Nothing Special   »   [go: up one dir, main page]

JP2006120922A - Photoelectric conversion film laminated type color solid state imaging device - Google Patents

Photoelectric conversion film laminated type color solid state imaging device Download PDF

Info

Publication number
JP2006120922A
JP2006120922A JP2004308277A JP2004308277A JP2006120922A JP 2006120922 A JP2006120922 A JP 2006120922A JP 2004308277 A JP2004308277 A JP 2004308277A JP 2004308277 A JP2004308277 A JP 2004308277A JP 2006120922 A JP2006120922 A JP 2006120922A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
color
signal charge
conversion film
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004308277A
Other languages
Japanese (ja)
Inventor
Nobuo Suzuki
信雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Fujifilm Microdevices Co Ltd
Original Assignee
Fujifilm Microdevices Co Ltd
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Microdevices Co Ltd, Fuji Photo Film Co Ltd filed Critical Fujifilm Microdevices Co Ltd
Priority to JP2004308277A priority Critical patent/JP2006120922A/en
Publication of JP2006120922A publication Critical patent/JP2006120922A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid type photoelectric conversion film laminated type color solid state imaging device having a CCD type signal read-out circuit with good linearity of photoelectric conversion characteristics in a photoelectric conversion film. <P>SOLUTION: The hybrid type photoelectric conversion film laminated type color solid state imaging device includes a first photoelectric conversion element for photodetecting a first color incident light of the three primary colors to generate a signal charge, a second photoelectric conversion element for photodetecting a second color incident light to generate a signal charge, a third color signal charge storage part 131 for accumulating the signal charge according to the light amount of the third color incident light, a semiconductor substrate 120 in which a perpendicular transfer route 124 to which each signal potential is transmitted is formed, a photoelectric conversion film 140 which laminates on the semiconductor substrate 120 to photodetect the third color incident light to generate a signal charge, a vertical interconnection line 147 for connecting the pixel electrode layer 141 by which converting is performed to the photoelectric conversion film 140, and the third color signal charge storage part 131, and a potential barrier part 130 provided between the contact part 128 to the semiconductor substrate 120 of the vertical interconnection line 147, and the third color signal charge storage part 131. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体基板の上に積層した光電変換膜で3原色のうちの1色の入射光を受光し光電変換膜を透過した残り2色の入射光の各々を半導体基板に形成した光電変換素子で受光する光電変換膜積層型カラー固体撮像装置に係り、特に、光電変換膜で受光して得た色信号と光電変換素子で受光して得た色信号との色バランスをとるのが容易な光電変換膜積層型カラー固体撮像装置に関する。   The present invention is a photoelectric conversion film in which incident light of one of the three primary colors is received by a photoelectric conversion film laminated on a semiconductor substrate and the remaining two colors of incident light transmitted through the photoelectric conversion film are formed on the semiconductor substrate. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion film stacked color solid-state imaging device that receives light by an element, and in particular, it is easy to achieve a color balance between a color signal received by a photoelectric conversion film and a color signal received by a photoelectric conversion element The present invention relates to a photoelectric conversion film stacked color solid-state imaging device.

CCD型やCMOS型のイメージセンサに代表される単板式カラー固体撮像装置では、光電変換する画素の配列上に3種または4種の色フィルタをモザイク状に配置している。これにより、各画素から色フィルタに対応した色信号が出力され、これ等の色信号を信号処理することでカラー画像が生成される。   In a single-plate color solid-state imaging device typified by a CCD type or CMOS type image sensor, three or four color filters are arranged in a mosaic pattern on an array of pixels for photoelectric conversion. Thereby, a color signal corresponding to the color filter is output from each pixel, and a color image is generated by performing signal processing on these color signals.

しかし、モザイク状に色フィルタを配列したカラー固体撮像装置は、原色の色フィルタの場合、およそ入射光の2/3が色フィルタで吸収されてしまうため、光利用効率が悪く、感度が低いという問題がある。また、各画素で1色の色信号しか得られないため、解像度も悪く、特に、偽色が目立つという問題もある。   However, in a color solid-state imaging device in which color filters are arranged in a mosaic shape, about 2/3 of incident light is absorbed by the color filter in the case of a primary color filter, the light use efficiency is low and the sensitivity is low. There's a problem. Further, since only one color signal can be obtained for each pixel, the resolution is poor, and in particular, there is a problem that false colors are conspicuous.

そこで、斯かる問題を克服するために、信号読出回路が形成された半導体基板の上に3層の光電変換膜を積層する構造の撮像装置が研究・開発されている(例えば、下記の特許文献1,2)。この撮像装置は、例えば、光入射面から順次、青(B),緑(G),赤(R)の光に対して信号電荷(電子,正孔)を発生する光電変換膜を重ねた画素構造を備え、しかも各画素毎に、各光電変換膜で光発生した信号電荷を独立に読み出すことができる読出部が設けられる。   Therefore, in order to overcome such a problem, an imaging apparatus having a structure in which a three-layer photoelectric conversion film is stacked on a semiconductor substrate on which a signal readout circuit is formed has been researched and developed (for example, the following patent document). 1, 2). In this imaging device, for example, pixels in which a photoelectric conversion film that generates signal charges (electrons, holes) with respect to blue (B), green (G), and red (R) light is sequentially stacked from a light incident surface. A readout unit having a structure and capable of independently reading out signal charges generated by light in each photoelectric conversion film is provided for each pixel.

斯かる構造の撮像装置の場合、入射光が殆ど光電変換されて読み出され、可視光の利用効率は100%に近く、しかも各画素でR,G,Bの3色の色信号が得られるため、高感度で、高解像度(偽色が目立たない)の良好な画像が生成できる。   In the case of an imaging apparatus having such a structure, incident light is almost photoelectrically converted and read out, and the utilization efficiency of visible light is close to 100%, and color signals of three colors of R, G, and B are obtained in each pixel. Therefore, it is possible to generate a good image with high sensitivity and high resolution (false colors are not noticeable).

また、下記特許文献3に記載された撮像装置では、シリコン基板内に光信号を検出する3重のウエル(フォトダイオード)を設け、シリコン基板の深さの違いにより、分光感度の異なる信号(表面からB(青)、G(緑)、R(赤)の波長にピークを持つ)を得るようになっている。これは、入射光のシリコン基板内への侵入距離が波長に依存することを利用している。この撮像装置も、特許文献1,2に記載された撮像装置と同様に、高感度で、高解像度(偽色が目立たない)の良好な画像を得ることができる。   In the imaging apparatus described in Patent Document 3 below, a triple well (photodiode) for detecting an optical signal is provided in a silicon substrate, and signals (surfaces) having different spectral sensitivities due to differences in the depth of the silicon substrate. To B (blue), G (green), and R (red) wavelengths. This utilizes the fact that the penetration distance of incident light into the silicon substrate depends on the wavelength. As with the imaging devices described in Patent Documents 1 and 2, this imaging device can also obtain a good image with high sensitivity and high resolution (false colors are not noticeable).

しかし、特許文献1,2に記載された撮像装置は、3層の光電変換膜を半導体基板の上に順に積層し、且つ、各光電変換膜で発生したR,G,B毎の信号電荷を夫々半導体基板に形成した信号読出回路に接続する縦配線を形成する必要があるが、その製造は難しく、製造歩留まりが低いためコストが嵩んでしまうという問題がある。   However, the imaging devices described in Patent Documents 1 and 2 sequentially stack three layers of photoelectric conversion films on a semiconductor substrate, and the signal charges for R, G, and B generated in each photoelectric conversion film are obtained. Although it is necessary to form vertical wirings connected to the signal readout circuits formed on the respective semiconductor substrates, it is difficult to manufacture and there is a problem that costs increase due to low manufacturing yield.

一方、特許文献3に記載された撮像装置は、青色光は最浅部のフォトダイオード、赤色光は最深部のフォトダイオード、緑色光は中間部のフォトダイオードで検出する構造になっているが、例えば最浅部のフォトダイオードでは緑色光や赤色光によっても光電荷が発生してしまうため、R信号,G信号,B信号の分光感度特性の分離が十分でなく、色再現性が悪いという問題がある。しかも、真のR信号,G信号,B信号を得るために各フォトダイオードからの出力信号を加減算処理する必要があり、この加減算処理により画像信号のS/Nが劣化してしまうという問題もある。   On the other hand, the imaging device described in Patent Document 3 has a structure in which blue light is detected by the shallowest photodiode, red light is detected by the deepest photodiode, and green light is detected by the intermediate photodiode. For example, in the shallowest photodiode, photoelectric charge is generated even by green light or red light, so that the spectral sensitivity characteristics of the R signal, G signal, and B signal are not sufficiently separated and the color reproducibility is poor. There is. In addition, in order to obtain a true R signal, G signal, and B signal, it is necessary to add / subtract the output signal from each photodiode, and the S / N of the image signal deteriorates due to this addition / subtraction process. .

前述した特許文献1,2,3記載の撮像装置の各問題点を改善するものとして、特許文献4記載の撮像装置が提案されている。この撮像装置は、特許文献1,2記載の撮像装置と特許文献3記載の撮像装置のハイブッリド型となっており、その構造は、緑(G)に感度を持つ光電変換膜を1層だけ半導体基板の上に積層し、光電変換膜を透過した青(B)と赤(R)の入射光は、従来のイメージセンサと同様に、半導体基板に形成されたフォトダイオードで受光する構造になっている。   An image pickup apparatus described in Patent Document 4 has been proposed to improve each of the problems of the image pickup apparatuses described in Patent Documents 1, 2, and 3. This imaging device is a hybrid type of the imaging device described in Patent Literatures 1 and 2 and the imaging device described in Patent Literature 3, and the structure thereof is a semiconductor including only one layer of a photoelectric conversion film having sensitivity to green (G). The blue (B) and red (R) incident light that has been stacked on the substrate and transmitted through the photoelectric conversion film is received by a photodiode formed on the semiconductor substrate, as in a conventional image sensor. Yes.

光電変換膜が1層で済むため、製造工程が簡単になり、コストアップや歩留り低下を避けることができる。また、光電変換膜で緑色光が吸収されるため、半導体基板内の青色用と赤色用の各フォトダイオードの分光感度特性の分離は改善され、色再現性が良好になると共に、S/Nも改善されるという利点がある。   Since only one photoelectric conversion film is required, the manufacturing process is simplified, and cost increase and yield reduction can be avoided. In addition, since green light is absorbed by the photoelectric conversion film, the separation of spectral sensitivity characteristics of the blue and red photodiodes in the semiconductor substrate is improved, color reproducibility is improved, and S / N is also improved. There is an advantage that it is improved.

特表2002−502120号公報Special Table 2002-502120 特開2002−83946号公報JP 2002-83946 A 特表2002−513145号公報JP-T-2002-513145 特開2003−332551号公報JP 2003-332551 A

特許文献4に記載されている様なハイブリッド型の撮像装置は、製造コストの低減や、色再現性の向上,S/Nの向上という利点があるが、次の様な別の問題が生じてしまう。   The hybrid type imaging device described in Patent Document 4 has advantages such as a reduction in manufacturing cost, an improvement in color reproducibility, and an improvement in S / N. However, the following another problem occurs. End up.

尚、ハイブリッド型の撮像装置の半導体基板に設けられる信号読出回路としては、CCD型の信号読出回路(電荷転送路及び転送電極等)と、CMOS型の信号読出回路(MOSトランジスタ及び信号配線等)とがあるが、ここでは、CCD型の信号読出回路に限定して説明する。   The signal readout circuit provided on the semiconductor substrate of the hybrid type imaging device includes a CCD type signal readout circuit (charge transfer path and transfer electrode) and a CMOS type signal readout circuit (MOS transistor, signal wiring, etc.). However, here, the description is limited to a CCD signal readout circuit.

特許文献4記載の撮像装置にCCD型の信号読出回路を適用した場合、光電変換膜で成るG画素からの信号電荷と、シリコンの2層のフォトダイオードで成るB画素とR画素からの信号電荷を、先ず、それぞれ垂直CCDレジスタに読み出して転送し、次に、水平CCDレジスタで転送し、出力部から読み出すことになる。このCCD型の信号読出回路は、利得が高く、かつS/Nが良いという利点があるが、CCD型の信号読出回路は、上記のハイブリッド型撮像装置に適用した場合、次の4つの問題を解決する必要が生じる。   When a CCD type signal readout circuit is applied to the image pickup apparatus described in Patent Document 4, signal charges from G pixels made of a photoelectric conversion film, and signal charges from B pixels and R pixels made of two layers of silicon photodiodes. Are first read and transferred to the vertical CCD register, then transferred to the horizontal CCD register and read from the output unit. This CCD type signal readout circuit has the advantages of high gain and good S / N. However, the CCD type signal readout circuit has the following four problems when applied to the above hybrid type imaging device. There is a need to resolve.

(1)光電変換膜のG画素に関して、光電変換特性の直線性が悪いという問題がある。光電変換膜の光電変換特性は、膜内の電界(または、光電変換膜の端子間電圧)により大きく変化する。同じ光強度の光が光電変換膜に入射している場合、常に一定の割合で、信号電荷が蓄積することが望ましい。しかし、信号電荷が光電変換膜内に蓄積すると、膜の端子間電圧が下がり、蓄積される電荷量の割合が減少して行ってしまう。そのため、光強度と出力信号の関係が比例関係からズレ、光電変換特性の直線性が悪くなる。シリコン内のB画素,R画素では斯かる問題は生じないため、B信号,R信号に対してG信号の色バランスをとることが難しくなり、画質が低下してしまう。   (1) Regarding the G pixel of the photoelectric conversion film, there is a problem that the linearity of the photoelectric conversion characteristics is poor. The photoelectric conversion characteristics of the photoelectric conversion film vary greatly depending on the electric field in the film (or the voltage between terminals of the photoelectric conversion film). When light of the same light intensity is incident on the photoelectric conversion film, it is desirable that signal charges always accumulate at a constant rate. However, when the signal charge is accumulated in the photoelectric conversion film, the voltage between the terminals of the film is lowered, and the ratio of the accumulated charge amount is decreased. For this reason, the relationship between the light intensity and the output signal is shifted from the proportional relationship, and the linearity of the photoelectric conversion characteristics is deteriorated. Since such a problem does not occur in the B pixel and R pixel in silicon, it becomes difficult to balance the color of the G signal with respect to the B signal and the R signal, and the image quality is deteriorated.

