに記載の色素増感型太陽電池モジュール。   The dye-sensitized solar cell module according to any one of claims 3 to 5, wherein the dye-sensitized solar cell module includes a plurality of band-shaped cells and at least one cell integrated body arranged in a short side direction of the cells. 二つの前記セル集積体が互いを構成するセルの短辺側のセル境界領域を介して隣接したことを特徴とする請求項6に記載の色素増感型太陽電池モジュール。   The dye-sensitized solar cell module according to claim 6, wherein the two cell assemblies are adjacent to each other via a cell boundary region on a short side of the cells constituting each other.
JP2005062231A 2005-03-07 2005-03-07 Dye-sensitized solar cell module Active JP4854971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062231A JP4854971B2 (en) 2005-03-07 2005-03-07 Dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062231A JP4854971B2 (en) 2005-03-07 2005-03-07 Dye-sensitized solar cell module

Publications (2)

Publication Number Publication Date
JP2006244954A true JP2006244954A (en) 2006-09-14
JP4854971B2 JP4854971B2 (en) 2012-01-18

Family

ID=37051146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062231A Active JP4854971B2 (en) 2005-03-07 2005-03-07 Dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP4854971B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186692A (en) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd Dye-sensitized solar cell and its manufacturing method
WO2009078258A1 (en) 2007-12-14 2009-06-25 Mitsubishi Heavy Industries, Ltd. Control method of gas engine system and that system
JP2009200012A (en) * 2008-02-25 2009-09-03 Shimane Pref Gov Dye-sensitized solar battery, its manufacturing method, and method for insulating and protecting metal wire on conductive substrate
WO2009144949A1 (en) * 2008-05-30 2009-12-03 株式会社フジクラ Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
WO2011052731A1 (en) 2009-11-02 2011-05-05 シャープ株式会社 Wet solar cell and wet solar cell module
WO2011096359A1 (en) 2010-02-02 2011-08-11 シャープ株式会社 Solar cell and solar cell module
CN102254682A (en) * 2010-03-31 2011-11-23 索尼公司 Photoelectric conversion device and photoelectric conversion device module
EP2451005A1 (en) * 2009-06-29 2012-05-09 Sharp Kabushiki Kaisha Wet type solar battery module
WO2012070176A1 (en) 2010-11-25 2012-05-31 東京エレクトロン株式会社 Dye adsorption apparatus and dye adsorption method
WO2012070181A1 (en) 2010-11-25 2012-05-31 東京エレクトロン株式会社 Dye adsorption device, dye adsorption method, and substrate treatment apparatus
WO2013001699A1 (en) 2011-06-29 2013-01-03 東京エレクトロン株式会社 Dye adsorption device and dye adsorption method
WO2013050373A1 (en) * 2011-10-03 2013-04-11 Solarprint Limited Dye-sensitised solar cell module, component for a dye sensitised solar cell module and method of manufacturing the same
CN103165293A (en) * 2011-12-19 2013-06-19 三星Sdi株式会社 Photoelectric module
KR101286126B1 (en) 2008-05-13 2013-07-15 주식회사 동진쎄미켐 Dye sensitized solar cell module
CN103680989A (en) * 2013-09-29 2014-03-26 营口奥匹维特新能源科技有限公司 Photo-anode, counter electrode, and dye sensitive solar cell composed of two
WO2014122859A1 (en) 2013-02-06 2014-08-14 株式会社フジクラ Dye-sensitized solar cell element
KR101930375B1 (en) 2011-03-21 2018-12-19 주식회사 동진쎄미켐 Method for Preparing The Dye Sensitized Solar Cell Module by Using Laser and Dye-Sensitized Solar Cell Module Using the Same
CN114144896A (en) * 2019-07-29 2022-03-04 夏普株式会社 Electronic device with solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315530A (en) * 1999-04-30 2000-11-14 Ricoh Co Ltd Photoelectric conversion element and manufacture thereof
JP2001319698A (en) * 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell
JP2003086822A (en) * 2001-09-10 2003-03-20 Aisin Seiki Co Ltd Solar battery module and method for manufacturing the same
JP2005197204A (en) * 2003-12-26 2005-07-21 Korea Electronics Telecommun Transparent solar cell module and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315530A (en) * 1999-04-30 2000-11-14 Ricoh Co Ltd Photoelectric conversion element and manufacture thereof
JP2001319698A (en) * 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell
JP2003086822A (en) * 2001-09-10 2003-03-20 Aisin Seiki Co Ltd Solar battery module and method for manufacturing the same
JP2005197204A (en) * 2003-12-26 2005-07-21 Korea Electronics Telecommun Transparent solar cell module and its manufacturing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186692A (en) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd Dye-sensitized solar cell and its manufacturing method
WO2009078258A1 (en) 2007-12-14 2009-06-25 Mitsubishi Heavy Industries, Ltd. Control method of gas engine system and that system
US8485158B2 (en) 2007-12-14 2013-07-16 Mitsubishi Heavy Industries, Ltd. Method to control a gas engine system thereof
JP2009200012A (en) * 2008-02-25 2009-09-03 Shimane Pref Gov Dye-sensitized solar battery, its manufacturing method, and method for insulating and protecting metal wire on conductive substrate
KR101286126B1 (en) 2008-05-13 2013-07-15 주식회사 동진쎄미켐 Dye sensitized solar cell module
WO2009144949A1 (en) * 2008-05-30 2009-12-03 株式会社フジクラ Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
JP5346932B2 (en) * 2008-05-30 2013-11-20 株式会社フジクラ Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
US20110126879A1 (en) * 2008-05-30 2011-06-02 Fujikura Ltd. Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
CN102106032A (en) * 2008-05-30 2011-06-22 株式会社藤仓 Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
JPWO2009144949A1 (en) * 2008-05-30 2011-10-06 株式会社フジクラ Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
US8957307B2 (en) * 2008-05-30 2015-02-17 Fujikura Ltd. Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
EP2451005A1 (en) * 2009-06-29 2012-05-09 Sharp Kabushiki Kaisha Wet type solar battery module
EP2451005A4 (en) * 2009-06-29 2013-06-26 Sharp Kk Wet type solar battery module
WO2011052731A1 (en) 2009-11-02 2011-05-05 シャープ株式会社 Wet solar cell and wet solar cell module
WO2011096359A1 (en) 2010-02-02 2011-08-11 シャープ株式会社 Solar cell and solar cell module
CN102254682A (en) * 2010-03-31 2011-11-23 索尼公司 Photoelectric conversion device and photoelectric conversion device module
WO2012070181A1 (en) 2010-11-25 2012-05-31 東京エレクトロン株式会社 Dye adsorption device, dye adsorption method, and substrate treatment apparatus
WO2012070176A1 (en) 2010-11-25 2012-05-31 東京エレクトロン株式会社 Dye adsorption apparatus and dye adsorption method
US9093222B2 (en) 2010-11-25 2015-07-28 Tokyo Electron Limited Dye adsorption apparatus and dye adsorption method
KR101930375B1 (en) 2011-03-21 2018-12-19 주식회사 동진쎄미켐 Method for Preparing The Dye Sensitized Solar Cell Module by Using Laser and Dye-Sensitized Solar Cell Module Using the Same
WO2013001699A1 (en) 2011-06-29 2013-01-03 東京エレクトロン株式会社 Dye adsorption device and dye adsorption method
WO2013050373A1 (en) * 2011-10-03 2013-04-11 Solarprint Limited Dye-sensitised solar cell module, component for a dye sensitised solar cell module and method of manufacturing the same
KR101408046B1 (en) * 2011-12-19 2014-06-18 삼성에스디아이 주식회사 Photoelectric module
CN103165293A (en) * 2011-12-19 2013-06-19 三星Sdi株式会社 Photoelectric module
WO2014122859A1 (en) 2013-02-06 2014-08-14 株式会社フジクラ Dye-sensitized solar cell element
CN103680989A (en) * 2013-09-29 2014-03-26 营口奥匹维特新能源科技有限公司 Photo-anode, counter electrode, and dye sensitive solar cell composed of two
CN114144896A (en) * 2019-07-29 2022-03-04 夏普株式会社 Electronic device with solar cell
US20220271175A1 (en) * 2019-07-29 2022-08-25 Sharp Kabushiki Kaisha Solar cell-attached electronic equipment
CN114144896B (en) * 2019-07-29 2024-04-30 夏普株式会社 Electronic device with solar cell

