Nothing Special   »   [go: up one dir, main page]

JP2006242247A - Gas vessel and its manufacturing method - Google Patents

Gas vessel and its manufacturing method Download PDF

Info

Publication number
JP2006242247A
JP2006242247A JP2005057089A JP2005057089A JP2006242247A JP 2006242247 A JP2006242247 A JP 2006242247A JP 2005057089 A JP2005057089 A JP 2005057089A JP 2005057089 A JP2005057089 A JP 2005057089A JP 2006242247 A JP2006242247 A JP 2006242247A
Authority
JP
Japan
Prior art keywords
liner
laser
gas container
joined
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005057089A
Other languages
Japanese (ja)
Other versions
JP2006242247A5 (en
JP4466408B2 (en
Inventor
Takeshi Ishikawa
武史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005057089A priority Critical patent/JP4466408B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to EP06714653A priority patent/EP1855046B1/en
Priority to CA2598621A priority patent/CA2598621C/en
Priority to PCT/JP2006/303514 priority patent/WO2006093059A1/en
Priority to RU2007135748/06A priority patent/RU2363880C2/en
Priority to CN2006800069640A priority patent/CN101133280B/en
Priority to US11/884,083 priority patent/US7943884B2/en
Priority to KR20077020052A priority patent/KR100904028B1/en
Publication of JP2006242247A publication Critical patent/JP2006242247A/en
Publication of JP2006242247A5 publication Critical patent/JP2006242247A5/ja
Application granted granted Critical
Publication of JP4466408B2 publication Critical patent/JP4466408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1282Stepped joint cross-sections comprising at least one overlap joint-segment
    • B29C66/12821Stepped joint cross-sections comprising at least one overlap joint-segment comprising at least two overlap joint-segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1286Stepped joint cross-sections comprising at least one bevelled joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/543Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining more than two hollow-preforms to form said hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7234General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer
    • B29C66/72341General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer for gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas vessel allowing liner components to be suitably jointed to each other and capable of improving productivity; and to provide its manufacturing method. <P>SOLUTION: This gas vessel includes: a resin liner 11 composed by jointing the liner components 21 and 22 each having at least a hollow cylindrical part to each other; and a reinforcing layer 12 arranged in the circumference of the resin liner 11. A joint part 34 of the liner component 21 is jointed to a joint part 44 of the liner component 22 throughout the circumferential direction by laser welding. The joint part 34 and the joint part 44 are formed of a laser-transmitting resin and a laser-absorbing resin, respectively. By imparting a pressure difference between the inside and the outside of the liner components 21 and 22 in the state in contact with each other in the laser welding, adhesion between the joint parts 34 and 44 is increased. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素などのガスを貯留するガス容器に関し、特に、内殻となる樹脂ライナが複数のライナ構成部材を接合して構成されるガス容器およびその製造方法に関するものである。   The present invention relates to a gas container for storing a gas such as hydrogen, and more particularly to a gas container in which a resin liner serving as an inner shell is formed by joining a plurality of liner constituent members and a method for manufacturing the same.

従来、水素やCNG(圧縮天然ガス)を貯留するガス容器として、軽量化等の観点から、内殻を樹脂ライナで構成し、樹脂ライナの外周面をFRPなどの補強層(外殻)で補強したものが開発されている。この種の樹脂ライナとして、例えばお碗状(略円筒状部材)の一対のライナ構成部材をポリエチレンなどの熱可塑性樹脂で形成しておき、この一対のライナ構成部材の端部同士を熱板溶着することで接合したものが知られている(例えば、特許文献1参照。)。
特開2004−211783号公報(第2図および第5頁)
Conventionally, as a gas container for storing hydrogen and CNG (compressed natural gas), from the viewpoint of weight reduction, the inner shell is composed of a resin liner, and the outer peripheral surface of the resin liner is reinforced with a reinforcing layer (outer shell) such as FRP. What has been developed. As this type of resin liner, for example, a pair of bowl-shaped (substantially cylindrical members) liner constituent members are formed of a thermoplastic resin such as polyethylene, and the ends of the pair of liner constituent members are welded together by hot plate welding. What was joined by doing is known (for example, refer to patent documents 1).
JP 2004-211783 A (FIGS. 2 and 5)

しかしながら、ライナ構成部材同士を熱板溶着する接合方法では、樹脂ライナを製造するのに時間やコストが多くかかっていた。また、熱板溶着法では、溶融バリが発生し易いほか、ライナ構成部材同士の位置決め精度の管理が困難であった。さらに、ライナ本体は、加熱の影響で変形する場合もあり、熱の制御が難しかった。   However, in the joining method in which the liner constituent members are welded to each other by heat plate, it takes much time and cost to manufacture the resin liner. Further, in the hot plate welding method, melting burrs are easily generated, and it is difficult to manage the positioning accuracy between the liner constituent members. Furthermore, the liner body may be deformed by the influence of heating, and it is difficult to control the heat.

本発明は、ライナ構成部材同士を適切に接合することができ、生産性を向上することができるガス容器およびその製造方法を提供することをその目的としている。   An object of the present invention is to provide a gas container and a method for manufacturing the same that can appropriately join liner constituent members and improve productivity.

本発明のガス容器は、少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成された樹脂ライナと、樹脂ライナの外周に配置された補強層と、を有するガス容器であって、複数のライナ構成部材の接合部同士は、レーザ溶着により互いに接合されているものである。   The gas container of the present invention is a gas container having a resin liner formed by joining a plurality of liner components each having a hollow cylindrical shape, and a reinforcing layer disposed on the outer periphery of the resin liner. The joint portions of the plurality of liner constituent members are joined to each other by laser welding.

また、本発明の他のガス容器は、少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成された樹脂ライナと、樹脂ライナの外周に配置された補強層と、を有するガス容器であって、一のライナ構成部材の接合部と他のライナ構成部材の接合部とが接合された接合部分は、これらの接合部同士をレーザ溶着により互いに接合したレーザ溶着部を有しているものである。   In addition, another gas container of the present invention has a resin liner formed by joining a plurality of liner components each having a hollow cylindrical shape, and a reinforcing layer disposed on the outer periphery of the resin liner. A gas container, wherein a joint portion of one liner constituent member and a joint portion of another liner constituent member are joined to each other has a laser weld portion in which these joint portions are joined to each other by laser welding. It is what.

これらの構成によれば、樹脂ライナの製造過程において、一のライナ構成部材の接合部と他のライナ構成部材の接合部とをレーザ溶着により接合しているため、短時間且つ低コストで樹脂ライナを構成することができる。よって、ガス容器の生産性を高めることができる。また、レーザ溶着を用いることで、低温でしかも接合部同士を局所的に加熱することができるため、ライナ構成部材に対し熱的影響箇所を最小限にすることができ、溶融バリなどを生じさせなくて済む。   According to these configurations, in the process of manufacturing the resin liner, since the joining portion of one liner constituent member and the joining portion of another liner constituent member are joined by laser welding, the resin liner can be obtained in a short time and at low cost. Can be configured. Therefore, the productivity of the gas container can be increased. In addition, by using laser welding, the joints can be locally heated at a low temperature, so that the thermally affected portion can be minimized with respect to the liner component member, resulting in melting burrs and the like. You don't have to.

ここで、「少なくとも一部(一端側)が中空円筒状のライナ構成部材」には、ライナ構成部材が全体として円筒状、環状、お碗状、ドーム状等の形状を有することが含まれる。例えば、一対の(半割りの)ライナ構成部材により樹脂ライナが構成される場合には、各ライナ構成部材は、全体としてお碗状に形成される。また、三以上のライナ構成部材により樹脂ライナが構成される場合には、樹脂ライナの両端のライナ構成部材はそれぞれ全体としてお碗状に形成され、この間に位置するライナ構成部材は全体として中空の円筒状または環状に形成される。   Here, the “liner constituent member having at least a part (one end side) of a hollow cylindrical shape” includes that the liner constituent member has a cylindrical shape, an annular shape, a bowl shape, a dome shape or the like as a whole. For example, when a resin liner is constituted by a pair of (half-split) liner constituent members, each liner constituent member is formed in a bowl shape as a whole. Further, when the resin liner is constituted by three or more liner constituent members, the liner constituent members at both ends of the resin liner are each formed in a bowl shape as a whole, and the liner constituent members located between them are hollow as a whole. It is formed in a cylindrical shape or an annular shape.

上記の本発明のガス容器の場合、接合部同士は、樹脂ライナの周方向に亘ってレーザ溶着により互いに接合されていることが、好ましい。   In the case of the gas container according to the present invention, it is preferable that the joint portions are joined to each other by laser welding over the circumferential direction of the resin liner.

この構成によれば、接合部同士の全周がレーザによりライン溶接される。これにより、接合部同士のつなぎ目からのガスのリークが阻止され、樹脂ライナの気密性を適切に確保することが可能となる。   According to this structure, the whole circumference | surroundings of joining parts are line-welded with a laser. Thereby, the leak of the gas from the joint part of junction parts is blocked | prevented and it becomes possible to ensure the airtightness of a resin liner appropriately.

これらの場合、互いに接合される一方のライナ構成部材の接合部は、レーザ透過性の部材からなり、且つ他方のライナ構成部材の接合部は、レーザ吸収性の部材からなることが、好ましい。
あるいは、互いに接合される一方のライナ構成部材は、レーザ透過性の部材からなり、且つ他方のライナ構成部材は、レーザ吸収性の部材からなることが、好ましい。
In these cases, it is preferable that the joint portion of one liner constituent member to be joined to each other is made of a laser transmitting member, and the joint portion of the other liner constituent member is made of a laser absorbing member.
Alternatively, it is preferable that one liner constituting member joined to each other is made of a laser transmitting member, and the other liner constituting member is made of a laser absorbing member.

これらの構成によれば、樹脂ライナの製造過程において、レーザ透過性の接合部側からレーザを照射すると、レーザ吸収性の接合部が加熱溶融すると共に、その接合部からの熱伝達によりレーザ透過性の接合部が加熱溶融する。   According to these configurations, in the process of manufacturing the resin liner, when laser is irradiated from the laser transmissive joint side, the laser absorptive joint is heated and melted, and the laser transmission is performed by heat transfer from the joint. The joints of these are heated and melted.

このように、レーザに対する透過性または吸収性の特性を接合部に持たせておくことで、接合部同士を適切に接合することができる。また、この種のレーザに対する特性を接合部のみに持たせてもよいが、接合部を含むライナ構成部材の全体に持たせる方が、ライナ構成部材を簡易に製造し得る。   As described above, the bonding portions can be appropriately bonded to each other by giving the bonding portions the property of transmitting or absorbing the laser. Further, the characteristics of this type of laser may be given only to the joint portion, but the liner constituent member can be easily manufactured by giving the entire liner constituent member including the joint portion.

この場合、レーザ透過性の部材からなる接合部は、樹脂ライナにおいて外側に位置し、且つレーザ吸収性の部材からなる接合部は、樹脂ライナにおいて内側に位置することが、好ましい。   In this case, it is preferable that the joining portion made of the laser-transmitting member is located on the outside of the resin liner, and the joining portion made of the laser-absorbing member is located on the inside of the resin liner.

この構成によれば、樹脂ライナの製造過程の際に、レーザを樹脂ライナの外側(ライナ構成部材の外側)から照射して、接合部同士を簡単に接合することができる。すなわち、樹脂ライナの製造過程の際に、レーザ照射装置をライナ構成部材の内側に位置させなくて済み、作業性良く接合部同士を接合することができる。このことは、樹脂ライナの小型化にも有用である。   According to this configuration, in the process of manufacturing the resin liner, the laser beam can be irradiated from the outside of the resin liner (the outside of the liner constituent member) to easily join the joint portions. That is, in the process of manufacturing the resin liner, it is not necessary to position the laser irradiation device inside the liner constituting member, and the joining portions can be joined with good workability. This is also useful for reducing the size of the resin liner.

これらの場合、一のライナ構成部材の接合部と他のライナ構成部材の接合部とのレーザ溶着された部位の近傍には、これらの接合部同士を密着させるように係合する係合構造が設けられていることが、好ましい。   In these cases, in the vicinity of the laser welded portion between the joint portion of one liner constituent member and the joint portion of the other liner constituent member, there is an engagement structure that engages these joint portions so as to closely contact each other. It is preferable to be provided.

この構成によれば、樹脂ライナの製造過程の際に、係合構造で接合部同士を密着させながらレーザ溶着することができるため、レーザ溶着の溶着不良を抑制して接合精度を高めることができる。また、係合構造を設けることで、治具を簡略化または不要とすることが可能となる。ここで、係合構造には、例えばスナップフィットや圧入などのほか、螺合が含まれる。   According to this configuration, in the process of manufacturing the resin liner, laser welding can be performed while the bonding portions are brought into close contact with each other with the engagement structure, so that poor welding of laser welding can be suppressed and bonding accuracy can be increased. . Further, by providing the engagement structure, the jig can be simplified or unnecessary. Here, the engagement structure includes, for example, snap fitting, press fitting, and screwing.

これらの場合、複数のライナ構成部材のうちの少なくとも一つは、他のライナ構成部材と接合される接合部と反対側に、樹脂ライナの中空内部と外部とを連通するための連通部を有していることが、好ましい。   In these cases, at least one of the plurality of liner constituting members has a communication portion for communicating the hollow inside and the outside of the resin liner on the opposite side to the joint portion to be joined to the other liner constituting member. It is preferable that

この構成によれば、連通部を介して樹脂ライナの中空内部にガスを充填または中空内部からガスを放出することができる。   According to this configuration, the gas can be filled in or discharged from the hollow interior of the resin liner via the communicating portion.

本発明のガス容器の製造方法は、少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成される樹脂ライナを有するガス容器の製造方法であって、互いに接合されるべき一方のライナ構成部材の接合部をレーザ透過性の部材で構成すると共に、他方のライナ構成部材の接合部をレーザ吸収性の部材で構成する第1工程と、第1工程後に、互いに接合されるべきライナ構成部材の接合部同士を接触させる第2工程と、第2工程後に、レーザ透過性の部材からなる接合部側からレーザを照射して、接触状態の接合部同士をレーザ溶着により互いに接合する第3工程と、を有するものである。   The method for manufacturing a gas container according to the present invention is a method for manufacturing a gas container having a resin liner formed by joining a plurality of liner components each having a hollow cylindrical shape, and should be joined to each other. The joint portion of the other liner constituent member should be composed of a laser transmissive member, and the joint portion of the other liner constituent member should be composed of a laser absorbing member, and should be joined to each other after the first step. A second step of bringing the joint portions of the liner constituent members into contact with each other, and after the second step, laser is irradiated from the joint portion side made of a laser transmissive member, and the joint portions in contact are joined together by laser welding. And a third step.