(2)光電変換膜のG画素に関して、雑音が大きく、かつ、残像が目立つという問題がある。画素電極や縦配線等の部分に大量の電荷(電子等のキャリア)が存在するため、光発生した信号電荷を完全転送モードで垂直CCDに読み出すことが出来ず、不完全転送モードになってしまう。不完全転送モードは、常に固定の電荷が残留するため、kTC雑音や読出パルスの変動による雑音等が信号電荷に重畳され、S/Nが悪くなる。さらに、熱励起効果により信号電荷が小さい状態の電荷転送が非常に遅くなるため、残像が目立つ。   (2) The G pixel of the photoelectric conversion film has a problem that noise is large and an afterimage is conspicuous. Since a large amount of charges (carriers such as electrons) exist in the pixel electrode, vertical wiring, and the like, the signal charges generated by light cannot be read out to the vertical CCD in the complete transfer mode, resulting in an incomplete transfer mode. . In the incomplete transfer mode, a fixed charge always remains, so that kTC noise, noise due to fluctuations in the readout pulse, and the like are superimposed on the signal charge, and the S / N deteriorates. Furthermore, the afterimage is conspicuous because charge transfer in a state where the signal charge is small is very slow due to the thermal excitation effect.

(3)過剰な信号電荷の排出動作や電子シャッタ動作ができないという問題がある。半導体基板表面に近い側の青色を検出するフォトダイオードに対して、縦型オバーフロードレインを設けることが難しいためである。何故ならば、そのフォトダイオードの下側に赤色を検出するフォトダイオードがあるためである。従って、強い光で発生した過剰な電荷の排出動作や電子シャッタ動作のための不要電荷の排出等ができない。   (3) There is a problem that an excessive signal charge discharging operation and an electronic shutter operation cannot be performed. This is because it is difficult to provide a vertical overflow drain for the photodiode that detects blue on the side close to the semiconductor substrate surface. This is because there is a photodiode for detecting red under the photodiode. Accordingly, it is not possible to discharge excessive charges generated by strong light or discharge unnecessary charges for electronic shutter operation.

(4)半導体基板側に深さ方向に設けた2層のフォトダイオードで夫々検出する青色信号と赤色信号の色分離が十分でないという問題がある。光電変換膜を通過した光は、G光が吸収されるためR光とB光のみとなり、2層構造のフォトダイオードに入射する。B光に対する半導体の吸収係数がR光に対する半導体の吸収係数より大きいため、半導体基板表面に近いフォトダイオードはB光に対して相対的に感度が高く、深部のフォトダイオードは相対的にR光に対する感度が高い。G光が無いことにより、特許文献3に比較してRとBの色分離は良くなるが、吸収係数の波長依存性を利用する限り、色分離の改善は十分でない。   (4) There is a problem that the color separation of the blue signal and red signal detected by the two layers of photodiodes provided in the depth direction on the semiconductor substrate side is not sufficient. The light that has passed through the photoelectric conversion film becomes only R light and B light because G light is absorbed, and enters the two-layered photodiode. Since the absorption coefficient of the semiconductor with respect to B light is larger than the absorption coefficient of the semiconductor with respect to R light, the photodiode near the semiconductor substrate surface is relatively sensitive to B light, and the deep photodiode is relatively sensitive to R light. High sensitivity. Due to the absence of G light, the color separation of R and B is improved as compared with Patent Document 3, but the improvement of the color separation is not sufficient as long as the wavelength dependence of the absorption coefficient is utilized.

本発明の第1の目的は、光電変換膜における光電変換特性の直線性が良好なCCD型信号読出回路を持つハイブリッド型の光電変換膜積層型カラー固体撮像装置を提供することにある。   A first object of the present invention is to provide a hybrid type photoelectric conversion film stacked color solid-state imaging device having a CCD type signal readout circuit with good linearity of photoelectric conversion characteristics in a photoelectric conversion film.

本発明の第2の目的は、S/Nが良好で残像が目立たないCCD型信号読出回路を持つハイブリッド型の光電変換膜積層型カラー固体撮像装置を提供することにある。   A second object of the present invention is to provide a hybrid type photoelectric conversion film stacked color solid-state imaging device having a CCD type signal readout circuit in which S / N is good and an afterimage is not conspicuous.

本発明の第3の目的は、強い光で発生した過剰な電荷の排出動作や電子シャッタ動作のための不要電荷の排出などが可能なCCD型信号読出回路を持つハイブリッド型の光電変換膜積層型カラー固体撮像装置を提供することにある。   A third object of the present invention is a hybrid photoelectric conversion film laminated type having a CCD type signal readout circuit capable of discharging an excessive charge generated by strong light and discharging an unnecessary charge for an electronic shutter operation. The object is to provide a color solid-state imaging device.

本発明の第4の目的は、赤色(R)と青色(B)の色分離を改善し良好な色再現性が得られるCCD型信号読出回路を持つハイブリッド型の光電変換膜積層型カラー固体撮像装置を提供することにある。   A fourth object of the present invention is to provide a hybrid type photoelectric conversion film laminated color solid-state image pickup having a CCD type signal readout circuit that improves color separation of red (R) and blue (B) and obtains good color reproducibility. To provide an apparatus.

本発明の光電変換膜積層型カラー固体撮像装置は、3原色のうちの第1色入射光を受光して信号電荷を発生させる第1光電変換素子と第2色入射光を受光して信号電荷を発生させる第2光電変換素子と第3色入射光の光量に応じた信号電荷を蓄積する第3色信号電荷蓄積部と前記各信号電荷を転送する垂直転送路とが形成された半導体基板と、該半導体基板の上に積層され前記第3色入射光を受光して信号電荷を発生させる光電変換膜と、該光電変換膜に被着された画素電極膜と前記第3色信号電荷蓄積部とを接続する縦配線と、該縦配線の前記半導体基板へのコンタクト部と前記第3色信号電荷蓄積部との間に設けた電位障壁部とを備えることを特徴とする。   The photoelectric conversion film laminated color solid-state imaging device of the present invention receives a first photoelectric conversion element that receives first-color incident light of three primary colors and generates a signal charge, and receives second-color incident light to receive a signal charge. A semiconductor substrate on which a second photoelectric conversion element for generating light, a third color signal charge accumulating unit for accumulating signal charges corresponding to the amount of incident light of the third color, and a vertical transfer path for transferring the signal charges are formed. A photoelectric conversion film that is stacked on the semiconductor substrate and receives the third color incident light to generate a signal charge; a pixel electrode film deposited on the photoelectric conversion film; and the third color signal charge storage unit And a potential barrier portion provided between the contact portion of the vertical wire with the semiconductor substrate and the third color signal charge storage portion.

この構成により、光電変換膜で信号電荷が発生し第3色信号電荷蓄積部に信号電荷が蓄積されても、光電変換膜の膜電位は電位障壁部が存在するため一定となり、光電変換膜の光電変換特性の直線性は維持される。このため、第3色と第1色及び第2色との色バランスが崩れることがなくなり、また、膜内などに信号電荷が残留することがなくなるため、雑音などの影響を回避可能となる。   With this configuration, even if signal charges are generated in the photoelectric conversion film and signal charges are stored in the third color signal charge storage part, the film potential of the photoelectric conversion film is constant because of the potential barrier part, and the photoelectric conversion film The linearity of the photoelectric conversion characteristics is maintained. For this reason, the color balance between the third color, the first color, and the second color is not lost, and the signal charge does not remain in the film, so that the influence of noise and the like can be avoided.

本発明の光電変換膜積層型カラー固体撮像装置の前記電位障壁部と前記第3色信号電荷蓄積部とは、導電型の第1の半導体層と、該第1の半導体層の上側に設けられ該第1の半導体層と反対導電型の第2の半導体層と、前記第1の半導体層の下側に設けられ該第1の半導体層と反対導電型の第3の半導体層との3層構造を備え、前記3層構造のうちの前記第1の半導体層の厚みまたは不純物密度が小さく形成された部分を前記電位障壁部にすると共に前記3層構造のうちの前記第1の半導体層の厚みまたは不純物密度が前記電位障壁部より大きく形成された部分を前記第3色信号電荷蓄積部としたことを特徴とする。   The potential barrier portion and the third color signal charge storage portion of the photoelectric conversion film stacked color solid-state imaging device of the present invention are provided on the conductive first semiconductor layer and the first semiconductor layer. Three layers of a second semiconductor layer having a conductivity type opposite to the first semiconductor layer and a third semiconductor layer provided below the first semiconductor layer and having a conductivity type opposite to the first semiconductor layer A portion of the three-layer structure where the thickness or impurity density of the first semiconductor layer is small is used as the potential barrier portion and the first semiconductor layer of the three-layer structure is A portion where the thickness or impurity density is larger than the potential barrier portion is the third color signal charge storage portion.

この構成によっても、第3色の入射光により光電変換膜で発生した光電荷が速やかに第3色信号電荷蓄積部に移動すると共に膜電位が一定に保たれ、光電変換特性の直線性の劣化や、残留電荷による影響が回避される。   Even with this configuration, the photoelectric charge generated in the photoelectric conversion film by the incident light of the third color quickly moves to the third color signal charge storage unit and the film potential is kept constant, and the linearity of the photoelectric conversion characteristics is deteriorated. In addition, the influence of residual charges is avoided.

本発明の光電変換膜積層型カラー固体撮像装置の前記第1光電変換素子と前記第2光電変換素子は、前記半導体基板の深さ方向に積層して設けられていることを特徴とする。   The first photoelectric conversion element and the second photoelectric conversion element of the photoelectric conversion film stacked color solid-state imaging device of the present invention are provided by being stacked in the depth direction of the semiconductor substrate.

この構成により、1つ受光部で第1色,第2色,第3色の3原色の信号を得ることが可能となり、高感度で、偽色が目立たない高解像度の画像を得ることが可能となる。   With this configuration, it is possible to obtain signals of the three primary colors of the first color, the second color, and the third color with one light receiving unit, and it is possible to obtain a high-resolution image with high sensitivity and inconspicuous false colors. It becomes.

本発明の光電変換膜積層型カラー固体撮像装置は、前記第1光電変換素子で発生した信号電荷を蓄積する第1色信号電荷蓄積部を該第1光電変換素子に連設すると共に前記第2光電変換素子で発生した信号電荷を蓄積する第2色信号電荷蓄積部を該第2光電変換素子に連設し、前記第1色信号電荷蓄積部と前記第2色信号電荷蓄積部と前記第3色信号電荷蓄積部の各々に縦型オーバーフロードレインを設けたことを特徴とする。   In the photoelectric conversion film stacked color solid-state imaging device of the present invention, a first color signal charge accumulating unit for accumulating signal charges generated in the first photoelectric conversion element is connected to the first photoelectric conversion element and the second A second color signal charge accumulating unit for accumulating signal charges generated by the photoelectric conversion element is connected to the second photoelectric conversion element, and the first color signal charge accumulating unit, the second color signal charge accumulating unit, and the first color signal charge accumulating unit are connected. A vertical overflow drain is provided in each of the three-color signal charge storage units.

この構成により、信号電荷蓄積部を光電変換素子と別に設けて信号電荷を局所的に蓄積する構成としたため、オーバーフロードレインの製造が容易となり、不要電荷の排出が容易となり、電子シャッタ機能を搭載可能となる。   With this configuration, the signal charge storage unit is provided separately from the photoelectric conversion element, and the signal charge is stored locally. This makes it easy to manufacture the overflow drain, facilitates unnecessary charge discharge, and can be equipped with an electronic shutter function. It becomes.

本発明の光電変換膜積層型カラー固体撮像装置の前記第1光電変換素子と前記第2光電変換素子とは前記半導体基板の表面部に市松状に配列形成され、前記第1光電変換素子の上には前記第1色の入射光を透過すると共に前記第2色の入射光を遮断するカラーフィルタが積層され、前記第2光電変換素子の上には前記第2色の入射光を透過すると共に前記第1色の入射光を遮断するカラーフィルタが積層されていることを特徴とする。   The first photoelectric conversion element and the second photoelectric conversion element of the photoelectric conversion film stacked color solid-state imaging device of the present invention are arranged in a checkered pattern on the surface portion of the semiconductor substrate, and the top of the first photoelectric conversion element. Is stacked with a color filter that transmits the incident light of the first color and blocks the incident light of the second color, and transmits the incident light of the second color on the second photoelectric conversion element. A color filter for blocking incident light of the first color is laminated.

この構成により、第1色と第2色の色分離性能が高くなり、画像の色再現性を高めることが可能となる。   With this configuration, the color separation performance of the first color and the second color is improved, and the color reproducibility of the image can be improved.

本発明の光電変換膜積層型カラー固体撮像装置の前記第3色信号電荷蓄積部と、前記第1光電変換素子と、前記第2光電変換素子には前記半導体基板の深さ方向に縦型オーバーフロードレインが設けられたことを特徴とする。   In the photoelectric conversion film stacked color solid-state imaging device of the present invention, the third color signal charge storage unit, the first photoelectric conversion element, and the second photoelectric conversion element have a vertical overflow in the depth direction of the semiconductor substrate. A drain is provided.

この構成により、不要電荷の排出が容易となり、電子シャッタ機能を搭載可能となる。   With this configuration, unnecessary charges can be easily discharged, and an electronic shutter function can be mounted.

