Nothing Special   »   [go: up one dir, main page]

JP2006108517A - Substrate for led connection, illuminator using thereof, and display device using thereof - Google Patents

Substrate for led connection, illuminator using thereof, and display device using thereof Download PDF

Info

Publication number
JP2006108517A
JP2006108517A JP2004295557A JP2004295557A JP2006108517A JP 2006108517 A JP2006108517 A JP 2006108517A JP 2004295557 A JP2004295557 A JP 2004295557A JP 2004295557 A JP2004295557 A JP 2004295557A JP 2006108517 A JP2006108517 A JP 2006108517A
Authority
JP
Japan
Prior art keywords
led
connection
electrode
leds
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004295557A
Other languages
Japanese (ja)
Inventor
Satoshi Imoto
聡 井本
Tomohiro Ando
智宏 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2004295557A priority Critical patent/JP2006108517A/en
Publication of JP2006108517A publication Critical patent/JP2006108517A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the assembly of two or more LEDs emitting light of different colors becomes a product which is not economical since the life of the assembly is decided by an LED deteriorated first, and that costs for the maintenance of the assembly is increased since it has to be replaced frequently. <P>SOLUTION: This light source apparatus has the two or more LEDs emitting light of different colors, and elements concerning the deterioration of the LEDs are set to be different by each LED so as to approximate the deterioration speed of the respective LEDs. Regarding heat generation which is the largest of the elements in connection with the deterioration, a radiation mechanism is provided at each LED to set the radiation characteristic of the radiation mechanism according to a current quantity flowing through each LED, or a light-emitting spectrum or a calorific value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数色のLED(発光ダイオード)を用いた光源の長寿命化技術に関する。   The present invention relates to a technology for extending the life of a light source using LEDs (light emitting diodes) of a plurality of colors.

近来小型化が可能、寿命が長いという長所を生かしてLEDを光源に使う機器が増加している。
しかしながら、LEDにも劣化があり、特に異なる波長を持った複数色のLEDの混色を利用する用途では劣化問題が重要な解決課題となってきている。
混色を利用する用途としては、赤色(以下Rと略記する)LED、緑色(以下Gと略記する)LED、青色(以下Bと略記する)LEDの3原色の混合で白を出す白色バックライトやR,G,BのLEDを順次点灯あるいは消灯の動作を繰り返して各色の表示を人間の目で積分してカラー認識するFSC(フィールド・シーケンシャル)方式の光源及びそれを用いた表示装置、また各原色及び混合色で情報内容を示す方式等が利用され始めている。
In recent years, devices that use LEDs as light sources are increasing, taking advantage of the fact that they can be miniaturized and have a long lifetime.
However, LEDs also have a deterioration, and the deterioration problem has become an important solution for applications that use a mixed color of LEDs having different wavelengths.
Applications that use mixed colors include white backlights that emit white by mixing three primary colors of red (hereinafter abbreviated as R) LEDs, green (hereinafter abbreviated as G) LEDs, and blue (hereinafter abbreviated as B) LEDs. The RSC, G, and B LEDs are sequentially turned on and off repeatedly, and the display of each color is integrated by the human eye for color recognition and a display device using the same. A method of displaying information contents in primary colors and mixed colors has begun to be used.

ところが各色のLEDはそれぞれ劣化の進行度が異なるため、初期的に色合わせしても劣化と共に色味が変わってきてしまうという問題が生じている。この問題には、人間の目が輝度には比較的鈍感だが色味に比較的敏感という特性を持っていることが大きく影響している。
この問題が解決出来ないため、白色バックライト用途では高価なBLEDをYAG樹脂で覆って白色を出す方式が一般的になってしまっている。
However, since the progress of deterioration of each color LED is different, there is a problem that even if the colors are initially matched, the color changes with deterioration. This problem is greatly influenced by the fact that the human eye is relatively insensitive to luminance but relatively sensitive to color.
Since this problem cannot be solved, a method for producing white by covering an expensive BLED with a YAG resin has become common in white backlight applications.

LEDの寿命を長くするためにはいくつかの提案がある。
例えばLEDチップを実装する基板の電極を工夫することで、LEDチップの電極位置と基板の電極位置の位置ずれ防止とLEDチップの傾き防止を計り、またLED素子の放熱特性をLED素子の電極を工夫することで改善する方法の提案がある(例えば特許文献1参照)。
しかしLEDを実装する基板の接続パッドの工夫についてはなんら開示がなく、また異なる波長を持った複数のLED素子の劣化特性を制御する方法については何ら述べられていない。
There are several proposals for extending the lifetime of LEDs.
For example, by devising the electrode of the substrate on which the LED chip is mounted, the displacement of the electrode position of the LED chip and the electrode position of the substrate is prevented and the inclination of the LED chip is prevented. There is a proposal of a method of improving by devising (for example, refer to Patent Document 1).
However, there is no disclosure about the device of the connection pad of the substrate on which the LED is mounted, and there is no description about a method for controlling the deterioration characteristics of a plurality of LED elements having different wavelengths.

また、金属導体基板を用い、該導体基板の金属上にLEDチップを実装し放熱特性を向上させるという提案もある(例えば特許文献2参照)。
しかしこの方法では基板のコストが大幅に上昇してしまい、また小型機器に用いるためには小型化が困難という問題がある。さらに、異なる波長を持った複数のLED素子の劣化特性を制御する方法については何ら述べられていない。
There is also a proposal of using a metal conductor substrate and mounting an LED chip on the metal of the conductor substrate to improve heat dissipation characteristics (see, for example, Patent Document 2).
However, this method has a problem that the cost of the substrate is significantly increased, and it is difficult to reduce the size for use in a small device. Furthermore, there is no description about a method for controlling deterioration characteristics of a plurality of LED elements having different wavelengths.

さらに、基板のLED素子が実装された面と反対側の面に放熱部材を貼り付け、放熱特性を向上させるという提案もある(例えば特許文献3参照)。
しかしこの方法でも小型機器に用いるための小型化、薄型化には問題があり、また異なる波長を持った複数のLED素子の劣化特性を制御する方法については何ら述べられていない。
Furthermore, there is also a proposal to improve heat dissipation characteristics by attaching a heat dissipation member to the surface of the substrate opposite to the surface on which the LED elements are mounted (see, for example, Patent Document 3).
However, even this method has a problem in miniaturization and thinning for use in a small device, and there is no description about a method for controlling the deterioration characteristics of a plurality of LED elements having different wavelengths.

このように従来の提案はLED単体の寿命を延ばすことにのみ着目しており、複数色のLEDの集合体の寿命に関しては有効な提案が見られなかった。   As described above, the conventional proposal focuses only on extending the lifetime of the single LED, and no effective proposal has been found regarding the lifetime of the aggregate of LEDs of a plurality of colors.

特開平11−177136JP-A-11-177136 特開2003−101076JP2003-101076 特開2004−6193JP2004-6193

解決しようとする課題は、R,G,B各色のLEDの劣化進行度合いが異なるため、3つのLEDがIC化された集合体では、一番最初に劣化したものでLED集合体の寿命が決まってしまい、まだ劣化していない他のLEDも1個のLEDの為にパッケイジ化された他の色のLEDも同時に捨てることになってしまっていた。そのためLEDの集合体は経済性が悪い部品あるいは製品となっており、また頻繁に交換することが必要なため保守コストが高くなってしまっていたことである。
そこで本発明の目的は、各色LEDの劣化速度を均一に近づけ、LED集合体の寿命を延ばすことである。
The problem to be solved is that the progress of deterioration of the LEDs of R, G, and B colors is different, so in the assembly in which the three LEDs are integrated into an IC, the life of the LED assembly is determined by the deterioration first. As a result, other LEDs that have not yet deteriorated and other colored LEDs that have been packaged for one LED must be discarded at the same time. For this reason, the LED assembly is a part or product with poor economic efficiency, and the maintenance cost is high because it is necessary to replace frequently.
Therefore, an object of the present invention is to make the deterioration rate of each color LED uniform and to extend the life of the LED assembly.

上記課題を解決する本発明の特徴は、異なる色の光を発光する少なくとも2つのLEDを有する光源装置において、前記LEDを接続するLED接続用基板の接続電極の大きさを、前記LEDにより異ならせたことを特徴とする光源装置である。
さらに、前記LED接続用基板は、フレキシブル印刷回路基板であることを特徴とする照明装置である。
さらに、少なくとも前記LEDが実装された前記LED接続用基板と、前記LEDの光出射面前方に配設された導光部材を有することを特徴とする照明装置である。
また、上記の照明装置の前記LEDの光出射面前方向に配設された導光部材の前記導光部材の光出射面前方向に表示パネルを配設されたことを特徴とする表示装置である。
A feature of the present invention that solves the above-described problem is that, in a light source device having at least two LEDs that emit light of different colors, the size of the connection electrode of the LED connection substrate that connects the LEDs varies depending on the LEDs. This is a light source device.
Furthermore, the LED connection board is a flexible printed circuit board.
Furthermore, it is an illuminating device characterized by having the said LED connection board | substrate with which the said LED was mounted, and the light guide member arrange | positioned ahead of the light-projection surface of the said LED.
Further, the display device is characterized in that a display panel is disposed in front of the light emission surface of the light guide member of the light guide member disposed in front of the light emission surface of the LED of the illumination device.

また、上記課題を解決する本発明の特徴は、複数のLED素子を有するLED集合体が接続される複数の接続部を有するLED接続用基板であって、それぞれのLED素子の発光スペクトルもしくは発熱量もしくは電流量に応じて前記LEDを接続する前記LED接続基板の接続電極の大きさもしくは電極厚さの少なくとも1つを変えたことを特徴とするLED接続用基板である。
さらに、前記LED接続用基板は、フレキシブル印刷回路基板であることを特徴とするLED接続用基板である。
また、上記LED接続用基板の前記LEDの光出射面前方に配設された導光部材と前記導光部材の光出射面前方に配設された表示パネルを有することを特徴とする表示装置である。
Another feature of the present invention that solves the above problem is an LED connection substrate having a plurality of connection portions to which an LED assembly having a plurality of LED elements is connected, and the emission spectrum or the heat generation amount of each LED element. Alternatively, the LED connection substrate is characterized in that at least one of the size or electrode thickness of the connection electrode of the LED connection substrate to which the LED is connected is changed according to the amount of current.
Further, the LED connection board is a flexible printed circuit board.
And a light guide member disposed in front of the light emitting surface of the LED and a display panel disposed in front of the light emitting surface of the light guide member. is there.

