Nothing Special   »   [go: up one dir, main page]

JP2006119525A - Antireflection film - Google Patents

Antireflection film Download PDF

Info

Publication number
JP2006119525A
JP2006119525A JP2004309649A JP2004309649A JP2006119525A JP 2006119525 A JP2006119525 A JP 2006119525A JP 2004309649 A JP2004309649 A JP 2004309649A JP 2004309649 A JP2004309649 A JP 2004309649A JP 2006119525 A JP2006119525 A JP 2006119525A
Authority
JP
Japan
Prior art keywords
film
refractive index
layer
antireflection film
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004309649A
Other languages
Japanese (ja)
Other versions
JP2006119525A5 (en
JP4612827B2 (en
Inventor
Mitsuharu Sawamura
光治 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004309649A priority Critical patent/JP4612827B2/en
Publication of JP2006119525A publication Critical patent/JP2006119525A/en
Publication of JP2006119525A5 publication Critical patent/JP2006119525A5/ja
Application granted granted Critical
Publication of JP4612827B2 publication Critical patent/JP4612827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer antireflection film with single layer film properties of MgF2 capable of both side processing using only a sputtering method in the case of processing a lens which needs multilayer antireflection film properties at one side and single layer film properties of MgF2 at the other side. <P>SOLUTION: In the antireflection film composed of ≥6 alternate layers of a high-refractive-index film whose refractive index at λ0 is ≥2.1 and a low-refractive-index film whose refractive index at λ0 is ≤1.65, wherein λ0 represents a standard wavelength of the antireflection film, the air side final layer is formed of an SiO2 film, and the antireflection film satisfies the expression (1): ¾R(λ)-R single(λ)¾≤0.4% wherein R(λ) represents a reflectance of each wavelength of the visible range (405-700 nm); and R single(λ) represents a reflectance of each wavelength of a single layer MgF2 film having the same standard wavelength λ0. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はカメラレンズ等の表面に設けられる反射防止膜の膜構成に関するものであって、特にはスパッタ法を用いて形成するカラーバランス調整用の反射防止膜に関するものである。   The present invention relates to a film configuration of an antireflection film provided on the surface of a camera lens or the like, and more particularly to an antireflection film for color balance adjustment formed using a sputtering method.

従来、カメラレンズ等の硝材の表面に設けられる反射防止膜としては、MgF2単層膜、空気側の最終層にMgF2膜を設けた多層反射防止膜がよく知られている。多層反射防止膜は、可視域で単層膜よりも反射防止性能に優れ、カメラの鏡筒内のレンズ面に多用されるが、全てのレンズ面に多層反射防止膜を設けるとレンズ全体の透過光のカラーバランス(色味)が偏ってしまい、そのためにカラーバランス調整用としてMgF2単層膜が用いられる。又、MgF2単層膜は曲率の強いレンズ形状で発生する膜厚ムラに依存する反射光の色味の変化が目立たないという利点も有する。従って、一方の片面が多層反射防止膜、他の片面がMgF2単層膜を有するレンズが必要となっている。   Conventionally, as an antireflection film provided on the surface of a glass material such as a camera lens, a MgF2 single layer film and a multilayer antireflection film in which an MgF2 film is provided on the air-side final layer are well known. Multi-layer anti-reflection coatings have better anti-reflection performance in the visible range than single-layer coatings, and are often used for lens surfaces in camera barrels. The color balance (color) of light is biased, and therefore, an MgF 2 single layer film is used for color balance adjustment. In addition, the MgF2 single layer film has an advantage that the change in the color of the reflected light depending on the film thickness unevenness generated in the lens shape having a strong curvature is inconspicuous. Therefore, a lens having a multilayer antireflection film on one side and a MgF2 single layer film on the other side is required.

通常、前記のレンズへの反射防止膜の加工には、多層反射防止膜の最終層がMgF2膜であるため、多層反射防止膜が加工できる蒸着装置(アシストも含む)が使用される。しかしながら、多層反射防止膜の加工に限っては、スパッタ法でも行われており、例えば特許文献1、特許文献2が上げられる。共に、高屈折率膜と低屈折率膜で構成される5層、又は6層からなる多層反射防止膜である。スパッタ法の場合、良質なMgF2膜を蒸着法と同等のコストで得るのは困難なため、多層反射防止膜の最終層はSiO2膜で構成されている。
特公平7−111482号公報 特許第2566634号公報
Usually, in the processing of the antireflection film on the lens, since the final layer of the multilayer antireflection film is an MgF2 film, a vapor deposition apparatus (including an assist) that can process the multilayer antireflection film is used. However, only the processing of the multilayer antireflection film is performed by a sputtering method. For example, Patent Document 1 and Patent Document 2 are listed. Both are multi-layer antireflection films composed of five or six layers composed of a high refractive index film and a low refractive index film. In the case of the sputtering method, it is difficult to obtain a good quality MgF2 film at the same cost as the vapor deposition method, and therefore the final layer of the multilayer antireflection film is composed of a SiO2 film.
Japanese Patent Publication No.7-111482 Japanese Patent No. 2656634

しかしながら、前記従来例では、レンズの一方の片面の多層反射防止膜をスパッタ法を用いて加工する場合、他の片面のMgF2単層膜を加工するためには、蒸着法を用いねばならなく、片面ごとに異なる装置を用いるため、コスト上不利という問題点が有った。   However, in the conventional example, when processing the multilayer antireflection film on one side of the lens by using the sputtering method, in order to process the MgF2 single layer film on the other side, the vapor deposition method must be used. Since different devices are used for each side, there is a problem of cost disadvantage.