本発明の光電変換膜積層型カラー固体撮像装置は、前記半導体基板の表面側には前記第1光電変換素子と前記第2光電変換素子に入射光を導入する開口を持ち該第1光電変換素子及び第2光電変換素子以外の領域への光入射を遮蔽する光遮蔽膜が設けられていることを特徴とする。   The photoelectric conversion film laminated color solid-state imaging device of the present invention has an opening for introducing incident light to the first photoelectric conversion element and the second photoelectric conversion element on the surface side of the semiconductor substrate. And the light shielding film which shields the light incidence to area | regions other than a 2nd photoelectric conversion element is provided, It is characterized by the above-mentioned.

この構成により、第3信号電荷蓄積部などに光が入射することで起きる混色を回避することが可能となる。   With this configuration, it is possible to avoid color mixing that occurs when light enters the third signal charge storage unit or the like.

本発明の光電変換膜積層型カラー固体撮像装置で、前記第1色は青色であり、前記第2色は赤色であり、前記第3色は緑色であることを特徴とする。   In the photoelectric conversion film stacked color solid-state imaging device of the present invention, the first color is blue, the second color is red, and the third color is green.

この構成により、輝度信号として使用できる緑色の画素数を多くとることができ、高感度、高解像度の画像を得ることが可能となる。   With this configuration, it is possible to increase the number of green pixels that can be used as a luminance signal, and it is possible to obtain an image with high sensitivity and high resolution.

本発明によれば、光電変換膜で構成される画素の信号電荷に対して電位障壁として振舞う電位障壁部を設けたため、蓄積された信号電荷量に関係なく光電変換膜の端子電圧を一定に保つことができ、光電変換特性の直線性の劣化が生じず、色バランスが崩れることがなくなる。また、カラーフィルタを用いて色分離を行うことで色再現性を高めることが可能となる。   According to the present invention, since the potential barrier portion that acts as a potential barrier with respect to the signal charge of the pixel formed of the photoelectric conversion film is provided, the terminal voltage of the photoelectric conversion film is kept constant regardless of the amount of accumulated signal charge. Therefore, the linearity of photoelectric conversion characteristics does not deteriorate, and the color balance is not lost. Also, color reproducibility can be improved by performing color separation using a color filter.

更に、光電変換膜で発生した信号電荷が速やかに信号電荷蓄積部に流れるため、読み出した後の残留電荷が無くなり、S/Nが良好で残像が目立たなくなる。また、オーバーフロードレインが設けられるため、強い光で発生した過剰な電荷の排出動作や電子シャッタ動作のための不要電荷の排出などが可能となる。   Further, since the signal charge generated in the photoelectric conversion film immediately flows to the signal charge storage portion, there is no residual charge after reading, the S / N is good, and the afterimage becomes inconspicuous. In addition, since the overflow drain is provided, it is possible to discharge an excessive charge generated by strong light or discharge an unnecessary charge for an electronic shutter operation.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る光電変換膜積層型カラー固体撮像装置の表面模式図である。光電変換膜積層型カラー固体撮像装置100には、多数の画素セル101が、この例では正方格子状に配列されている。光電変換膜積層型カラー固体撮像装置100の基本セル101の下層部分となる半導体基板の表面には、列方向に並ぶ垂直転送路(列方向CCDレジスタ)102が形成されており、該半導体基板の下辺部には水平転送路(行方向CCレジスタ)103が形成されている。
(First embodiment)
FIG. 1 is a schematic view of the surface of a photoelectric conversion film laminated color solid-state imaging device according to the first embodiment of the present invention. In the photoelectric conversion film stacked color solid-state imaging device 100, a large number of pixel cells 101 are arranged in a square lattice pattern in this example. A vertical transfer path (column direction CCD register) 102 arranged in the column direction is formed on the surface of the semiconductor substrate which is a lower layer portion of the basic cell 101 of the photoelectric conversion film stacked color solid-state imaging device 100. A horizontal transfer path (row direction CC register) 103 is formed on the lower side.

水平転送路103の出口部分には増幅器104が設けられ、各画素セル101で検出された信号電荷は、先ず、垂直転送路102によって水平転送路103まで転送され、次に水平転送路103によって増幅器104まで転送され、増幅器104から出力信号105として出力される。   An amplifier 104 is provided at the exit of the horizontal transfer path 103, and signal charges detected in each pixel cell 101 are first transferred to the horizontal transfer path 103 by the vertical transfer path 102, and then amplified by the horizontal transfer path 103. 104 and is output from the amplifier 104 as an output signal 105.

半導体基板の表面には、垂直転送路102に重ねて設けられた図示しない転送電極に接続された3相の電極端子111,112,113が設けられ、また、後述のオーバーフロードレインに接続されるOFD電極端子118が設けられ、更に、水平転送路103の転送用の2相の電極端子114,115が設けられている。   On the surface of the semiconductor substrate, three-phase electrode terminals 111, 112, 113 connected to transfer electrodes (not shown) provided on the vertical transfer path 102 are provided, and OFD connected to an overflow drain described later. An electrode terminal 118 is provided, and two-phase electrode terminals 114 and 115 for transfer of the horizontal transfer path 103 are further provided.

半導体基板の上層には、後述の光電変換膜が積層される。この光電変換膜は、各画素毎に区分けして形成された画素電極膜と、各画素共通に形成された対向電極膜(共通電極膜)116とに挟まれており、半導体基板には対向電極膜116に所定のバイアス電圧を印加する電極端子117が設けられている。   A photoelectric conversion film described later is stacked on the upper layer of the semiconductor substrate. This photoelectric conversion film is sandwiched between a pixel electrode film formed separately for each pixel and a counter electrode film (common electrode film) 116 formed in common to each pixel. An electrode terminal 117 for applying a predetermined bias voltage to the film 116 is provided.

図1中に示す矩形枠110は、本実施形態における基本セル1個分を示す範囲を示し、1個の画素セル101と、垂直転送路102のうち画素セル101に隣接する部分とを含む領域を基本セル110としている。   A rectangular frame 110 shown in FIG. 1 indicates a range indicating one basic cell in the present embodiment, and includes an area including one pixel cell 101 and a portion adjacent to the pixel cell 101 in the vertical transfer path 102. Is the basic cell 110.

図2は、基本セル110の1個分の範囲の半導体基板表面構造を示す模式図である。半導体基板には、青色光受光部(以下、B画素ともいう。)134と、赤色光受光部(以下、R画素ともいう。)135とが、後述するように、重ねて設けられ、各受光部134,135の上方(光入射光方向:図2の紙面手前側)に、光遮光膜の開口139が重ねて設けられる。   FIG. 2 is a schematic diagram showing the semiconductor substrate surface structure in the range of one basic cell 110. On the semiconductor substrate, a blue light receiving part (hereinafter also referred to as a B pixel) 134 and a red light receiving part (hereinafter also referred to as an R pixel) 135 are provided so as to overlap each other, as will be described later. An opening 139 of the light shielding film is provided so as to overlap above the portions 134 and 135 (light incident light direction: the front side in FIG. 2).

青色光受光部134と赤色光受光部135を構成するn型半導体層は、図1に示す垂直転送路102を構成する埋め込みチャネル124の方向に夫々若干延設され、ここに、青色用の信号電荷蓄積部132と赤色用の信号電荷蓄積部133とが設けられる。   The n-type semiconductor layers constituting the blue light receiving part 134 and the red light receiving part 135 are each slightly extended in the direction of the buried channel 124 constituting the vertical transfer path 102 shown in FIG. A charge storage unit 132 and a red signal charge storage unit 133 are provided.

受光部134,135の、垂直転送路102に沿う方向に隣接する位置には、緑色用の信号電荷蓄積部131が設けられる。この信号電荷蓄積部131は、半導体基板に積層された光電変換膜に光が入射することで発生する光電荷を蓄積する部分となる。光電変換膜に被着された画素電極膜には、後述する様に、縦配線の一端が接続され、この縦配線の他端側は、半導体基板に形成されたn型半導体領域129内のコンタクト用n半導体領域128に接続される。n型半導体領域129と信号電荷蓄積部131とは、n型半導体層で接続されるが、その接続部分に、電位障壁部130が設けられる。 A signal charge storage unit 131 for green is provided at a position adjacent to the light receiving units 134 and 135 in the direction along the vertical transfer path 102. The signal charge accumulating unit 131 is a part for accumulating photoelectric charges generated when light enters the photoelectric conversion film stacked on the semiconductor substrate. As will be described later, one end of the vertical wiring is connected to the pixel electrode film deposited on the photoelectric conversion film, and the other end of the vertical wiring is a contact in the n-type semiconductor region 129 formed on the semiconductor substrate. N + connected to the semiconductor region 128. The n-type semiconductor region 129 and the signal charge storage portion 131 are connected by an n-type semiconductor layer, and a potential barrier portion 130 is provided at the connection portion.

各信号電荷蓄積部131,132,133に対応する転送電極121,122,123が埋め込みチャネル124上に重ねて設けられ、各転送電極121,122,123は、読出電極を兼用するため、その端部は、各信号電荷蓄積部131,132,133の端部位置まで延出形成されている。   Transfer electrodes 121, 122, 123 corresponding to the signal charge storage units 131, 132, 133 are provided on the embedded channel 124, and each transfer electrode 121, 122, 123 also serves as a read electrode, so The portion extends to the end position of each signal charge storage portion 131, 132, 133.

図3は、図2のIII―III線位置における光電変換膜積層型カラー固体撮像装置の断面模式図であり、半導体基板に設けられた緑色用の信号電荷蓄積部131や電位障壁部130等のほかその上層に設けられた光電変換膜等の断面を示している。同様に、図4は、図2のIV―IV線位置における光電変換膜積層型カラー固体撮像装置の断面模式図であり、光電変換膜の他に青色用の信号電荷蓄積部132や受光部134,135等の断面を示している。同様に、図5は、図2のV―V線位置における光電変換膜積層型カラー固体撮像装置の断面模式図であり、光電変換膜の他に赤色用の信号電荷蓄積部133や受光部134,135等の断面を示している。   FIG. 3 is a schematic cross-sectional view of the photoelectric conversion film stacked color solid-state imaging device at the position of the line III-III in FIG. 2, and shows the signal charge storage unit 131 for green, the potential barrier unit 130, etc. provided on the semiconductor substrate. In addition, a cross section of a photoelectric conversion film or the like provided on the upper layer is shown. Similarly, FIG. 4 is a schematic cross-sectional view of the photoelectric conversion film stacked color solid-state imaging device at the position of the IV-IV line in FIG. 2. In addition to the photoelectric conversion film, a blue signal charge storage unit 132 and a light receiving unit 134 are used. , 135 and the like. Similarly, FIG. 5 is a schematic cross-sectional view of the photoelectric conversion film stacked color solid-state imaging device at the position of the VV line in FIG. 2. In addition to the photoelectric conversion film, the signal charge storage unit 133 and the light receiving unit 134 for red are used. , 135 and the like.

n型半導体基板120の表面部分にはpウェル層138が形成され、pウェル層138内の深部には薄い或いは不純物密度が低いn型半導体層135(図5)が形成される。n型半導体層135には半導体基板の表面に達するn型半導体層133が連設される。このn型半導体層133の層厚は厚く形成され、不純物密度もn型半導体層135より高く形成するのが好ましい。   A p-well layer 138 is formed on the surface portion of the n-type semiconductor substrate 120, and a thin or low impurity density n-type semiconductor layer 135 (FIG. 5) is formed deep in the p-well layer 138. An n-type semiconductor layer 133 that reaches the surface of the semiconductor substrate is connected to the n-type semiconductor layer 135. The n-type semiconductor layer 133 is preferably formed to have a large thickness and an impurity density higher than that of the n-type semiconductor layer 135.

n型半導体層135とその上下のpウェル層138との間に形成されるpn接合が赤色光用のフォトダイオードを形成する。このフォトダイオードは、半導体基板の深部に在るため長波長(赤)の光に対して感度が高く、主に赤色光の受光量に応じた信号電荷が発生し、この信号電荷が、信号電荷蓄積部(n型半導体層)133に蓄積される。   A pn junction formed between the n-type semiconductor layer 135 and the upper and lower p-well layers 138 forms a red light photodiode. Since this photodiode is deep in the semiconductor substrate, it is highly sensitive to long-wavelength (red) light, and signal charge is generated mainly according to the amount of received red light. This signal charge is the signal charge. Accumulated in the accumulation unit (n-type semiconductor layer) 133.

pウェル層138は、信号電荷蓄積部133の部分において薄く形成され、この薄い部分138rが、オーバーフロードレインの赤色(R)画素の電位障壁として機能する。   The p well layer 138 is formed thin in the signal charge storage portion 133, and this thin portion 138r functions as a potential barrier for the red (R) pixel of the overflow drain.

pウェル層138内のn型半導体層135に重なる位置の浅部には、n型半導体層135と離間したn型半導体層134が形成される。n型半導体層134は薄く或いは不純物密度が低く形成され、その端部において、層厚の厚いn型半導体層132が形成される。n型半導体層132は、不純物密度もn型半導体層134より高く形成するのが好ましい。   An n-type semiconductor layer 134 that is separated from the n-type semiconductor layer 135 is formed in a shallow portion of the p-well layer 138 that overlaps the n-type semiconductor layer 135. The n-type semiconductor layer 134 is formed thin or has a low impurity density, and an n-type semiconductor layer 132 having a thick layer is formed at the end thereof. The n-type semiconductor layer 132 is preferably formed to have a higher impurity density than the n-type semiconductor layer 134.

n型半導体層134とその下側のpウェル層138との間に形成されるpn接合が青色光用のフォトダイオードを形成する。このフォトダイオードは、半導体基板の浅部に在るため、短波長(青)の光に対して感度が高く、主に青色光の受光量に応じた信号電荷が発生し、この信号電荷が、信号電荷蓄積部(n型半導体層)132に蓄積される。   A pn junction formed between the n-type semiconductor layer 134 and the p-well layer 138 below it forms a blue light photodiode. Since this photodiode is located in the shallow part of the semiconductor substrate, it has high sensitivity to short wavelength (blue) light, and signal charges are generated mainly according to the amount of received blue light. The signal charge is stored in the signal charge storage portion (n-type semiconductor layer) 132.

pウェル層138は、信号電荷蓄積部132の部分において薄く形成され、この薄い部分138bが、オーバーフロードレインの青色(B)画素の電位障壁として機能する。   The p well layer 138 is thinly formed in the signal charge storage portion 132, and the thin portion 138b functions as a potential barrier for the blue (B) pixel of the overflow drain.