赤、緑、青3色のLED素子より成るLED集合体と接続される複数の接続電極を有するLED接続用回路基板であって、前記LED素子に接続されるそれぞれの前記接続電極に流れる電流量、もしくはそれぞれの前記接続電極が接続されるLEDの発光スペクトル、もしくはそれぞれの前記接続電極の発熱量に応じてそれぞれの前記接続電極の大きさもしくは電極厚さの少なくとも1つを変えたことを特徴とするLED接続用回路基板である。
さらに、前記青色LEDの接続電極の大きさを他の色のLEDの接続電極よりも大きくしたことを特徴とするLED接続用回路基板である。
A circuit board for LED connection having a plurality of connection electrodes connected to an LED assembly composed of LED elements of three colors of red, green, and blue, and an amount of current flowing through each of the connection electrodes connected to the LED elements Or at least one of the size or thickness of each connection electrode is changed according to the emission spectrum of the LED to which each connection electrode is connected or the amount of heat generated by each connection electrode. The circuit board for LED connection.
Furthermore, it is the circuit board for LED connection characterized by making the magnitude | size of the connection electrode of said blue LED larger than the connection electrode of LED of another color.

本発明によれば、複数色から成るLED光源の各色の劣化進行度を近似せしめることが出来るのでLED光源装置の色味を保つことが出来、長寿命化が可能となる。
According to the present invention, since the degree of deterioration of each color of an LED light source composed of a plurality of colors can be approximated, the color of the LED light source device can be maintained and the life can be extended.

本発明の光源装置は、異なる色の光を発光する少なくとも2つのLEDを有し、前記LEDの劣化に関わる要素をそれぞれの前記LED毎に異ならせて設定することにより、前記それぞれのLEDの劣化速度を近似せしめた。
また、劣化に関わる要素として最も大きな発熱に関し、それぞれのLED毎に放熱機構を設け、それぞれのLEDに流れる電流量もしくは発光スペクトルもしくは発熱量に応じて前記それぞれの放熱機構の放熱特性を設定した。
The light source device of the present invention has at least two LEDs that emit light of different colors, and the deterioration of each of the LEDs is determined by setting different factors relating to the deterioration of the LEDs for each of the LEDs. The speed was approximated.
Further, regarding the largest heat generation as an element relating to deterioration, a heat dissipation mechanism is provided for each LED, and the heat dissipation characteristics of the respective heat dissipation mechanisms are set according to the amount of current flowing through each LED, the emission spectrum, or the amount of heat generation.

図3は光源装置(図3においては、LED集合体64と接続部10に相当する)、照明装置(図3においては、LED集合体64と導光部材36に相当する)、表示装置(図3においては、前記照明装置と液晶表示パネル42に相当する)の例を示した斜視図である。
図3において、42は上透明基板38下透明基板40から成る液晶表示パネル、44は透明基板40上に実装されたドライバーIC、46は基板で、図3においては携帯用電子機器に適したフレキシブル印刷基板(以下FPCと略記する)を用いている。ここでFPC46はLEDとの接続部10とそれに続くLED用配線部11とを有しており、機器の本体から液晶駆動信号を受け取ってドライバーIC44に供給し、LED駆動信号を受け取ってLED集合体64に供給している。64はFPC46の接続部10上に実装されたLED集合体、36はLED集合体64の光出射面前方に配設された導光部材で、導光部材36の光出射面は図3の上方となっている。
ここで、LED集合体64とFPC46の接続部10とが光源装置、該光源装置と導光板36とで照明装置、該照明装置と液晶表示パネル42とで表示装置を形成している。
なお以下の図において、同様の部材には同様の番号を付している。
3 shows a light source device (corresponding to the LED assembly 64 and the connecting portion 10 in FIG. 3), a lighting device (corresponding to the LED assembly 64 and the light guide member 36 in FIG. 3), and a display device (FIG. 3). 3 is a perspective view showing an example of the illumination device and the liquid crystal display panel 42).
3, 42 is a liquid crystal display panel comprising an upper transparent substrate 38 and a lower transparent substrate 40, 44 is a driver IC mounted on the transparent substrate 40, 46 is a substrate, and in FIG. 3, a flexible suitable for portable electronic devices. A printed board (hereinafter abbreviated as FPC) is used. Here, the FPC 46 has an LED connection portion 10 and an LED wiring portion 11 that follows, receives a liquid crystal drive signal from the main body of the device, supplies it to the driver IC 44, receives the LED drive signal, and receives the LED assembly. 64. 64 is an LED assembly mounted on the connection portion 10 of the FPC 46, 36 is a light guide member disposed in front of the light output surface of the LED assembly 64, and the light output surface of the light guide member 36 is the upper side of FIG. It has become.
Here, the LED assembly 64 and the connecting portion 10 of the FPC 46 form a light source device, the light source device and the light guide plate 36 form an illumination device, and the illumination device and the liquid crystal display panel 42 form a display device.
In the following drawings, the same members are denoted by the same numbers.

図4はLED集合体64の回路図の例である。
図4において、50は赤LED(RのLED)であり、52は緑LED(GのLED)であり,54は青LED(BのLED)であり、このようにLEDの集合体であるLED集合体64には異なる色の光を発光する少なくとも2つのLEDが内蔵されている。それぞれのLEDは1チップに複数形成されていても良いし、複数チップでも良いし、それぞれが別パッケージになっている複数パッケージでも良い。
図4(a)はLED50、52,54のアノードが共通接続されて共通端子(C)62とされ、各LED50、52,54のカソードはそれぞれ独立端子58,60,56とされている例である。
図4(b)はLED50、52,54のカソードが共通接続されて共通端子(C)とされ、各LED50、52,54のアノードはそれぞれ独立端子とされている例である。
図4(c)はLED50、52,54のアノード、カソードが共に独立端子とされている例で、LEDそれぞれが別パッケージになっている複数パッケージの場合はこの例に相当する。
このようにLED集合体64は各種の出力端子形態をとり得る。
FIG. 4 is an example of a circuit diagram of the LED assembly 64.
In FIG. 4, 50 is a red LED (R LED), 52 is a green LED (G LED), 54 is a blue LED (B LED), and thus an LED that is an assembly of LEDs. The assembly 64 includes at least two LEDs that emit light of different colors. A plurality of LEDs may be formed on one chip, a plurality of chips, or a plurality of packages each in a separate package.
FIG. 4A shows an example in which the anodes of the LEDs 50, 52, and 54 are commonly connected to form a common terminal (C) 62, and the cathodes of the LEDs 50, 52, and 54 are independent terminals 58, 60, and 56, respectively. is there.
FIG. 4B shows an example in which the cathodes of the LEDs 50, 52, and 54 are commonly connected to form a common terminal (C), and the anodes of the LEDs 50, 52, and 54 are independent terminals.
FIG. 4C shows an example in which the anodes and cathodes of the LEDs 50, 52, and 54 are both independent terminals. This corresponds to this example in the case of a plurality of packages in which each LED is a separate package.
Thus, the LED assembly 64 can take various output terminal configurations.

図5はLEDに電流を流すデューティー比を変えて色味調整をする例を示したタイミングチャートである。
図5(a)はFSC方式での色味合わせの例で、1フィールド期間tfのうちの赤サブフィールドtRでは図示のようにRのLEDを発光させ、緑サブフィールドtGではGのLEDを発光させ、青サブフィールドtBではBのLEDを発光させている。これらの光を積分した結果が白色になることが正しい色味を出す条件だが、その調整のため、tRではRのLEDの発光時間を、tGではGのLEDの発光時間を、tBではBのLEDの発光時間をそれぞれ図示のように調整している。
図5(b)は光源の発光色を変えて情報内容を表示する表示法での色味合わせの例で、赤を出す期間t1ではRのLEDを、緑を出す期間t2ではGのLEDを、青を出す期間t3ではBのLEDを、シアンを出す期間t4ではGとBのLEDを、イエローを出す期間t5ではRとGのLEDを、マゼンタを出す期間t5ではRとBのLEDをそれぞれ発光させている。そして混色で色を出す期間t4,t5,t6ではLEDの発光時間をそれぞれ図示のように調整している。
FIG. 5 is a timing chart showing an example in which the color is adjusted by changing the duty ratio for passing a current to the LED.
FIG. 5A shows an example of color matching in the FSC system. In the red subfield tR in one field period tf, the R LED emits light as shown in the figure, and the green subfield tG emits G LED. In the blue subfield tB, the B LED emits light. The result of integrating these lights is that the white color is the correct condition. For adjustment, the R LED emission time at tR, the G LED emission time at tG, and the B emission time at tB The light emission time of each LED is adjusted as shown in the figure.
FIG. 5B is an example of color matching in a display method in which information content is displayed by changing the light emission color of the light source. In the period t1 where red is emitted, the R LED is used, and in the period t2 where green is emitted, the G LED is selected. In the period t3 where blue is emitted, the LEDs of B and B are emitted, in the period t4 where cyan is emitted, the LEDs of G and B are emitted, in the period t5 where yellow is emitted, the LEDs of R and G are selected. Each emits light. In the periods t4, t5, and t6 in which colors are mixed and mixed, the light emission times of the LEDs are adjusted as shown in the figure.