又他の片面のMgF2単層膜を加工するためにスパッタ法を用いるとすると、良質なMgF2膜を得るにはフッ素ガス雰囲気中でのスパッタが必要となり、安定性、排ガス処理等歩留まり、コスト上不利という問題点が有った。   If the sputtering method is used to process another single-sided MgF2 single layer film, sputtering in a fluorine gas atmosphere is required to obtain a good quality MgF2 film. There was a disadvantage.

又他の片面のMgF2単層膜に換えてスパッタ法を適用できるSiO2単層膜を用いた場合、MgF2膜よりも屈折率が高いため、反射防止効果、カラーバランス調整用としては不十分であるという問題点が有った。   In addition, when a SiO2 single layer film that can be applied by sputtering instead of the other single-sided MgF2 single layer film is used, the refractive index is higher than that of the MgF2 film, which is insufficient for the antireflection effect and color balance adjustment. There was a problem.

本発明の目的は、一方の片面が多層反射防止膜特性、他の片面がMgF2の単層膜特性を必要とするレンズを加工する場合、スパッタ法のみを用いて両面加工が可能な、MgF2の単層膜特性を有する多層反射防止膜を提供することにある。   The object of the present invention is to process a lens that requires a multilayer antireflection film characteristic on one side and a single-layer film characteristic of MgF2 on the other side. An object of the present invention is to provide a multilayer antireflection film having single layer film characteristics.

前記目的を達成するため、本出願に係る第1の発明は、反射防止膜の基準波長をλ0とした時、λ0における屈折率が2.1以上の高屈折率膜と1.65以下の低屈折率膜の交互層で構成される6層以上の反射防止膜において、空気側最終層がSiO2膜で形成され、可視域(405〜700nm)の各波長の反射率をR(λ)、同一基準波長をλ0を有する単層MgF2膜の各波長の反射率をR単(λ)とした時、
|R(λ)−R単(λ)|≦0.4%……(1)
(1)式を満たすことを特徴とする。
In order to achieve the above object, according to a first invention of the present application, when the reference wavelength of the antireflection film is λ0, a high refractive index film having a refractive index at λ0 of 2.1 or more and a low refractive index of 1.65 or less. In the antireflection film of 6 layers or more composed of alternating layers of refractive index films, the air-side final layer is formed of a SiO2 film, and the reflectance of each wavelength in the visible region (405 to 700 nm) is the same as R (λ). When the reflectance of each wavelength of a single layer MgF2 film having a reference wavelength of λ0 is R single (λ),
| R (λ) −R single (λ) | ≦ 0.4% (1)
The expression (1) is satisfied.

前記構成において、本発明は、カラーバランス調整用反射防止膜として単層MgF2膜と同等の効果を示す。(1)式において0.3%を超える特性の場合は、単層MgF2膜と色味が異なり、特に光線の入射角が大きくなると色味(反射率)の変化が大きくなり好ましくない。   In the above configuration, the present invention exhibits the same effect as a single layer MgF 2 film as an antireflection film for color balance adjustment. In the case of the characteristics exceeding 0.3% in the formula (1), the color is different from that of the single layer MgF 2 film.

本出願に係る第2の発明は、第1の発明に記載の反射防止膜において、その基準波長をλ0とした時、λ0における屈折率が2.1以上の高屈折率膜(nH)と1.65以下の低屈折率膜(nL)の交互層で構成される6層反射防止膜であって、各層のλ0における光学膜厚(nH*d、nL*d)が基板側から、
0.11≧nH*d1/λ0≧0.01
0.26≧nL*d2/λ0≧0.05
0.23≧nH*d3/λ0≧0.03
0.21≧nL*d4/λ0≧0.04
0.22≧nH*d5/λ0≧0.03
0.38≧nL*d6/λ0≧0.26……(21)
(21)式を満たし、且つ
0.94≧総光学膜厚/λ0≧0.8……(22)
(22)式を満たすことを特徴とする。
According to a second invention of the present application, in the antireflection film according to the first invention, when the reference wavelength is λ0, a high refractive index film (nH) having a refractive index at λ0 of 2.1 or more and 1 A six-layer antireflection film composed of alternating layers of low refractive index films (nL) of .65 or less, and the optical film thickness (nH * d, nL * d) at λ0 of each layer from the substrate side,
0.11 ≧ nH * d1 / λ0 ≧ 0.01
0.26 ≧ nL * d2 / λ0 ≧ 0.05
0.23 ≧ nH * d3 / λ0 ≧ 0.03
0.21 ≧ nL * d4 / λ0 ≧ 0.04
0.22 ≧ nH * d5 / λ0 ≧ 0.03
0.38 ≧ nL * d6 / λ0 ≧ 0.26 (21)
The equation (21) is satisfied, and 0.94 ≧ total optical film thickness / λ0 ≧ 0.8 (22)
The expression (22) is satisfied.