半導体基板の最表面部の適宜領域にはp層150が形成され、その上には、全表面に渡ってゲート絶縁膜146が形成される。 A p + layer 150 is formed in an appropriate region of the outermost surface portion of the semiconductor substrate, and a gate insulating film 146 is formed over the entire surface.

図3において、緑色用の信号電荷蓄積部131は、pウェル層138内に形成されたn型半導体層131で構成される。このn型半導体層131は、層厚が厚く形成され、或いは、不純物密度が高く形成され、深い電位井戸が形成される様になっている。   In FIG. 3, the signal charge storage unit 131 for green is composed of an n-type semiconductor layer 131 formed in a p-well layer 138. The n-type semiconductor layer 131 is formed with a thick layer or a high impurity density so that a deep potential well is formed.

pウェル層138は、信号電荷蓄積部131の部分において薄く形成され、この薄い部分138gが、オーバーフロードレインの緑色(G)画素の電位障壁として機能する。   The p-well layer 138 is thinly formed in the signal charge storage portion 131, and this thin portion 138g functions as a potential barrier for the green (G) pixel of the overflow drain.

信号電荷蓄積部131の端部には薄い或いは不純物密度が低いn型半導体層130が連設され、このn型半導体層130の表面部とn型半導体層131の大部分の表面部とがp層150で覆われ、n型半導体層130が電位障壁部として機能する。 An n-type semiconductor layer 130 that is thin or has a low impurity density is connected to the end of the signal charge storage portion 131, and the surface portion of the n-type semiconductor layer 130 and most of the surface portion of the n-type semiconductor layer 131 are p. The n-type semiconductor layer 130 is covered with the + layer 150 and functions as a potential barrier portion.

n型半導体層130の端部には、表面がp層150で覆われないn型半導体層129が連設され、このn型半導体層129内に、n領域128が形成される。n領域128には、ゲート絶縁膜146を通して縦配線147が接続される。 An n-type semiconductor layer 129 whose surface is not covered with the p + layer 150 is connected to the end of the n-type semiconductor layer 130, and an n + region 128 is formed in the n-type semiconductor layer 129. A vertical wiring 147 is connected to the n + region 128 through the gate insulating film 146.

pウェル層138内に形成された垂直転送路を構成する埋め込みチャネル(n型半導体層)124の上には、ゲート絶縁膜146を介して転送電極121(図3),122(図4),123(図5)が設けられる。各転送電極121,122,123は、その端部が、信号電荷蓄積部131,132,133の端部位置まで延出形成される。   On the buried channel (n-type semiconductor layer) 124 constituting the vertical transfer path formed in the p-well layer 138, the transfer electrodes 121 (FIG. 3), 122 (FIG. 4), 123 (FIG. 5) is provided. Each transfer electrode 121, 122, 123 is formed so that the end thereof extends to the end position of the signal charge storage portion 131, 132, 133.

ゲート絶縁膜146及び転送電極121,122,123の上には、透明の絶縁膜144が形成され、その絶縁膜144内に、光遮蔽膜145が形成される。この光遮蔽膜145には、縦配線147を非接触で通す開口137(図3)が設けられると共に、各受光部(前述したフォトダイオード)に光を入射させる開口139(図2,図4,図5)が設けられる。   A transparent insulating film 144 is formed on the gate insulating film 146 and the transfer electrodes 121, 122, and 123, and a light shielding film 145 is formed in the insulating film 144. The light shielding film 145 is provided with an opening 137 (FIG. 3) through which the vertical wiring 147 passes without contact, and an opening 139 (FIGS. 2, 4 and 4) for allowing light to enter each light receiving portion (the photodiode described above). FIG. 5) is provided.

透明の絶縁膜144の上には、透明の絶縁膜143が積層されるが、絶縁膜144,143間には、適宜のアルミ配線が形成されると共に、前記開口137に整合する位置に該開口137より若干広い不透明の金属膜148が形成される。これにより、入射光が開口137を通して半導体基板に達するのが阻止され、混色が避けられる。   A transparent insulating film 143 is laminated on the transparent insulating film 144, and an appropriate aluminum wiring is formed between the insulating films 144 and 143, and the opening is positioned at a position matching the opening 137. An opaque metal film 148 slightly wider than 137 is formed. This prevents incident light from reaching the semiconductor substrate through the opening 137 and avoids color mixing.

透明の絶縁膜143の上には、画素毎に区分けされた画素電極膜141が形成され、各画素電極膜141の上に、光電変換膜140が形成され、その上に、対向電極膜116が形成され、その上に、透明の保護膜142が形成される。画素電極膜141とコンタクト用n領域128とを接続する縦配線は、n領域128と金属膜148とを接続する透明絶縁膜144中に埋設されたタングステンWや銅Cu等の第1縦配線(プラグ)147と、金属膜148と画素電極膜141とを接続する透明絶縁膜143中に埋設されたタングステンWや銅Cu等の第2縦配線(プラグ)149とで構成される。 A pixel electrode film 141 divided for each pixel is formed on the transparent insulating film 143, a photoelectric conversion film 140 is formed on each pixel electrode film 141, and a counter electrode film 116 is formed thereon. The transparent protective film 142 is formed thereon. The vertical wiring that connects the pixel electrode film 141 and the contact n + region 128 is a first vertical wiring such as tungsten W or copper Cu embedded in the transparent insulating film 144 that connects the n + region 128 and the metal film 148. A wiring (plug) 147 and a second vertical wiring (plug) 149 such as tungsten W or copper Cu embedded in a transparent insulating film 143 connecting the metal film 148 and the pixel electrode film 141 are formed.

画素電極膜141と対向電極膜116とは、光学的に透明または光吸収が少ない材料で形成される。例えば、ITO等のような金属化合物や、非常に薄い金属膜等で形成される。   The pixel electrode film 141 and the counter electrode film 116 are formed of a material that is optically transparent or has little light absorption. For example, it is formed of a metal compound such as ITO or a very thin metal film.

光電変換膜140は、主として緑色(G)の波長領域の光に感度を有し、入射光の内の緑色の入射光量に応じた光電荷を発生する。光電変換膜140の構造は、単層膜構造でも多層膜構造でもよく、主に緑に感度がある無機材料(シリコンや化合物半導体、それらのナノ粒子等)、有機半導体材料、有機色素を含む有機材料または無機材料等で形成される。   The photoelectric conversion film 140 is mainly sensitive to light in the green (G) wavelength region, and generates photoelectric charges according to the amount of incident green light in the incident light. The structure of the photoelectric conversion film 140 may be a single layer film structure or a multilayer film structure, and is mainly composed of inorganic materials (silicon, compound semiconductors, nanoparticles thereof, etc.) sensitive to green, organic semiconductor materials, and organic dyes. It is formed of a material or an inorganic material.

尚、上述した基本セルにおけるG画素の中心すなわち画素電極膜141の中心と、B画素の中心すなわちn型半導体層134の中心と、R画素の中心すなわちn型半導体層135の中心と、開口139の中心は、半導体基板120の垂直方向(光入射方向)から見て一致する様に製造するのが望ましい。   In the basic cell, the center of the G pixel, that is, the center of the pixel electrode film 141, the center of the B pixel, that is, the center of the n-type semiconductor layer 134, the center of the R pixel, that is, the center of the n-type semiconductor layer 135, and the opening 139. It is desirable to manufacture so that the centers of these coincide with each other when viewed from the vertical direction (light incident direction) of the semiconductor substrate 120.

また、コンタクト用のn型半導体領域128と、電位障壁部130と、電荷蓄積部131とから成る半導体基板内の部分を総称して「読出部」と呼ぶと、この読出部は、画素中心から垂直方向(列方向)からずれた位置に設けられ、ほぼ、列方向に隣接する2つの開口139の中間位置の光遮蔽膜145に覆われる位置に設けるのが良い。 A portion in the semiconductor substrate composed of the n + type semiconductor region 128 for contact, the potential barrier portion 130, and the charge storage portion 131 is collectively referred to as a “reading portion”. It is preferably provided at a position deviated from the vertical direction (column direction) from the vertical direction and substantially at a position covered by the light shielding film 145 at an intermediate position between two openings 139 adjacent in the column direction.

更にまた、対向電極膜116は、本実施形態では、一枚構成の膜状電極としたが、画素電極膜141と同様に、矩形の電極膜に区分けして設け、各電極膜を共通配線した構成としても良い。   Furthermore, in the present embodiment, the counter electrode film 116 is a single-layer film electrode. However, like the pixel electrode film 141, the counter electrode film 116 is divided into rectangular electrode films, and each electrode film is commonly wired. It is good also as a structure.

以上の様にして構成された本実施形態に係る光電変換膜積層型カラー固体撮像装置に、被写体からの光が入射すると、先ず、入射光のうちの緑色光が光電変換膜140に吸収され、信号電荷が発生する。この信号電荷は、縦配線149,147を通してコンタクト用n領域128に流れ、電位障壁部130を通って信号電荷蓄積部131に蓄積される。 When light from a subject enters the photoelectric conversion film stacked color solid-state imaging device according to the present embodiment configured as described above, first, green light of incident light is absorbed by the photoelectric conversion film 140, A signal charge is generated. This signal charge flows to the contact n + region 128 through the vertical wirings 149 and 147, and is accumulated in the signal charge accumulation unit 131 through the potential barrier unit 130.

入射光のうちの青色光と赤色光は光電変換膜140を透過し、開口139を通して半導体基板に達する。短波長の青色光は、半導体基板表面部分で吸収され、この部分に設けられたフォトダイオードにて信号電荷が発生する。この信号電荷は信号電荷蓄積部132に蓄積される。   Of the incident light, blue light and red light pass through the photoelectric conversion film 140 and reach the semiconductor substrate through the opening 139. Blue light having a short wavelength is absorbed by the surface portion of the semiconductor substrate, and signal charges are generated by the photodiode provided in this portion. This signal charge is stored in the signal charge storage unit 132.

赤色光は半導体基板の深部に達し、深部に設けられたフォトダイオードにより信号電荷が発生する。この信号電荷は、信号電荷蓄積部133に蓄積される。   The red light reaches the deep part of the semiconductor substrate, and signal charges are generated by the photodiode provided in the deep part. This signal charge is stored in the signal charge storage unit 133.

各信号電荷蓄積部131,132,133に蓄積された信号電荷は、転送電極121,122,123に読出電位が印加されると、垂直転送路の埋め込みチャネル124に読み出され、転送電極に転送電位が印加されることで、垂直転送路に沿って図1の水平転送路103まで転送される。垂直転送路(列方向CCD)は、本実施形態では3相駆動CCDであり、3フィールド読出しで、全画面の信号電荷を読み出すことができる。   When the readout potential is applied to the transfer electrodes 121, 122, 123, the signal charges accumulated in the signal charge accumulation units 131, 132, 133 are read out to the buried channel 124 of the vertical transfer path and transferred to the transfer electrodes. By applying the potential, the voltage is transferred along the vertical transfer path to the horizontal transfer path 103 in FIG. The vertical transfer path (column direction CCD) is a three-phase drive CCD in this embodiment, and the signal charges of the entire screen can be read out by three-field reading.

本実施形態に係る光電変換膜積層型カラー固体撮像装置では、光電変換膜140で発生した信号電荷を信号電荷蓄積部131に流し蓄積する途中に、電位障壁部130を設けている。このため、従来の様に電荷が蓄積されるに従って光電変換膜140の膜電位(画素電極膜141の電位)が変化することはなく、膜電位は、蓄積する電荷量に関係なくほぼ電位障壁部の電圧V1に固定される。   In the photoelectric conversion film stacked color solid-state imaging device according to the present embodiment, the potential barrier unit 130 is provided in the middle of flowing and storing the signal charge generated in the photoelectric conversion film 140 to the signal charge storage unit 131. Therefore, the film potential of the photoelectric conversion film 140 (the potential of the pixel electrode film 141) does not change as charges are accumulated as in the conventional case, and the film potential is almost equal to the potential barrier portion regardless of the amount of charges accumulated. The voltage V1 is fixed.

従って、本実施形態に係る光電変換膜積層型カラー固体撮像装置では、光電変換膜140で良好な光電変換特性が得られる膜端子間電圧をV2とすれば、(V1+V2)の電圧を共通電極膜116に印加することで、信号電荷蓄積部131に蓄積される電荷量に関係なく常に良好な光電変換が光電変換膜140で行われ、光電変換膜140への光入射強度と光電変換膜140からの出力信号強度との間の直線性は良くなる。これにより、半導体基板120側に設けたR画素,B画素で検出した赤色信号,青色信号と、光電変換膜140で検出した緑色信号との色バランスが崩れることがなくなり、良好な画像を得ることが可能となる。   Therefore, in the photoelectric conversion film stacked color solid-state imaging device according to the present embodiment, assuming that the voltage between the film terminals at which good photoelectric conversion characteristics can be obtained with the photoelectric conversion film 140 is V2, the voltage of (V1 + V2) is the common electrode film. 116, good photoelectric conversion is always performed in the photoelectric conversion film 140 regardless of the amount of charge accumulated in the signal charge accumulation unit 131, and the light incident intensity on the photoelectric conversion film 140 and the photoelectric conversion film 140 The linearity between the output signal strengths of the two is improved. Thereby, the color balance between the red signal and blue signal detected by the R pixel and B pixel provided on the semiconductor substrate 120 side and the green signal detected by the photoelectric conversion film 140 is not lost, and a good image is obtained. Is possible.