図6はLEDに電流を流すデューティー比もしくは電流値を変えて白色に調整する例を示したタイミングチャートである。
図6(a)は白色照明光を得るためLEDに電流を流すデューティー比を変えて色味調整をする例で、1フィールド期間tf単位でR,G,BのLEDをOFFにするタイミングをta1からta2の範囲で図示のようにそれぞれ調整することにより白色としている。
図6(b)は白色照明光を得るためLEDに流す電流値を変えて色味調整をする例で、R,G,BのLEDに流す電流値をI1からI3の範囲で図示のようにそれぞれ調整することにより白色としている。
FIG. 6 is a timing chart showing an example in which white is adjusted by changing a duty ratio or a current value for supplying a current to the LED.
FIG. 6A shows an example in which the color is adjusted by changing the duty ratio for supplying a current to the LED in order to obtain white illumination light. The timing for turning off the R, G, B LEDs in the unit of one field period tf is ta1. To ta2 to adjust to white as shown in the figure.
FIG. 6B shows an example in which the color value is adjusted by changing the current value flowing through the LED in order to obtain white illumination light. The current value flowing through the R, G, B LED is shown in the range from I1 to I3 as shown in the figure. It is made white by adjusting each.

図5,6で示したようにLED集合体ははじめに色味調整を行ってLEDの製造バラツキによる色味のバラツキを調整することが必要である。しかし各色のLEDによって劣化の進行度が異なる上、該調整によっても劣化の進行度は変わってくる。LEDの劣化は発光光量の減少となって現れるため、劣化の進行度の違いが色味の変化として現れてしまう。
特にGとBのLEDでは上記電流値、デューティーに比例して発熱量が変わる傾向にある。
As shown in FIGS. 5 and 6, it is necessary to first adjust the color of the LED assembly to adjust the color variation due to the manufacturing variation of the LED. However, the degree of progress of deterioration differs depending on the LED of each color, and the degree of progress of deterioration varies depending on the adjustment. Since LED degradation appears as a decrease in the amount of emitted light, a difference in the degree of progress of degradation appears as a change in color.
In particular, in the G and B LEDs, the amount of heat generation tends to change in proportion to the current value and duty.

図7はLEDに電流を流すデューティー比、電流値を説明する図である。
図7(a)において1フィールド期間tfでGのLEDは期間tg発光しており、BのLEDは期間tb発光している。従ってGのLEDの電流を流すデューティー比はtg/tf、BのLEDの電流を流すデューティー比はtb/tfとなり、発熱量もほぼこの比に応じたものとなる。
図7(b)においてはGのLEDには電流I3が、BのLEDには電流I1が流されており、発熱量もほぼこの電流値に応じたものとなる。
FIG. 7 is a diagram for explaining a duty ratio and a current value for supplying a current to the LED.
In FIG. 7A, in one field period tf, the G LED emits light during the period tg, and the B LED emits light during the period tb. Therefore, the duty ratio for flowing the current of the G LED is tg / tf, the duty ratio for flowing the current of the B LED is tb / tf, and the heat generation amount substantially corresponds to this ratio.
In FIG. 7B, a current I3 is passed through the G LED, and a current I1 is passed through the B LED, and the amount of heat generated substantially corresponds to this current value.

LEDは従来液晶表示装置のバックライトとして使われていた冷陰極管よりも大幅に寿命が長いため有用なバックライトと考えられているが、色味が重要な用途においては問題があった。
これは例えば3原色のLEDの組み合わせのように、異なる色のLEDの組み合わせで所望の色を得ようとした場合、初期的な色合わせは図5,6で説明したようにLEDに流す電流値やLEDに電流を流すデューティー比を調節することで可能であるが、各色のLEDはそれぞれ劣化の進行度が異なるため、初期的に色合わせしても劣化と共に色味が変わってきてしまう。そのため複数色のLEDの組み合わせでは期待した長寿命化は計れないため、例えば白色バックライトでは高価なBのLEDをYAG樹脂で覆って白色を出す方式が一般的になってしまっている。
LEDの劣化はLEDチップを封止している樹脂の変色、電気的結合部の劣化、発光
を司る接合部の劣化等が考えられ、それらの劣化進行度が温度に深く関わっていることが確認されている。すなわち高温では劣化の進行が速く、低温では進行が遅くなることが確認されている。そのためか従来の長寿命化技術はLEDチップの温度上昇を抑えること、すなわち放熱機構の改良に偏っていた。
The LED is considered to be a useful backlight because it has a much longer lifetime than a cold cathode tube that has been used as a backlight of a conventional liquid crystal display device. However, there is a problem in applications where color is important.
This is because, for example, when a desired color is obtained with a combination of LEDs of different colors, such as a combination of LEDs of three primary colors, the initial color matching is a current value that flows through the LEDs as described in FIGS. This is possible by adjusting the duty ratio for passing a current to the LED, but the LEDs of each color have different degrees of deterioration, so even if the colors are initially matched, the color changes with deterioration. For this reason, a combination of LEDs of a plurality of colors cannot achieve the expected longevity. For example, in a white backlight, a method of emitting white by covering an expensive B LED with YAG resin has become common.
LED degradation may be due to discoloration of the resin that seals the LED chip, deterioration of the electrical coupling part, deterioration of the joint that controls light emission, etc., and it is confirmed that the degree of deterioration is closely related to temperature. Has been. That is, it has been confirmed that the progress of deterioration is fast at high temperatures and slow at low temperatures. For this reason, the conventional technology for extending the life has been biased toward suppressing the temperature rise of the LED chip, that is, improving the heat dissipation mechanism.

一方異なる色のLEDの組み合わせで所望の色を得ようとした場合、例えば3原色のLEDの組み合わせとした場合は、BのLEDの劣化が一番速くGのLEDがそれに続き、RのLEDは最も遅いことがわかっている。異なる色のLEDの組み合わせで所望の色を得ようとする用途の場合は、色が狂ってしまったと感じられた時が寿命なので、大幅に寿命が短くなってしまっている。
劣化の原因の1つは各色の発光スペクトルに関係するものと思われ、R,G,Bの順で発光スペクトルが短波長側となるためエネルギーが大きくなり、主に樹脂の劣化進行度を速めているものと考えられる。
劣化の他の原因は温度であり、温度は劣化の各現象を加速している。
本願発明はLEDの劣化に関わる要素をそれぞれのLED毎に異ならせて設定することにより、それぞれのLEDの劣化速度を近似せしめ、色味の変化を遅らせることによりLED集合体の長寿命化を計ろうとするものであるが、実施例では各色LEDの持つ放熱機構の特性を異ならせてLEDの劣化速度を近似せしめた例を示している。
On the other hand, when trying to obtain a desired color with a combination of LEDs of different colors, for example, when a combination of LEDs of three primary colors is used, the degradation of the B LED is the fastest, followed by the G LED, and the R LED is I know it is the slowest. In the case of an application in which a desired color is obtained with a combination of LEDs of different colors, the lifetime is greatly shortened because the lifetime is when the color is perceived to be out of order.
One of the causes of deterioration seems to be related to the emission spectrum of each color. Since the emission spectrum becomes shorter in the order of R, G, B, the energy is increased, mainly speeding up the progress of deterioration of the resin. It is thought that.
Another cause of degradation is temperature, which accelerates each phenomenon of degradation.
In the present invention, the factors related to LED degradation are set differently for each LED, so that the degradation rate of each LED is approximated, and the change in color is delayed to extend the life of the LED assembly. In the embodiment, an example in which the deterioration rate of the LED is approximated by changing the characteristics of the heat dissipation mechanism of each color LED is shown.