前記構成において、本発明は、カラーバランス調整用反射防止膜として単層MgF2膜と同等の効果を示す。   In the above configuration, the present invention exhibits the same effect as a single layer MgF 2 film as an antireflection film for color balance adjustment.

本出願に係る第3の発明は、第1の発明に記載の反射防止膜において、反射防止膜の基準波長をλ0とした時、λ0における屈折率が2.1以上の高屈折率膜(nH)と1.65以下の低屈折率膜(nL)の交互層で構成される7層反射防止膜であって、各層のλ0における光学膜厚(nH*d、nL*d)が基板側から、
0.13≧nL*d1/λ0≧0.03
0.13≧nH*d2/λ0≧0.01
0.18≧nL*d3/λ0≧0.09
0.2≧nH*d4/λ0≧0.03
0.2≧nL*d5/λ0≧0.07
0.21≧nH*d6/λ0≧0.03
0.37≧nL*d7/λ0≧0.28……(31)
(31)式を満たし、且つ
1.12≧総光学膜厚/λ0≧0.81……(32)
(32)式を満たすことを特徴とする。
According to a third invention of the present application, in the antireflection film according to the first invention, when the reference wavelength of the antireflection film is λ0, a high refractive index film having a refractive index at λ0 of 2.1 or more (nH ) And a low refractive index film (nL) having a refractive index of 1.65 or less (7 layers), and the optical film thickness (nH * d, nL * d) at λ0 of each layer is from the substrate side. ,
0.13 ≧ nL * d1 / λ0 ≧ 0.03
0.13 ≧ nH * d2 / λ0 ≧ 0.01
0.18 ≧ nL * d3 / λ0 ≧ 0.09
0.2 ≧ nH * d4 / λ0 ≧ 0.03
0.2 ≧ nL * d5 / λ0 ≧ 0.07
0.21 ≧ nH * d6 / λ0 ≧ 0.03
0.37 ≧ nL * d7 / λ0 ≧ 0.28 (31)
(31) is satisfied, and 1.12 ≧ total optical film thickness / λ0 ≧ 0.81 (32)
The expression (32) is satisfied.

前記構成において、本発明は、カラーバランス調整用反射防止膜として単層MgF2膜と同等の効果を示す。   In the above configuration, the present invention exhibits the same effect as a single layer MgF 2 film as an antireflection film for color balance adjustment.

本出願に係る第4の発明は、第1の発明に記載の反射防止膜において、反射防止膜の基準波長をλ0とした時、λ0における屈折率が2.1以上の高屈折率膜(nH)と1.65以下の低屈折率膜(nL)の交互層で構成される8層反射防止膜であって、各層のλ0における光学膜厚(nH*d、nL*d)が基板側から、
0.09≧nH*d1/λ0≧0.01
0.26≧nL*d2/λ0≧0.06
0.19≧nH*d3/λ0≧0.03
0.2≧nL*d4/λ0≧0.04
0.3≧nH*d5/λ0≧0.05
0.18≧nL*d6/λ0≧0.02
0.24≧nH*d7/λ0≧0.03
0.36≧nL*d8/λ0≧0.26……(41)
(41)式を満たし、且つ
1.2≧総光学膜厚/λ0≧1.01……(42)
(42)式を満たすことを特徴とする。
According to a fourth aspect of the present application, in the antireflective film according to the first aspect, when the reference wavelength of the antireflective film is λ0, a high refractive index film having a refractive index at λ0 of 2.1 or more (nH ) And a low refractive index film (nL) of 1.65 or less, and an eight-layer antireflection film in which the optical film thickness (nH * d, nL * d) at λ0 of each layer is from the substrate side. ,
0.09 ≧ nH * d1 / λ0 ≧ 0.01
0.26 ≧ nL * d2 / λ0 ≧ 0.06
0.19 ≧ nH * d3 / λ0 ≧ 0.03
0.2 ≧ nL * d4 / λ0 ≧ 0.04
0.3 ≧ nH * d5 / λ0 ≧ 0.05
0.18 ≧ nL * d6 / λ0 ≧ 0.02
0.24 ≧ nH * d7 / λ0 ≧ 0.03
0.36 ≧ nL * d8 / λ0 ≧ 0.26 (41)
(41) is satisfied, and 1.2 ≧ total optical film thickness / λ0 ≧ 1.01 (42)
The expression (42) is satisfied.

前記構成において、本発明は、カラーバランス調整用反射防止膜として単層MgF2膜と同等の効果を示す。   In the above configuration, the present invention exhibits the same effect as a single layer MgF 2 film as an antireflection film for color balance adjustment.

本出願に係る第5の発明は、第2、3、4いずれかの発明に記載の反射防止膜において、全層がスパッタ法で形成されることを特徴とする。   According to a fifth aspect of the present application, in the antireflection film according to any one of the second, third, and fourth aspects, the entire layer is formed by a sputtering method.

前記構成において、本発明は、単層MgF2膜に比較して、より耐久性(膜強度、クモリ、特性経時変化)に優れたカラーバランス調整用反射防止膜としての効果を示す。   In the above configuration, the present invention shows an effect as an antireflection film for color balance adjustment, which is more durable (film strength, cloudiness, characteristic aging) than the single layer MgF2 film.