また、本実施形態の光電変換膜積層型カラー固体撮像装置では、縦型オーバーフロードレインを設けているため、強い光で発生した過剰な電荷を信号電荷蓄積部131,132,133から基板120側に排出させる動作や、電子シャッタ動作のための不要電荷の基板120側へ排出が可能となる。このオーバーフロードレインの電圧をその電位障壁がほぼV1以上になるように調整すれば、過剰な光に対しても画素電極膜141の電圧は、ほぼ電圧V1に保持される。   Further, in the photoelectric conversion film stacked color solid-state imaging device of the present embodiment, since the vertical overflow drain is provided, excess charges generated by strong light are transferred from the signal charge storage units 131, 132, 133 to the substrate 120 side. It is possible to discharge unnecessary charges to the substrate 120 side for the discharging operation and the electronic shutter operation. If the voltage of the overflow drain is adjusted so that the potential barrier becomes approximately V1 or more, the voltage of the pixel electrode film 141 is maintained at the voltage V1 even for excessive light.

また、本実施形態では、信号電荷蓄積部131,132,133の電位井戸の大きさは、信号電荷の列方向CCDの読出しが完全転送モードとなるように設計されている。つまり、信号電荷の列方向CCDへの読み出しの時、信号電荷蓄積部に固定の残留電荷が残らない様に信号電荷蓄積部に関わる半導体層の層厚や不純物密度が選ばれる。   In the present embodiment, the size of the potential wells of the signal charge accumulating units 131, 132, and 133 is designed so that reading of the signal charges in the column direction CCD is in the complete transfer mode. That is, when reading out signal charges to the column direction CCD, the layer thickness and impurity density of the semiconductor layer related to the signal charge storage unit are selected so that no fixed residual charge remains in the signal charge storage unit.

従って、本実施形態では、不完全電荷転送で起きるkTC雑音や、読出パルスの電圧変動に起因する雑音や、低信号レベルの残像が無くなる。また、信号電荷蓄積部131,132,133を光遮蔽膜145と金属膜148とで光遮蔽される場所に設けているため、光が信号電荷蓄積部131,132,133に入射することで起きる混色を避けることが可能であり、高画質の画像信号を得ることができる。   Therefore, in the present embodiment, kTC noise caused by incomplete charge transfer, noise due to voltage fluctuation of the readout pulse, and low signal level afterimage are eliminated. In addition, since the signal charge storage units 131, 132, and 133 are provided at locations where light shielding is performed by the light shielding film 145 and the metal film 148, light is incident on the signal charge storage units 131, 132, and 133. It is possible to avoid color mixing and obtain a high-quality image signal.

(第2の実施形態)
図6は、本発明の第2の実施形態に係る光電変換膜積層型カラー固体撮像装置の表面模式図である。前述した第1の実施形態では、半導体基板内に2層のpn接合フォトダイオードを形成し、さらに、オーバーフロードレインを設けた構造とした。これは、2層のpn接合フォトダイオードを形成する製造条件が難しく、製造歩留の低下が避けられず、製造コストが上がる虞がある。また、光吸収係数の波長依存性を利用して2層のpn接合フォトダイオードで青色と赤色の色分離を行う構成のため、青色と赤色の色分離に限界があり、高精度の色再現性が難しいという問題がある。これらの問題の解決を図った実施形態がこの第2の実施形態である。
(Second Embodiment)
FIG. 6 is a schematic view of the surface of a photoelectric conversion film laminated color solid-state imaging device according to the second embodiment of the present invention. In the first embodiment described above, a two-layer pn junction photodiode is formed in a semiconductor substrate, and an overflow drain is further provided. This is because the manufacturing conditions for forming the two-layer pn junction photodiode are difficult, and a decrease in manufacturing yield is unavoidable, which may increase the manufacturing cost. In addition, since the color separation of blue and red is performed with a two-layer pn junction photodiode utilizing the wavelength dependence of the light absorption coefficient, there is a limit to blue and red color separation, and high-precision color reproducibility There is a problem that is difficult. An embodiment which solves these problems is the second embodiment.

図6において、本実施形態に係る光電変換膜積層型カラー固体撮像装置200は、半導体基板にB画素用の受光部201bとR画素用の受光部201rとが形成されると共に、半導体基板の上層にG画素を構成する光電変換膜が積層される点は第1の実施形態と同じであるが、本実施形態では、受光部201b,201rを2層構造として半導体基板の深さ方向に積層するのではなく、半導体基板の表面層に市松配列した点が異なる。   In the photoelectric conversion film stacked color solid-state imaging device 200 according to the present embodiment shown in FIG. 6, a light receiving portion 201b for B pixels and a light receiving portion 201r for R pixels are formed on a semiconductor substrate, and the upper layer of the semiconductor substrate. However, in this embodiment, the light receiving portions 201b and 201r are stacked in the depth direction of the semiconductor substrate in the same manner as in the first embodiment. Instead, the difference is that the checkerboard is arranged on the surface layer of the semiconductor substrate.

また、光電変換膜でG画素毎に発生した緑色光の入射光量に応じた信号電荷を夫々蓄積するG信号電荷蓄積部201gを第1の実施形態と同様に半導体基板に形成するが、本実施形態では、B画素用受光部201bとR画素用受光部201rとが交互に一行に並び、その次の下段のR画素用受光部201rとB画素用受光部201bとが交互に一行に並ぶ各行間に、且つ、B画素用受光部201b,R画素用受光部201rと1/2ピッチづつずれた位置にG信号電荷蓄積部201gを設ける様にしている。即ち、B画素用受光部201b,R画素用受光部201r,G信号電荷蓄積部201gは、半導体基板上に、所謂、ハニカム配列されている。   In addition, the G signal charge accumulating portion 201g for accumulating signal charges corresponding to the incident light quantity of green light generated for each G pixel in the photoelectric conversion film is formed on the semiconductor substrate as in the first embodiment. In the embodiment, the B pixel light receiving portions 201b and the R pixel light receiving portions 201r are alternately arranged in one row, and the next lower R pixel light receiving portions 201r and B pixel light receiving portions 201b are alternately arranged in one row. The G signal charge accumulating unit 201g is provided between the rows and at a position shifted by 1/2 pitch from the B pixel light receiving unit 201b and the R pixel light receiving unit 201r. That is, the B pixel light receiving part 201b, the R pixel light receiving part 201r, and the G signal charge accumulating part 201g are arranged in a so-called honeycomb on the semiconductor substrate.

垂直転送路203は、垂直方向(列方向)にB画素用受光部201b,R画素用受光部201r,G信号電荷蓄積部201gを避けるように蛇行して水平転送路204まで形成される。垂直転送路203は、後述する埋め込みチャネル240(図8,図9)及び列方向CCDの第1相〜第4相転送電極207〜210,転送電極212,213で構成される。各転送電極207〜213には列方向CCDの第1相〜第4相電極端子214〜217が接続され、水平転送路204には第1相,第2相電極端子218,219が接続される。   The vertical transfer path 203 is formed up to the horizontal transfer path 204 meandering in the vertical direction (column direction) so as to avoid the B pixel light receiving section 201b, the R pixel light receiving section 201r, and the G signal charge storage section 201g. The vertical transfer path 203 includes a buried channel 240 (FIGS. 8 and 9) to be described later, first to fourth phase transfer electrodes 207 to 210 and transfer electrodes 212 and 213 of the column direction CCD. The first to fourth phase electrode terminals 214 to 217 of the column direction CCD are connected to the transfer electrodes 207 to 213, and the first phase and second phase electrode terminals 218 and 219 are connected to the horizontal transfer path 204. .

水平転送路204の出口部分には出力用アンプ205が形成され、半導体基板にはオーバーフロードレイン電極端子222が設けられ、また、光電変換膜全面に被着される共通電極膜(対向電極膜)220には共通電極膜220に所定のバイアス電位を印加する電極端子221が接続される。   An output amplifier 205 is formed at the exit of the horizontal transfer path 204, an overflow drain electrode terminal 222 is provided on the semiconductor substrate, and a common electrode film (counter electrode film) 220 is deposited on the entire surface of the photoelectric conversion film. Is connected to an electrode terminal 221 for applying a predetermined bias potential to the common electrode film 220.

被写体からの光が入射することで発生し蓄積されたB信号電荷,R信号電荷,G信号電荷は、夫々、図中の矢印211(読出ゲートを示す)方向に垂直転送路203に読み出され、垂直転送路203を水平転送路204まで転送され、次に水平転送路204を転送され、最後にアンプ205で増幅された後、光電変換膜積層型カラー固体撮像装置200から出力信号206として出力される。   The B signal charge, R signal charge, and G signal charge that are generated and accumulated when light from the subject is incident are read out to the vertical transfer path 203 in the direction of the arrow 211 (showing the readout gate) in the figure, respectively. Then, the vertical transfer path 203 is transferred to the horizontal transfer path 204, then transferred through the horizontal transfer path 204, and finally amplified by the amplifier 205, and then output from the photoelectric conversion film stacked color solid-state imaging device 200 as an output signal 206. Is done.

図7は、図6に示す光電変換膜積層型カラー固体撮像装置の表面の要部拡大模式図である。光電変換膜に被着されG画素毎に区分けして形成された画素電極膜223は、図7で斜め右上にあるR画素用受光部201rまたはB画素用受光部201bの上方(紙面の手前側)且つR画素,B画素を中心として周囲の転送電極を含む広い範囲に設けられ、画素電極膜223の左下隅がG信号電荷蓄積部201g位置まで延出され、この延出部に接続された縦配線が、G信号電荷蓄積部201gに設けられたコンタクト部225に接続される。即ち、本実施形態では、G信号電荷蓄積部201gは、隣接する4つの画素電極膜223の中間位置に設けられる。   FIG. 7 is an enlarged schematic view of the main part of the surface of the photoelectric conversion film stacked color solid-state imaging device shown in FIG. The pixel electrode film 223 deposited on the photoelectric conversion film and divided for each G pixel is above the R pixel light receiving part 201r or the B pixel light receiving part 201b on the upper right side in FIG. ) And provided in a wide range including the surrounding transfer electrodes with the R pixel and the B pixel as the center, and the lower left corner of the pixel electrode film 223 extends to the position of the G signal charge storage portion 201g and is connected to the extension portion. The vertical wiring is connected to a contact portion 225 provided in the G signal charge storage portion 201g. That is, in the present embodiment, the G signal charge storage portion 201g is provided at an intermediate position between the four adjacent pixel electrode films 223.

B画素用受光部201bの上方(紙面の手前側)の画素電極膜223に重ねて青色光を透過し赤色光を遮断するカラーフィルタ224bが設けられ、R画素用受光部201rの上方(紙面の手前側)の画素電極膜223に重ねて赤色光を透過し青色光を遮断するカラーフィルタ224rが設けられる。カラーフィルタ224r,224bが設けられる以外の領域には、入射光が半導体基板に達するのを阻止する光遮蔽膜などが設けられる。   A color filter 224b that transmits blue light and blocks red light is provided over the pixel electrode film 223 above the B pixel light receiving portion 201b (front side of the paper surface), and above the R pixel light receiving portion 201r (on the paper surface). A color filter 224r that transmits red light and blocks blue light is provided over the pixel electrode film 223 on the front side. In a region other than where the color filters 224r and 224b are provided, a light shielding film for preventing incident light from reaching the semiconductor substrate is provided.

図8は、G信号電荷蓄積部201g位置(図7のVIII―VIII線位置)における光電変換膜積層型カラー固体撮像装置の断面模式図であり、図9は、B画素用受光部201b位置(図7のIX―IX線位置)における光電変換膜積層型カラー固体撮像装置の断面模式図である。   FIG. 8 is a schematic cross-sectional view of the photoelectric conversion film stacked color solid-state imaging device at the position of the G signal charge storage unit 201g (the position of the line VIII-VIII in FIG. 7). FIG. FIG. 8 is a schematic cross-sectional view of a photoelectric conversion film stacked color solid-state imaging device at a position IX-IX in FIG. 7.

図8において、n型半導体基板230の表面部にはpウェル層231が設けられ、pウェル層231の表面部には、層厚の厚い或いは不純物密度が高いn型半導体層201gと、これに連設され層厚の薄い或いは不純物密度が低いn型半導体層239と、これらと離間し垂直転送路を構成する埋め込みチャネルとしてのn型半導体層240とが設けられる。n型半導体層201gが、図7に示すG信号電荷蓄積部として機能し、n型半導体層239が電位障壁部として機能する。   In FIG. 8, a p-well layer 231 is provided on the surface portion of an n-type semiconductor substrate 230, and on the surface portion of the p-well layer 231, an n-type semiconductor layer 201g having a thick layer or a high impurity density is provided. An n-type semiconductor layer 239 which is continuously provided and has a thin layer thickness or a low impurity density, and an n-type semiconductor layer 240 as a buried channel which is separated from these and constitutes a vertical transfer path are provided. The n-type semiconductor layer 201g functions as a G signal charge storage portion illustrated in FIG. 7, and the n-type semiconductor layer 239 functions as a potential barrier portion.

n型半導体層201gの表面の大部分とこれに連続するn型半導体層239の一部表面とにはp型半導体層243が設けられ、n型半導体層201gの下側のpウェル層231gは層厚が薄くされ、オーバーフロードレインの電位障壁として機能する様になっている。n型半導体層239のp型半導体層243が形成されていない表面部にはコンタクト用のn型半導体領域225(図7,図8参照)が設けられる。 A p + -type semiconductor layer 243 is provided on most of the surface of the n-type semiconductor layer 201g and a part of the surface of the n-type semiconductor layer 239 continuous thereto, and a p-well layer 231g below the n-type semiconductor layer 201g. The layer thickness is reduced to function as a potential barrier for the overflow drain. An n + type semiconductor region 225 for contact (see FIGS. 7 and 8) is provided on a surface portion of the n type semiconductor layer 239 where the p + type semiconductor layer 243 is not formed.

pウェル層231の最表面はゲート絶縁膜232で被覆され、埋め込みチャネル240を覆う位置のゲート絶縁膜232の上にはn型半導体層201gの端部位置まで延出する読出電極兼用の転送電極209が形成される。ゲート絶縁膜232及び転送電極209の上には透明の絶縁膜233が積層され、この絶縁膜233及びゲート絶縁膜232を貫通してn型半導体領域225に接続される第1縦配線(タングステンWのプラグ等)235が埋設される。また、絶縁膜233内には、入射光が半導体基板表面に達するのを阻止する光遮蔽膜234が埋設される。この光遮蔽膜234には、第1縦配線235を非接触で貫通させる開口241が設けられる。 The uppermost surface of the p-well layer 231 is covered with a gate insulating film 232, and a transfer electrode serving as a readout electrode is extended on the gate insulating film 232 at a position covering the buried channel 240 to the end position of the n-type semiconductor layer 201g. 209 is formed. A transparent insulating film 233 is laminated on the gate insulating film 232 and the transfer electrode 209, and a first vertical wiring (tungsten) that penetrates the insulating film 233 and the gate insulating film 232 and is connected to the n + type semiconductor region 225. 235 is buried. In addition, a light shielding film 234 that blocks incident light from reaching the surface of the semiconductor substrate is embedded in the insulating film 233. The light shielding film 234 is provided with an opening 241 through which the first vertical wiring 235 penetrates in a non-contact manner.