図1は本発明による第1の実施例で、FPCのLED実装面側を示した図であり、本発明のLED接続用基板に相当する部位を示したものである。このLED接続用基板として接続電極部11を含めてLED接続用基板としLEDに接続される配線を用いて放熱特性制御すれば、より放熱の制御範囲が広がり、しかも放熱特性が向上する効果を得ることができる。
ここで、本実施例ではフレキシブル回路基板なるFPCをLED接続用基板として用いたが、フレキシブル基板でないリジット基板をLED接続用基板として用いてもよい。
図1(a)は、図3の符号46で示した基板であるFPCのLEDとの接続部10と接続用配線電極14が配設された配線部11を示した図である。接続部10の接続電極部12にBのLED用接続電極16、RのLED用接続電極18、GのLED用接続電極20、LEDの共通電極C用接続電極22が図示のように設けられており、配線部11には各LED接続電極16,18,20,22にそれぞれ接続されている配線電極14が設けられている。
接続電極にはLEDの熱が伝わってきておりかつ空気と接しているため、接続電極がLEDの放熱機構となっている。そこで本実施例ではBのLED用接続電極16の面積を、図示のように他の色のLEDの接続電極18,20に比べ大きく、LED素子から伝わってくる熱の放熱量が大きくなるよう設定した。このように設定したことにより、BのLEDの放熱特性を他のLEDよりも大きく設定し、発熱量が大きいBのLEDのチップ温度を他のG,RのLEDのチップ温度に近づけている。このようにBのLEDの放熱特性を他のLEDよりも大きく設定しているのは、BのLEDは光の波長が短いので他の色のLEDに比べてエネルギーが大きく発熱が大きいためである。その結果BのLEDでは封止樹脂等の劣化が速かった。
またBのLEDの劣化速度が他の色のLEDに比べ速かったため、BのLEDの劣化速度を遅くするだけでもLED集合体の長寿命化には大きな効果がある。
図1(b)、(c)では図示のようにBのLEDの接続電極16に加えGのLEDの接続電極20も他の接続電極18,22よりも面積を大きく設定してあり、3原色では接続電極の面積をB,G,Rの順としている。これはLEDの劣化速度がB,G,Rの順となっているためで、図1(b)、(c)のようにB,G,Rでそれぞれの接続電極の面積を異ならせて設定することにより、よりLEDの劣化速度を近似せしめることが出来る。
ここで、図1(b)においては、接続電極16が、配線電極14の一部であるとも表現されている、このように本発明は、R、G、Bよりなる3色のLEDチップを有するLE
D素子と接続される複数の配線あるいは接続電極を有する回路基板であるFPCであって、R、G、Bの前記LEDチップに接続されるそれぞれの前記配線を流れる電流量に関係づけてぞれぞれの配線の配線幅または配線厚みの少なくとも1つを変えた配線を有することを特徴とするLED接続FPCである。
図1(b)では、配線面積あるいは接続電極の配線幅、配線長さ、配線平面積、配線厚み、配線抵抗を変える実施例の代表である配線面積あるいは接続電極をLEDの劣化に対応あるいは関係づけて変えたものである。この劣化に対応するLEDの劣化要因としては、電流、発熱、発光色の波長、温度などがあり、これらの要因に対応してあるいは要因に関係づけて配線面積あるいは接続電極の配線幅、配線長さ、配線厚み、配線平面積、配線抵抗を変えることで、本発明の効果が得られる。
FIG. 1 is a view showing an LED mounting surface side of an FPC according to a first embodiment of the present invention, and shows a portion corresponding to the LED connection substrate of the present invention. If the LED connection substrate including the connection electrode portion 11 is used as the LED connection substrate and the heat dissipation characteristics are controlled by using the wiring connected to the LED, the control range of the heat dissipation is further expanded and the effect of improving the heat dissipation characteristics is obtained. be able to.
In this embodiment, the FPC that is a flexible circuit board is used as the LED connection board in this embodiment, but a rigid board that is not a flexible board may be used as the LED connection board.
FIG. 1A is a diagram showing a wiring portion 11 in which a connecting portion 10 and a connection wiring electrode 14 for an FPC LED, which is a substrate indicated by reference numeral 46 in FIG. The connection electrode portion 12 of the connection portion 10 is provided with a B LED connection electrode 16, an R LED connection electrode 18, a G LED connection electrode 20, and an LED common electrode C connection electrode 22 as shown in the figure. The wiring portion 11 is provided with wiring electrodes 14 connected to the LED connection electrodes 16, 18, 20, and 22, respectively.
Since the heat of the LED is transmitted to the connection electrode and is in contact with air, the connection electrode serves as a heat dissipation mechanism for the LED. Therefore, in this embodiment, the area of the LED connection electrode 16 for B is set to be larger than the connection electrodes 18 and 20 for the LEDs of other colors as shown in the figure, and the heat dissipation amount of heat transmitted from the LED elements is increased. did. By setting in this way, the heat dissipation characteristics of the B LED are set larger than those of the other LEDs, and the chip temperature of the B LED that generates a large amount of heat is brought closer to the chip temperatures of the other G and R LEDs. The reason why the heat dissipation characteristic of the B LED is set larger than that of the other LEDs is that the B LED has a short wavelength of light and therefore has a larger energy and generates more heat than other LEDs. . As a result, in the LED of B, the deterioration of the sealing resin or the like was rapid.
In addition, since the deterioration rate of the B LED is faster than that of the other colors of LEDs, even if the deterioration rate of the B LED is only slowed, there is a great effect in extending the life of the LED assembly.
1B and 1C, in addition to the connection electrode 16 of the B LED, the connection electrode 20 of the G LED is set to have a larger area than the other connection electrodes 18 and 22 as shown in FIG. In this case, the area of the connection electrode is in the order of B, G, and R. This is because the degradation rates of the LEDs are in the order of B, G, and R. Therefore, as shown in FIGS. 1B and 1C, the area of each connection electrode is set differently for B, G, and R. By doing so, the deterioration rate of the LED can be approximated more.
Here, in FIG. 1B, the connection electrode 16 is also expressed as a part of the wiring electrode 14. Thus, in the present invention, the three-color LED chip composed of R, G, and B is used. LE
An FPC, which is a circuit board having a plurality of wirings or connection electrodes connected to the D element, and is related to the amount of current flowing through each of the wirings connected to the R, G, and B LED chips. An LED-connected FPC having a wiring in which at least one of a wiring width or a wiring thickness of each wiring is changed.
In FIG. 1B, the wiring area or connection electrode, which is a representative example of the embodiment that changes the wiring area or wiring width, wiring length, wiring flat area, wiring thickness, and wiring resistance of the connection electrode, corresponds to or relates to the deterioration of the LED. It was changed. LED degradation factors corresponding to this degradation include current, heat generation, emission color wavelength, temperature, etc. Corresponding to or relating to these factors, the wiring area or the wiring width of the connection electrode, the wiring length The effects of the present invention can be obtained by changing the wiring thickness, the wiring area, and the wiring resistance.

なお、各接続電極の面積は、図7(a)で説明したデューティー比もしくは図7(b)で説明した電流値に従って各LEDに流れる電流量、もしくは各LEDの発光スペクトル、もしくは各LEDの発熱量に応じて設定すればよい。なお、電流量は制御回路の設計の際に、発光スペクトルは使用素子選定の際に、発熱量は測定によって、いずれも比較的容易に知ることが出来る。
また、各接続電極の面積ではなく、各接続電極の電極厚みを変えること、電極面積と電極厚みの双方を変え、接続電極の熱容量も変えることも効果がある。
また、GのLEDとBのLEDとでは電流量と発熱量とが相互に関係しあっているため、この2つのLEDに関しては本実施例の方式が特に効果的である。
The area of each connection electrode is the amount of current flowing through each LED according to the duty ratio described in FIG. 7A or the current value described in FIG. 7B, the emission spectrum of each LED, or the heat generation of each LED. What is necessary is just to set according to quantity. The amount of current can be known relatively easily by designing the control circuit, the emission spectrum by selecting the element to be used, and the amount of heat generated by measurement.
It is also effective to change the electrode thickness of each connection electrode, not the area of each connection electrode, and change both the electrode area and the electrode thickness to change the heat capacity of the connection electrode.
In addition, since the amount of current and the amount of heat generation are mutually related in the G LED and the B LED, the method of this embodiment is particularly effective for these two LEDs.

図2は本発明による第2の実施例で、LED接続用基板の実施例であるFPC(フレキシブル回路基板)の裏面を示した図である。
図2(a)においてはFPC46の接続部10の裏面に電極24もしくは放熱部材24を設けている。
このように電極もしくは放熱部材24を設けると、FPC表面の接続電極16,18,20に伝えられたLEDの熱は約25μm厚のFPCを介して裏面の電極もしくは放熱部材24に伝わるので、より放熱効果が大きくなる。電極もしくは放熱部材24に伝わる熱量はほぼFPC46の表の面の接続電極16,18,20の面積に比例するので、R,G,Bの各LED毎に放熱特性が異なる状態には変わりはない。
FIG. 2 is a view showing the back surface of an FPC (flexible circuit board) which is an embodiment of an LED connection board according to a second embodiment of the present invention.
In FIG. 2A, the electrode 24 or the heat radiating member 24 is provided on the back surface of the connecting portion 10 of the FPC 46.
When the electrode or the heat radiating member 24 is provided in this way, the heat of the LED transmitted to the connection electrodes 16, 18 and 20 on the FPC surface is transferred to the back electrode or the heat radiating member 24 through the FPC having a thickness of about 25 μm. Increases heat dissipation effect. Since the amount of heat transmitted to the electrode or the heat radiating member 24 is substantially proportional to the area of the connection electrodes 16, 18, 20 on the front surface of the FPC 46, there is no change in the state in which the heat radiation characteristics differ for each of the R, G, B LEDs. .

図2(b)はFPC46の接続部10の裏面にBのLED用背面電極26,GのLED用背面電極28を設けた例で、BのLEDとGのLEDの熱をFPC表面の接続電極16,18、FPCを介して該電極26、28からも放熱させて放熱効果を高めている。
また、熱伝導率を下げるためのBのLED用スルーホール30、GのLED用スルーホール32を設けてFPC表面の接続電極16,18と金属で接続することも放熱効果を高める上で有効である。
なお、図2(b)ではGのLED用背面電極28の方がBのLED用背面電極26よりも面積を大きく取ってあるが、放熱特性としては表面の接続電極の面積、表面の接続電極と裏面の背面電極とが重なっている面積、スルーホールの数等によって放熱特性が決まるので、背面電極の面積と放熱量とは必ずしも一致はしない。
FIG. 2B shows an example in which a B LED back electrode 26 and a G LED back electrode 28 are provided on the back surface of the connecting portion 10 of the FPC 46. The heat of the B LED and the G LED is connected to the FPC surface connection electrode. The heat radiation effect is enhanced by dissipating heat from the electrodes 26 and 28 via 16, 18 and FPC.
It is also effective to increase the heat dissipation effect by providing a B LED through hole 30 and a G LED through hole 32 for lowering the thermal conductivity and connecting to the connection electrodes 16 and 18 on the FPC surface with metal. is there.
In FIG. 2 (b), the G LED back electrode 28 has a larger area than the B LED back electrode 26. However, as heat dissipation characteristics, the area of the surface connection electrode, the surface connection electrode Since the heat dissipation characteristics are determined by the area where the back electrode on the back and the back electrode on the back surface, the number of through holes, etc., the area of the back electrode and the heat dissipation amount do not necessarily match.

図2(c)はFPC46の接続部10の裏面にBのLED用背面電極26,GのLED用背面電極28に加えRのLED用背面電極27を設けた例で、このように構成したことによりRのLEDの放熱特性も高めている。
また、図2(c)では、熱伝導率を下げるためのBのLED用スルーホール30、RのLED用スルーホール34、GのLED用スルーホール32を設けてFPC表面の接続電極16,18と金属で接続することも放熱効果を高める上で有効である。
FIG. 2C shows an example in which the rear LED electrode 26 for the B LED and the rear electrode 28 for the LED in addition to the rear LED electrode 28 for the G LED are provided on the back surface of the connecting portion 10 of the FPC 46. This also improves the heat dissipation characteristics of the R LED.
In FIG. 2C, a B LED through hole 30, a R LED through hole 34, and a G LED through hole 32 for lowering the thermal conductivity are provided, and the connection electrodes 16 and 18 on the FPC surface are provided. It is also effective to enhance the heat dissipation effect by connecting with metal.