前記のように構成された本発明の反射防止膜を用いる事により、単層MgF2膜と同等のカラーバランス調整効果を得る事が出来る。又、第2、3、4の発明によれば、基板側から第1層目の低屈折率膜としてAl2O3膜を用いる事により、単層MgF2膜に比較して、より耐久性(膜強度、クモリ、特性経時変化)に優れたカラーバランス調整用反射防止膜を得る事が出来る。又全層をスパッタ法で形成する事により、単層MgF2膜に比較して、より耐久性(膜強度、クモリ、特性経時変化)に優れたカラーバランス調整用反射防止膜を得る事が出来る。又全層をスパッタ法で形成する事により、スパッタ法のみを用いたレンズの両面加工が可能となる。   By using the antireflection film of the present invention configured as described above, the same color balance adjustment effect as that of the single layer MgF 2 film can be obtained. Further, according to the second, third and fourth inventions, by using an Al2O3 film as the first low refractive index film from the substrate side, the durability (film strength, It is possible to obtain an antireflection film for color balance adjustment which is excellent in spider and characteristic aging. Further, by forming all the layers by sputtering, it is possible to obtain an antireflection film for color balance adjustment that is more durable (film strength, cloudiness, characteristic aging) than a single-layer MgF2 film. In addition, by forming all the layers by sputtering, it is possible to process both surfaces of the lens using only sputtering.

以下、本発明の実施例を示すが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

反応性DCスパッタ法を用いて、各硝子基板BSL7(n=1.52)、BSM15(n=1.62)、BaSF08(n=1.72)、TIH6(n=1.81)上にTiO2(n=2.53)とSiO2(n=1.47)の交互層からなる6層反射防止膜を形成した。目標特性は、λ0=500nmとした時、n*d=125nmのMgF2(n=1.38)単層で得られる特性(マゼンタ)である。ターゲット材としては、金属Ti、単結晶Siを用いた。表1に膜構成、図1に入射角0度の時の膜特性を示す。図1の縦軸は反射率(%)、横軸は波長(nm)を示す。表1の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。   Using reactive DC sputtering, TiO2 on each glass substrate BSL7 (n = 1.52), BSM15 (n = 1.62), BaSF08 (n = 1.72), TIH6 (n = 1.81). A six-layer antireflection film composed of alternating layers of (n = 2.53) and SiO2 (n = 1.47) was formed. The target characteristic is a characteristic (magenta) obtained with an MgF2 (n = 1.38) single layer of n * d = 125 nm when λ0 = 500 nm. As the target material, metal Ti and single crystal Si were used. Table 1 shows the film configuration, and FIG. 1 shows the film characteristics when the incident angle is 0 degree. In FIG. 1, the vertical axis represents reflectance (%), and the horizontal axis represents wavelength (nm). In the configuration of Table 1, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less.

Figure 2006119525
Figure 2006119525

反応性DCスパッタ法を用いて、実施例1と同様Ta2O5(n=2.18)とSiO2の交互層からなる6層反射防止膜を形成した。ターゲット材としては、金属Ta、単結晶Siを用いた。表2に膜構成、図2に膜特性を示す。表2の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。   Using reactive DC sputtering, a six-layer antireflection film composed of alternating layers of Ta 2 O 5 (n = 2.18) and SiO 2 was formed as in Example 1. As the target material, metal Ta and single crystal Si were used. Table 2 shows the film configuration, and FIG. 2 shows the film characteristics. In the configuration of Table 2, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less.

Figure 2006119525
Figure 2006119525

反応性DCスパッタ法を用いて、実施例1と同様TiO2とSiO2の交互層からなる6層反射防止膜を形成した。但し第2層はAL2O3膜(n=1.63)とした。ターゲット材としては、金属Ti、金属Al、単結晶Siを用いた。表3に膜構成、図3に膜特性を示す。本構成の場合、BSL7用としては特性にリップルを生じ不適であった。表2の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。   Using reactive DC sputtering, a six-layer antireflection film composed of alternating layers of TiO 2 and SiO 2 was formed as in Example 1. However, the second layer was an AL2O3 film (n = 1.63). As the target material, metal Ti, metal Al, and single crystal Si were used. Table 3 shows the film configuration, and FIG. 3 shows the film characteristics. In the case of this configuration, a ripple is generated in the characteristics for BSL7, which is not suitable. In the configuration of Table 2, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less.

Figure 2006119525
Figure 2006119525

反応性DCスパッタ法を用いて、実施例1と同様Ta2O5とSiO2の交互層からなる6層反射防止膜を形成した。但し第2層はAL2O3膜(n=1.63)とした。ターゲット材としては、金属Ta、金属Al、単結晶Siを用いた。表4に膜構成、図4に膜特性を示す。本構成の場合、BSL7用としては特性にリップルを生じ不適であった。表4の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。   Using reactive DC sputtering, a six-layer antireflection film composed of alternating layers of Ta 2 O 5 and SiO 2 was formed as in Example 1. However, the second layer was an AL2O3 film (n = 1.63). As the target material, metal Ta, metal Al, and single crystal Si were used. Table 4 shows the film structure, and FIG. 4 shows the film characteristics. In the case of this configuration, a ripple is generated in the characteristics for BSL7, which is not suitable. In the configuration of Table 4, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less.