透明の絶縁膜233の上には透明の絶縁膜228が積層されるが、両者間の前記光遮蔽膜234の開口241の上には、この開口241から光が半導体基板側に入射しないように開口241より広い面積の不透明の金属膜236が介挿される。第1縦配線235の端部はこの金属膜236に電気的に接触する。また、絶縁膜228には、一端が金属膜236に接触する第2縦配線(タングステンWのプラグ等)237が埋設され、この第2縦配線237の他端は絶縁膜228の端面で露出する。   A transparent insulating film 228 is laminated on the transparent insulating film 233, but light does not enter the semiconductor substrate side from the opening 241 on the opening 241 of the light shielding film 234 therebetween. An opaque metal film 236 having a larger area than the opening 241 is inserted. The end portion of the first vertical wiring 235 is in electrical contact with the metal film 236. In addition, a second vertical wiring (tungsten W plug or the like) 237 whose one end is in contact with the metal film 236 is embedded in the insulating film 228, and the other end of the second vertical wiring 237 is exposed at the end face of the insulating film 228. .

絶縁膜228の上には、G画素毎に区分けされた画素電極膜223が設けられ、この画素電極膜223のG信号電荷蓄積部201g上方位置まで延出する部分が第2縦配線237の他端面に電気的に接続される。   A pixel electrode film 223 divided for each G pixel is provided on the insulating film 228, and a portion of the pixel electrode film 223 extending up to a position above the G signal charge storage portion 201 g is the second vertical wiring 237. It is electrically connected to the end face.

絶縁膜228及び画素電極膜223の上には、緑色光を受光して光電荷を発生させる光電変換膜226が製膜技術等を用いて積層され、その上に共通電極膜220が被着され、その上に透明の保護膜227が積層される。   On the insulating film 228 and the pixel electrode film 223, a photoelectric conversion film 226 that receives green light and generates photocharges is stacked using a film forming technique or the like, and a common electrode film 220 is deposited thereon. A transparent protective film 227 is laminated thereon.

図9において、n型半導体基板230のpウェル層231の表面部には、n型半導体層(B画素用受光部)201bと、垂直転送路を構成する埋め込みチャネル(n型半導体層)240とが形成され、n型半導体層201bの表面部の大部分にはp型半導体層244が形成される。 In FIG. 9, an n-type semiconductor layer (light receiving portion for B pixel) 201 b and a buried channel (n-type semiconductor layer) 240 constituting a vertical transfer path are formed on the surface portion of the p-well layer 231 of the n-type semiconductor substrate 230. And a p + type semiconductor layer 244 is formed on most of the surface portion of the n type semiconductor layer 201b.

n型半導体層201bとその下のpウェル層231との間に形成されるpn接合が、青色光を受光して光電変換するフォトダイオードを構成する。このn型半導体層201bの下側のpウェル層231bは層厚が薄くされ、オーバーフロードレインの電位障壁として機能する様になっている。   A pn junction formed between the n-type semiconductor layer 201b and the p-well layer 231 below forms a photodiode that receives blue light and performs photoelectric conversion. The p-well layer 231b below the n-type semiconductor layer 201b has a small thickness and functions as a potential barrier for the overflow drain.

pウェル層231の最表面はゲート絶縁膜232で被覆され、埋め込みチャネル240を覆う位置のゲート絶縁膜232の上にはn型半導体層201bの端部位置まで延出する読出電極兼用の転送電極207が形成される。   The uppermost surface of the p-well layer 231 is covered with a gate insulating film 232, and a transfer electrode serving as a readout electrode that extends to the end position of the n-type semiconductor layer 201b on the gate insulating film 232 at a position covering the buried channel 240. 207 is formed.

ゲート絶縁膜232及び転送電極207の上には透明の絶縁膜233が積層され、この絶縁膜233内に、入射光が半導体基板表面に達するのを阻止する光遮蔽膜234が埋設される。この光遮蔽膜234には、B画素用受光部(n型半導体層)201bに光を導入する開口229が設けられている。   A transparent insulating film 233 is laminated on the gate insulating film 232 and the transfer electrode 207, and a light shielding film 234 for blocking incident light from reaching the surface of the semiconductor substrate is embedded in the insulating film 233. The light shielding film 234 is provided with an opening 229 for introducing light into the B pixel light receiving portion (n-type semiconductor layer) 201b.

透明の絶縁膜233の上には、青色光を透過し赤色光を遮断するカラーフィルタ224bが積層され、その上に、G画素用の画素電極膜223が積層され、その上に光電変換膜226が積層され、その上に、共通電極膜220が積層され、その上に、透明の保護膜227が積層される。   A color filter 224b that transmits blue light and blocks red light is stacked on the transparent insulating film 233, and a pixel electrode film 223 for G pixel is stacked thereon, and a photoelectric conversion film 226 is stacked thereon. Are stacked, a common electrode film 220 is stacked thereon, and a transparent protective film 227 is stacked thereon.

本実施形態では、G画素を構成する画素電極膜223の中心位置と、B画素(またはR画素)の中心位置と、開口229の中心位置とが光入射方向にほぼ一致するように製造される。   In the present embodiment, the center position of the pixel electrode film 223 constituting the G pixel, the center position of the B pixel (or R pixel), and the center position of the opening 229 are manufactured so as to substantially coincide with the light incident direction. .

尚、上述した光電変換膜226や電極膜等の材料としては、前述した第1の実施形態と同様のものを用いる。また、R画素の断面模式図の図示は省略したが、R画素においては、図9のカラーフィルタ224bに変えて、赤色光を透過し青色光を遮断するカラーフィルタ224r(図7参照)を用いる点のみがB画素の構造と異なるだけである。   In addition, as the materials for the photoelectric conversion film 226 and the electrode film described above, the same materials as those in the first embodiment described above are used. Although the schematic cross-sectional view of the R pixel is omitted, in the R pixel, a color filter 224r (see FIG. 7) that transmits red light and blocks blue light is used instead of the color filter 224b in FIG. Only the point is different from the structure of the B pixel.

本実施形態に係る光電変換膜積層型カラー固体撮像装置200に被写体からの光が入射すると、入射光のうちの緑色光が光電変換膜226で光電変換され、信号電荷が画素電極膜223から縦配線237,235,コンタクト部225,n型半導体層(電位障壁部)239,n型半導体層201gと流れ、このn型半導体層201gに緑色用の信号電荷が蓄積される。   When light from a subject enters the photoelectric conversion film stacked color solid-state imaging device 200 according to the present embodiment, green light in the incident light is photoelectrically converted by the photoelectric conversion film 226, and signal charges are vertically transferred from the pixel electrode film 223. The wiring 237, 235, the contact part 225, the n-type semiconductor layer (potential barrier part) 239, and the n-type semiconductor layer 201g flow, and the signal charge for green is accumulated in the n-type semiconductor layer 201g.

入射光のうちの赤色光と青色光は光電変換膜226を透過するが、光遮蔽膜234の開口229以外では遮光され、半導体基板の表面には達しない。R画素受光部201rの開口229を通る光は、その上に青色光を遮断するカラーフィルタが設けられているため、赤色光成分だけがR画素受光部(n型半導体層)201rに入射して光電荷が発生する。この赤色光の受光量に応じた信号電荷がn型半導体層201rに蓄積される。   Of the incident light, red light and blue light pass through the photoelectric conversion film 226, but are shielded except for the openings 229 of the light shielding film 234 and do not reach the surface of the semiconductor substrate. Since a color filter that blocks blue light is provided on the light passing through the opening 229 of the R pixel light receiving unit 201r, only the red light component is incident on the R pixel light receiving unit (n-type semiconductor layer) 201r. Photo charge is generated. A signal charge corresponding to the amount of received red light is accumulated in the n-type semiconductor layer 201r.

B画素受光部201bの開口229を通る光は、その上に赤色光を遮断するカラーフィルタが設けられているため、青色光成分だけがB画素受光部(n型半導体層)201bに入射して光電荷が発生する。この青色光の受光量に応じた信号電荷がn型半導体層201bに蓄積される。   The light passing through the aperture 229 of the B pixel light receiving unit 201b is provided with a color filter that blocks red light, so that only the blue light component is incident on the B pixel light receiving unit (n-type semiconductor layer) 201b. Photo charge is generated. A signal charge corresponding to the amount of received blue light is accumulated in the n-type semiconductor layer 201b.

その後は、垂直転送路(列方向CCD)の読出電極兼用の転送電極に読出パルス(高い正電圧パルス)が印加されて各画素の信号電荷が垂直転送路に読み出され、転送電極に転送パルスが印加されることで、垂直転送路に沿って信号電荷が転送され、水平転送路に沿って転送されることで、固体撮像装置200から画像信号として出力される。   Thereafter, a read pulse (high positive voltage pulse) is applied to the transfer electrode serving as the read electrode of the vertical transfer path (column direction CCD), the signal charge of each pixel is read to the vertical transfer path, and the transfer pulse is transferred to the transfer electrode. Is applied, the signal charge is transferred along the vertical transfer path, and is transferred along the horizontal transfer path to be output as an image signal from the solid-state imaging device 200.

本実施形態でも、光電変換膜226で発生した信号電荷は、電位障壁部239を通ってから信号電荷蓄積部(n型半導体層)201gに蓄積されるため、光電変換膜226の膜電位すなわちG画素の画素電極膜223の電位は電位障壁部239の電位に保持される。これにより、信号電荷の蓄積に従って膜電位が低下することはなくなり、光電変換特性の直線性が維持され、赤色信号や青色信号との色バランスが崩れることがなくなる。   Also in this embodiment, since the signal charge generated in the photoelectric conversion film 226 passes through the potential barrier section 239 and is stored in the signal charge storage section (n-type semiconductor layer) 201g, the film potential of the photoelectric conversion film 226, that is, G The potential of the pixel electrode film 223 of the pixel is held at the potential of the potential barrier portion 239. As a result, the membrane potential does not decrease as the signal charge is accumulated, the linearity of the photoelectric conversion characteristics is maintained, and the color balance with the red signal and the blue signal is not lost.

また、本実施形態では、青色光がカラーフィルタ224rで遮断された後の赤色光のみがR画素用受光部201rに入射し、赤色光がカラーフィルタ224bで遮断された後の青色光のみがB画素用受光部201bに入射するため、色分離性能が高く、従って、色再現性が向上する。   In the present embodiment, only the red light after the blue light is blocked by the color filter 224r is incident on the R pixel light receiving portion 201r, and only the blue light after the red light is blocked by the color filter 224b is B. Since the light is incident on the pixel light receiving portion 201b, the color separation performance is high, and thus the color reproducibility is improved.

更に、本実施形態では、第1の実施形態と同様に、雑音,電子シャッタ等の利点を得ることができると共に、半導体基板に設けるR画素用受光部とB画素用受光部とを深さ方向に2層構造で設けることはしていないため、第1の実施形態と比較して製造歩留まりが向上し、製造コストが低減される。   Further, in the present embodiment, similar to the first embodiment, advantages such as noise and electronic shutter can be obtained, and the R pixel light receiving portion and the B pixel light receiving portion provided on the semiconductor substrate are arranged in the depth direction. Therefore, the manufacturing yield is improved and the manufacturing cost is reduced as compared with the first embodiment.

尚、本実施形態では、垂直転送路(列方向CCD)を4相駆動CCDとしたが、6相駆動などの他の方式のCCDでもよいことはいうまでもない。また、集光効率を上げるために、マイクロレンズを開口229の上に設けても良く、これにより、感度(特にB画素とR画素)が高くなる。   In the present embodiment, the vertical transfer path (column direction CCD) is a four-phase drive CCD, but it goes without saying that another type of CCD such as a six-phase drive may be used. In addition, in order to increase the light collection efficiency, a microlens may be provided on the opening 229, which increases the sensitivity (particularly the B pixel and the R pixel).

更にまた、本実施形態では、光学的なカラーフィルタを画素電極膜と半導体基板との間に設けたが、共通電極膜の上面に設けてもよい。この場合、光電変換膜226に緑色(G)光が届く必要があるため、B画素に対しては、青色(B)光と緑色(G)光を透過する光学フィルタを、R画素に対しては、赤色(R)光と緑色(G)光を透過するフィルタを設ける。   Furthermore, in this embodiment, the optical color filter is provided between the pixel electrode film and the semiconductor substrate, but may be provided on the upper surface of the common electrode film. In this case, since green (G) light needs to reach the photoelectric conversion film 226, an optical filter that transmits blue (B) light and green (G) light is provided for the R pixel. Provides a filter that transmits red (R) light and green (G) light.