図8はLED集合体をLED接続用基板の実施例であるFPC上に実装した例を示した
斜視図である。
ここで、本実施例ではフレキシブル回路基板なるFPCをLED接続用基板として用いたが、フレキシブル基板でないリジット基板をLED接続用基板として用いてもよい。
図8において、64はLED集合体で、例えばR,G,BのLEDが1つのパッケージ内に収納されてFPC46の接続部10上に実装されている。
LED集合体64が図4(a)に示したアノードコモンの接続となっている場合LED集合体64の外部電極は、56をBのLEDのカソード電極、58をRのLEDのカソード電極、60をGのLEDのカソード電極、62を共通アノード電極とする。またLED集合体64が図4(b)に示したカソードコモンの接続となっている場合LED集合体64の外部電極は、56をBのLEDのアノード電極、58をRのLEDのアノード電極、60をGのLEDのアノード電極、62を共通カソード電極とする。
LED集合体64の各電極56,58,60,62はFPC46の接続部10でB,R,GおよびCの各LED用接続電極16,18,20,22にリフロー法によって半田63でそれぞれ接続されている。したがって、LED集合体64の各電極56,58,60の熱はLED用接続電極16,18,20に低い熱抵抗で伝えられる。各LED発光光の出射方向は66で示した方向となる。
なお、LED集合体は図8の例に限定されるものではなく、異なる色の発光光を出す別々のパッケージがFPC46の接続部10上に実装されていても良い。
FIG. 8 is a perspective view showing an example in which the LED assembly is mounted on an FPC which is an embodiment of an LED connection substrate.
In this embodiment, the FPC that is a flexible circuit board is used as the LED connection board in this embodiment, but a rigid board that is not a flexible board may be used as the LED connection board.
In FIG. 8, reference numeral 64 denotes an LED assembly. For example, R, G, and B LEDs are housed in one package and mounted on the connection portion 10 of the FPC 46.
When the LED assembly 64 has the anode common connection shown in FIG. 4 (a), the external electrode of the LED assembly 64 is the cathode electrode of the B LED, 58 is the cathode electrode of the R LED, 60 Is a cathode electrode of the G LED, and 62 is a common anode electrode. When the LED assembly 64 has the cathode common connection shown in FIG. 4 (b), the external electrode of the LED assembly 64 includes 56 as the anode electrode of the B LED, 58 as the anode electrode of the R LED, 60 is an anode electrode of the G LED, and 62 is a common cathode electrode.
The electrodes 56, 58, 60 and 62 of the LED assembly 64 are connected to the B, R, G and C LED connection electrodes 16, 18, 20, and 22 by the solder 63 by the reflow method at the connection portion 10 of the FPC 46, respectively. Has been. Therefore, the heat of the electrodes 56, 58, 60 of the LED assembly 64 is transmitted to the LED connection electrodes 16, 18, 20 with a low thermal resistance. The emission direction of each LED emission light is the direction indicated by 66.
The LED aggregate is not limited to the example of FIG. 8, and separate packages that emit light of different colors may be mounted on the connection portion 10 of the FPC 46.

図9はワイヤーボンディング法によりLEDチップをパッケージに実装した例を示した断面図である。
チップ下面をカソードもしくはアノードのうちの一方の電極とするLEDチップ74は例えば銀ペースト76でパッケージ内の基板68上の電極70に固定されて電極70を一方の電極とし、LEDチップ74の上面の他方の電極はワイヤー78によってパッケージ内の基板68上の電極72に接続されている。80は内面が鏡面加工された樹脂で、充填されている無色透明の樹脂82と共にLEDチップ74を保護している。発光光の出射方向は図示の66方向である。
ここでLEDチップ74の熱のほとんどは電極70に伝わっており、電極70が図8に示した電極56,58,60として外部に引き出される。電極72は他のLEDチップと同様の電極と共通接続されて図8に示した共通電極62として外部に引き出される。
FIG. 9 is a cross-sectional view showing an example in which an LED chip is mounted on a package by a wire bonding method.
The LED chip 74 having the lower surface of the chip as one of the cathode and the anode is fixed to the electrode 70 on the substrate 68 in the package with, for example, silver paste 76, and the electrode 70 is used as one electrode. The other electrode is connected to an electrode 72 on a substrate 68 in the package by a wire 78. Reference numeral 80 denotes a resin whose inner surface is mirror-finished, and protects the LED chip 74 together with the colorless and transparent resin 82 filled therein. The emission direction of the emitted light is 66 shown in the figure.
Here, most of the heat of the LED chip 74 is transferred to the electrode 70, and the electrode 70 is drawn out to the outside as the electrodes 56, 58, and 60 shown in FIG. The electrode 72 is commonly connected to the same electrode as that of the other LED chips, and is drawn out to the outside as the common electrode 62 shown in FIG.

図10はフリップチップ法によりLEDチップをパッケージに実装した例を示した断面図である。
アノード、カソードの両電極をチップの一方の面に、発光面をチップの他方の面としたLEDチップ84は、一方の電極をバンプ86でパッケージ内の基板68上の電極90に接続されて電極90を一方の電極とし、他方の電極はバンプ88でパッケージ内の基板68上の電極92に接続されている。80は内面が鏡面加工された樹脂で、充填されている無色透明の樹脂82と共にLEDチップ84を保護している。発光光の出射方向は図示の66方向である。
ここでLEDチップ84の熱はバンプ86と88の面積にほぼ比例して電極90、92に伝わる。 従ってバンプ86の面積をバンプ88の面積よりも十分大きく、もしくはバンプ86の個数をバンプ88の個数よりも十分多くすればLEDチップ84の熱のほとんどは電極90に伝わる。電極90が図8に示した電極56,58,60として外部に引き出される。電極92は他のLEDチップの同様の電極と共通接続されて図8に示した電極62として外部に引き出される。
FIG. 10 is a cross-sectional view showing an example in which an LED chip is mounted on a package by a flip chip method.
The LED chip 84 having both the anode and cathode electrodes on one side of the chip and the light emitting surface on the other side of the chip is connected to the electrode 90 on the substrate 68 in the package by using one bump as a bump 86. 90 is one electrode, and the other electrode is connected to an electrode 92 on a substrate 68 in the package by a bump 88. Reference numeral 80 denotes a resin whose inner surface is mirror-finished, and protects the LED chip 84 together with the colorless and transparent resin 82 filled therein. The emission direction of the emitted light is 66 shown in the figure.
Here, the heat of the LED chip 84 is transmitted to the electrodes 90 and 92 in proportion to the area of the bumps 86 and 88. Therefore, if the area of the bump 86 is sufficiently larger than the area of the bump 88 or the number of the bumps 86 is sufficiently larger than the number of the bumps 88, most of the heat of the LED chip 84 is transferred to the electrode 90. The electrode 90 is drawn to the outside as the electrodes 56, 58, and 60 shown in FIG. The electrode 92 is commonly connected to similar electrodes of other LED chips, and is drawn out to the outside as the electrode 62 shown in FIG.

図11はLED集合体内でワイヤーボンディング法によってLEDを実装した例を示した斜視図である。
図11において、パッケージ内の基板108上にBのLED用電極100、RのLED用電極102、GのLED用電極104、共通電極C用電極106が設けられ、該それぞ
れの電極にBのLED54、RのLED50、GのLED52が銀ペースト76で固定されている。
チップ下面をカソードもしくはアノードのうちの一方の電極とするLEDチップ54,50,52は電極100,102,104を一方の電極とし、LEDチップ54,50,52の上面の他方の電極がワイヤー78によって接続された電極106を他方の電極としている。ここでLEDチップ54,50,52の熱のほとんどは電極100,102,104に伝わっており、電極100,102,104が図8に示した電極56,58,60として外部に引き出される。電極106は他のLEDチップの同様の電極と共通接続されて図8に示した電極62として外部に引き出される。
FIG. 11 is a perspective view showing an example in which LEDs are mounted in the LED assembly by the wire bonding method.
In FIG. 11, a B LED electrode 100, an R LED electrode 102, a G LED electrode 104, and a common electrode C electrode 106 are provided on a substrate 108 in the package, and the B LED 54 is provided on each of the electrodes. , R LED 50 and G LED 52 are fixed with silver paste 76.
The LED chips 54, 50, 52 having the lower surface of the chip as one of a cathode or an anode have the electrodes 100, 102, 104 as one electrode, and the other electrode on the upper surface of the LED chips 54, 50, 52 is a wire 78. The other electrode is connected to the electrode 106 connected by. Here, most of the heat of the LED chips 54, 50, 52 is transmitted to the electrodes 100, 102, 104, and the electrodes 100, 102, 104 are extracted to the outside as the electrodes 56, 58, 60 shown in FIG. 8. The electrode 106 is commonly connected to similar electrodes of other LED chips, and is drawn out to the outside as the electrode 62 shown in FIG.

以上説明したように、LEDチップの大半の熱が伝わる側の電極を個別の出力端子とし、熱があまり伝わらない側の端子を共通電極とすれば、LEDの発光色毎に放熱特性を異ならせることが出来、本発明の効果が得られる。
一方、LEDチップが実装されたパッケイジで見ると、実施例1の図1ではBのLED端子の接続電極の平面積を他のLED端子に比べて3倍近く広げていなが、さらに、BのLEDの共通電極側の接続電極22をRとGのそれぞれの接続電極より大きくしても、接続電極16の面積を大きくするほどの放熱特性の改善の効果は得られないものの、ある程度の放熱特性の改善の効果を得ることができる。このため、上記実施例1では、接続電極18,20,22であるR、G、BのLEDの個別端子に接続される接続電極の放熱面積を調整するだけでなく、接続電極10である共通電極Cの接続電極の面積をも調整する方がより本発明の効果が得られる。
この共通電極Cの接続電極に関しては、図12の実施例2にLED共通接続電極またはLED固定電極118,120,122 B,R,Gとして説明をしている。
As described above, if the electrode on the side where most heat of the LED chip is transmitted is used as an individual output terminal and the terminal on which the heat is not transmitted is used as a common electrode, the heat dissipation characteristics differ for each LED color. The effect of the present invention can be obtained.
On the other hand, looking at the package on which the LED chip is mounted, the plane area of the connection electrode of the LED terminal of B in FIG. 1 of Example 1 is not nearly three times that of the other LED terminals. Even if the connection electrode 22 on the common electrode side of the LED is made larger than the connection electrodes R and G, the effect of improving the heat dissipation characteristics to the extent that the area of the connection electrode 16 is increased cannot be obtained, but some heat dissipation characteristics are obtained. The improvement effect can be obtained. For this reason, in the first embodiment, not only the heat radiation area of the connection electrodes connected to the individual terminals of the R, G, and B LEDs that are the connection electrodes 18, 20, and 22 is adjusted, but also the connection electrode 10 is common. The effect of the present invention can be obtained more by adjusting the area of the connection electrode of the electrode C.
The connection electrode of the common electrode C is described as an LED common connection electrode or LED fixed electrodes 118, 120, 122B, R, and G in Example 2 of FIG.