Figure 2006119525
Figure 2006119525

反応性DCスパッタ法を用いて、実施例1と同様TiO2とSiO2の交互層からなる7層反射防止膜を形成した。但し第1層はAL2O3膜(n=1.63)とした。ターゲット材としては、金属Ti、金属Al、単結晶Siを用いた。表5に膜構成、図5に膜特性を示す。表5の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。本構成においては、第1層をAL2O3膜とする事により、耐久性(クモリ)が向上した。AL2O3膜の厚さは0.03λ0以下ではクモリ防止効果が不足であり、0.13λ0以上では反射防止特性、生産性に劣る。   Using a reactive DC sputtering method, a seven-layer antireflection film composed of alternating layers of TiO 2 and SiO 2 was formed as in Example 1. However, the first layer was an AL2O3 film (n = 1.63). As the target material, metal Ti, metal Al, and single crystal Si were used. Table 5 shows the film configuration, and FIG. 5 shows the film characteristics. In the configuration of Table 5, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less. In this configuration, the durability (spider) was improved by using the AL2O3 film as the first layer. If the thickness of the AL2O3 film is 0.03λ0 or less, the effect of preventing spiders is insufficient, and if it is 0.13λ0 or more, the antireflection characteristics and productivity are poor.

Figure 2006119525
Figure 2006119525

反応性DCスパッタ法を用いて、実施例5と同様Ta2O5とSiO2の交互層からなる7層反射防止膜を形成した。但し第1層はAL2O3膜(n=1.63)とした。ターゲット材としては、金属Ta、金属Al、単結晶Siを用いた。表6に膜構成、図6に膜特性を示す。表6の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。本構成においては、第1層をAL2O3膜とする事により、耐久性(クモリ)が向上した。   Using a reactive DC sputtering method, a seven-layer antireflection film composed of alternating layers of Ta 2 O 5 and SiO 2 was formed as in Example 5. However, the first layer was an AL2O3 film (n = 1.63). As the target material, metal Ta, metal Al, and single crystal Si were used. Table 6 shows the film structure, and FIG. 6 shows the film characteristics. In the configuration of Table 6, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less. In this configuration, the durability (spider) was improved by using the AL2O3 film as the first layer.

Figure 2006119525
Figure 2006119525

反応性DCスパッタ法を用いて、実施例1と同様にTiO2とSiO2の交互層からなる8層反射防止膜を形成した。ターゲット材としては、金属Ti、単結晶Siを用いた。表7に膜構成、図7に膜特性を示す。表7の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。   Using reactive DC sputtering, an eight-layer antireflection film composed of alternating layers of TiO 2 and SiO 2 was formed in the same manner as in Example 1. As the target material, metal Ti and single crystal Si were used. Table 7 shows the film structure, and FIG. 7 shows the film characteristics. In the configuration of Table 7, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less.

Figure 2006119525
Figure 2006119525

反応性DCスパッタ法を用いて、実施例7と同様にTa2O5とSiO2の交互層からなる8層反射防止膜を形成した。ターゲット材としては、金属Ta、単結晶Siを用いた。表8に膜構成、図8に膜特性を示す。表8の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。   Using reactive DC sputtering, an eight-layer antireflection film composed of alternating layers of Ta 2 O 5 and SiO 2 was formed in the same manner as in Example 7. As the target material, metal Ta and single crystal Si were used. Table 8 shows the film configuration, and FIG. 8 shows the film characteristics. In the configuration of Table 8, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less.

Figure 2006119525
Figure 2006119525

反応性DCスパッタ法を用いて、実施例7と同様にTiO2とSiO2の交互層からなる8層反射防止膜を形成した。但し第2層はAL2O3膜とした。ターゲット材としては、金属Ti、金属Al、単結晶Siを用いた。表9に膜構成、図9に膜特性を示す。本構成の場合、BSL7用としては特性にリップルを生じ不適であった。表9の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。   Using a reactive DC sputtering method, an 8-layer antireflection film composed of alternating layers of TiO 2 and SiO 2 was formed in the same manner as in Example 7. However, the second layer was an AL2O3 film. As the target material, metal Ti, metal Al, and single crystal Si were used. Table 9 shows the film configuration, and FIG. 9 shows the film characteristics. In the case of this configuration, a ripple is generated in the characteristics for BSL7, which is not suitable. In the configuration of Table 9, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less.

Figure 2006119525
Figure 2006119525

反応性DCスパッタ法を用いて、実施例7と同様にTa2O5とSiO2の交互層からなる8層反射防止膜を形成した。但し第2層はAL2O3膜とした。ターゲット材としては、金属Ta、金属Al、単結晶Siを用いた。表10に膜構成、図10に膜特性を示す。本構成の場合、BSL7用としては特性にリップルを生じ不適であった。表10の構成において、同一λ0の時、単層MgF2膜との反射率の差は0.4%以下であった。   Using reactive DC sputtering, an eight-layer antireflection film composed of alternating layers of Ta 2 O 5 and SiO 2 was formed in the same manner as in Example 7. However, the second layer was an AL2O3 film. As the target material, metal Ta, metal Al, and single crystal Si were used. Table 10 shows the film configuration, and FIG. 10 shows the film characteristics. In the case of this configuration, a ripple is generated in the characteristics for BSL7, which is not suitable. In the configuration of Table 10, when the same λ0, the difference in reflectance from the single layer MgF 2 film was 0.4% or less.