更にまた、本実施形態では、G信号数がR信号数とB信号数の2倍になる。この方式は、高解像度の画像を得ることが可能になるが、信号処理が複雑となる。そこで、隣接するB画素とR画素の位置にある画素電極膜を共通に配線して、G画素信号を2画素分加算して読み出す方式としても良い。これにより、R,G,Bの各信号が同数となり、信号処理が簡単になる。   Furthermore, in this embodiment, the number of G signals is twice the number of R signals and the number of B signals. This method makes it possible to obtain a high-resolution image, but the signal processing becomes complicated. Therefore, a pixel electrode film at the position of the adjacent B pixel and R pixel may be wired in common, and a G pixel signal may be added and read by two pixels. As a result, the R, G, and B signals are the same in number, and signal processing is simplified.

更にまた、本実施形態では、G画素電極膜の中心と開口229の中心とを一致させるようにR,G,B画素を配置したが、G画素電極膜の中心を隣接する開口229の中間位置に配列しG画素をR画素,B画素からずらすことで、サンプル点が増え、高解像度の画像を得ることが可能になる。   Furthermore, in this embodiment, the R, G, and B pixels are arranged so that the center of the G pixel electrode film and the center of the opening 229 coincide with each other. However, the center position of the G pixel electrode film is an intermediate position between adjacent openings 229. By shifting the G pixel from the R pixel and the B pixel, the number of sample points increases, and a high-resolution image can be obtained.

以上述べた様に、上記の各実施形態によれば、画素電極と対向電極とによって挟まれた光電変換膜226で構成されるG画素において、画素電極側に、信号電荷に対して電位障壁として振舞う電位障壁部と、光発生した信号電荷を蓄積する信号電荷蓄積部を設けたため、蓄積される信号電荷量に関係なく光電変換膜には一定の端子電圧(膜内部として一定の平均電界)が保たれ、光電変換膜内で発生した信号電荷は膜内からG信号電荷蓄積部に速やかに移動する。そのため、光電変換特性の直線性の劣化がなくなる。更に、G信号電荷蓄積部の電位井戸の大きさは、信号電荷が完全転送できるように選ばれているため、kTC雑音や読出しパルスの変動による雑音等が信号電荷に重畳されることは無く、低信号レベルの残像も目立たなくなる。   As described above, according to each of the above embodiments, in the G pixel composed of the photoelectric conversion film 226 sandwiched between the pixel electrode and the counter electrode, the pixel electrode side has a potential barrier against the signal charge. Since a potential barrier section that behaves and a signal charge storage section that stores light-generated signal charges are provided, a constant terminal voltage (a constant average electric field inside the film) is applied to the photoelectric conversion film regardless of the amount of signal charges accumulated. The signal charge generated in the photoelectric conversion film is quickly moved from the film to the G signal charge accumulation portion. Therefore, the deterioration of the linearity of the photoelectric conversion characteristics is eliminated. Furthermore, since the size of the potential well of the G signal charge storage unit is selected so that the signal charge can be completely transferred, kTC noise, noise due to fluctuations in the readout pulse, and the like are not superimposed on the signal charge. Even afterimages with low signal levels become inconspicuous.

また、半導体基板内に2層構造のB画素とR画素を形成した場合、夫々に設ける読出ゲートに近い位置に深い電位井戸となるB信号電荷蓄積部とR信号電荷蓄積部を設け、且つ、R,G,Bの各信号電荷蓄積部の下(半導体基板深さ方向)に縦型オーバーフロードレインを設けることにより、各画素の信号電荷はR,G,Bの各信号電荷蓄積部に蓄積され、縦型オーバーフロードレインにより各画素の信号電荷を排出することができるようになる。従って、強い光で発生した過剰な電荷の排出動作や電子シャッタ動作のための不要電荷の排出などが可能となる。   Further, when a B pixel and an R pixel having a two-layer structure are formed in a semiconductor substrate, a B signal charge accumulation portion and an R signal charge accumulation portion, which are deep potential wells, are provided at positions close to the readout gates provided respectively, and By providing a vertical overflow drain under the R, G, and B signal charge storage portions (in the depth direction of the semiconductor substrate), the signal charge of each pixel is stored in the R, G, and B signal charge storage portions. The signal charge of each pixel can be discharged by the vertical overflow drain. Accordingly, it is possible to discharge an excessive charge generated by strong light or discharge an unnecessary charge for an electronic shutter operation.

更に、半導体基板内にB画素とR画素を1層のフォトダイオード構造(従来のオーバーフロードレイン付のフォトダイオードと同じ)で形成すると共に同一層にG信号電荷蓄積部を設け且つこの下(半導体基板深さ方向)にも縦型オーバーフロードレインを設けることより、強い光で発生した過剰な電荷の排出動作や電子シヤッタ動作のための不要電荷の排出などが可能となる。この場合、B画素とR画素の分光感度特性がそれぞれ所望特性となるように入射光路上に異なる特性の光学フィルタを市松状に配置することにより、RとBの色分離が良くなり、色再現性が良好になる。   Further, a B pixel and an R pixel are formed in a semiconductor substrate with a single layer photodiode structure (same as a conventional photodiode with an overflow drain), and a G signal charge storage portion is provided in the same layer and below (semiconductor substrate). By providing a vertical overflow drain also in the depth direction), it is possible to discharge excess charges generated by strong light or discharge unnecessary charges for electronic shutter operation. In this case, R and B color separation is improved and color reproduction is performed by arranging optical filters having different characteristics on the incident optical path so that the spectral sensitivity characteristics of the B pixel and the R pixel become desired characteristics, respectively. Good.

本発明に係る光電変換膜積層型カラー固体撮像装置は、製造が容易で製造歩留まりが高くなるため、従来のCCD型やCMOS型のイメージセンサに代わるカラー固体撮像装置として有用である。   The photoelectric conversion film laminated color solid-state imaging device according to the present invention is useful as a color solid-state imaging device that replaces a conventional CCD type or CMOS type image sensor because it is easy to manufacture and has a high manufacturing yield.

本発明の第1の実施形態に係る光電変換膜積層型カラー固体撮像装置の表面模式図である。It is a surface schematic diagram of the photoelectric conversion film lamination type color solid-state imaging device concerning a 1st embodiment of the present invention. 図1に示す基本セル110部分の範囲の半導体基板表面構造を示す模式図である。It is a schematic diagram which shows the semiconductor substrate surface structure of the range of the basic cell 110 part shown in FIG. 図2のIII―III線断面模式図である。FIG. 3 is a schematic sectional view taken along line III-III in FIG. 2. 図2のIV―IV線断面模式図である。FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. 2. 図2のV―V線断面模式図である。FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 2. 本発明の第2の実施形態に係る光電変換膜積層型カラー固体撮像装置の表面模式図である。It is a surface schematic diagram of the photoelectric conversion film laminated | stacked color solid-state imaging device which concerns on the 2nd Embodiment of this invention. 図6に示す光電変換膜積層型カラー固体撮像装置の表面の要部拡大模式図である。FIG. 7 is an enlarged schematic view of the main part of the surface of the photoelectric conversion film stacked color solid-state imaging device shown in FIG. 6. 図7のVIII―VIII線断面模式図である。FIG. 8 is a schematic cross-sectional view taken along line VIII-VIII in FIG. 7. 図7のIX―IX線断面模式図である。FIG. 8 is a schematic cross-sectional view taken along line IX-IX in FIG. 7.

符号の説明Explanation of symbols

100,200 光電変換膜積層型カラー固体撮像装置
101 受光部
102,203 垂直転送路(列方向CCD)
103,204 水平転送路(行方向CCD)
110 基本セル
116,220 共通電極膜(対向電極膜)
118,222 オーバーフロードレイン(OFD)電極端子
120 n型半導体基板
121,122,123 転送電極
124 垂直転送路の埋め込みチャネル
125,126,127 読出ゲート
128 コンタクト用n領域
130,239 電位障壁部
131,201g G信号電荷蓄積部
132 B信号電荷蓄積部
133 R信号電荷蓄積部
134 B画素用受光部(n型半導体層)
135 R画素用受光部(n型半導体層)
138 pウェル層
137,139,229,241 開口
140 光電変換膜
141,223 G画素用画素電極膜
145,234 光遮蔽膜
147,149, 縦配線
148,236 光遮蔽機能を持つ不透明電極膜
201r R画素用受光部
201b B画素用受光部
224r,224b カラーフィルタ
225 コンタクト用n領域
138r,138g,138b,231g,231b 縦型オーバーフロードレイン用電位障壁
100, 200 Photoelectric conversion film stacked color solid-state imaging device 101 Light receiving unit 102, 203 Vertical transfer path (column CCD)
103,204 Horizontal transfer path (row direction CCD)
110 Basic cells 116, 220 Common electrode film (counter electrode film)
118, 222 Overflow drain (OFD) electrode terminal 120 n-type semiconductor substrate 121, 122, 123 Transfer electrode 124 Embedded channel 125, 126, 127 in vertical transfer path Read gate 128 Contact n + region 130, 239 Potential barrier 131, 201 g G signal charge storage section 132 B signal charge storage section 133 R signal charge storage section 134 B pixel light receiving section (n-type semiconductor layer)
135 R pixel light receiving part (n-type semiconductor layer)
138 P well layers 137, 139, 229, 241 Openings 140 Photoelectric conversion films 141, 223 G pixel pixel electrode films 145, 234 Light shielding films 147, 149, Vertical wirings 148, 236 Opaque electrode film 201r R having a light shielding function Pixel light receiving portion 201b B pixel light receiving portions 224r, 224b Color filter 225 Contact n + regions 138r, 138g, 138b, 231g, 231b Vertical overflow drain potential barrier

Claims (8)

3原色のうちの第1色入射光を受光して信号電荷を発生させる第1光電変換素子と第2色入射光を受光して信号電荷を発生させる第2光電変換素子と第3色入射光の光量に応じた信号電荷を蓄積する第3色信号電荷蓄積部と前記各信号電荷を転送する垂直転送路とが形成された半導体基板と、該半導体基板の上に積層され前記第3色入射光を受光して信号電荷を発生させる光電変換膜と、該光電変換膜に被着された画素電極膜と前記第3色信号電荷蓄積部とを接続する縦配線と、該縦配線の前記半導体基板へのコンタクト部と前記第3色信号電荷蓄積部との間に設けた電位障壁部とを備えることを特徴とする光電変換膜積層型カラー固体撮像装置。   The first photoelectric conversion element that receives the first color incident light of the three primary colors and generates a signal charge, the second photoelectric conversion element that receives the second color incident light and generates the signal charge, and the third color incident light. A semiconductor substrate on which a third color signal charge accumulating unit for accumulating signal charges according to the amount of light and a vertical transfer path for transferring each signal charge are formed, and the third color incident is laminated on the semiconductor substrate. A photoelectric conversion film that receives light to generate a signal charge; a vertical wiring that connects the pixel electrode film deposited on the photoelectric conversion film and the third color signal charge storage unit; and the semiconductor of the vertical wiring A photoelectric conversion film stacked color solid-state imaging device, comprising: a potential barrier portion provided between a contact portion to a substrate and the third color signal charge storage portion. 前記電位障壁部と前記第3色信号電荷蓄積部とは、導電型の第1の半導体層と、該第1の半導体層の上側に設けられ該第1の半導体層と反対導電型の第2の半導体層と、前記第1の半導体層の下側に設けられ該第1の半導体層と反対導電型の第3の半導体層との3層構造を備え、前記3層構造のうちの前記第1の半導体層の厚みまたは不純物密度が小さく形成された部分を前記電位障壁部にすると共に前記3層構造のうちの前記第1の半導体層の厚みまたは不純物密度が前記電位障壁部より大きく形成された部分を前記第3色信号電荷蓄積部としたことを特徴とする請求項1に記載の光電変換膜積層型カラー固体撮像装置。   The potential barrier section and the third color signal charge storage section are provided with a first semiconductor layer having a conductivity type, and a second semiconductor layer having a conductivity type opposite to the first semiconductor layer, provided on the upper side of the first semiconductor layer. A three-layer structure of a first semiconductor layer and a third semiconductor layer having a conductivity type opposite to that of the first semiconductor layer, wherein the first of the three-layer structures is provided. A portion where the thickness or impurity density of one semiconductor layer is small is used as the potential barrier portion, and the thickness or impurity density of the first semiconductor layer of the three-layer structure is formed larger than the potential barrier portion. 2. The photoelectric conversion film laminated color solid-state imaging device according to claim 1, wherein the third color signal charge storage unit is used as the third color signal charge storage unit. 前記第1光電変換素子と前記第2光電変換素子は、前記半導体基板の深さ方向に積層して設けられていることを特徴とする請求項1または請求項2に記載の光電変換膜積層型カラー固体撮像装置。   3. The photoelectric conversion film stacked type according to claim 1, wherein the first photoelectric conversion element and the second photoelectric conversion element are stacked in the depth direction of the semiconductor substrate. Color solid-state imaging device. 前記第1光電変換素子で発生した信号電荷を蓄積する第1色信号電荷蓄積部を該第1光電変換素子に連設すると共に前記第2光電変換素子で発生した信号電荷を蓄積する第2色信号電荷蓄積部を該第2光電変換素子に連設し、前記第1色信号電荷蓄積部と前記第2色信号電荷蓄積部と前記第3色信号電荷蓄積部の各々に縦型オーバーフロードレインを設けたことを特徴とする請求項3に記載の光電変換膜積層型カラー固体撮像装置。   A first color signal charge accumulating unit for accumulating signal charges generated by the first photoelectric conversion element is connected to the first photoelectric conversion element, and a second color for accumulating signal charges generated by the second photoelectric conversion element. A signal charge storage unit is connected to the second photoelectric conversion element, and a vertical overflow drain is provided in each of the first color signal charge storage unit, the second color signal charge storage unit, and the third color signal charge storage unit. The photoelectric conversion film laminated color solid-state imaging device according to claim 3, wherein the photoelectric conversion film stacking type color solid-state imaging device is provided. 前記第1光電変換素子と前記第2光電変換素子とは前記半導体基板の表面部に市松状に配列形成され、前記第1光電変換素子の上には前記第1色の入射光を透過すると共に前記第2色の入射光を遮断するカラーフィルタが積層され、前記第2光電変換素子の上には前記第2色の入射光を透過すると共に前記第1色の入射光を遮断するカラーフィルタが積層されていることを特徴とする請求項1または請求項2に記載の光電変換膜積層型カラー固体撮像装置。   The first photoelectric conversion element and the second photoelectric conversion element are arranged in a checkered pattern on the surface portion of the semiconductor substrate, and transmit incident light of the first color on the first photoelectric conversion element. A color filter that blocks the incident light of the second color is laminated, and a color filter that transmits the incident light of the second color and blocks the incident light of the first color is stacked on the second photoelectric conversion element. The photoelectric conversion film stacked color solid-state imaging device according to claim 1, wherein the photoelectric conversion film stacked color solid-state imaging device is stacked. 前記第3色信号電荷蓄積部と、前記第1光電変換素子と、前記第2光電変換素子には前記半導体基板の深さ方向に縦型オーバーフロードレインが設けられたことを特徴とする請求項5に記載の光電変換膜積層型カラー固体撮像装置。   6. The vertical overflow drain is provided in the depth direction of the semiconductor substrate in the third color signal charge storage unit, the first photoelectric conversion element, and the second photoelectric conversion element. 2. A photoelectric conversion film laminated color solid-state imaging device according to 1. 前記半導体基板の表面側には前記第1光電変換素子と前記第2光電変換素子に入射光を導入する開口を持ち該第1光電変換素子及び第2光電変換素子以外の領域への光入射を遮蔽する光遮蔽膜が設けられていることを特徴とする請求項1乃至請求項6のいずれかに記載の光電変換膜積層型カラー固体撮像装置。   An opening for introducing incident light into the first photoelectric conversion element and the second photoelectric conversion element is provided on the surface side of the semiconductor substrate so that light is incident on a region other than the first photoelectric conversion element and the second photoelectric conversion element. 7. The photoelectric conversion film laminated color solid-state imaging device according to claim 1, further comprising a light shielding film for shielding. 前記第1色は青色であり、前記第2色は赤色であり、前記第3色は緑色であることを特徴とする請求項1乃至請求項7のいずれかに記載の光電変換膜積層型カラー固体撮像装置。   8. The photoelectric conversion film stacked color according to claim 1, wherein the first color is blue, the second color is red, and the third color is green. 9. Solid-state imaging device.
JP2004308277A 2004-10-22 2004-10-22 Photoelectric conversion film laminated type color solid state imaging device Pending JP2006120922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308277A JP2006120922A (en) 2004-10-22 2004-10-22 Photoelectric conversion film laminated type color solid state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308277A JP2006120922A (en) 2004-10-22 2004-10-22 Photoelectric conversion film laminated type color solid state imaging device