この構成によれば、先ず、レーザに対する透過性または吸収性の特性をライナ構成部材の接合部に持たせてき、その上で、接合部同士を接触させながら、レーザ透過性の接合部側からレーザを照射する。レーザの照射により、レーザ吸収性の接合部が加熱溶融すると共に、その接合部からの熱伝達によりレーザ透過性の接合部が加熱溶融し、その後、冷却固化することで、接合部同士の界面が接合される。   According to this configuration, first, a laser transmitting or absorbing characteristic is imparted to the joining portion of the liner constituent member, and then the laser is transmitted from the laser transmitting joining side while bringing the joining portions into contact with each other. Irradiate. The laser-absorbing joint is heated and melted by laser irradiation, and the laser-permeable joint is heated and melted by heat transfer from the joint, and then cooled and solidified, so that the interface between the joints is Be joined.

このように、ライナ構成部材同士の接合にレーザ溶着を用いているため、短時間且つ低コストで樹脂ライナを構成することができる。また、接合部同士を局所的に加熱することができるため、ライナ構成部材に対し熱的影響箇所を最小限にすることができ、溶融バリなどを生じさせなくて済む。   As described above, since the laser welding is used for joining the liner constituent members, the resin liner can be configured in a short time and at a low cost. In addition, since the joint portions can be locally heated, it is possible to minimize the thermal influence on the liner constituting member, and it is not necessary to cause a melting burr or the like.

この場合、第2工程は、レーザ透過性の接合部を、レーザ吸収性の接合部に対して外側から接触させることで行われ、第3工程は、ライナ構成部材の外側に配置したレーザ照射装置により、レーザ透過性の接合部側からレーザを照射することで行われることが、好ましい。   In this case, the second step is performed by bringing the laser-transmitting bonding portion into contact with the laser-absorbing bonding portion from the outside, and the third step is a laser irradiation apparatus disposed outside the liner constituting member. Therefore, it is preferable to perform the irradiation by irradiating the laser from the laser-transmitting joint side.

この構成によれば、レーザ照射装置をライナ構成部材の内側に位置させなくて済み、接合部同士を作業性良く簡易に接合することができる。   According to this configuration, it is not necessary to position the laser irradiation device inside the liner constituting member, and the joining portions can be easily joined with good workability.

これらの場合、第3工程は、互いに接合されるべき二つのライナ構成部材の内外に圧力差を付与した状態で、レーザを照射することを含むことが、好ましい。   In these cases, it is preferable that the third step includes irradiating a laser with a pressure difference applied between the inside and outside of the two liner constituent members to be joined to each other.

この構成によれば、圧力差によって接合部同士の密着度を高めた状態で、接合部同士がレーザ溶着される。これにより、レーザ溶着の溶着不良を抑制して接合精度を高めることができる。また接合精度が高まることにより、樹脂ライナの強度や気密性を適切に確保することができる。
ここで、圧力差の付与は、レーザの照射により接合部同士の接合反応がある程度進行した段階で停止してもよい。換言すれば、レーザの照射開始前から照射中の少なくとも一時期が、圧力差を付与した状態であってもよい。
According to this configuration, the joints are laser-welded in a state where the degree of adhesion between the joints is increased by the pressure difference. Thereby, the welding defect of laser welding can be suppressed and joining accuracy can be improved. Further, by increasing the joining accuracy, it is possible to appropriately ensure the strength and airtightness of the resin liner.
Here, the application of the pressure difference may be stopped when the bonding reaction between the bonded portions has progressed to some extent by laser irradiation. In other words, the pressure difference may be applied for at least one time during the irradiation from the start of the laser irradiation.

この場合、第3工程における圧力差の付与は、互いに接合されるべき二つのライナ構成部材の内部の圧力および外部の圧力の少なくとも一方を調整することで行われることが、好ましい。   In this case, it is preferable that the application of the pressure difference in the third step is performed by adjusting at least one of the internal pressure and the external pressure of the two liner constituent members to be joined to each other.

この場合、第3工程における圧力差の付与は、互いに接合されるべき二つのライナ構成部材の内部を略密閉状態として、その密閉空間を減圧または加圧することで行われることが、好ましい。   In this case, it is preferable that the application of the pressure difference in the third step is performed by setting the insides of the two liner constituting members to be joined to each other substantially in a sealed state and reducing or pressurizing the sealed space.

この構成によれば、二つのライナ構成部材の内部の密閉空間の圧力を調整するため、これらの外部の圧力を調整するよりも簡易に、上記の圧力差の付与を行うことができる。
ここで、密閉空間の加圧には、例えば、これに圧縮ガスを注入する場合のほか、密閉空間の外部よりも高い温度のガスを注入する場合が含まれる。
According to this configuration, since the pressure in the sealed space inside the two liner constituent members is adjusted, the above-described pressure difference can be applied more simply than adjusting these external pressures.
Here, the pressurization of the sealed space includes, for example, the case of injecting a gas having a temperature higher than that of the outside of the sealed space in addition to the case of injecting the compressed gas therein.

この場合、第3工程における圧力差の付与は、互いに接合されるべき二つのライナ構成部材の少なくとも一方に設けた連通部を介して、密閉空間を減圧または加圧することで行われることが、好ましい。   In this case, it is preferable that the application of the pressure difference in the third step is performed by depressurizing or pressurizing the sealed space via a communication portion provided in at least one of the two liner constituent members to be joined to each other. .

この構成によれば、連通部を有効に利用して、密閉空間を減圧または加圧することができる。なお、ガス容器として製造された後では、この連通部を介して樹脂ライナの中空内部にガスを充填または中空内部からガスを放出することができる。   According to this configuration, the sealed space can be depressurized or pressurized using the communication part effectively. In addition, after manufacturing as a gas container, gas can be filled in or discharged from the hollow interior of the resin liner through this communication portion.

これらの場合、第2工程は、互いに接合されるべき二つのライナ構成部材の接合部同士をライナ構成部材の軸方向にオーバラップして配置し、且つそのオーバラップした部位同士を接触させることで行われることが、好ましい。   In these cases, in the second step, the joint portions of the two liner constituent members to be joined to each other are arranged so as to overlap in the axial direction of the liner constituent members, and the overlapped portions are brought into contact with each other. It is preferred that this is done.

この構成によれば、例えば接合部同士を単純に突き合わせる場合に比べて、接合部同士の接触面積を増やすことができる。特に、軸方向にオーバラップした部位同士が接触しているため、レーザ溶着の際に付与する上記圧力差によって接合部同士の密着力が増し、接合部同士の接合精度をより一層高めることができる。   According to this configuration, for example, the contact area between the joints can be increased as compared with a case where the joints are simply abutted. In particular, since the overlapping portions in the axial direction are in contact with each other, the pressure difference applied during laser welding increases the adhesion between the joints, and the joint accuracy between the joints can be further enhanced. .

これらの場合、第2工程と第3工程との間に、互いに接合されるべき二つのライナ構成部材の接合部同士を接触させた状態でアニール処理を行う工程を、更に有することが、好ましい。   In these cases, it is preferable to further include a step of performing an annealing process between the second step and the third step in a state where the joint portions of the two liner constituent members to be joined to each other are brought into contact with each other.

この構成によれば、アニール処理によってライナ構成部材が自己収縮し、接合部同士の密着度が高まる。これにより、接合部同士の密着度が高まった状態で、接合部同士をレーザ溶着することができ、その接合精度を高めることが可能となる。また、アニール処理で密着度が高まる分、例えば上記の圧力差を付与するためのポンプなどの装置を小型化、簡素化することができる。   According to this configuration, the liner constituent member self-shrinks due to the annealing treatment, and the degree of adhesion between the joint portions increases. Thereby, in the state which the adhesion degree of junction parts increased, the junction parts can be laser-welded, and it becomes possible to raise the joining precision. Further, since the degree of adhesion is increased by the annealing treatment, for example, a device such as a pump for applying the pressure difference can be reduced in size and simplified.

これらの場合、第3工程は、互いに接合されるべき二つのライナ構成部材をレーザ照射装置に対し相対的に回転させながら、接触状態の接合部同士をライナ構成部材の周方向に亘ってレーザ溶着することで行われることが、好ましい。   In these cases, in the third step, laser welding is performed on the joint portions in contact with each other in the circumferential direction of the liner constituent member while rotating the two liner constituent members to be joined relative to the laser irradiation apparatus. It is preferable to be performed.

この構成によれば、レーザ照射装置に対して二つのライナ構成部材を相対回転させているため、接合部同士の全周がレーザによりライン溶接される。これにより、樹脂ライナの気密性を適切に確保することが可能となる。   According to this configuration, since the two liner constituent members are rotated relative to the laser irradiation apparatus, the entire circumference of the joints is line-welded by the laser. Thereby, it becomes possible to ensure the airtightness of the resin liner appropriately.

ここで、「相対的に回転」には、接合されるべき二つのライナ構成部材のみを回転させること、レーザ照射装置のみを回転させること、これら両者を同方向にまたは逆方向に回転させること、が含まれる。特に、この中で二つのライナ構成部材のみを回転させることが、位置決めや装置構成上で最も簡易となり得る。   Here, “relatively rotate” means to rotate only two liner components to be joined, to rotate only the laser irradiation device, to rotate both in the same direction or in the opposite direction, Is included. In particular, rotating only two liner components among them can be the simplest in positioning and device configuration.

これらの場合、第3工程は、低酸素雰囲気で行われることが、好ましい。   In these cases, it is preferable that the third step is performed in a low oxygen atmosphere.

この構成によれば、レーザの照射により溶融した接合部の酸化を抑制することができる。これにより、レーザ溶着時の酸化による焦げ付きや、これに伴うレーザの透過不良などの溶着不良を抑制することができる。ここで、低酸素雰囲気とは、大気よりも低酸素の雰囲気をいい、例えば、不活性ガス雰囲気下またはほぼ真空状態が含まれる。   According to this configuration, it is possible to suppress oxidation of the bonded portion melted by laser irradiation. As a result, it is possible to suppress welding defects such as burning due to oxidation during laser welding and laser transmission defects associated therewith. Here, the low oxygen atmosphere refers to an atmosphere that is lower in oxygen than air, and includes, for example, an inert gas atmosphere or a substantially vacuum state.

これらの場合、第1工程は、互いに接合されるべき一方のライナ構成部材をレーザ透過性の部材で構成すると共に、他方のライナ構成部材をレーザ吸収性の部材で構成することで行われることが、好ましい。   In these cases, the first step may be performed by configuring one liner constituent member to be bonded to each other with a laser-transmitting member and configuring the other liner constituent member with a laser-absorbing member. ,preferable.

この構成によれば、接合部を含むライナ構成部材の全体について、レーザに対する特性を有する部材とすることで、接合部のみについてそのような特性を持たせる場合に比べて、ライナ構成部材を簡易に製造し得る。   According to this configuration, the entire liner constituent member including the joint portion is a member having characteristics with respect to the laser, so that the liner constituent member can be simplified compared with the case where only the joint portion has such characteristics. Can be manufactured.

この場合、第3工程後に、レーザ溶着により接合された二つのライナ構成部材の外周面のつなぎ目が面一となるように、この二つのライナ構成部材の少なくとも一方の外周面を削る工程を、更に備えたことが、好ましい。   In this case, after the third step, a step of shaving at least one outer peripheral surface of the two liner constituent members so that a joint between the outer peripheral surfaces of the two liner constituent members joined by laser welding is flush. It is preferable to provide.

例えば、上記のように、接合部同士を軸方向にオーバラップさせた場合には、つなぎ目の外周面に凹凸が生じ得る。そこで上記工程を設けることで、少なくとも一方のライナ構成部材の外周面を削ることで、この外周面のつなぎ目が面一にすることができる。これにより、例えば樹脂ライナの外周に補強層を設ける上で有用となる。   For example, as described above, when the joint portions are overlapped with each other in the axial direction, unevenness may occur on the outer peripheral surface of the joint. Therefore, by providing the above steps, the outer peripheral surface of at least one liner constituent member can be shaved so that the joint of the outer peripheral surface can be flush. This is useful, for example, in providing a reinforcing layer on the outer periphery of the resin liner.

本発明のガス容器およびその製造方法によれば、ライナ構成部材同士の接合にレーザ溶着を用いているため、ライナ構成部材同士を適切に接合することができ、生産性を高めることができる。   According to the gas container and the manufacturing method thereof of the present invention, since the laser welding is used for joining the liner constituent members, the liner constituent members can be joined appropriately, and productivity can be improved.

以下、添付図面を参照して、本発明の好適な実施形態に係るガス容器およびその製造方法ついて説明する。このガス容器は、複数のライナ構成部材がレーザ溶着により接合された樹脂ライナを有するものである。以下では、先ずガス容器の構造について説明し、その後、ガス容器の製造方法について説明する。また、第2〜第5実施形態では、主として製造方法の変形例について説明し、残りの実施形態では、主としてガス容器の他の構造について説明する。第2実施形態以降では、第1実施形態と共通する部分については同一の符号を付してその説明を省略する。   Hereinafter, a gas container and a manufacturing method thereof according to preferred embodiments of the present invention will be described with reference to the accompanying drawings. This gas container has a resin liner in which a plurality of liner constituent members are joined by laser welding. Below, the structure of a gas container is demonstrated first, and the manufacturing method of a gas container is demonstrated after that. In the second to fifth embodiments, a modification example of the manufacturing method will be mainly described, and in the remaining embodiments, other structures of the gas container will be mainly described. In the second and subsequent embodiments, portions common to the first embodiment are denoted by the same reference numerals and description thereof is omitted.