図12は本発明の第2の実施例で、FPC上にLEDチップを実装した図である。
本実施例はLEDチップの大半の熱が伝わる側の電極が共通電極となっている場合の本発明の実施法を説明したものである。
本実施例においてはLEDチップを直接FPC上に実装している。
図12において、FPC46(図3参照)の接続部10にはBのLED54、RのLED50、GのLED52をそれぞれFPCの電極に接続し固定するための電極118,120,122が設けられ、該3つの電極は比較的細い配線116によって電気的に接続され共通電極線Cとなっている。電極118,120,122上にはBのLED54、RのLED50、GのLED52がそれぞれ例えば銀ペーストで接着されて固定されている。またBのLED54用の出力電極110、RのLED50用の出力電極112、GのLED52用の出力電極114が設けられ、それぞれワイヤ78によってLEDチップ54,50,52と接続されている。図12におけるFPC上の電極構成は図1,2と同様である。
図12はLEDの下面電極がアノードであって共通電極をアノードコモンにする必要がある場合、LEDの下面電極がカソードであって共通電極をカソードコモンにする必要がある場合のための構成である。
ワイヤ78はメタルであり熱伝導率は高いが細く長いため、LEDチップ54,50,52の熱の大部分はLEDチップ裏面の銀ペーストを介して電極118,120,122に伝わる。電極118,120,122は比較的細い配線116によって電気的に接続され、該配線116はメタルであるため電気的には短絡状態であるが、熱抵抗的には絶縁状態に近い。したがって電極118,120,122には各LEDチップ54,50,52の発熱量に従った熱が伝わり、実施例1の場合と同様に、各LED毎に放熱特性を異ならせることが出来る。
この様に、図12では、共通電極Cの接続電極をLED共通接続電極またはLED固定
電極118,120,122 B,R,Gとして分割し、それぞれの共通電極118,120,122の面積をLEDの色によりあるいはLEDの発熱特性に対応して変えている。
LEDチップが実装されたパッケイジで見ると、実施例2の図12ではBのLED端子の共通電極118の平面積を他のLEDの共通電極120,122に比べて2−1.5倍近く広げている。
さらに、これらの共通電極118,120,122を1つの共通電極Cとしても、放熱特性の向上が得られる。
図12では、共通電極Cのみの電極平面積を変えているが、LED用接続電極112,114,114の電極平面積を共通電極118,120,122と同じように変えても良い。
このように接続電極、共通電極の平面積を調整することでより本発明の効果が得られる。即ち、放熱特性が向上しLED全体の劣化の進行を抑える事ができ、且つLEDの色に対する劣化の進行の違いを調整することができ、結果、LEDパッケイジの部品の信頼性が向上し、さらにこのFPCあるいは基板を用いた照明装置、表示装置の信頼性が向上する有する。
FIG. 12 shows a second embodiment of the present invention in which an LED chip is mounted on an FPC.
In this embodiment, the method for carrying out the present invention in the case where the electrode on the side where most of the heat of the LED chip is transferred is a common electrode will be described.
In this embodiment, the LED chip is directly mounted on the FPC.
In FIG. 12, the connection portion 10 of the FPC 46 (see FIG. 3) is provided with electrodes 118, 120, and 122 for connecting and fixing the B LED 54, the R LED 50, and the G LED 52 to the FPC electrodes, respectively. The three electrodes are electrically connected by a relatively thin wiring 116 to form a common electrode line C. On the electrodes 118, 120, and 122, the B LED 54, the R LED 50, and the G LED 52 are fixed by being bonded with, for example, silver paste. Further, an output electrode 110 for the B LED 54, an output electrode 112 for the R LED 50, and an output electrode 114 for the G LED 52 are provided, and are connected to the LED chips 54, 50, and 52 by wires 78, respectively. The electrode configuration on the FPC in FIG. 12 is the same as that in FIGS.
FIG. 12 shows a configuration for the case where the lower electrode of the LED is an anode and the common electrode needs to be an anode common, and the lower electrode of the LED is a cathode and the common electrode needs to be a cathode common. .
Since the wire 78 is a metal and has a high thermal conductivity but is thin and long, most of the heat of the LED chips 54, 50 and 52 is transmitted to the electrodes 118, 120 and 122 via the silver paste on the back surface of the LED chip. The electrodes 118, 120, and 122 are electrically connected by a relatively thin wiring 116. Since the wiring 116 is a metal, it is electrically short-circuited, but it is close to an insulating state in terms of thermal resistance. Therefore, heat according to the heat generation amount of each LED chip 54, 50, 52 is transmitted to the electrodes 118, 120, 122, and the heat dissipation characteristics can be made different for each LED as in the first embodiment.
Thus, in FIG. 12, the connection electrode of the common electrode C is divided into LED common connection electrodes or LED fixed electrodes 118, 120, 122B, R, and G, and the areas of the respective common electrodes 118, 120, and 122 are divided into LED. Depending on the color of the LED or in accordance with the heat generation characteristics of the LED.
Looking at the package on which the LED chip is mounted, in FIG. 12 of the second embodiment, the plane area of the common electrode 118 of the LED terminal of B is expanded by 2 to 1.5 times compared to the common electrodes 120 and 122 of the other LEDs. ing.
Furthermore, even if these common electrodes 118, 120, and 122 are used as one common electrode C, the heat dissipation characteristics can be improved.
In FIG. 12, the electrode flat area of only the common electrode C is changed, but the electrode flat areas of the LED connection electrodes 112, 114, 114 may be changed in the same manner as the common electrodes 118, 120, 122.
Thus, the effect of this invention is acquired by adjusting the plane area of a connection electrode and a common electrode. In other words, the heat dissipation characteristics are improved, the progress of the deterioration of the entire LED can be suppressed, and the difference in the progress of the deterioration with respect to the color of the LED can be adjusted. As a result, the reliability of the LED package component is improved. The reliability of the lighting device and the display device using the FPC or the substrate is improved.

図13は本発明の第3の実施例で、LED集合体内でフリップチップ法によってLEDを実装した図である。
図13(a)においては図示を省略したLED集合体内の基板上に、BのLED54用の出力電極100、RのLED50用の出力電極102、GのLED52用の出力電極104、共通電極C用の出力電極106が設けられており、各LEDチップ54,50,52は各出力電極100,102,104と共通電極106との間にそれぞれ図示のようにフリップチップ接続されている。
ここでフリップチップ実装のためのバンプ86,88は図示のように出力電極100,102,104側を十分大きく、共通電極106側を小さくしている。この状態をBのLED54部の断面で示すと図13(b)のようになる。このようにバンプの大きさを変えることは半田印刷法や半田ボールを置く従来知られた方法で容易に実現出来る。
FIG. 13 shows a third embodiment of the present invention in which LEDs are mounted by the flip chip method in the LED assembly.
13A, an output electrode 100 for the B LED 54, an output electrode 102 for the R LED 50, an output electrode 104 for the G LED 52, and a common electrode C are provided on a substrate in the LED assembly (not shown). The output electrodes 106 are provided, and the LED chips 54, 50, 52 are flip-chip connected between the output electrodes 100, 102, 104 and the common electrode 106 as shown in the figure.
Here, the bumps 86 and 88 for flip-chip mounting have a sufficiently large output electrode 100, 102, and 104 side and a small common electrode 106 side as shown in the figure. This state is shown in FIG. 13B by a cross section of the B LED 54 part. In this way, changing the size of the bump can be easily realized by a solder printing method or a conventionally known method of placing a solder ball.

このようにバンプ86をバンプ88よりも十分大きく構成したことにより、LEDチップ54,50,52の熱のほとんどは電極100,102,104にそれぞれ伝わる。従って出力電極100,102,104を図8に示したLED集合体64の出力電極56,58,60として取り出し図1、2で示したFPC上に実装すれば、実施例1の場合と同様に、各LED毎に放熱特性を異ならせることが出来る。     Since the bump 86 is configured to be sufficiently larger than the bump 88 in this way, most of the heat of the LED chips 54, 50, 52 is transferred to the electrodes 100, 102, 104, respectively. Therefore, if the output electrodes 100, 102, 104 are taken out as the output electrodes 56, 58, 60 of the LED assembly 64 shown in FIG. 8 and mounted on the FPC shown in FIGS. The heat dissipation characteristics can be made different for each LED.

なおLED集合体内のLED構成が図4(c)のように各アノード端子、各カソード端子共に分離されている場合は、LEDチップの熱が伝わる端子が必ずLED集合体の外側に設けられているので、各実施例で説明した方法の応用で各LED毎に放熱特性を異ならせることは容易である。   When the LED configuration in the LED assembly is separated from each anode terminal and each cathode terminal as shown in FIG. 4C, the terminal through which the heat of the LED chip is transmitted is always provided outside the LED assembly. Therefore, it is easy to vary the heat dissipation characteristics for each LED by applying the method described in each embodiment.

このように本発明の光源装置は、以下の特徴をも有している。
本発明の光源装置は、異なる色の光を発光する少なくとも2つのLEDを有し、前記LEDの劣化に関わる要素をそれぞれの前記LED毎に異ならせて設定することにより、前記それぞれのLEDの劣化速度を近似せしめている。また、本発明の光源装置は、異なる色の光を発光する少なくとも2つのLEDを有し、それぞれの前記LED毎に放熱機構を設け、それぞれの前記LEDに流れる電流量に応じて前記それぞれの放熱機構の放熱特性を設定したことを特徴とする。また、本発明の光源装置は、前記電流量が前記LEDに流す電流値であることを特徴とする。また、本発明の光源装置は、前記電流量が間欠的に前
記LEDに電流を流すデューティー比であることを特徴とする。また、本発明の光源装置は、異なる色の光を発光する少なくとも2つのLEDを有し、それぞれの前記LED毎に放熱機構を設け、それぞれの前記LEDに流れる発光スペクトルに応じて前記それぞれの放熱機構の放熱特性を設定したことを特徴とする。また、本発明の光源装置は、異なる色の光を発光する少なくとも2つのLEDを有し、それぞれの前記LED毎に放熱機構を設け、それぞれの前記LEDの発熱量に応じて前記それぞれの放熱機構の放熱特性を設定したことを特徴とする。また、本発明の光源装置は、前記LEDのうちの1つが青色LEDであり、該青色LEDの放熱機構の放熱特性を他のLEDの放熱機構の放熱特性よりも強化したことを特徴とする。また、本発明の光源装置は、異なる色の光を発光する少なくとも2つのLEDを有し、前記LEDを接続する基板の接続電極の大きさを、前記LEDにより異ならせたことを特徴とする。また、本発明のLED接続用基板は、複数のLED素子を有するLED集合体が接続される複数の接続部を有し、それぞれのLED素子の発光スペクトルもしくは発熱量もしくは電流量に応じて前記LEDを接続する基板の接続電極の大きさもしくは電極厚さの少なくとも1つを変えたことを特徴とする。また、本発明のLED接続用基板は、前記基板がフレキシブル印刷回路基板であることを特徴とする。また、本発明の照明装置は、少なくとも前記LEDが実装された前記フレキシブル印刷回路基板と、前記LEDの光出射面前方に配設された導光部材を有することを特徴とする。また、本発明の表示装置は、少なくとも前記LEDが実装された前記フレキシブル印刷回路基板と、前記LEDの光出射面前方に配設された導光部材と前記導光部材の光出射面前方に配設された表示パネルを有することを特徴とする。また、本発明のフレキシブル印刷回路基板は、赤、緑、青3色のLED素子より成るLED集合体と接続される複数の接続電極を有し、前記LED素子に接続されるそれぞれの前記接続電極に流れる電流量、もしくはそれぞれの前記接続電極が接続されるLEDの発光スペクトル、もしくはそれぞれの前記接続電極の発熱量に応じてそれぞれの前記接続電極の大きさもしくは電極厚さの少なくとも1つを変えたことを特徴とする。また、本発明のフレキシブル印刷回路基板は、前記青色LEDの接続電極の大きさを他の色のLEDの接続電極よりも大きくしたことを特徴とする。
Thus, the light source device of the present invention also has the following characteristics.
The light source device of the present invention has at least two LEDs that emit light of different colors, and the deterioration of each of the LEDs is determined by setting different factors relating to the deterioration of the LEDs for each of the LEDs. The speed is approximated. Further, the light source device of the present invention includes at least two LEDs that emit light of different colors, and a heat dissipation mechanism is provided for each of the LEDs, and each of the heat dissipations according to the amount of current flowing through each of the LEDs. The heat dissipation characteristics of the mechanism are set. The light source device of the present invention is characterized in that the current amount is a current value flowing through the LED. In the light source device of the present invention, the amount of current is a duty ratio that causes current to flow intermittently through the LED. Further, the light source device of the present invention has at least two LEDs that emit light of different colors, a heat dissipation mechanism is provided for each of the LEDs, and each of the heat dissipations according to the emission spectrum that flows through each of the LEDs. The heat dissipation characteristics of the mechanism are set. In addition, the light source device of the present invention includes at least two LEDs that emit light of different colors, and a heat dissipation mechanism is provided for each of the LEDs, and each of the heat dissipation mechanisms according to the amount of heat generated by each of the LEDs. The heat dissipation characteristics are set. Moreover, the light source device of the present invention is characterized in that one of the LEDs is a blue LED, and the heat dissipation characteristics of the heat dissipation mechanism of the blue LED are enhanced compared to the heat dissipation characteristics of the heat dissipation mechanisms of the other LEDs. In addition, the light source device of the present invention has at least two LEDs that emit light of different colors, and the size of the connection electrode of the substrate to which the LEDs are connected differs depending on the LEDs. In addition, the LED connection substrate of the present invention has a plurality of connection parts to which an LED assembly having a plurality of LED elements is connected, and the LED according to the emission spectrum, heat generation amount or current amount of each LED element. At least one of the size of the connection electrode or the electrode thickness of the substrate to which is connected is changed. In the LED connection substrate of the present invention, the substrate is a flexible printed circuit board. In addition, the lighting device of the present invention includes at least the flexible printed circuit board on which the LED is mounted, and a light guide member disposed in front of the light emitting surface of the LED. The display device of the present invention includes at least the flexible printed circuit board on which the LEDs are mounted, a light guide member disposed in front of the light emission surface of the LEDs, and a light emission surface in front of the light guide member. It has the display panel provided. In addition, the flexible printed circuit board of the present invention has a plurality of connection electrodes connected to an LED assembly composed of red, green, and blue LED elements, and each of the connection electrodes connected to the LED elements. The size or thickness of each of the connection electrodes is changed in accordance with the amount of current flowing through the LED, the emission spectrum of the LED to which the connection electrode is connected, or the amount of heat generated by the connection electrode. It is characterized by that. The flexible printed circuit board of the present invention is characterized in that the size of the connection electrode of the blue LED is larger than the connection electrodes of the LEDs of other colors.

以上説明したように本発明によれば、複数色から成るLED光源の各色の劣化進行度を近似せしめることが出来るのでLED光源装置の色味を保つことが出来、長寿命化が可能となる。
As described above, according to the present invention, the degree of progress of deterioration of each color of the LED light source composed of a plurality of colors can be approximated, so that the color of the LED light source device can be maintained and the life can be extended.

本発明による第1の実施例で、FPCのLED実装面側を示した図である。It is the figure which showed the LED mounting surface side of FPC in 1st Example by this invention. 本発明による第1の実施例で、FPCの裏面を示した図である。It is the figure which showed the back surface of FPC in 1st Example by this invention. LED光源装置、照明装置、表示装置の例を示した斜視図である。It is the perspective view which showed the example of the LED light source device, the illuminating device, and the display apparatus. LED集合体の回路図の例である。It is an example of the circuit diagram of a LED assembly. LEDに電流を流すデューティー比を変えて色味調整をする例を示したタイミングチャートである。It is the timing chart which showed the example which changes the duty ratio which sends an electric current to LED, and adjusts color. LEDに電流を流すデューティー比もしくは電流値を変えて白色に調整する例を示したタイミングチャートである。It is the timing chart which showed the example which changes the duty ratio or electric current value which sends an electric current to LED, and adjusts to white. LEDに電流を流すデューティー比、電流値を説明する図である。It is a figure explaining the duty ratio which sends an electric current to LED, and an electric current value. LED集合体をFPC上に実装した例を示した斜視図である。It is the perspective view which showed the example which mounted the LED assembly on FPC. ワイヤーボンディング法によりLEDチップをパッケージに実装した例を示した断面図である。It is sectional drawing which showed the example which mounted the LED chip in the package by the wire bonding method. フリップチップ法によりLEDチップをパッケージに実装した例を示した断面図である。It is sectional drawing which showed the example which mounted the LED chip in the package by the flip chip method. LED集合体内のワイヤーボンディング法によってLEDを実装した例を示した斜視図である。It is the perspective view which showed the example which mounted LED by the wire bonding method in a LED assembly. 本発明の第2の実施例で、FPC上にLEDチップを実装した図である。In the second embodiment of the present invention, the LED chip is mounted on the FPC. 本発明の第3の実施例で、LED集合体内でフリップチップ法によってLEDを実装した図である。FIG. 6 is a diagram showing an LED mounted in a LED assembly by a flip chip method in a third embodiment of the present invention.

符号の説明Explanation of symbols

10 接続部
11 LED用配線部
12 接続電極部
14 配線電極
16,18,20,22 LED用接続電極
24 放熱部材としての電極
26,28 LED用背面電極
30,32,34 スルーホール
36 導光部材
42 液晶表示パネル
46 FPC
50 赤色(R)LED
52 緑色(G)LED
54 青色(B)LED
56,58,60,62 (LED集合体64の)電極
70 電極
64 LED集合体
68 パッケージ内の基板
74 LEDチップ
76 銀ペースト
78 ワイヤー
84 LEDチップ
86,88 バンプ
90 電極
100,102,104 出力電極
106 共通電極C用の出力電極
118,120,122 B,R,GのLED共通接続電極またはLED固定電極
DESCRIPTION OF SYMBOLS 10 Connection part 11 LED wiring part 12 Connection electrode part 14 Wiring electrode 16, 18, 20, 22 LED connection electrode 24 Electrode 26, 28 as heat radiating member LED Back electrode 30, 32, 34 Through hole 36 Light guide member 42 LCD panel 46 FPC
50 Red (R) LED
52 Green (G) LED
54 Blue (B) LED
56, 58, 60, 62 Electrode 70 (of LED assembly 64) Electrode 64 LED assembly 68 Substrate 74 in package LED chip 76 Silver paste 78 Wire 84 LED chip 86, 88 Bump 90 Electrode 100, 102, 104 Output electrode 106 LED common connection electrode or LED fixed electrode for output electrodes 118, 120, 122 B, R, G for common electrode C

Claims (9)