Figure 2006119525
Figure 2006119525

[従来例1]
真空上蒸着法により、各硝子基板BSL7(n=1.52)、BSM15(n=1.62)、BaSF08(n=1.72)、TIH6(n=1.81)上にMgF2(n=1.38)単層からなる反射防止膜を形成した。目標特性は、λ0=500nmとした時、n*d=125nmの単層で得られる特性(マゼンタ)である。表11に膜構成、図11に膜特性を示す。蒸着単層膜は、カラーバランス調整用膜としては作成も簡便であり、成膜時間も短くコスト的にも有利であるが、クモリ易い硝子に対して防止効果に劣る欠点がある。
[Conventional example 1]
MgF2 (n = n = 1.81) on each glass substrate BSL7 (n = 1.52), BSM15 (n = 1.62), BaSF08 (n = 1.72), TIH6 (n = 1.81) by vacuum evaporation. 1.38) An antireflection film consisting of a single layer was formed. The target characteristic is a characteristic (magenta) obtained with a single layer of n * d = 125 nm when λ0 = 500 nm. Table 11 shows the film configuration, and FIG. 11 shows the film characteristics. The vapor deposition single layer film is easy to produce as a color balance adjustment film, and the film formation time is short and advantageous in terms of cost.

Figure 2006119525
Figure 2006119525

本発明の構成により、小型、少量加工、低コストスパッタ成膜装置を用いて、真空蒸着法に近い成膜時間で反射防止膜を加工することが可能となった。   With the configuration of the present invention, it is possible to process an antireflection film in a film formation time close to that of a vacuum evaporation method using a small-sized, small-volume processing, and low-cost sputter film forming apparatus.

実施例1の特性図Characteristic diagram of Example 1 実施例2の特性図Characteristic diagram of Example 2 実施例3の特性図Characteristic diagram of Example 3 実施例4の特性図Characteristic diagram of Example 4 実施例5の特性図Characteristic diagram of Example 5 実施例6の特性図Characteristic diagram of Example 6 実施例7の特性図Characteristic diagram of Example 7 実施例8の特性図Characteristic diagram of Example 8 実施例9の特性図Characteristic diagram of Example 9 実施例10の特性図Characteristic diagram of Example 10 従来例1の特性図Characteristics diagram of conventional example 1

Claims (5)