<第1実施形態>
図1に示すように、ガス容器1は、全体として密閉円筒状の容器本体2と、容器本体2の長手方向の両端部に取り付けられた口金3,3と、を具備している。容器本体2の内部は、各種のガスを貯留する貯留空間5となっている。ガス容器1は、常圧のガスを充填することもできるし、常圧に比して圧力が高められたガスを充填することもできる。すなわち、本発明のガス容器1は、高圧ガス容器として機能することができる。
<First Embodiment>
As shown in FIG. 1, the gas container 1 includes a sealed cylindrical container body 2 as a whole, and caps 3 and 3 attached to both ends of the container body 2 in the longitudinal direction. The inside of the container body 2 is a storage space 5 for storing various gases. The gas container 1 can be filled with a normal pressure gas, or can be filled with a gas whose pressure is increased as compared with the normal pressure. That is, the gas container 1 of the present invention can function as a high-pressure gas container.

例えば、燃料電池システムでは、高圧の状態で用意された燃料ガスを減圧して、燃料電池の発電に供している。本発明のガス容器1は、高圧の燃料ガスを貯留するのに適用することができ、燃料ガスとしての水素や、原燃料の圧縮天然ガス(CNGガス)などを貯留することができる。ガス容器1に充填される水素の圧力としては、例えば35MPaあるいは70MPaであり、CNGガスの圧力としては、例えば20MPaである。以下は、高圧水素ガス容器を一例に説明する。   For example, in a fuel cell system, the fuel gas prepared in a high pressure state is decompressed and used for power generation of the fuel cell. The gas container 1 of the present invention can be applied to store high-pressure fuel gas, and can store hydrogen as fuel gas, compressed natural gas (CNG gas) as raw fuel, and the like. The pressure of hydrogen filled in the gas container 1 is, for example, 35 MPa or 70 MPa, and the pressure of CNG gas is, for example, 20 MPa. Hereinafter, a high-pressure hydrogen gas container will be described as an example.

容器本体2は、ガスバリア性を有する内側の樹脂ライナ11(内殻)と、樹脂ライナ11の外周に配置された補強層12(外殻)と、の二層構造を有している。補強層12は、例えば炭素繊維とエポキシ樹脂を含むFRPからなり、樹脂ライナ11の外表面を被覆するようにこれを巻きつけている。   The container body 2 has a two-layer structure of an inner resin liner 11 (inner shell) having gas barrier properties and a reinforcing layer 12 (outer shell) disposed on the outer periphery of the resin liner 11. The reinforcing layer 12 is made of, for example, FRP containing carbon fiber and an epoxy resin, and is wound around so as to cover the outer surface of the resin liner 11.

口金3は、例えばステンレスなどの金属で形成され、容器本体2の半球面状をした端壁部の中心に設けられている。口金3の開口部の内周面には、めねじが刻設されており、配管やバルブアッセンブリ14(バルブボデー)などの機能部品が、このめねじを介して口金3にねじ込み接続可能となっている。なお、図1では、口金3,3の一方にのみバルブアッセンブリ14を設けた例を二点鎖線で示した。   The base 3 is made of a metal such as stainless steel, and is provided at the center of the hemispherical end wall portion of the container body 2. A female screw is engraved on the inner peripheral surface of the opening of the base 3, and functional parts such as piping and a valve assembly 14 (valve body) can be screwed into the base 3 via the female screw. ing. In FIG. 1, an example in which the valve assembly 14 is provided only on one of the caps 3 and 3 is indicated by a two-dot chain line.

例えば、燃料電池システム上のガス容器1は、バルブや継手等の配管要素を一体的に組み込んだバルブアッセンブリ14を介して、貯留空間5と図示省略した外部のガス流路との間が接続され、貯留空間5に水素が充填されると共に貯留空間5から水素が放出される。また後述するように、ガス容器1の製造過程においては、口金3に配管が接続されて、貯留空間5内の圧力が調整される。なお、ガス容器1の両端部に口金3,3を設けたが、もちろん片方の端部にのみ口金3を設けてもよい。   For example, the gas container 1 on the fuel cell system is connected between the storage space 5 and an external gas flow path (not shown) via a valve assembly 14 in which piping elements such as valves and joints are integrated. The storage space 5 is filled with hydrogen and hydrogen is released from the storage space 5. As will be described later, in the process of manufacturing the gas container 1, a pipe is connected to the base 3 to adjust the pressure in the storage space 5. In addition, although the nozzle | cap | die 3,3 was provided in the both ends of the gas container 1, of course, you may provide the nozzle | cap | die 3 only in one edge part.

樹脂ライナ11は、長手方向の中央で二分割された一対の略同形状からなるライナ構成部材21,22(割体)を、レーザ溶着により接合して構成されている。すなわち、半割り中空体のライナ構成部材21,22同士をレーザ溶着により接合することで、中空内部の樹脂ライナ11が構成されている。   The resin liner 11 is constituted by joining a pair of liner constituent members 21 and 22 (split bodies) having substantially the same shape divided into two at the center in the longitudinal direction by laser welding. That is, the resin liner 11 inside the hollow is configured by joining the liner constituting members 21 and 22 of the half hollow body by laser welding.

一対のライナ構成部材21,22は、樹脂ライナ11の軸方向に所定の長さ延在する胴部31,41をそれぞれ有している。各胴部31,41の軸方向の両端側は、開口している。   The pair of liner constituting members 21, 22 have body portions 31, 41 extending a predetermined length in the axial direction of the resin liner 11. Both end sides in the axial direction of the body portions 31 and 41 are open.

一方のライナ構成部材21は、胴部31の一端側の縮径された端部に形成された返し部32と、返し部32の中央部に開口した連通部33と、胴部31の他端側の略円筒状の端部に形成された接合部34と、を有している。   One liner constituting member 21 includes a return portion 32 formed at a reduced diameter end portion on one end side of the body portion 31, a communication portion 33 opened in the center of the return portion 32, and the other end of the body portion 31. And a joining portion 34 formed at the substantially cylindrical end portion on the side.

他方のライナ構成部材22は、胴部41の一端側の縮径された端部に形成された返し部42と、返し部42の中央部に開口した連通部43と、胴部41の他端側の略円筒状の端部に形成された接合部44と、を有している。   The other liner constituting member 22 includes a return portion 42 formed at a reduced diameter end portion on one end side of the barrel portion 41, a communication portion 43 opened at the center of the return portion 42, and the other end of the barrel portion 41. And a joining portion 44 formed at the substantially cylindrical end portion on the side.

各返し部32,42は、各ライナ構成部材21,22の強度を確保するのに機能する。各返し部32,42の外周面と補強層12の端部との間に口金3,3が位置している。なお、口金3が片方の端部にのみ設けられる場合には、一対のライナ構成部材21,22の一方については、返し部32,42および連通部33,43が形成されず、胴部31および胴部41の一方の一端側が閉塞端で形成される。   The return portions 32 and 42 function to secure the strength of the liner constituent members 21 and 22. The caps 3 and 3 are located between the outer peripheral surfaces of the return portions 32 and 42 and the end portions of the reinforcing layer 12. When the base 3 is provided only at one end, the return portions 32 and 42 and the communication portions 33 and 43 are not formed on one of the pair of liner constituting members 21 and 22, but the trunk portion 31 and One end side of the body 41 is formed as a closed end.

ここで、本明細書では、ライナ構成部材21,22とは、分割構造の樹脂ライナ11を構成する部材をいい、上述のように、少なくとも一端側(一部)が中空円筒状の形状を有するものをいう。したがって、ライナ構成部材21,22の形状には、その全体の形状が円筒状、環状、お碗状、ドーム状等であることが含まれる。   Here, in this specification, the liner constituting members 21 and 22 are members constituting the resin liner 11 having a split structure, and at least one end side (part) has a hollow cylindrical shape as described above. Say things. Therefore, the shape of the liner constituent members 21 and 22 includes that the overall shape is a cylindrical shape, an annular shape, a bowl shape, a dome shape, or the like.

図2は、接合部34,44まわりを拡大して示す断面図である。なお、図2において補強層12は省略している。   FIG. 2 is an enlarged cross-sectional view around the joints 34 and 44. In FIG. 2, the reinforcing layer 12 is omitted.

一方の接合部34は、所定の角度傾斜した接合端面51と、樹脂ライナ11の軸方向に延在する延設部52と、を有している。接合端面51は、内側に向かって面取りされるように(逆テーパ状となるように)形成されている。延設部52は、接合端面51の径方向の外側となる先端部に連なっており、略円筒状に形成されている。   One joining portion 34 has a joining end surface 51 inclined at a predetermined angle and an extending portion 52 extending in the axial direction of the resin liner 11. The joint end surface 51 is formed so as to be chamfered inward (inverted taper shape). The extending portion 52 is connected to the distal end portion which is the outer side in the radial direction of the joining end surface 51 and is formed in a substantially cylindrical shape.

同様に、他方の接合部44は、所定の角度傾斜した接合端面61と、樹脂ライナ11の軸方向に延在する延設部62と、を有している。接合端面61は、外側に向かって面取りされるように(テーパ状となるように)形成されている。延設部62は、接合端面61の径方向の内側となる先端部に連なっており、略円筒状に形成されている。   Similarly, the other joining portion 44 has a joining end surface 61 inclined at a predetermined angle and an extending portion 62 extending in the axial direction of the resin liner 11. The joining end face 61 is formed so as to be chamfered outward (tapered). The extending portion 62 is connected to the distal end portion that is the radially inner side of the joining end surface 61 and is formed in a substantially cylindrical shape.

一方の接合部34と他方の接合部44とは、ライナ構成部材21,22同士を突き合わせた状態では、両者の接合端面51,61同士が整合し、接合端面51,61同士が樹脂ライナ11の周方向に亘って接触する。またこの状態では、接合部34,44同士は、樹脂ライナ11の軸方向にオーバラップして配置され、そのオーバラップした部位同士が、樹脂ライナ11の周方向に亘って接触する。   In the state in which the liner constituting members 21 and 22 are abutted with each other, the one joining portion 34 and the other joining portion 44 are aligned with each other, and the joining end surfaces 51 and 61 are aligned with each other of the resin liner 11. Contact in the circumferential direction. In this state, the joint portions 34 and 44 are disposed so as to overlap in the axial direction of the resin liner 11, and the overlapped portions are in contact with each other in the circumferential direction of the resin liner 11.

ここで、オーバラップした部位同士とは、一つが、外側の延設部52とこの内周面に接触した接合部44近傍の外周面とであり、もう一つが、内側の延設部62とこの外周面に接触した接合部34近傍の内周面とである。このような延設部52,62を設けておくことで、後述するガス容器1の製造過程において、接合部34,44同士の密着力を高めることができる。なお、両者の接合端面51,61の角度は、任意であるが、レーザトーチ140(レーザ照射装置)からのレーザを透過または受光可能な角度であればよい。   Here, the overlapping portions are one of the outer extending portion 52 and the outer peripheral surface near the joint portion 44 in contact with the inner peripheral surface, and the other is the inner extending portion 62. This is the inner peripheral surface in the vicinity of the joint 34 that is in contact with the outer peripheral surface. By providing such extended portions 52 and 62, the adhesion between the joint portions 34 and 44 can be increased in the manufacturing process of the gas container 1 described later. In addition, although the angle of both joining end surfaces 51 and 61 is arbitrary, it should just be an angle which can permeate | transmit or receive the laser from the laser torch 140 (laser irradiation apparatus).

本実施形態では、樹脂ライナ11において外側に位置する接合部34を有するライナ構成部材21は、レーザ透過性の熱可塑性樹脂で形成されている。一方、樹脂ライナ11において内側に位置する接合部44を有するライナ構成部材22は、レーザ吸収性の熱可塑性樹脂で形成されている。   In the present embodiment, the liner constituting member 21 having the joint portion 34 located on the outer side in the resin liner 11 is formed of a laser transmissive thermoplastic resin. On the other hand, the liner constituting member 22 having the joint portion 44 located on the inner side in the resin liner 11 is formed of a laser-absorbing thermoplastic resin.

レーザ透過性の熱可塑性樹脂は、レーザ溶着に必要なエネルギーをレーザ吸収性側の接合部44の接合端面61に到達させる程度に、レーザに対する透過性を有していればよい。したがって、レーザ透過性の熱可塑性樹脂であっても、レーザ吸収性の特性を僅かに有していてもよい。   The laser-transmitting thermoplastic resin only needs to be transparent to the laser so that energy necessary for laser welding reaches the bonding end surface 61 of the bonding portion 44 on the laser absorption side. Therefore, even a laser-transmitting thermoplastic resin may have a slight laser-absorbing characteristic.

レーザ透過性の熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、ナイロン66などを挙げることができるが、これらにガラス繊維などの補強繊維や着色剤を添加したものであってもよい。例えば、レーザ透過性のライナ構成部材21は、白色、半透明または透明に形成される。   Examples of the laser-transmitting thermoplastic resin include polyethylene, polypropylene, nylon 66, and the like, and those obtained by adding a reinforcing fiber such as glass fiber or a colorant to these may be used. For example, the laser transmissive liner component 21 is formed in white, translucent or transparent.

レーザ吸収性の熱可塑性樹脂は、レーザに対する吸収性を有していればよく、吸収したレーザにより発熱して溶融するものであればよい。レーザ吸収性の熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、ナイロン66などを挙げることができるが、これらにガラス繊維などの補強繊維や着色剤を添加したものであってもよい。
例えば、レーザ吸収性の熱可塑性樹脂は、レーザ透過性の熱可塑性樹脂と同一の樹脂で形成した場合には、レーザ透過性の熱可塑性樹脂よりもカーボンを多く添加することで形成される。したがって、レーザ吸収性のライナ構成部材22は、例えば黒色に形成される。
The laser-absorbing thermoplastic resin only needs to have an absorptivity with respect to the laser and may be any one that generates heat and melts with the absorbed laser. Examples of the laser-absorbing thermoplastic resin include polyethylene, polypropylene, nylon 66, and the like, and those obtained by adding a reinforcing fiber such as glass fiber or a colorant to these may be used.
For example, when the laser-absorbing thermoplastic resin is formed of the same resin as the laser-transmitting thermoplastic resin, it is formed by adding more carbon than the laser-transmitting thermoplastic resin. Therefore, the laser-absorbing liner constituting member 22 is formed in black, for example.