Publications (1)

Publication Number Publication Date
JP2006120922A true JP2006120922A (en) 2006-05-11

Family

ID=36538505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308277A Pending JP2006120922A (en) 2004-10-22 2004-10-22 Photoelectric conversion film laminated type color solid state imaging device

Country Status (1)

Country Link
JP (1) JP2006120922A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329554A (en) * 2006-06-06 2007-12-20 Fujifilm Corp Photoelectric conversion film lamination type solid-state imaging element
JP2007336282A (en) * 2006-06-15 2007-12-27 Fujifilm Corp Photoelectric conversion film laminated color solid-state image pickup device
JP2008203544A (en) * 2007-02-20 2008-09-04 Toppan Printing Co Ltd Filter for optical sensor and optical sensor
JP2009027063A (en) * 2007-07-23 2009-02-05 Fujifilm Corp Solid-state image sensor and method of manufacturing the same
JP2009065161A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009130239A (en) * 2007-11-27 2009-06-11 Nippon Hoso Kyokai <Nhk> Color imaging device
JP2009164603A (en) * 2007-12-28 2009-07-23 Dongbu Hitek Co Ltd Image sensor and manufacturing method therefor
JP2009188380A (en) * 2007-12-28 2009-08-20 Dongbu Hitek Co Ltd Image sensor and method for manufacturing the same
JP2010067829A (en) * 2008-09-11 2010-03-25 Fujifilm Corp Solid-state imaging device and imaging apparatus
JP2010114323A (en) * 2008-11-07 2010-05-20 Sony Corp Solid-state imaging device, and electronic apparatus
WO2010137269A1 (en) * 2009-05-26 2010-12-02 パナソニック株式会社 Solid-state image pickup device
EP2337075A2 (en) 2009-12-21 2011-06-22 Sony Corporation Solid-state imaging apparatus, method of fabrication and driving method
JP2011228621A (en) * 2010-03-31 2011-11-10 Fujifilm Corp Solid-state image sensor and imaging apparatus
US8138103B2 (en) 2006-05-31 2012-03-20 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
WO2012176390A1 (en) * 2011-06-23 2012-12-27 パナソニック株式会社 Solid-state imaging device
WO2013021577A1 (en) * 2011-08-08 2013-02-14 パナソニック株式会社 Solid-state image pickup device and method for driving solid-state image pickup device
WO2014002365A1 (en) * 2012-06-26 2014-01-03 パナソニック株式会社 Solid-state image pickup apparatus and method for manufacturing same
WO2015198876A1 (en) * 2014-06-24 2015-12-30 ソニー株式会社 Imaging element, and electronic device
JP2016063216A (en) * 2014-09-12 2016-04-25 パナソニックIpマネジメント株式会社 Imaging device
JP2019029643A (en) * 2017-07-31 2019-02-21 パナソニックIpマネジメント株式会社 Imaging apparatus
CN112602320A (en) * 2018-09-07 2021-04-02 索尼半导体解决方案公司 Solid-state imaging device and electronic apparatus
CN113206116A (en) * 2016-03-01 2021-08-03 索尼公司 Imaging device, driving method thereof, and electronic apparatus

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569186B2 (en) 2006-05-31 2013-10-29 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
US8329596B2 (en) 2006-05-31 2012-12-11 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
KR101189926B1 (en) * 2006-05-31 2012-10-10 도쿄엘렉트론가부시키가이샤 Plasma cvd method, method for forming silicon nitride film and method for manufacturing semiconductor device
US8138103B2 (en) 2006-05-31 2012-03-20 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
JP4701128B2 (en) * 2006-06-06 2011-06-15 富士フイルム株式会社 Photoelectric conversion film stack type solid-state imaging device
JP2007329554A (en) * 2006-06-06 2007-12-20 Fujifilm Corp Photoelectric conversion film lamination type solid-state imaging element
JP2007336282A (en) * 2006-06-15 2007-12-27 Fujifilm Corp Photoelectric conversion film laminated color solid-state image pickup device
JP4701130B2 (en) * 2006-06-15 2011-06-15 富士フイルム株式会社 Photoelectric conversion film stacked color solid-state imaging device
JP2008203544A (en) * 2007-02-20 2008-09-04 Toppan Printing Co Ltd Filter for optical sensor and optical sensor
JP2009027063A (en) * 2007-07-23 2009-02-05 Fujifilm Corp Solid-state image sensor and method of manufacturing the same
JP2009065161A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009130239A (en) * 2007-11-27 2009-06-11 Nippon Hoso Kyokai <Nhk> Color imaging device
JP2009188380A (en) * 2007-12-28 2009-08-20 Dongbu Hitek Co Ltd Image sensor and method for manufacturing the same
US8178912B2 (en) 2007-12-28 2012-05-15 Dongbu Hitek Co., Ltd. Image sensor for minimizing a dark current and method for manufacturing the same
JP2009164603A (en) * 2007-12-28 2009-07-23 Dongbu Hitek Co Ltd Image sensor and manufacturing method therefor
JP2010067829A (en) * 2008-09-11 2010-03-25 Fujifilm Corp Solid-state imaging device and imaging apparatus
JP2010114323A (en) * 2008-11-07 2010-05-20 Sony Corp Solid-state imaging device, and electronic apparatus
WO2010137269A1 (en) * 2009-05-26 2010-12-02 パナソニック株式会社 Solid-state image pickup device
EP2337075A2 (en) 2009-12-21 2011-06-22 Sony Corporation Solid-state imaging apparatus, method of fabrication and driving method
EP2337075A3 (en) * 2009-12-21 2012-05-02 Sony Corporation Solid-state imaging apparatus, method of fabrication and driving method
US8704927B2 (en) 2009-12-21 2014-04-22 Sony Corporation Solid-state imaging apparatus, driving method, and camera
CN102157531A (en) * 2009-12-21 2011-08-17 索尼公司 Solid-state imaging apparatus, camera, imaging device, electronic device, driving method and manufacturing method
CN102157531B (en) * 2009-12-21 2014-05-14 索尼公司 Solid-state imaging apparatus, camera, imaging device, electronic device, driving method and manufacturing method
KR101653841B1 (en) * 2009-12-21 2016-09-02 소니 주식회사 Solid-state imaging apparatus, driving method, and camera
KR20110073264A (en) * 2009-12-21 2011-06-29 소니 주식회사 Solid-state imaging apparatus, driving method, and camera
TWI495093B (en) * 2009-12-21 2015-08-01 Sony Corp Solid-state imaging apparatus, driving method, and camera
JP2011228621A (en) * 2010-03-31 2011-11-10 Fujifilm Corp Solid-state image sensor and imaging apparatus
US8816265B2 (en) 2010-03-31 2014-08-26 Fujifilm Corporation Solid-state image pickup device and image pickup apparatus
WO2012176390A1 (en) * 2011-06-23 2012-12-27 パナソニック株式会社 Solid-state imaging device
US10553639B2 (en) 2011-06-23 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device
US10879301B2 (en) 2011-06-23 2020-12-29 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device
JPWO2012176390A1 (en) * 2011-06-23 2015-02-23 パナソニック株式会社 Solid-state imaging device
US10084008B2 (en) 2011-06-23 2018-09-25 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device
US9768226B2 (en) 2011-06-23 2017-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device
WO2013021577A1 (en) * 2011-08-08 2013-02-14 パナソニック株式会社 Solid-state image pickup device and method for driving solid-state image pickup device
JP2016219849A (en) * 2011-08-08 2016-12-22 パナソニックIpマネジメント株式会社 Solid-state imaging device
US9197830B2 (en) 2011-08-08 2015-11-24 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device and driving method of solid-state imaging device
JPWO2013021577A1 (en) * 2011-08-08 2015-03-05 パナソニック株式会社 Solid-state imaging device and driving method of solid-state imaging device
US9887231B2 (en) 2012-06-26 2018-02-06 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device and method of manufacturing the device
WO2014002365A1 (en) * 2012-06-26 2014-01-03 パナソニック株式会社 Solid-state image pickup apparatus and method for manufacturing same
WO2015198876A1 (en) * 2014-06-24 2015-12-30 ソニー株式会社 Imaging element, and electronic device
JP2016063216A (en) * 2014-09-12 2016-04-25 パナソニックIpマネジメント株式会社 Imaging device
CN113206116B (en) * 2016-03-01 2024-05-14 索尼公司 Imaging device, driving method thereof, and electronic apparatus
US12027565B2 (en) 2016-03-01 2024-07-02 Sony Group Corporation Imaging device having charge storage electrode, first electrode, second electrode and transfer control electrode, driving method for imaging device having the same, and electronic apparatus
CN113206116A (en) * 2016-03-01 2021-08-03 索尼公司 Imaging device, driving method thereof, and electronic apparatus
JP2019029643A (en) * 2017-07-31 2019-02-21 パナソニックIpマネジメント株式会社 Imaging apparatus
CN112602320A (en) * 2018-09-07 2021-04-02 索尼半导体解决方案公司 Solid-state imaging device and electronic apparatus

Similar Documents

Publication Publication Date Title
US7760254B2 (en) Single plate-type color solid-state image sensing device
JP2006120922A (en) Photoelectric conversion film laminated type color solid state imaging device
JP4384198B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
KR100962449B1 (en) Photoelectric-conversion-layer-stack-type color solid-state imaging device
TWI381521B (en) Solid-state imaging device and camera
US7554587B2 (en) Color solid-state image pickup device
JP4491323B2 (en) Photoelectric conversion film stacked color solid-state imaging device
US7550813B2 (en) Photoelectric converting film stack type solid-state image pickup device, and method of producing the same
US7208811B2 (en) Photo-detecting device
JP4154165B2 (en) PHOTOELECTRIC CONVERSION ELEMENT, SOLID-STATE IMAGING DEVICE, CAMERA, AND IMAGE READING DEVICE USING THE SAME
JP4572130B2 (en) Solid-state image sensor
JPH0566746B2 (en)
KR102520573B1 (en) Image sensor and electronic device including the same
JP4751576B2 (en) Photoelectric conversion film stack type solid-state imaging device
JP4404561B2 (en) MOS type color solid-state imaging device
US20110001207A1 (en) Solid state image sensor and manufacturing method thereof
JPH06204450A (en) Solid-state image pickup device
JP4388752B2 (en) CCD color solid-state imaging device
JP4696104B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP4533667B2 (en) Photoelectric conversion film stack type solid-state imaging device
JP2005268476A (en) Photoelectric converting film laminated solid state imaging apparatus
JP2005303284A (en) Photoelectric film laminated solid-state imaging device
JP2009049117A (en) Method of forming color filter of solid-state image pickup device, solid-state image pickup device, and pattern mask set for solid-state image pickup device
JP2004273952A (en) Ccd solid-state color image pickup device
JP2006210497A (en) Photoelectric conversion layer stacked solid-state imaging element and its signal correction method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124