異なる色の光を発光する少なくとも2つのLEDを有する照明装置において、
前記LEDを接続するLED接続用基板の接続電極の大きさを、前記LEDにより異ならせたことを特徴とする照明装置。
In a lighting device having at least two LEDs that emit light of different colors,
A lighting device, wherein the size of the connection electrode of the LED connection substrate to which the LED is connected varies depending on the LED.
前記LED接続用基板は、フレキシブル印刷回路基板であることを特徴とする請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the LED connection board is a flexible printed circuit board. 少なくとも前記LEDが実装された前記LED接続用基板と、前記LEDの光出射面前方に配設された導光部材を有することを特徴とする請求項1または2に記載の照明装置。     The lighting device according to claim 1, comprising at least the LED connection substrate on which the LED is mounted, and a light guide member disposed in front of a light emission surface of the LED. 複数のLED素子を有するLED集合体が接続される複数の接続部を有するLED接続用基板であって、それぞれのLED素子の発光スペクトルもしくは発熱量もしくは電流量に応じて前記LEDを接続する前記LED接続基板の接続電極の大きさもしくは電極厚さの少なくとも1つを変えたことを特徴とするLED接続用基板。   An LED connection substrate having a plurality of connection portions to which an LED assembly having a plurality of LED elements is connected, wherein the LEDs are connected in accordance with the emission spectrum, the heat generation amount or the current amount of each LED element. A substrate for LED connection, wherein at least one of the size or thickness of the connection electrode of the connection substrate is changed. 前記LED接続用基板は、フレキシブル印刷回路基板であることを特徴とする請求項4に記載のLED接続用基板。   The LED connection board according to claim 4, wherein the LED connection board is a flexible printed circuit board. 前記請求項1または2または3に記載の照明装置の前記LEDの光出射面前方向に配設された導光部材の前記導光部材の光出射面前方向に表示パネルをを配設されたことを特徴とする表示装置。   The display panel is disposed in front of the light emitting surface of the light guide member of the light guiding member disposed in front of the light emitting surface of the LED of the lighting device according to claim 1, 2 or 3. Characteristic display device. 前記請求項4または5に記載のLED接続用基板の前記LEDの光出射面前方に配設された導光部材と前記導光部材の光出射面前方に配設された表示パネルを有することを特徴とする表示装置。   A light guide member disposed in front of the light emission surface of the LED of the LED connection substrate according to claim 4 or 5 and a display panel disposed in front of the light emission surface of the light guide member. Characteristic display device. 赤、緑、青3色のLED素子より成るLED集合体と接続される複数の接続電極を有するLED接続用回路基板であって、前記LED素子に接続されるそれぞれの前記接続電極に流れる電流量、もしくはそれぞれの前記接続電極が接続されるLEDの発光スペクトル、もしくはそれぞれの前記接続電極の発熱量に応じてそれぞれの前記接続電極の大きさもしくは電極厚さの少なくとも1つを変えたことを特徴とするLED接続用回路基板。   A circuit board for LED connection having a plurality of connection electrodes connected to an LED assembly composed of LED elements of three colors of red, green, and blue, and an amount of current flowing through each of the connection electrodes connected to the LED elements Or at least one of the size or thickness of each connection electrode is changed according to the emission spectrum of the LED to which each connection electrode is connected or the amount of heat generated by each connection electrode. A circuit board for LED connection. 前記青色LEDの接続電極の大きさを他の色のLEDの接続電極よりも大きくしたことを特徴とする請求項8に記載のLED接続用回路基板。
9. The circuit board for LED connection according to claim 8, wherein the connection electrode of the blue LED is made larger than the connection electrode of another color LED.
JP2004295557A 2004-10-08 2004-10-08 Substrate for led connection, illuminator using thereof, and display device using thereof Pending JP2006108517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295557A JP2006108517A (en) 2004-10-08 2004-10-08 Substrate for led connection, illuminator using thereof, and display device using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295557A JP2006108517A (en) 2004-10-08 2004-10-08 Substrate for led connection, illuminator using thereof, and display device using thereof

Publications (1)

Publication Number Publication Date
JP2006108517A true JP2006108517A (en) 2006-04-20

Family

ID=36377855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295557A Pending JP2006108517A (en) 2004-10-08 2004-10-08 Substrate for led connection, illuminator using thereof, and display device using thereof

Country Status (1)

Country Link
JP (1) JP2006108517A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160091A (en) * 2006-12-01 2008-07-10 Nichia Chem Ind Ltd Light-emitting device
JP2009111395A (en) * 2007-10-31 2009-05-21 Cree Inc Light emitting diode package and method for fabricating the same
JP2012015467A (en) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd Light-emitting element mount wiring pattern, light-emitting element mount wiring board having the light-emitting element mount wiring pattern, light-emitting module using the light-emitting element mount wiring board, and lighting apparatus including the light-emitting module
JP2012227177A (en) * 2011-04-14 2012-11-15 Stanley Electric Co Ltd Light emitting diode device
JP2014027213A (en) * 2012-07-30 2014-02-06 Ushio Inc Light source unit
US8735920B2 (en) 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
US8748915B2 (en) 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
JP2014517528A (en) * 2011-06-01 2014-07-17 ソウル セミコンダクター カンパニー リミテッド Light emitting diode assembly
US8791471B2 (en) 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US9035439B2 (en) 2006-03-28 2015-05-19 Cree Huizhou Solid State Lighting Company Limited Apparatus, system and method for use in mounting electronic elements
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US9722158B2 (en) 2009-01-14 2017-08-01 Cree Huizhou Solid State Lighting Company Limited Aligned multiple emitter package
US9755126B2 (en) 2012-07-30 2017-09-05 Ushio Denki Kabushiki Kaisha Light source unit
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces
JP2020096102A (en) * 2018-12-13 2020-06-18 三菱電機株式会社 Electronic module
JP2020096103A (en) * 2018-12-13 2020-06-18 三菱電機株式会社 Electronic module
JP2020181941A (en) * 2019-04-26 2020-11-05 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001067918A (en) * 1999-08-27 2001-03-16 Matsushita Electronics Industry Corp Surface light emitting device
JP2001110224A (en) * 1999-10-06 2001-04-20 Nidec Copal Corp Planar emitter
JP2002287144A (en) * 2001-02-07 2002-10-03 Hyundai Curitel Inc Folding cellular phone having both-side liquid crystal display device
JP2002368279A (en) * 2001-06-07 2002-12-20 Sharp Corp Chip light emitting diode
JP2003324214A (en) * 2002-04-30 2003-11-14 Omron Corp Light emitting module
US20040159580A1 (en) * 2003-02-13 2004-08-19 Henderson Mcpherson Pty Ltd Display box

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001067918A (en) * 1999-08-27 2001-03-16 Matsushita Electronics Industry Corp Surface light emitting device
JP2001110224A (en) * 1999-10-06 2001-04-20 Nidec Copal Corp Planar emitter
JP2002287144A (en) * 2001-02-07 2002-10-03 Hyundai Curitel Inc Folding cellular phone having both-side liquid crystal display device
JP2002368279A (en) * 2001-06-07 2002-12-20 Sharp Corp Chip light emitting diode
JP2003324214A (en) * 2002-04-30 2003-11-14 Omron Corp Light emitting module
US20040159580A1 (en) * 2003-02-13 2004-08-19 Henderson Mcpherson Pty Ltd Display box

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035439B2 (en) 2006-03-28 2015-05-19 Cree Huizhou Solid State Lighting Company Limited Apparatus, system and method for use in mounting electronic elements
US8748915B2 (en) 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
US8735920B2 (en) 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
JP2008160091A (en) * 2006-12-01 2008-07-10 Nichia Chem Ind Ltd Light-emitting device
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
JP2009111395A (en) * 2007-10-31 2009-05-21 Cree Inc Light emitting diode package and method for fabricating the same
US11791442B2 (en) 2007-10-31 2023-10-17 Creeled, Inc. Light emitting diode package and method for fabricating same
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US10892383B2 (en) 2007-10-31 2021-01-12 Cree, Inc. Light emitting diode package and method for fabricating same
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US8791471B2 (en) 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US9722158B2 (en) 2009-01-14 2017-08-01 Cree Huizhou Solid State Lighting Company Limited Aligned multiple emitter package
JP2012015467A (en) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd Light-emitting element mount wiring pattern, light-emitting element mount wiring board having the light-emitting element mount wiring pattern, light-emitting module using the light-emitting element mount wiring board, and lighting apparatus including the light-emitting module
JP2012227177A (en) * 2011-04-14 2012-11-15 Stanley Electric Co Ltd Light emitting diode device
JP2014517528A (en) * 2011-06-01 2014-07-17 ソウル セミコンダクター カンパニー リミテッド Light emitting diode assembly
JP2014027213A (en) * 2012-07-30 2014-02-06 Ushio Inc Light source unit
US9755126B2 (en) 2012-07-30 2017-09-05 Ushio Denki Kabushiki Kaisha Light source unit
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces
JP2020096103A (en) * 2018-12-13 2020-06-18 三菱電機株式会社 Electronic module
JP2020096102A (en) * 2018-12-13 2020-06-18 三菱電機株式会社 Electronic module
JP2020181941A (en) * 2019-04-26 2020-11-05 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
JP7393617B2 (en) 2019-04-26 2023-12-07 日亜化学工業株式会社 Light emitting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2006108517A (en) Substrate for led connection, illuminator using thereof, and display device using thereof
US11476227B2 (en) Light-emitting apparatus
JP4588571B2 (en) Illumination device and display device including the same
CN107768358B (en) Light source module and backlight assembly including the same
US7642704B2 (en) Light-emitting diode with a base
KR100586731B1 (en) Light-emitting semiconductor device packaged with light-emitting diode and current-driving integrated circuit
JP4711715B2 (en) Semiconductor light emitting device and semiconductor light emitting unit
US6841931B2 (en) LED lamp
JP2012015148A (en) Led module and led lighting system
JP5152714B2 (en) Light emitting device and lamp
JP2000353826A (en) Hybrid integrated circuit device and light irradiating device
JPH11177136A (en) Chip type led
KR100586734B1 (en) Light-emitting semiconductor device
US20070246726A1 (en) Package structure of light emitting device
US9702515B2 (en) Light-emitting device and method for compensating chromaticity of light-emitting device
JP2007324204A (en) Light emitting device
JP2007173733A (en) Light emitting device
TWI781689B (en) Micro light emitting diode display panel
KR20200022972A (en) Led package
KR101610384B1 (en) Light emitting device and light emitting module using thereof
US8882312B2 (en) Light emitting device with light emitting diodes fixed to printed circuit
JP2006039122A (en) Backlight for liquid crystal display panel
JP2005167018A (en) Light emitting device
JP5759241B2 (en) Light emitting diode device
JP2020035787A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208