レーザ透過性の接合部34とレーザ吸収性の接合部44とは、接合端面51,61同士がレーザ溶着により接合されている。レーザ溶着は、接合部34の外側からレーザトーチ140によりレーザを照射し、接合端面61の樹脂を加熱溶融すると共に、この接合端面61からの熱伝達により接合端面51の樹脂を加熱溶融することで行われる。   The joining end surfaces 51 and 61 of the laser transmitting joint 34 and the laser absorbing joint 44 are joined by laser welding. Laser welding is performed by irradiating a laser with a laser torch 140 from the outside of the joint portion 34 to heat and melt the resin of the joint end face 61 and heat and melt the resin of the joint end face 51 by heat transfer from the joint end face 61. Is called.

したがって、接合部34,44同士が接合された接合部分にあるレーザ溶着部70は、接合端面61および接合端面51の両方が溶融した部位であり、レーザ吸収性およびレーザ透過性の両方の樹脂が入り絡まった状態となっている。   Therefore, the laser welded portion 70 in the joint portion where the joint portions 34 and 44 are joined is a portion where both the joint end surface 61 and the joint end surface 51 are melted, and both the laser-absorbing and laser-transmitting resins are used. It is in an intertwined state.

なお、ライナ構成部材21,22の全体をレーザ透過性やレーザ吸収性の樹脂とするのでなくてもよい。例えば、接合部34,44のみをレーザ透過性やレーザ吸収性の樹脂で構成するなど、各ライナ構成部材21,22が部分的にレーザ透過性やレーザ吸収性の特性を有していてもよい。
また例えば、一対のライナ構成部材21,22を両方ともレーザ透過性の樹脂で形成しておき、そのうちの一方のライナ構成部材21(または22)の接合部34(または44)の接合端面51(または61)に、レーザ吸収性を有する吸収剤を塗布したり、この種の吸収剤を練入したシートを貼付したりしてもよい。
The entire liner constituting members 21 and 22 may not be made of a laser transmitting or laser absorbing resin. For example, each of the liner constituent members 21 and 22 may partially have a laser transmitting property or a laser absorbing property, for example, only the joint portions 34 and 44 are formed of a laser transmitting or laser absorbing resin. .
Further, for example, both of the pair of liner constituting members 21 and 22 are made of a laser-transmitting resin, and the joining end face 51 (or 44) of the joining portion 34 (or 44) of one of the liner constituting members 21 (or 22). Alternatively, an absorbent having laser absorptivity may be applied to 61), or a sheet containing such an absorbent may be attached.

ここで、図3および図4を参照して、ガス容器1の製造方法について説明する。
先ず、一対のライナ構成部材21,22および二つの口金3,3を成形する(S1)。このとき例えば、予め成形した一の口金3を金型内に配置し、この金型内にレーザ透過性の熱可塑性樹脂を射出して、ライナ構成部材21および口金3を一体成形する(インサート成形する。)。
Here, with reference to FIG. 3 and FIG. 4, the manufacturing method of the gas container 1 is demonstrated.
First, a pair of liner constituent members 21 and 22 and two caps 3 and 3 are formed (S1). At this time, for example, one preformed base 3 is placed in the mold, a laser-transmitting thermoplastic resin is injected into the mold, and the liner constituting member 21 and the base 3 are integrally molded (insert molding). To do.)

また同様の手順により、レーザ吸収性の熱可塑性樹脂を射出して、ライナ構成部材22および口金3を一体成形する。このように、射出成形を用いることで各ライナ構成部材21,22を成形精度良く成形することができる。なお、射出成形に代えて、回転成形やブロー成形を用いてもよい。   In addition, by a similar procedure, a laser-absorbing thermoplastic resin is injected to integrally form the liner constituting member 22 and the base 3. Thus, each liner constituent member 21 and 22 can be molded with high molding accuracy by using injection molding. Instead of injection molding, rotational molding or blow molding may be used.

次に、口金3付きの各ライナ構成部材21,22をチャンバー101内に例えば横向き姿勢で配置し、ライナ構成部材21,22同士を突き合わせて、接合部34,44同士を接触させる(S2)。この状態では、上述したように、接合部34,44同士が軸方向にオーバラップして配置されると共に、接合端面51,61同士が周方向に亘って接触する。これにより、ライナ構成部材21,22同士が仮接合(暫定接合)した状態の樹脂ライナ11となる。   Next, the liner constituent members 21 and 22 with the base 3 are disposed in, for example, a lateral orientation in the chamber 101, the liner constituent members 21 and 22 are brought into contact with each other, and the joint portions 34 and 44 are brought into contact with each other (S2). In this state, as described above, the joint portions 34 and 44 are disposed so as to overlap in the axial direction, and the joint end surfaces 51 and 61 are in contact with each other in the circumferential direction. Thus, the resin liner 11 is in a state where the liner constituent members 21 and 22 are temporarily joined (temporary joined).

その後、ライナ構成部材22の口金3に図示省略した栓をねじ込み接続すると共に、ライナ構成部材21の口金3に配管121をねじ込み接続して、仮接合状態の樹脂ライナ11の内部を略密閉状態とする。なお、栓および配管121をねじ込み接続する口金3を逆にしてもよい。   Thereafter, a stopper (not shown) is screwed and connected to the base 3 of the liner constituent member 22 and a pipe 121 is screwed and connected to the base 3 of the liner constituent member 21 so that the inside of the temporarily bonded resin liner 11 is substantially sealed. To do. The cap 3 for screwing and connecting the plug and the pipe 121 may be reversed.

次いで、チャンバー101に接続した不活性ガス供給装置110を駆動して、チャンバー101内に不活性ガスを充填する(S3)。不活性ガス供給装置110は、例えば、不活性ガスを貯留するガスボンベ111と、ガスボンベ111とチャンバー101とを連通するガス配管112と、ガス配管112上に設けられて、ガスボンベ111内の不活性ガスをチャンバー101内に圧送するチャンバー用ポンプ113と、を具備している。   Next, the inert gas supply device 110 connected to the chamber 101 is driven to fill the chamber 101 with an inert gas (S3). The inert gas supply device 110 includes, for example, a gas cylinder 111 that stores an inert gas, a gas pipe 112 that connects the gas cylinder 111 and the chamber 101, and an inert gas in the gas cylinder 111 provided on the gas pipe 112. And a chamber pump 113 that pumps the gas into the chamber 101.

不活性ガスとしては、アルゴン、窒素、ヘリウムなどが挙げられる。不活性ガス供給装置110による不活性ガスの充填により、樹脂ライナ11の外部のチャンバー101内が不活性ガスの雰囲気に設定される。このような不活性ガス雰囲気下としておくことで、後工程のレーザ溶着の際に、接合部34,44同士の酸化を抑制することができる。   Examples of the inert gas include argon, nitrogen, and helium. By filling the inert gas with the inert gas supply device 110, the inside of the chamber 101 outside the resin liner 11 is set to an inert gas atmosphere. By maintaining such an inert gas atmosphere, it is possible to suppress oxidation of the joint portions 34 and 44 during laser welding in a subsequent process.

次の工程として、仮接合状態の樹脂ライナ11に接続した負圧発生装置120を駆動して、樹脂ライナ11の略密閉空間を減圧する(S4)。負圧発生装置120は、例えば、上記の口金3に接続された配管121と、チャンバー101外の配管121上に設けられて、樹脂ライナ11内を減圧するライナ用ポンプ122と、を具備している。   As the next step, the negative pressure generator 120 connected to the temporarily bonded resin liner 11 is driven to depressurize the substantially sealed space of the resin liner 11 (S4). The negative pressure generator 120 includes, for example, a pipe 121 connected to the base 3 and a liner pump 122 that is provided on the pipe 121 outside the chamber 101 and depressurizes the inside of the resin liner 11. Yes.

ライナ用ポンプ122を駆動することにより、樹脂ライナ11の内部が負圧となる。樹脂ライナ11内の圧力がチャンバー101内の圧力よりも低くなると、樹脂ライナ11の内外に圧力差が生じることになる。この圧力差によって、接合部34,44同士の密着度が高まる。特に、接合部34,44同士が軸方向にオーバラップして且つそのオーバラップした部位同士が接触しているため、接合部34,44同士の密着力がより一層高まるようになっている。   By driving the liner pump 122, the inside of the resin liner 11 becomes negative pressure. When the pressure in the resin liner 11 becomes lower than the pressure in the chamber 101, a pressure difference is generated between the inside and outside of the resin liner 11. This pressure difference increases the degree of adhesion between the joint portions 34 and 44. In particular, since the joint portions 34 and 44 overlap each other in the axial direction and the overlapping portions are in contact with each other, the adhesion between the joint portions 34 and 44 is further increased.

ここで、レーザ溶着に先立ち、チャンバー101内に設けた濃度センサ131による検出結果に基づいて、チャンバー101内が所定の不活性ガスの濃度に達しているかを確認する(S5)。所定の濃度に達している場合には、不活性ガス供給装置110の駆動を停止すればよい。   Here, prior to laser welding, based on the detection result by the concentration sensor 131 provided in the chamber 101, it is confirmed whether or not the inside of the chamber 101 has reached a predetermined inert gas concentration (S5). When the predetermined concentration is reached, the driving of the inert gas supply device 110 may be stopped.

また、チャンバー101内に設けた圧力センサ132による検出結果と、配管121に設けた圧力センサ133による検出結果とに基づいて、樹脂ライナ11の内外の差圧レベルが所定の値に達しているかを確認する(S5)。   Further, based on the detection result by the pressure sensor 132 provided in the chamber 101 and the detection result by the pressure sensor 133 provided in the pipe 121, whether or not the differential pressure level inside and outside the resin liner 11 has reached a predetermined value. Confirm (S5).

差圧レベルが所定の値に達している場合には、負圧発生装置120の駆動を停止して配管121上に設けた図示省略した遮断弁を閉弁すればよい。もっとも、後工程のレーザ溶着の際にも負圧発生装置120の駆動を続行して(制御して)、レーザ溶着中も樹脂ライナ11の内外の差圧を所定レベルに維持するようにしてもよい。なお、二つの圧力センサ132,133の配置位置は上記に限定されるものではない。   When the differential pressure level reaches a predetermined value, the drive of the negative pressure generator 120 is stopped and a shut-off valve (not shown) provided on the pipe 121 may be closed. However, the driving of the negative pressure generator 120 is continued (controlled) during laser welding in the subsequent process so that the pressure difference between the inside and outside of the resin liner 11 is maintained at a predetermined level even during laser welding. Good. The arrangement positions of the two pressure sensors 132 and 133 are not limited to the above.

次の工程として、レーザトーチ140を駆動して、樹脂ライナ11の接合部34,44同士をレーザ溶着により接合する(S6)。レーザトーチ140は、レーザ透過性の接合部34の外側から、接触状態の接合端面51,61同士にレーザを照射する。照射されたレーザは、レーザ透過性の接合部34を透過してレーザ吸収性の接合端面61に達し、この接合端面61の樹脂を加熱溶融する。また、この接合端面61からの熱伝達によりレーザ透過性の接合端面51の樹脂が加熱溶融される。そして、これらの溶融された樹脂が冷却固化することで、接合部34,44同士を互いに一体的に接合するレーザ溶着部70が形成される。   As the next step, the laser torch 140 is driven to join the joint portions 34 and 44 of the resin liner 11 by laser welding (S6). The laser torch 140 irradiates the contact end surfaces 51 and 61 in contact with each other from the outside of the laser-transmitting joint 34. The irradiated laser passes through the laser-transmitting bonding portion 34 and reaches the laser-absorbing bonding end surface 61, and the resin on the bonding end surface 61 is heated and melted. Further, the heat transfer from the joining end face 61 heats and melts the resin of the laser transmitting joining end face 51. Then, the melted resin is cooled and solidified to form a laser welding portion 70 that integrally joins the joint portions 34 and 44 to each other.

ここで、レーザ溶着の際には(S6)、レーザトーチ140によるレーザの照射に同期して、図示省略した回転装置を駆動し、仮接合状態の樹脂ライナ11をその軸回りに回転させる。こうすることで、レーザ吸収性の接合端面61が周方向に順次加熱溶融されていくと共に、この熱伝達によりレーザ吸収性の接合端面61が周方向に順次加熱溶融されていく。したがって、樹脂ライナ11の略円筒状の形状を維持しながら、樹脂ライナ11を少なくとも一回転させることにより、接合端面51,61同士をその周方向に亘って一体的に接合したレーザ溶着部70が形成される。   Here, at the time of laser welding (S6), in synchronization with the laser irradiation by the laser torch 140, a rotating device (not shown) is driven to rotate the temporarily bonded resin liner 11 about its axis. By doing so, the laser-absorbing bonding end surface 61 is sequentially heated and melted in the circumferential direction, and the laser-absorbing bonding end surface 61 is sequentially heated and melted in the circumferential direction by this heat transfer. Therefore, the laser welding part 70 which joined the joining end surfaces 51 and 61 integrally over the circumferential direction by rotating the resin liner 11 at least 1 time, maintaining the substantially cylindrical shape of the resin liner 11 is provided. It is formed.

なお、樹脂ライナ11を直接的に回転させるのではなく、レーザトーチ140を樹脂ライナ11の周囲で直接的に回転させるようにしてもよい。またこれに代えて、樹脂ライナ11およびレーザトーチ140をともに、同方向にまたは逆方向に回転させるようにしてもよい。もっとも、上記のように、樹脂ライナ11を回転させた方が、樹脂ライナ11の位置決めや装置構成上、簡易となり得る。   Instead of rotating the resin liner 11 directly, the laser torch 140 may be rotated directly around the resin liner 11. Alternatively, both the resin liner 11 and the laser torch 140 may be rotated in the same direction or in the opposite direction. However, as described above, rotating the resin liner 11 can be simplified in terms of positioning of the resin liner 11 and device configuration.

上記のようなレーザ溶着では、二つの接合部34,44の形状を工夫したことで、レーザ溶着のための部位の面積を大きくとることができる。具体的には、図2に示すように、接合端面51,61同士を樹脂ライナ11の軸方向に対して傾斜させたことで、接合端面51,61同士を樹脂ライナ11の軸方向に直交させる場合に比べて、接合端面51,61同士の接触面積を大きくすることができる。これにより、レーザ溶着部70を十分な大きさとすることができ、樹脂ライナ11の接合強度などを好適に向上することができる。   In laser welding as described above, the area of the portion for laser welding can be increased by devising the shapes of the two joint portions 34 and 44. Specifically, as shown in FIG. 2, the joining end surfaces 51 and 61 are inclined with respect to the axial direction of the resin liner 11, so that the joining end surfaces 51 and 61 are orthogonal to the axial direction of the resin liner 11. Compared to the case, the contact area between the joining end faces 51 and 61 can be increased. Thereby, the laser welding part 70 can be made large enough, and the joining strength of the resin liner 11, etc. can be improved suitably.