Also Published As

Publication number Publication date
JP4854971B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4854971B2 (en) Dye-sensitized solar cell module
US10096431B2 (en) Dye-sensitized solar cell element for low illuminance
JP5451920B1 (en) Dye-sensitized solar cell element
JP5324147B2 (en) Photoelectric conversion element module
JP2014130807A (en) Dye-sensitized solar cell module
US9589736B2 (en) Dye-sensitized solar cell element
JP6333343B2 (en) Photoelectric conversion element
JP5680996B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
CN107924764B (en) Photo-electric conversion element
JP6573497B2 (en) Photoelectric conversion element
CN104781895B (en) DSSC element
JP5687873B2 (en) Working electrode and dye-sensitized solar cell having the same
WO2017150334A1 (en) Input device
JP6694371B2 (en) Photoelectric conversion element
JP6722769B2 (en) Photoelectric conversion element
CN108231421B (en) Dye-sensitized photovoltaic cell, dye-sensitized photovoltaic module, and method for manufacturing the same
JP6697335B2 (en) Photoelectric conversion element
JP6541487B2 (en) Photoelectric conversion element
JP6598757B2 (en) Photoelectric conversion element
JP5945012B2 (en) Dye-sensitized solar cell element
JP5969841B2 (en) Dye-sensitized solar cell module
JP2015046225A (en) Dye-sensitized solar cell element
KR20140045015A (en) Dye-sensitized solar cell and manufacturing method thereof
JP2014075314A (en) Dye-sensitized solar cell and dye-sensitized solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4854971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250