反射防止膜の基準波長をλ0とした時、λ0における屈折率が2.1以上の高屈折率膜と1.65以下の低屈折率膜の交互層で構成される6層以上の反射防止膜において、空気側最終層がSiO2膜で形成され、可視域(405〜700nm)の各波長の反射率をR(λ)、同一基準波長をλ0を有する単層MgF2膜の各波長の反射率をR単(λ)とした時、
|R(λ)−R単(λ)|≦0.4%……(1)
(1)式を満たすことを特徴とする反射防止膜。
When the reference wavelength of the antireflective film is λ0, the antireflective film having six or more layers composed of alternating layers of a high refractive index film having a refractive index of 2.1 or more and a low refractive index film of 1.65 or less at λ0 , The air-side final layer is formed of a SiO2 film, the reflectance of each wavelength in the visible region (405 to 700 nm) is R (λ), and the reflectance of each wavelength of the single-layer MgF2 film having the same reference wavelength is λ0. When R is single (λ),
| R (λ) −R single (λ) | ≦ 0.4% (1)
An antireflection film characterized by satisfying the expression (1).
反射防止膜の基準波長をλ0とした時、λ0における屈折率が2.1以上の高屈折率膜(nH)と1.65以下の低屈折率膜(nL)の交互層で構成される6層反射防止膜であって、各層のλ0における光学膜厚(nH*d、nL*d)が基板側から、
0.11≧nH*d1/λ0≧0.01
0.26≧nL*d2/λ0≧0.05
0.23≧nH*d3/λ0≧0.03
0.21≧nL*d4/λ0≧0.04
0.22≧nH*d5/λ0≧0.03
0.38≧nL*d6/λ0≧0.26……(21)
(21)式を満たし、且つ
0.94≧総光学膜厚/λ0≧0.8……(22)
(22)式を満たすことを特徴とする請求項1に記載の反射防止膜。
When the reference wavelength of the antireflection film is λ0, it is composed of alternating layers of a high refractive index film (nH) having a refractive index of 2.1 or more and a low refractive index film (nL) of 1.65 or less at λ0. A layer antireflection film, wherein the optical film thickness (nH * d, nL * d) at λ0 of each layer is from the substrate side,
0.11 ≧ nH * d1 / λ0 ≧ 0.01
0.26 ≧ nL * d2 / λ0 ≧ 0.05
0.23 ≧ nH * d3 / λ0 ≧ 0.03
0.21 ≧ nL * d4 / λ0 ≧ 0.04
0.22 ≧ nH * d5 / λ0 ≧ 0.03
0.38 ≧ nL * d6 / λ0 ≧ 0.26 (21)
The equation (21) is satisfied, and 0.94 ≧ total optical film thickness / λ0 ≧ 0.8 (22)
The antireflection film according to claim 1, wherein the formula (22) is satisfied.
反射防止膜の基準波長をλ0とした時、λ0における屈折率が2.1以上の高屈折率膜(nH)と1.65以下の低屈折率膜(nL)の交互層で構成される7層反射防止膜であって、各層のλ0における光学膜厚(nH*d、nL*d)が基板側から、
0.13≧nL*d1/λ0≧0.03
0.13≧nH*d2/λ0≧0.01
0.18≧nL*d3/λ0≧0.09
0.2≧nH*d4/λ0≧0.03
0.2≧nL*d5/λ0≧0.07
0.21≧nH*d6/λ0≧0.03
0.37≧nL*d7/λ0≧0.28……(31)
(31)式を満たし、且つ
1.12≧総光学膜厚/λ0≧0.81……(32)
(32)式を満たすことを特徴とする請求項1に記載の反射防止膜。
When the reference wavelength of the antireflection film is λ0, it is composed of alternating layers of a high refractive index film (nH) having a refractive index of 2.1 or more and a low refractive index film (nL) having a refractive index of 1.65 or less at λ0. A layer antireflection film, wherein the optical film thickness (nH * d, nL * d) at λ0 of each layer is from the substrate side,
0.13 ≧ nL * d1 / λ0 ≧ 0.03
0.13 ≧ nH * d2 / λ0 ≧ 0.01
0.18 ≧ nL * d3 / λ0 ≧ 0.09
0.2 ≧ nH * d4 / λ0 ≧ 0.03
0.2 ≧ nL * d5 / λ0 ≧ 0.07
0.21 ≧ nH * d6 / λ0 ≧ 0.03
0.37 ≧ nL * d7 / λ0 ≧ 0.28 (31)
(31) is satisfied, and 1.12 ≧ total optical film thickness / λ0 ≧ 0.81 (32)
The antireflection film according to claim 1, wherein the formula (32) is satisfied.
反射防止膜の基準波長をλ0とした時、λ0における屈折率が2.1以上の高屈折率膜(nH)と1.65以下の低屈折率膜(nL)の交互層で構成される8層反射防止膜であって、各層のλ0における光学膜厚(nH*d、nL*d)が基板側から、
0.09≧nH*d1/λ0≧0.01
0.26≧nL*d2/λ0≧0.06
0.19≧nH*d3/λ0≧0.03
0.2≧nL*d4/λ0≧0.04
0.3≧nH*d5/λ0≧0.05
0.18≧nL*d6/λ0≧0.02
0.24≧nH*d7/λ0≧0.03
0.36≧nL*d8/λ0≧0.26……(41)
(41)式を満たし、且つ
1.2≧総光学膜厚/λ0≧1.01……(42)
(42)式を満たすことを特徴とする請求項1に記載の反射防止膜。
When the reference wavelength of the antireflection film is λ0, it is composed of alternating layers of a high refractive index film (nH) having a refractive index of 2.1 or more and a low refractive index film (nL) of 1.65 or less at λ0. A layer antireflection film, wherein the optical film thickness (nH * d, nL * d) at λ0 of each layer is from the substrate side,
0.09 ≧ nH * d1 / λ0 ≧ 0.01
0.26 ≧ nL * d2 / λ0 ≧ 0.06
0.19 ≧ nH * d3 / λ0 ≧ 0.03
0.2 ≧ nL * d4 / λ0 ≧ 0.04
0.3 ≧ nH * d5 / λ0 ≧ 0.05
0.18 ≧ nL * d6 / λ0 ≧ 0.02
0.24 ≧ nH * d7 / λ0 ≧ 0.03
0.36 ≧ nL * d8 / λ0 ≧ 0.26 (41)
(41) is satisfied, and 1.2 ≧ total optical film thickness / λ0 ≧ 1.01 (42)
The antireflection film according to claim 1, wherein the formula (42) is satisfied.
全層がスパッタ法で形成されることを特徴とする請求項2乃至4のいずれか1つに記載の反射防止膜。   The antireflection film according to claim 2, wherein all layers are formed by sputtering.
JP2004309649A 2004-10-25 2004-10-25 Anti-reflection coating Expired - Fee Related JP4612827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309649A JP4612827B2 (en) 2004-10-25 2004-10-25 Anti-reflection coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309649A JP4612827B2 (en) 2004-10-25 2004-10-25 Anti-reflection coating

Publications (3)

Publication Number Publication Date
JP2006119525A true JP2006119525A (en) 2006-05-11
JP2006119525A5 JP2006119525A5 (en) 2007-12-06
JP4612827B2 JP4612827B2 (en) 2011-01-12

Family

ID=36537441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309649A Expired - Fee Related JP4612827B2 (en) 2004-10-25 2004-10-25 Anti-reflection coating

Country Status (1)