また、レーザ溶着は、樹脂ライナ11の内外に差圧が生じた状態で行われるため、接合部34,44同士の密着度が高まった状態で接合端面51,61同士が接合される。これにより、接合端面51,61同士がレーザ溶着で良好に接合されるため、樹脂ライナ11の強度や気密性を適切に確保することができる。   Further, since the laser welding is performed in a state where a differential pressure is generated inside and outside the resin liner 11, the joining end faces 51 and 61 are joined to each other in a state where the adhesion degree between the joining portions 34 and 44 is increased. Thereby, since joining end surface 51,61 is favorably joined by laser welding, the intensity | strength and airtightness of the resin liner 11 can be ensured appropriately.

また、接合部34,44同士を密着させるための加圧治具などを簡素化又は不要とし得る。さらに、オーバラップした接合部34,44同士のつなぎ目構造により、接合部34,44同士に対して、差圧によって生じる密着力を有効に作用させることもできており、レーザ溶着の反応を良好に進行させることができる。   In addition, a pressure jig for bringing the joint portions 34 and 44 into close contact with each other can be simplified or unnecessary. Furthermore, the joint structure between the overlapped joint portions 34 and 44 can effectively cause the adhesion force generated by the differential pressure to act on the joint portions 34 and 44, thereby improving the laser welding reaction. Can be advanced.

さらに、レーザ溶着の工程は、不活性ガス雰囲気下で行われるため、接合部34,44同士の酸化が抑制される。これにより、接合部34,44同士の局所的な酸化による焦げ付きや、それにより生じるレーザの透過不良やピンホールなどを回避することができ、接合端面51,61同士を良好に且つ適切に接合することができる。レーザ溶着の完了により、樹脂ライナ11は、仮接合状態から本接合状態(すなわち、完全に接合された状態。)となって、中空内部に上記の貯留空間5が構成される。   Furthermore, since the laser welding process is performed in an inert gas atmosphere, oxidation of the joint portions 34 and 44 is suppressed. As a result, it is possible to avoid charring due to local oxidation between the joint portions 34 and 44, laser transmission defects and pinholes, and the like, which join the joint end surfaces 51 and 61 well and appropriately. be able to. When the laser welding is completed, the resin liner 11 is changed from the temporarily joined state to the fully joined state (that is, the completely joined state), and the storage space 5 is formed in the hollow interior.

なお、レーザトーチ140が出射するレーザは、半導体レーザなどを用いることができるが、これに限定されるものではなく、レーザ透過性のライナ構成部材21の樹脂の肉厚を含む性状などを考慮して適宜選択される。また、レーザ溶着工程では、レーザの出力(照射量)や樹脂ライナ11の回転速度などの諸条件は、各ライナ構成部材21,22の性状に応じて適宜設定すればよい。   The laser emitted from the laser torch 140 can be a semiconductor laser or the like, but is not limited to this. Considering the properties including the thickness of the resin of the laser-transmitting liner constituting member 21, etc. It is selected appropriately. In the laser welding process, various conditions such as the laser output (irradiation amount) and the rotation speed of the resin liner 11 may be set as appropriate according to the properties of the liner constituent members 21 and 22.

レーザ溶着完了後には、チャンバー101内および樹脂ライナ11内を大気圧へと戻す(S7)。次いで、樹脂ライナ11の外周面におけるつなぎ目部分の突部を切削する(S8)。この突部は、レーザ透過性の接合部34の延設部52を含むその周辺の部位からなり、樹脂ライナ11の周方向に亘って且つ樹脂ライナ11の径方向の外側に突出して形成されている(図2参照)。   After completion of laser welding, the inside of the chamber 101 and the resin liner 11 are returned to atmospheric pressure (S7). Next, the projection at the joint portion on the outer peripheral surface of the resin liner 11 is cut (S8). The projecting portion includes a peripheral portion including the extending portion 52 of the laser-transmitting joint portion 34, and is formed so as to project over the circumferential direction of the resin liner 11 and outward in the radial direction of the resin liner 11. (See FIG. 2).

S8の切削工程では、この突部を周方向に亘って切削することで、樹脂ライナ11の外周面におけるつなぎ目部分を面一に(略同一の外径に)している。そして、最終的に、フィラメントワインディング法等により樹脂ライナ11の外表面に補強層12を形成することで(S9)、ガス容器1が製造される。   In the cutting process of S8, the projecting portion is cut in the circumferential direction so that the joint portion on the outer peripheral surface of the resin liner 11 is flush with (substantially the same outer diameter). Finally, the reinforcing layer 12 is formed on the outer surface of the resin liner 11 by a filament winding method or the like (S9), whereby the gas container 1 is manufactured.

以上のように、本実施形態によれば、ライナ構成部材21およびライナ構成部材22の接合にレーザ溶着を用いたため、短時間且つ低コストで樹脂ライナ11を製造することができる。これにより、ガス容器1の生産性を全体として高めることができる。また、上記したように、レーザ溶着を不活性ガス雰囲気下で行い、しかも差圧の付与により接合部34,44同士の密着度を高めた状態で行っているため、接合不良を抑制することができ、接合精度の高い樹脂ライナ11を製造することができる。   As described above, according to the present embodiment, since laser welding is used for joining the liner constituting member 21 and the liner constituting member 22, the resin liner 11 can be manufactured in a short time and at low cost. Thereby, productivity of the gas container 1 can be improved as a whole. Further, as described above, since laser welding is performed in an inert gas atmosphere and the degree of adhesion between the joint portions 34 and 44 is increased by applying a differential pressure, bonding failure can be suppressed. The resin liner 11 with high bonding accuracy can be manufactured.

なお、接合部34,44の形状によっては、樹脂ライナ11の外周面におけるつなぎ目部分の突部が、両方のライナ構成部材21,22により形成される場合がある。その場合には、S8の切削工程において、二つのライナ構成部材21,22の両方の外周面を削るようにすればよい。   Depending on the shape of the joint portions 34, 44, the protrusion at the joint portion on the outer peripheral surface of the resin liner 11 may be formed by both liner constituent members 21, 22. In that case, what is necessary is just to grind both the outer peripheral surfaces of the two liner structural members 21 and 22 in the cutting process of S8.

<第2実施形態>
次に、図5および図6を参照して、第2実施形態に係るガス容器1の製造方法ついて相違点を中心に説明する。第1実施形態との相違点は、負圧発生装置120に代わる差圧発生装置として加温ガス供給装置160を設けたことと、これに伴い製造工程のS4をS4´に変更したことである。
Second Embodiment
Next, with reference to FIG. 5 and FIG. 6, the manufacturing method of the gas container 1 which concerns on 2nd Embodiment is demonstrated centering on difference. The difference from the first embodiment is that a heated gas supply device 160 is provided as a differential pressure generating device instead of the negative pressure generating device 120, and accordingly, S4 of the manufacturing process is changed to S4 ′. .

加温ガス供給装置160は、不活性ガス供給装置110と同様に構成することができる。例えば、加温ガス供給装置160は、不活性ガスを貯留するガスボンベ161と、ガスボンベ161と仮接合状態の樹脂ライナ11の口金3とを接続する配管162と、チャンバー101外の配管162上に設けられて、ガスボンベ161内の不活性ガスを樹脂ライナ11内に圧送するライナ用ポンプ163と、を具備している。   The heated gas supply device 160 can be configured in the same manner as the inert gas supply device 110. For example, the heated gas supply device 160 is provided on a gas cylinder 161 that stores an inert gas, a pipe 162 that connects the gas cylinder 161 to the die 3 of the resin liner 11 in a temporarily bonded state, and a pipe 162 outside the chamber 101. And a liner pump 163 that pumps the inert gas in the gas cylinder 161 into the resin liner 11.

樹脂ライナ11内に供給する不活性ガスは、チャンバー101内に供給する不活性ガスと異なる種類のガスとしてもよいが、同種のガスとしてもよい。同種のガスとした場合には、ガスボンベ161を省略して、チャンバー101用のガスボンベ111を加温ガス供給装置160において共用してもよい。   The inert gas supplied into the resin liner 11 may be a different type of gas from the inert gas supplied into the chamber 101, or the same type of gas. When the same kind of gas is used, the gas cylinder 161 may be omitted and the gas cylinder 111 for the chamber 101 may be shared by the heated gas supply device 160.

ライナ用ポンプ163は、ガスボンベ161からの不活性ガスを加温する図示省略したヒータを内蔵している。したがって、ライナ用ポンプ163を駆動すると、加温された不活性ガスが樹脂ライナ11内に供給される。なお、ライナ用ポンプ163にヒータを設ける構成でなくもよいことは言うまでもなく、例えば配管162にヒータなどの加熱手段を設けてもよい。   The liner pump 163 includes a heater (not shown) that heats the inert gas from the gas cylinder 161. Therefore, when the liner pump 163 is driven, the heated inert gas is supplied into the resin liner 11. Needless to say, the liner pump 163 may not be provided with a heater. For example, the pipe 162 may be provided with a heating means such as a heater.

製造工程のS4´は、仮接合状態の樹脂ライナ11に接続した加温ガス供給装置160を駆動して、加温された不活性ガスを樹脂ライナ11の略密閉空間に供給することで行われる。所定量の不活性ガスが樹脂ライナ11内に充填されると、樹脂ライナ11の内圧が高くなる。そして、樹脂ライナ11の内圧がチャンバー101の内圧(すなわち樹脂ライナ11の外圧)よりも高くなると、樹脂ライナ11の内外に圧力差が生じることになる。   S4 ′ of the manufacturing process is performed by driving the heated gas supply device 160 connected to the temporarily bonded resin liner 11 to supply the heated inert gas to the substantially sealed space of the resin liner 11. . When the resin liner 11 is filled with a predetermined amount of inert gas, the internal pressure of the resin liner 11 increases. When the internal pressure of the resin liner 11 becomes higher than the internal pressure of the chamber 101 (that is, the external pressure of the resin liner 11), a pressure difference is generated between the inside and outside of the resin liner 11.

したがって、本実施形態によっても、樹脂ライナ11の内外に圧力差を発生させることができる。これにより、後工程となるレーザ溶着工程(S6)において、接合部34,44同士の密着度を高めた状態で接合部34,44同士をレーザ溶着することができる。なお、レーザ溶着中も樹脂ライナ11の内外の差圧を所定レベルに維持するように、ライナ用ポンプ163の駆動を制御することが好ましい。   Therefore, also in this embodiment, a pressure difference can be generated inside and outside the resin liner 11. Thereby, in the laser welding process (S6) which becomes a post process, the joining parts 34 and 44 can be laser-welded in a state where the adhesion degree between the joining parts 34 and 44 is increased. It is preferable to control the driving of the liner pump 163 so that the pressure difference between the inside and outside of the resin liner 11 is maintained at a predetermined level even during laser welding.

<第3実施形態>
次に、図7および図8を参照して、第3実施形態に係るガス容器1の製造方法ついて相違点を中心に説明する。第1実施形態との相違点は、不活性ガス供給装置110に代えて真空発生装置170を設けたことと、負圧発生装置120に代わる差圧発生装置として加温エア供給装置180を設けたことと、これらに伴い製造工程のS3〜S5をS3´´〜S5´´に変更したことである。
<Third Embodiment>
Next, with reference to FIG. 7 and FIG. 8, the manufacturing method of the gas container 1 which concerns on 3rd Embodiment is demonstrated centering on difference. The difference from the first embodiment is that a vacuum generator 170 is provided instead of the inert gas supply device 110, and a heated air supply device 180 is provided as a differential pressure generator instead of the negative pressure generator 120. That is, along with these, S3 to S5 in the manufacturing process are changed to S3 ″ to S5 ″.

真空発生装置170は、例えば、チャンバー101内のエアを吸引する真空ポンプ171と、真空ポンプ171で吸引したエアを一時的に貯留するバッファタンク172と、チャンバー101とバッファタンク172とを接続するエア配管173と、を具備している。   The vacuum generator 170 includes, for example, a vacuum pump 171 that sucks air in the chamber 101, a buffer tank 172 that temporarily stores air sucked by the vacuum pump 171, and air that connects the chamber 101 and the buffer tank 172. And a pipe 173.

エア配管173上の真空ポンプ171を駆動することで、チャンバー101内を真空状態に設定することができる。なお、チャンバー101内の真空度を検出するためのセンサを真空ポンプ171の上流側(チャンバー101側)のエア配管173に設け、センサの検出結果に基づいて真空ポンプ171の駆動を制御するとよい。   By driving the vacuum pump 171 on the air pipe 173, the chamber 101 can be set in a vacuum state. Note that a sensor for detecting the degree of vacuum in the chamber 101 may be provided in the air pipe 173 on the upstream side (chamber 101 side) of the vacuum pump 171 and the driving of the vacuum pump 171 may be controlled based on the detection result of the sensor.

加温エア供給装置180は、真空発生装置170で吸引したチャンバー101内のエアを加温して、樹脂ライナ11内に供給するものである。例えば、加温エア供給装置180は、バッファタンク172内に貯留されたエアを樹脂ライナ11内に圧送するライナ用ポンプ181と、ライナ用ポンプ181が介設され、樹脂ライナ11の口金3とバッファタンク172とを接合する配管182と、を具備している。   The heated air supply device 180 heats the air in the chamber 101 sucked by the vacuum generator 170 and supplies it to the resin liner 11. For example, the warming air supply device 180 is provided with a liner pump 181 that pumps air stored in the buffer tank 172 into the resin liner 11 and a liner pump 181, and the base 3 and the buffer of the resin liner 11. And a pipe 182 for joining the tank 172.

ライナ用ポンプ181は、バッファタンク172からのエアを加温する油拡散用のヒータ(図示省略)を内蔵している。したがって、ライナ用ポンプ181を駆動すると、ヒータにより加温されたエアが樹脂ライナ11内に供給される。   The liner pump 181 has a built-in oil diffusion heater (not shown) for heating the air from the buffer tank 172. Therefore, when the liner pump 181 is driven, the air heated by the heater is supplied into the resin liner 11.

なお、ライナ用ポンプ181にヒータを設ける構成に代えて、例えば配管182やバッファタンク172にヒータなどの加熱手段を設けてもよい。また、加温エア供給装置180を例えば第2実施形態の加温ガス供給装置160などのように構成することもできるが、チャンバー101内を真空引きしたエアを樹脂ライナ11内に注入することで、システム上の全体効率を高めることができる。   Instead of the configuration in which a heater is provided in the liner pump 181, for example, a heating unit such as a heater may be provided in the pipe 182 or the buffer tank 172. Further, the heated air supply device 180 can be configured, for example, as the heated gas supply device 160 of the second embodiment, but by injecting air into the resin liner 11 evacuated from the chamber 101. , Can increase the overall efficiency on the system.

本実施形態の製造工程のS3´´では、仮接合状態の樹脂ライナ11を内部に設置したチャンバー101内の真空引きを行う。これは、真空ポンプ171を所定時間駆動することで行われ、これによりチャンバー101内が真空状態となる。   In S3 ″ of the manufacturing process of the present embodiment, evacuation is performed in the chamber 101 in which the temporarily bonded resin liner 11 is installed. This is performed by driving the vacuum pump 171 for a predetermined time, whereby the chamber 101 is evacuated.

次の工程のS4´´は、ライナ用ポンプ181を駆動して、加温されたエアを樹脂ライナ11の略密閉空間に供給することで行われる。所定量の加温エアが樹脂ライナ11内に充填されると、樹脂ライナ11の内圧が高くなる。   The next step S <b> 4 ″ is performed by driving the liner pump 181 and supplying the heated air to the substantially sealed space of the resin liner 11. When a predetermined amount of warming air is filled into the resin liner 11, the internal pressure of the resin liner 11 increases.

そして、樹脂ライナ11の内圧がチャンバー101の内圧(すなわち樹脂ライナ11の外圧)よりも高くなると、樹脂ライナ11の内外に圧力差が生じることになる。この圧力差が所定のレベル(最適差圧レベル)に達したかどうかが、例えばチャンバー101内の圧力センサ132と配管182上の圧力センサ133とで確認されて(S5´´)、次のレーザ溶着工程(S6)に移行する。   When the internal pressure of the resin liner 11 becomes higher than the internal pressure of the chamber 101 (that is, the external pressure of the resin liner 11), a pressure difference is generated between the inside and outside of the resin liner 11. Whether or not this pressure difference has reached a predetermined level (optimal differential pressure level) is confirmed by, for example, the pressure sensor 132 in the chamber 101 and the pressure sensor 133 on the pipe 182 (S5 ″), and the next laser. The process proceeds to the welding step (S6).

したがって、本実施形態によっても、樹脂ライナ11の内外に圧力差を発生させることができるため、後工程となるレーザ溶着工程(S6)において、接合部34,44同士の密着度を高めた状態で接合部34,44同士をレーザ溶着させることができる。また、レーザ溶着を真空状態の下で行うことができるため、接合部34,44同士の酸化を適切に抑制して、接合端面51,61同士を良好に且つ適切に接合することができる。   Therefore, even in the present embodiment, a pressure difference can be generated inside and outside the resin liner 11, so that in the laser welding step (S 6), which is a subsequent step, the degree of adhesion between the joint portions 34 and 44 is increased. The joining portions 34 and 44 can be laser-welded. Moreover, since laser welding can be performed under a vacuum state, the joining end surfaces 51 and 61 can be favorably and appropriately joined together by appropriately suppressing the oxidation of the joining portions 34 and 44.

さらに、上記の各実施形態に比べて有用となる点は、チャンバー101内を真空引きする際に、樹脂ライナ11の外面等に付着し得る不純物をエアと共に吸引(除去)することができることである。また、レーザ溶着の完了後(S6)に、樹脂ライナ11の気密性を即座に確認することができる点が有用となる。これは例えば、レーザ溶着の完了後に樹脂ライナ11の内部に加温エアを供給し、樹脂ライナ11の内外の圧力変化を上記の圧力センサ132で検出することで、溶着後の気密性を確認することができる。   Furthermore, a useful point compared with the above embodiments is that impurities that can adhere to the outer surface of the resin liner 11 and the like can be sucked (removed) together with air when the chamber 101 is evacuated. . Further, it is useful that the air tightness of the resin liner 11 can be immediately confirmed after the completion of laser welding (S6). For example, heated air is supplied to the inside of the resin liner 11 after the laser welding is completed, and a pressure change inside and outside the resin liner 11 is detected by the pressure sensor 132, thereby confirming the airtightness after the welding. be able to.

なお、上記した第1〜第3実施形態の説明では、いずれも樹脂ライナ11の内部の圧力を調整して、樹脂ライナ11の内外に圧力差を付与するようにした。もちろんこの構成に代えて、樹脂ライナ11の外部の圧力、すなわち樹脂ライナ11の外壁とチャンバー101の内壁との間のチャンバー101内の圧力を調整することで、樹脂ライナ11の内外に圧力差を付与するようにしてもよい。また、樹脂ライナ11の内部の圧力および外部の圧力をともに調整するようにしてもよい。   In the description of the first to third embodiments described above, the pressure inside the resin liner 11 is adjusted to apply a pressure difference to the inside and outside of the resin liner 11. Of course, instead of this configuration, by adjusting the pressure outside the resin liner 11, that is, the pressure inside the chamber 101 between the outer wall of the resin liner 11 and the inner wall of the chamber 101, a pressure difference is created between the inside and outside of the resin liner 11. You may make it provide. Further, both the internal pressure and the external pressure of the resin liner 11 may be adjusted.

<第4実施形態>
次に、図9および図10を参照して、第4実施形態に係るガス容器1の製造方法について相違点を中心に説明する。第1実施形態との主な相違点は、レーザ溶着工程(S15)に先立って、仮接合状態の樹脂ライナ11のアニール処理(S14)を行う点である。なお、製造工程のS11およびS12は第1実施形態のS1およびS2と同じであり、S15〜S18は第1実施形態のS6〜S9と同じであるため、これらについての詳細な説明を省略する。
<Fourth embodiment>
Next, with reference to FIG. 9 and FIG. 10, it demonstrates centering around difference about the manufacturing method of the gas container 1 which concerns on 4th Embodiment. The main difference from the first embodiment is that an annealing process (S14) of the resin liner 11 in a temporarily bonded state is performed prior to the laser welding process (S15). In addition, since S11 and S12 of a manufacturing process are the same as S1 and S2 of 1st Embodiment, and S15-S18 are the same as S6-S9 of 1st Embodiment, detailed description about these is abbreviate | omitted.

製造工程のS13では、仮接合状態の樹脂ライナ11を内部に設けたチャンバー101内を真空引きする。これは例えば、真空発生装置190の真空ポンプ191を駆動して、チャンバー101に接続したエア配管192を介してチャンバー101内のエアを吸引することで行われる。この真空発生装置190は、第3実施形態の真空発生装置170と同様に構成することができる。   In S13 of the manufacturing process, the inside of the chamber 101 in which the temporarily bonded resin liner 11 is provided is evacuated. This is performed, for example, by driving the vacuum pump 191 of the vacuum generator 190 and sucking the air in the chamber 101 through the air pipe 192 connected to the chamber 101. The vacuum generator 190 can be configured similarly to the vacuum generator 170 of the third embodiment.

次の工程のS14のアニール処理(焼きなまし)は、先ず、チャンバー101内を加温することにより、樹脂ライナ11を所定の温度に加熱する。そして、この加熱状態を所定時間保持した後、チャンバー101内を冷却し、樹脂ライナ11を冷却することで行う。   In the annealing process (annealing) of S14 in the next step, first, the interior of the chamber 101 is heated to heat the resin liner 11 to a predetermined temperature. Then, after maintaining this heating state for a predetermined time, the inside of the chamber 101 is cooled and the resin liner 11 is cooled.

このアニール処理により、樹脂ライナ11の残留応力が除去されるが、このときに各ライナ構成部材21,22が自己収縮するため、接合部34,44同士の密着度が高まる。これにより、アニール処理の完了後のレーザ溶着工程(S15)において、密着度が高められた状態の接合部34,44同士をレーザ溶着することができる。   Although the residual stress of the resin liner 11 is removed by this annealing treatment, the liner constituent members 21 and 22 self-shrink at this time, so that the adhesion between the joint portions 34 and 44 increases. Thereby, in the laser welding process (S15) after completion of the annealing treatment, the joining portions 34 and 44 in a state where the adhesion degree is increased can be laser-welded.

したがって、本実施形態によっても、レーザ溶着による接合部34,44同士の接合を良好に且つ適切に行うことができる。また、アニール処理を真空内で行っているため、アニール処理の完了後にそのままレーザ溶着工程に移行することができる。   Therefore, also according to the present embodiment, the joining portions 34 and 44 can be favorably and appropriately joined by laser welding. In addition, since the annealing process is performed in a vacuum, the laser welding process can be directly performed after the annealing process is completed.

なお、本実施形態においても、上記した差圧発生装置(第1実施形態の負圧発生装置120、第2実施形態の加温ガス供給装置160、第3実施形態の加温エア供給装置180)を補助的に用いてもよい。こうすることで、接合部34,44同士の密着度をより一層高めることができる。また、アニール処理により接合部34,44同士の密着度を高めているため、差圧発生装置の構成要素(例えば、ライナ用ポンプ122,163,181)を小型化および簡素化することができる。   Also in the present embodiment, the above-described differential pressure generator (the negative pressure generator 120 of the first embodiment, the heated gas supply device 160 of the second embodiment, and the heated air supply device 180 of the third embodiment). May be used supplementarily. By doing so, the degree of adhesion between the joint portions 34 and 44 can be further increased. In addition, since the degree of adhesion between the joint portions 34 and 44 is increased by the annealing treatment, the components of the differential pressure generating device (for example, the liner pumps 122, 163, and 181) can be reduced in size and simplified.

<第5実施形態>
次に、図11を参照して、第5実施形態に係るガス容器1について相違点を中心に説明する。第1実施形態との相違点は、ガス容器1の樹脂ライナ11を三つのライナ構成部材201,202,203より構成したことである。なお、図11では、補強層12については省略している。
<Fifth Embodiment>
Next, with reference to FIG. 11, it demonstrates centering around difference about the gas container 1 which concerns on 5th Embodiment. The difference from the first embodiment is that the resin liner 11 of the gas container 1 is composed of three liner constituent members 201, 202, and 203. In FIG. 11, the reinforcing layer 12 is omitted.

樹脂ライナ11は、長手方向において三分割された三つのライナ構成部材201,202,203を、レーザ溶着により接合して構成されている。両端に位置する二つのライナ構成部材201,202は、全体の形状がお碗状に形成されている。中央に位置するライナ構成部材203は、全体の形状が円筒状または環状に形成されている。両端の二つのライナ構成部材201,202は、それぞれ、例えば射出成形により口金3と一体成形される。中央のライナ構成部材203は、例えば射出成形により形成される。   The resin liner 11 is configured by joining three liner constituting members 201, 202, and 203 divided in three in the longitudinal direction by laser welding. The two liner constituting members 201 and 202 located at both ends are formed in a bowl shape as a whole. The liner constituting member 203 located at the center is formed in a cylindrical or annular shape as a whole. The two liner constituting members 201 and 202 at both ends are integrally formed with the base 3 by, for example, injection molding. The central liner constituting member 203 is formed by, for example, injection molding.

両端の二つのライナ構成部材201,202の各々は、返し部211,221および連通部212,222のほか、各口金3,3と反対側に接合部213,223を有している。中央のライナ構成部材203は、軸方向の開口した両端側にそれぞれ接合部231,232を有している。   Each of the two liner constituent members 201 and 202 at both ends has joint portions 213 and 223 on the side opposite to the caps 3 and 3 in addition to the return portions 211 and 221 and the communication portions 212 and 222. The central liner constituting member 203 has joint portions 231 and 232 on both end sides opened in the axial direction.

なお、これらの接合部(213,223,231,232)について、軸方向に直交する端面で単純に構成したが、第1実施形態と同様に、レーザの照射性や、差圧による密着性を考慮した構成とすることが好ましい。   In addition, about these junction parts (213,223,231,232), it comprised simply by the end surface orthogonal to an axial direction, but the irradiation property of a laser and the adhesiveness by a differential pressure are made like 1st Embodiment. It is preferable to consider the configuration.

これらの接合部(213,223,231,232)は、レーザ透過性またはレーザ吸収性の特性を有している。例えば、両端の二つのライナ構成部材201,202は、レーザ透過性の熱可塑性樹脂で形成され、中央のライナ構成部材203は、レーザ吸収性の熱可塑性樹脂で形成される。もちろん、この逆であってもよいし、各ライナ構成部材201,202,203が、部分的にレーザ透過性またはレーザ吸収性の特性を有していてもよい。樹脂ライナ11は、接合部213,231同士がレーザ溶着により互いに接合され、且つ接合部223,232同士がレーザ溶着により互いに接合されている。   These joint portions (213, 223, 231 and 232) have laser transmission characteristics or laser absorption characteristics. For example, the two liner constituent members 201 and 202 at both ends are formed of a laser-transmitting thermoplastic resin, and the central liner constituent member 203 is formed of a laser-absorbing thermoplastic resin. Of course, this may be reversed, and each of the liner constituting members 201, 202, 203 may partially have a laser transmitting property or a laser absorbing property. In the resin liner 11, the joint portions 213 and 231 are joined to each other by laser welding, and the joint portions 223 and 232 are joined to each other by laser welding.

本実施形態のガス容器1の製造方法は、上記した各実施形態の製造方法を適用することができる。ここでは、三つのライナ構成部材201,202,203を同時にレーザ溶着で接合する場合について簡単に説明する。   The manufacturing method of each embodiment mentioned above can be applied to the manufacturing method of the gas container 1 of this embodiment. Here, the case where the three liner constituent members 201, 202, 203 are simultaneously joined by laser welding will be briefly described.

先ず、口金3付きのライナ構成部材(201,202)を含む三つのライナ構成部材201,202,203を成形し、これらをチャンバー101内に配置して接合部213,231同士および接合部223,232同士を接触させて、仮接合状態の樹脂ライナ11とする。   First, three liner constituent members 201, 202, 203 including a liner constituent member (201, 202) with a base 3 are formed, and these are arranged in the chamber 101 to join the joints 213, 231 and the joints 223. 232 are brought into contact with each other to form the resin liner 11 in a temporarily bonded state.

次いで、例えばチャンバー101内を不活性ガス雰囲気下または真空状態とし、差圧発生装置(例えば上記実施形態の負圧発生装置120、加温ガス供給装置160、加温エア供給装置180)により樹脂ライナ11の略密閉空間を減圧または加圧し、樹脂ライナ11の内外に所定の圧力差を設定する。   Next, for example, the inside of the chamber 101 is placed in an inert gas atmosphere or in a vacuum state, and a resin liner is formed by a differential pressure generator (for example, the negative pressure generator 120, the heated gas supply device 160, and the heated air supply device 180 of the above embodiment). The substantially sealed space 11 is depressurized or pressurized, and a predetermined pressure difference is set inside and outside the resin liner 11.

次に、仮接合状態の樹脂ライナ11をその軸回りに回転させながら、あるいは二つのレーザトーチ140を樹脂ライナ11の周囲で回転させながら、接合部213,231同士および接合部223,232同士をレーザ溶着により周方向に亘って接合する。これにより、三つのライナ構成部材201,202,203が一体的に接合され、本接合状態の樹脂ライナ11が製造される。その後、所定の工程(例えば第1実施形態のS7〜S9)を経て、ガス容器1が製造される。   Next, while rotating the temporarily bonded resin liner 11 around its axis or rotating the two laser torches 140 around the resin liner 11, the bonding portions 213 and 231 and the bonding portions 223 and 232 are lasered. It joins over the circumferential direction by welding. As a result, the three liner constituting members 201, 202, 203 are integrally joined, and the resin liner 11 in the final joined state is manufactured. Then, the gas container 1 is manufactured through a predetermined process (for example, S7 to S9 in the first embodiment).

したがって、本実施形態のように三つのライナ構成部材201,202,203で樹脂ライナ11を構成しても、上記実施形態と同様に生産性の高いガス容器1を製造することができる。   Therefore, even if the resin liner 11 is constituted by the three liner constituting members 201, 202, and 203 as in the present embodiment, the highly productive gas container 1 can be manufactured as in the above embodiment.

なお、三つのライナ構成部材201,202,203について、仮接合やレーザ溶着等の処理を同時に行った例を説明したが、もちろんこれらの処理を別個に行ってもよい。また、ライナ構成部材が三つの場合について説明したが、四つ以上も同様である。すなわち、本発明は、軸方向に並ぶ複数のライナ構成部材を接合した樹脂ライナ11に適用することができる。   In addition, although the example which performed the process of temporary joining, laser welding, etc. simultaneously about three liner structural members 201,202,203 was demonstrated, of course, you may perform these processes separately. Moreover, although the case where there were three liner structural members was demonstrated, four or more are the same. That is, the present invention can be applied to the resin liner 11 in which a plurality of liner constituent members arranged in the axial direction are joined.

<他の実施形態>
上記した本発明のガス容器1は、様々な変形例を適用することができる。例えば、一のライナ構成部材の接合部と他のライナ構成部材の接合部とのレーザ溶着された部位の近傍に、接合部同士を密着させるように係合する係合構造を設けてもよい。係合構造の例として螺合構造が挙げられるが、この螺合構造を第1実施形態等で示す二分割構造の樹脂ライナ11に適用した例について簡単に説明する。
<Other embodiments>
Various modifications can be applied to the gas container 1 of the present invention described above. For example, an engagement structure that engages so as to bring the joint portions into close contact may be provided in the vicinity of the laser welded portion between the joint portion of one liner constituent member and the joint portion of another liner constituent member. An example of the engagement structure is a screwing structure. An example in which this screwing structure is applied to the resin liner 11 having a two-part structure shown in the first embodiment will be briefly described.

例えば、螺合構造として、図2に示す接合部44の延設部62の外周面におねじを刻設し、これに対応して、接合部34の近傍の胴部31の内周面にめねじを刻設する。こうすることで、接合部34,44同士のレーザ溶着に先立って、接合端面51,61同士を接触させつつ且つおねじとめねじとを螺合させて、仮接合状態の樹脂ライナ11を構成することができる。   For example, as a screwing structure, a screw is engraved on the outer peripheral surface of the extending portion 62 of the joint portion 44 shown in FIG. 2, and the inner peripheral surface of the body portion 31 near the joint portion 34 is correspondingly formed. Engrave female threads. By doing so, prior to laser welding of the joint portions 34 and 44, the joint end surfaces 51 and 61 are brought into contact with each other and the male screw and the female screw are screwed together to constitute the resin liner 11 in a temporarily joined state. be able to.

これにより、レーザ溶着の際に、接合部34,44同士を離れないように密着させておくことができ、レーザ溶着の接合精度をより一層高めることができる。なお、おねじ・めねじの螺合部分もレーザ溶着してもよい。また、この種の係合構造は、螺合構造に限らず、例えばスナップフィットや圧入などであってもよい。   Thereby, in the case of laser welding, it can be stuck so that bonding parts 34 and 44 may not leave, and the joining accuracy of laser welding can be raised further. The threaded portion of the external screw / female screw may also be laser welded. Further, this type of engagement structure is not limited to a screwed structure, and may be, for example, a snap fit or a press fit.

ガス容器1について説明したレーザ溶着については、樹脂ライナ11のみならず、自動車部品や配管部品などの各種の樹脂成形品に適用することができる。例えば、インテークマニホールドを複数の樹脂成形材で構成して、樹脂成形材同士をレーザ溶着で接合する場合にも、上記した接合部同士の構造、レーザ溶着時における圧力差の付与、レーザ溶着時における不活性ガス雰囲気下または真空状態、などを適用することで接合精度を高めることができる。   The laser welding described for the gas container 1 can be applied not only to the resin liner 11 but also to various resin molded products such as automobile parts and piping parts. For example, even when the intake manifold is composed of a plurality of resin molding materials and the resin molding materials are joined together by laser welding, the structure of the joints described above, the application of a pressure difference during laser welding, Application of an inert gas atmosphere or a vacuum state can increase the bonding accuracy.

第1実施形態に係るガス容器の構成を示す断面図である。It is sectional drawing which shows the structure of the gas container which concerns on 1st Embodiment. 第1実施形態に係るガス容器の接合部分を拡大して示す断面図である。It is sectional drawing which expands and shows the junction part of the gas container which concerns on 1st Embodiment. 第1実施形態に係るガス容器の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the gas container which concerns on 1st Embodiment. 第1実施形態に係るガス容器の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the gas container which concerns on 1st Embodiment. 第2実施形態に係るガス容器の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the gas container which concerns on 2nd Embodiment. 第2実施形態に係るガス容器の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the gas container which concerns on 2nd Embodiment. 第3実施形態に係るガス容器の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the gas container which concerns on 3rd Embodiment. 第3実施形態に係るガス容器の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the gas container which concerns on 3rd Embodiment. 第4実施形態に係るガス容器の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the gas container which concerns on 4th Embodiment. 第4実施形態に係るガス容器の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the gas container which concerns on 4th Embodiment. 第5実施形態に係るガス容器の構成を示す断面図である。It is sectional drawing which shows the structure of the gas container which concerns on 5th Embodiment.

符号の説明Explanation of symbols

1 ガス容器、11 樹脂ライナ、12 補強層、21 ライナ構成部材、22 ライナ構成部材、33 連通部、34 接合部、43 連通部、44 接合部、70 レーザ溶着部、140 レーザトーチ、201 ライナ構成部材、202 ライナ構成部材、203 ライナ構成部材、213 接合部、223 接合部、231 接合部、232 接合部   DESCRIPTION OF SYMBOLS 1 Gas container, 11 Resin liner, 12 Reinforcement layer, 21 Liner structural member, 22 Liner structural member, 33 Communication part, 34 Joint part, 43 Communication part, 44 Joint part, 70 Laser welding part, 140 Laser torch, 201 Liner structural member 202 liner constituent member, 203 liner constituent member, 213 joint portion, 223 joint portion, 231 joint portion, 232 joint portion

Claims (19)

少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成された樹脂ライナと、
前記樹脂ライナの外周に配置された補強層と、
を有するガス容器であって、
前記複数のライナ構成部材の接合部同士は、レーザ溶着により互いに接合されているガス容器。
A resin liner formed by joining a plurality of liner components having at least a hollow cylindrical shape;
A reinforcing layer disposed on the outer periphery of the resin liner;
A gas container comprising:
The gas containers in which the joint portions of the plurality of liner constituent members are joined to each other by laser welding.
少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成された樹脂ライナと、
前記樹脂ライナの外周に配置された補強層と、
を有するガス容器であって、
一のライナ構成部材の接合部と他のライナ構成部材の接合部とが接合された接合部分は、これらの接合部同士をレーザ溶着により互いに接合したレーザ溶着部を有しているガス容器。
A resin liner formed by joining a plurality of liner components having at least a hollow cylindrical shape;
A reinforcing layer disposed on the outer periphery of the resin liner;
A gas container comprising:
The gas container which has the laser welding part which the junction part where the junction part of one liner structural member, and the junction part of the other liner structural member joined, joined these joint parts mutually by laser welding.
前記接合部同士は、前記樹脂ライナの周方向に亘ってレーザ溶着により互いに接合されている請求項1または2に記載のガス容器。   The gas container according to claim 1 or 2, wherein the joint portions are joined to each other by laser welding along a circumferential direction of the resin liner. 互いに接合される一方のライナ構成部材の接合部は、レーザ透過性の部材からなり、且つ他方のライナ構成部材の接合部は、レーザ吸収性の部材からなる請求項1ないし3のいずれか一項に記載のガス容器。   4. The joint part of one liner constituent member joined to each other is made of a laser transmitting member, and the joint part of the other liner constituent member is made of a laser absorbing member. A gas container according to 1. 互いに接合される一方のライナ構成部材は、レーザ透過性の部材からなり、且つ他方のライナ構成部材は、レーザ吸収性の部材からなる請求項1ないし3のいずれか一項に記載のガス容器。   The gas container according to any one of claims 1 to 3, wherein one liner constituent member joined to each other is made of a laser transmitting member, and the other liner constituent member is made of a laser absorbing member. 前記レーザ透過性の部材からなる接合部は、前記樹脂ライナにおいて外側に位置し、且つ前記レーザ吸収性の部材からなる接合部は、前記樹脂ライナにおいて内側に位置する請求項4または5に記載のガス容器。   6. The joint according to claim 4, wherein the joining portion made of the laser transmissive member is located outside the resin liner, and the joining portion made of the laser absorbing member is located inside the resin liner. Gas container. 前記複数のライナ構成部材のうちの少なくとも一つは、他のライナ構成部材と接合される接合部と反対側に、前記樹脂ライナの中空内部と外部とを連通するための連通部を有している請求項1ないし6のいずれか一項に記載のガス容器。   At least one of the plurality of liner constituting members has a communication portion for communicating the hollow interior and the outside of the resin liner on the opposite side to the joint portion to be joined to the other liner constituting member. The gas container according to any one of claims 1 to 6. 少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成される樹脂ライナを有するガス容器の製造方法であって、
互いに接合されるべき一方のライナ構成部材の接合部をレーザ透過性の部材で構成すると共に、他方のライナ構成部材の接合部をレーザ吸収性の部材で構成する第1工程と、
前記第1工程後に、互いに接合されるべきライナ構成部材の接合部同士を接触させる第2工程と、
前記第2工程後に、前記レーザ透過性の部材からなる接合部側からレーザを照射して、接触状態の接合部同士をレーザ溶着により互いに接合する第3工程と、
を有するガス容器の製造方法。
A method for producing a gas container having a resin liner constituted by joining a plurality of liner components having a hollow cylindrical shape at least partially,
A first step of configuring a joint portion of one liner constituent member to be joined to each other with a laser transmitting member and a joint portion of the other liner constituent member with a laser absorbing member;
After the first step, a second step of bringing the joint portions of the liner constituent members to be joined together into contact with each other;
After the second step, a third step of irradiating the laser from the joint portion made of the laser-transmissive member and joining the joint portions in contact with each other by laser welding;
The manufacturing method of the gas container which has.
前記第2工程は、前記レーザ透過性の接合部を、前記レーザ吸収性の接合部に対して外側から接触させることで行われ、
前記第3工程は、ライナ構成部材の外側に配置したレーザ照射装置により、前記レーザ透過性の接合部側からレーザを照射することで行われる請求項8に記載のガス容器の製造方法。
The second step is performed by bringing the laser-transmitting bonding portion into contact with the laser-absorbing bonding portion from the outside,
The method of manufacturing a gas container according to claim 8, wherein the third step is performed by irradiating a laser from the laser-transmitting joint side with a laser irradiation device disposed outside the liner constituting member.
前記第3工程は、互いに接合されるべき二つのライナ構成部材の内外に圧力差を付与した状態で、レーザを照射することを含む請求項8または9に記載のガス容器の製造方法。   10. The method for manufacturing a gas container according to claim 8, wherein the third step includes irradiating a laser in a state where a pressure difference is applied to the inside and outside of the two liner constituent members to be joined to each other. 前記第3工程における前記圧力差の付与は、互いに接合されるべき二つのライナ構成部材の内部の圧力および外部の圧力の少なくとも一方を調整することで行われる請求項10に記載のガス容器の製造方法。   The production of the gas container according to claim 10, wherein the application of the pressure difference in the third step is performed by adjusting at least one of an internal pressure and an external pressure of two liner constituent members to be joined to each other. Method. 前記第3工程における前記圧力差の付与は、互いに接合されるべき二つのライナ構成部材の内部を略密閉状態として、その密閉空間を減圧または加圧することで行われる請求項11に記載のガス容器の製造方法。   12. The gas container according to claim 11, wherein the application of the pressure difference in the third step is performed by setting the inside of two liner constituent members to be joined to each other substantially in a sealed state and reducing or pressurizing the sealed space. Manufacturing method. 前記第3工程における前記圧力差の付与は、互いに接合されるべき二つのライナ構成部材の少なくとも一方に設けた連通部を介して、前記密閉空間を減圧または加圧することで行われる請求項12に記載のガス容器の製造方法。   The application of the pressure difference in the third step is performed by depressurizing or pressurizing the sealed space via a communication portion provided in at least one of two liner constituent members to be joined to each other. The manufacturing method of the gas container of description. 前記第2工程は、互いに接合されるべき二つのライナ構成部材の接合部同士をライナ構成部材の軸方向にオーバラップして配置し、且つそのオーバラップした部位同士を接触させることで行われる請求項8ないし13のいずれか一項に記載のガス容器の製造方法。   The second step is performed by arranging joint portions of two liner constituent members to be joined to each other so as to overlap each other in the axial direction of the liner constituent members, and bringing the overlapped portions into contact with each other. Item 14. The method for producing a gas container according to any one of Items 8 to 13. 前記第2工程と前記第3工程との間に、互いに接合されるべき二つのライナ構成部材の接合部同士を接触させた状態でアニール処理を行う工程を、更に有する請求項8ないし14のいずれか一項に記載のガス容器の製造方法。   15. The method according to any one of claims 8 to 14, further comprising a step of performing an annealing process between the second step and the third step in a state where the joint portions of the two liner constituent members to be joined to each other are in contact with each other. A method for producing a gas container according to claim 1. 前記第3工程は、互いに接合されるべき二つのライナ構成部材をレーザ照射装置に対し相対的に回転させながら、前記接触状態の接合部同士をライナ構成部材の周方向に亘ってレーザ溶着することで行われる請求項8ないし15のいずれか一項に記載のガス容器の製造方法。   In the third step, the two joining members to be joined to each other are rotated relative to the laser irradiation apparatus, and the joining portions in the contact state are laser-welded in the circumferential direction of the liner constituting member. The method for producing a gas container according to any one of claims 8 to 15, wherein 前記第3工程は、低酸素雰囲気で行われる請求項8ないし16のいずれか一項に記載のガス容器の製造方法。   The method of manufacturing a gas container according to any one of claims 8 to 16, wherein the third step is performed in a low oxygen atmosphere. 前記第1工程は、互いに接合されるべき一方のライナ構成部材をレーザ透過性の部材で構成すると共に、他方のライナ構成部材をレーザ吸収性の部材で構成することで行われる請求項8ないし17のいずれか一項に記載のガス容器の製造方法。   18. The first step is performed by configuring one liner constituent member to be bonded to each other with a laser transmitting member and configuring the other liner constituent member with a laser absorbing member. The manufacturing method of the gas container as described in any one of these. 前記第3工程後に、レーザ溶着により接合された二つのライナ構成部材の外周面のつなぎ目が面一となるように、この二つのライナ構成部材の少なくとも一方の外周面を削る工程を、更に備えた請求項8ないし18のいずれか一項に記載のガス容器の製造方法。   After the third step, the method further comprises a step of cutting at least one outer peripheral surface of the two liner constituent members such that a joint between the outer peripheral surfaces of the two liner constituent members joined by laser welding is flush with each other. The method for manufacturing a gas container according to any one of claims 8 to 18.
JP2005057089A 2005-03-02 2005-03-02 Gas container and manufacturing method thereof Active JP4466408B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005057089A JP4466408B2 (en) 2005-03-02 2005-03-02 Gas container and manufacturing method thereof
CA2598621A CA2598621C (en) 2005-03-02 2006-02-20 Gas container and method of producing the same
PCT/JP2006/303514 WO2006093059A1 (en) 2005-03-02 2006-02-20 Gas container and method of producing the same
RU2007135748/06A RU2363880C2 (en) 2005-03-02 2006-02-20 Tank for gas storage and method for fabrication of this tank
EP06714653A EP1855046B1 (en) 2005-03-02 2006-02-20 Gas container and method of producing the same
CN2006800069640A CN101133280B (en) 2005-03-02 2006-02-20 Gas vessel and its manufacturing method
US11/884,083 US7943884B2 (en) 2005-03-02 2006-02-20 Gas container and method of producing the same
KR20077020052A KR100904028B1 (en) 2005-03-02 2006-02-20 Gas container and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057089A JP4466408B2 (en) 2005-03-02 2005-03-02 Gas container and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2006242247A true JP2006242247A (en) 2006-09-14
JP2006242247A5 JP2006242247A5 (en) 2008-04-24
JP4466408B2 JP4466408B2 (en) 2010-05-26

Family

ID=37048872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057089A Active JP4466408B2 (en) 2005-03-02 2005-03-02 Gas container and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4466408B2 (en)
CN (1) CN101133280B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215620A (en) * 2007-02-05 2008-09-18 Somic Ishikawa Inc Rotary damper and its manufacturing method
WO2010004813A1 (en) 2008-07-09 2010-01-14 トヨタ自動車株式会社 Gas tank and process for producing gas tank
JP2010111036A (en) * 2008-11-07 2010-05-20 Toyota Motor Corp Method for manufacturing resin liner, and method for manufacturing fluid storing container
JP2010112413A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Manufacturing method of liner, and divided liner
JP2010253742A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Injection molding equipment, method of manufacturing molded object and the molded object
JP2011112139A (en) * 2009-11-26 2011-06-09 Kyushu Univ Liner for manufacturing test for composite container and manufacturing testing method
US7959027B2 (en) * 2006-01-25 2011-06-14 Hydac Technology Gmbh Pressurized container
JP2012146627A (en) * 2010-08-04 2012-08-02 Toshiba Corp Fuel cell power generation system and method for manufacturing the same
JP2013104435A (en) * 2011-11-10 2013-05-30 Toyota Motor Corp Method for manufacturing resin linear
JP2013176975A (en) * 2012-02-07 2013-09-09 Toyota Motor Corp Resin molded product and method of producing the same
CN103392138A (en) * 2011-02-24 2013-11-13 株式会社藤仓 Fiber mount device, optical module using same, and optical module manufacturing method
JP2014177117A (en) * 2013-02-14 2014-09-25 Toray Ind Inc Fiber-reinforced thermoplastic resin molding, and production method thereof
JP2017106524A (en) * 2015-12-09 2017-06-15 トヨタ自動車株式会社 High-pressure tank
JP2018065376A (en) * 2016-10-17 2018-04-26 東洋製罐グループホールディングス株式会社 Bonding method
EP2360008B1 (en) * 2005-09-21 2018-10-31 Orient Chemical Industries, Ltd. Laser-welded article
JP2020044844A (en) * 2019-12-03 2020-03-26 株式会社フジクラ Joint structure
CN111527339A (en) * 2017-12-26 2020-08-11 本田技研工业株式会社 Inner container for high-pressure storage tank and manufacturing method thereof
JP2020200927A (en) * 2019-06-13 2020-12-17 本田技研工業株式会社 Liner constituent, resin liner composed of the liner constituent and manufacturing method of the resin liner
WO2022209322A1 (en) * 2021-03-31 2022-10-06 豊田合成株式会社 Tubular liner member, manufacturing method therefor, and pressure vessel
WO2022259906A1 (en) 2021-06-09 2022-12-15 八千代工業株式会社 Pressure vessel liner and method for manufacturing pressure vessel liner
KR102716664B1 (en) * 2024-07-08 2024-10-11 김형호 Storage Vessel for Chemical for Semiconductor Manufacturing Process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201237A (en) * 2010-03-26 2011-10-13 Yamatake Corp Housing assembly structure and housing assembling method
CN102806662B (en) * 2012-08-16 2016-12-21 哈尔滨固泰电子有限责任公司 The welding method of the loudspeaker product of plastics and the loudspeaker of welded plastics
DE102015211011B4 (en) 2015-06-16 2022-01-13 Saf-Holland Gmbh container arrangement
WO2019170777A1 (en) * 2018-03-06 2019-09-12 Plastic Omnium Advanced Innovation And Research Composite tank and method for manufacturing same
JP7014110B2 (en) * 2018-09-20 2022-02-01 トヨタ自動車株式会社 Manufacturing method of high pressure tank
CN110355530B (en) * 2019-07-16 2021-01-08 安徽扬天金塑新能源装备股份公司 Welding method for chromium-molybdenum-steel multilayer binding high-pressure vessel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85205076U (en) * 1985-11-26 1986-08-27 哈尔滨林业机械研究所 Liquified petroleum gas bomb without retracted opening and backing ring
JP3523802B2 (en) * 1999-04-07 2004-04-26 豊田合成株式会社 Pressure vessel

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360008B1 (en) * 2005-09-21 2018-10-31 Orient Chemical Industries, Ltd. Laser-welded article
US7959027B2 (en) * 2006-01-25 2011-06-14 Hydac Technology Gmbh Pressurized container
JP2008215620A (en) * 2007-02-05 2008-09-18 Somic Ishikawa Inc Rotary damper and its manufacturing method
US9140408B2 (en) 2008-07-09 2015-09-22 Toyota Jidosha Kabushiki Kaisha Gas tank and manufacturing method of gas tank
WO2010004813A1 (en) 2008-07-09 2010-01-14 トヨタ自動車株式会社 Gas tank and process for producing gas tank
JP2010019315A (en) * 2008-07-09 2010-01-28 Toyota Motor Corp Gas tank and method for manufacturing gas tank
JP4552159B2 (en) * 2008-07-09 2010-09-29 トヨタ自動車株式会社 Gas tank and gas tank manufacturing method
US8172108B2 (en) 2008-07-09 2012-05-08 Toyota Jidosha Kabushiki Kaisha Gas tank and manufacturing method of gas tank
JP2010112413A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Manufacturing method of liner, and divided liner
JP2010111036A (en) * 2008-11-07 2010-05-20 Toyota Motor Corp Method for manufacturing resin liner, and method for manufacturing fluid storing container
JP2010253742A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Injection molding equipment, method of manufacturing molded object and the molded object
JP2011112139A (en) * 2009-11-26 2011-06-09 Kyushu Univ Liner for manufacturing test for composite container and manufacturing testing method
US9543597B2 (en) 2010-08-04 2017-01-10 Kabushiki Kaisha Toshiba Fuel-cell power generation system and method of manufacturing the same
JP2012146627A (en) * 2010-08-04 2012-08-02 Toshiba Corp Fuel cell power generation system and method for manufacturing the same
CN103392138A (en) * 2011-02-24 2013-11-13 株式会社藤仓 Fiber mount device, optical module using same, and optical module manufacturing method
JP2013104435A (en) * 2011-11-10 2013-05-30 Toyota Motor Corp Method for manufacturing resin linear
JP2013176975A (en) * 2012-02-07 2013-09-09 Toyota Motor Corp Resin molded product and method of producing the same
JP2014177117A (en) * 2013-02-14 2014-09-25 Toray Ind Inc Fiber-reinforced thermoplastic resin molding, and production method thereof
JP2017106524A (en) * 2015-12-09 2017-06-15 トヨタ自動車株式会社 High-pressure tank
JP2018065376A (en) * 2016-10-17 2018-04-26 東洋製罐グループホールディングス株式会社 Bonding method
JP7069582B2 (en) 2016-10-17 2022-05-18 東洋製罐グループホールディングス株式会社 Joining method
CN111527339A (en) * 2017-12-26 2020-08-11 本田技研工业株式会社 Inner container for high-pressure storage tank and manufacturing method thereof
CN111527339B (en) * 2017-12-26 2022-02-25 本田技研工业株式会社 Inner container for high-pressure storage tank and manufacturing method thereof
JP2020200927A (en) * 2019-06-13 2020-12-17 本田技研工業株式会社 Liner constituent, resin liner composed of the liner constituent and manufacturing method of the resin liner
JP7223641B2 (en) 2019-06-13 2023-02-16 本田技研工業株式会社 Liner constituent member, resin liner made of liner constituent member, and method for producing resin liner
JP2020044844A (en) * 2019-12-03 2020-03-26 株式会社フジクラ Joint structure
WO2022209322A1 (en) * 2021-03-31 2022-10-06 豊田合成株式会社 Tubular liner member, manufacturing method therefor, and pressure vessel
JP2022156453A (en) * 2021-03-31 2022-10-14 豊田合成株式会社 Cylindrical liner member, its manufacturing method and pressure vessel
JP7420105B2 (en) 2021-03-31 2024-01-23 豊田合成株式会社 Cylindrical liner member, method for manufacturing the same, and pressure vessel
WO2022259906A1 (en) 2021-06-09 2022-12-15 八千代工業株式会社 Pressure vessel liner and method for manufacturing pressure vessel liner
JP7432062B2 (en) 2021-06-09 2024-02-15 八千代工業株式会社 Pressure vessel liner and method for manufacturing pressure vessel liner
KR102716664B1 (en) * 2024-07-08 2024-10-11 김형호 Storage Vessel for Chemical for Semiconductor Manufacturing Process

Also Published As

Publication number Publication date
CN101133280B (en) 2011-09-14
JP4466408B2 (en) 2010-05-26
CN101133280A (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP4466408B2 (en) Gas container and manufacturing method thereof
WO2006093059A1 (en) Gas container and method of producing the same
JP5071351B2 (en) Method for manufacturing resin liner and method for manufacturing fluid storage container
WO2006095546A1 (en) Structure and method for bonding two members, gas container and method for manufacturing such gas container
JP5456889B2 (en) Engagement structure between a base member of a pressure vessel and a blow pin, a base structure of a pressure vessel having the same, and a manufacturing method of the pressure vessel
US20080187697A1 (en) Structure and Method for Bonding Two Members, Gas Container and Method for Manufacturing Such Gas Container
JP2006242247A5 (en)
US10174881B2 (en) Pressure tank
JP4466559B2 (en) Gas container manufacturing method
JP2007261667A (en) Method for manufacturing hermetic container
JP2010167695A (en) Method of manufacturing pressure vessel
JP2013176975A (en) Resin molded product and method of producing the same
JP2020045916A (en) Linear component member, high-pressure tank, and method of manufacturing the same
JP2007223087A (en) Manufacturing method of gas container
US20210381649A1 (en) High Pressure Vessel
JP2013068242A (en) System and method for manufacturing gas tank
JP2013104435A (en) Method for manufacturing resin linear
JP2007010004A (en) Gas cylinder and its manufacturing method
JP2008119839A (en) Laser welding method for resin material and resin component
CN112833324B (en) pressure vessel
US20190160940A1 (en) Filler tube for a fuel tank
KR102645860B1 (en) High pressure storage container and method for manufacturing the same
US20220024145A1 (en) Infrared welding machine
JP2007113590A (en) Pressure container liner and its manufacturing method
CN117662968A (en) Pressure vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R151 Written notification of patent or utility model registration

Ref document number: 4466408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4