Country Link
JP (1) JP4612827B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041580A1 (en) * 2007-09-28 2009-04-02 Nikon-Essilor Co., Ltd. Optical component and manufacturing method of the optical component
JP2009230121A (en) * 2008-02-28 2009-10-08 Hoya Corp Anti-reflection coating, optical member, exchange lens unit and imaging device
JP2010217443A (en) * 2009-03-16 2010-09-30 Hoya Corp Antireflection film and optical component having the same, interchangeable lens and imaging apparatus having the optical component
JP2010250069A (en) * 2009-04-15 2010-11-04 Hoya Corp Antireflective film and optical element having the same
US9651714B2 (en) 2012-10-25 2017-05-16 Fujifilm Corporation Antireflection multilayer film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
EP3300520B1 (en) 2015-09-14 2020-11-25 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
WO2020037042A1 (en) 2018-08-17 2020-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261002A (en) * 1994-02-03 1995-10-13 Canon Inc Antireflection film and optical system having this antireflection film, as well as production of exposure device and device using this optical system
JPH0875902A (en) * 1994-09-07 1996-03-22 Canon Inc Multilayer reflection preventing film
JPH11171596A (en) * 1997-12-05 1999-06-29 Sony Corp Reflection preventing film
JP2001209038A (en) * 1999-11-17 2001-08-03 Nippon Sheet Glass Co Ltd Substrate for liquid crystal display element
JP2002071903A (en) * 2000-08-29 2002-03-12 Hoya Corp Optical member with antireflection film
JP2002082210A (en) * 1994-02-03 2002-03-22 Canon Inc Antireflection film, optical system having the antireflection film and exposure device using the optical system and method for manufacturing device
JP2004077989A (en) * 2002-08-21 2004-03-11 Hoya Corp Optical member and antireflection film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261002A (en) * 1994-02-03 1995-10-13 Canon Inc Antireflection film and optical system having this antireflection film, as well as production of exposure device and device using this optical system
JP2002082210A (en) * 1994-02-03 2002-03-22 Canon Inc Antireflection film, optical system having the antireflection film and exposure device using the optical system and method for manufacturing device
JPH0875902A (en) * 1994-09-07 1996-03-22 Canon Inc Multilayer reflection preventing film
JPH11171596A (en) * 1997-12-05 1999-06-29 Sony Corp Reflection preventing film
JP2001209038A (en) * 1999-11-17 2001-08-03 Nippon Sheet Glass Co Ltd Substrate for liquid crystal display element
JP2002071903A (en) * 2000-08-29 2002-03-12 Hoya Corp Optical member with antireflection film
JP2004077989A (en) * 2002-08-21 2004-03-11 Hoya Corp Optical member and antireflection film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041580A1 (en) * 2007-09-28 2009-04-02 Nikon-Essilor Co., Ltd. Optical component and manufacturing method of the optical component
US8189261B2 (en) 2007-09-28 2012-05-29 Nikon-Essilor Co., Ltd. Optical component and method for manufacturing the same
JP5248516B2 (en) * 2007-09-28 2013-07-31 株式会社ニコン・エシロール Optical component and method of manufacturing optical component
JP2009230121A (en) * 2008-02-28 2009-10-08 Hoya Corp Anti-reflection coating, optical member, exchange lens unit and imaging device
JP2010217443A (en) * 2009-03-16 2010-09-30 Hoya Corp Antireflection film and optical component having the same, interchangeable lens and imaging apparatus having the optical component
JP2010250069A (en) * 2009-04-15 2010-11-04 Hoya Corp Antireflective film and optical element having the same
US9651714B2 (en) 2012-10-25 2017-05-16 Fujifilm Corporation Antireflection multilayer film

Also Published As

Publication number Publication date
JP4612827B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP5662982B2 (en) Antireflection film and optical element
US8425035B2 (en) Spectacle lens with color-neutral anti-reflection coating and method of making the same
JP6449999B2 (en) Antireflection film, optical element and optical system
JP4612827B2 (en) Anti-reflection coating
JP2015004919A (en) Anti-reflection film and optical element having the same
JP2007171735A (en) Wide band anti-reflection film
JP7252324B2 (en) Optical element with stack of layer packets and method for manufacturing same
WO2016031167A1 (en) Anti-reflection film and optical member provided with anti-reflection film
JP2003248103A (en) Anti-reflection film, optical lens and optical lens unit
WO2018110017A1 (en) Optical product
JP3624082B2 (en) Antireflection film and method for manufacturing the same
JPH11264903A (en) Antireflection film and its production
WO2021024834A1 (en) Antireflection film-equipped optical member and production method therefor
JP2006317603A (en) Front surface mirror
CN109154679B (en) Projection lens
JP2008233403A (en) Antireflection film and optical component having the same
JP5292318B2 (en) Antireflection film and optical member having the same
JP2007310335A (en) Front surface mirror
JP2004334012A (en) Antireflection film and optical filter
KR20130047634A (en) Antireflective film and optical element
JP2001100002A (en) Antireflection film and optical member using same
JP7276800B2 (en) Antireflection coating and optical component having the same
JP2002267801A (en) Antireflection film and optical member which uses the same
JP2835535B2 (en) Anti-reflection coating for optical components
JP7405405B2 (en) Anti-reflection film, optical element having same, and method for producing anti-reflection film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees